Gravity is strange. It feels extremely weak in our day-to-day experience yet it leads to remarkable phenomena on cosmic scales: black holes, gravitational waves and more.

The Einstein field equations lie at the heart of gravitational physics. Unfortunately, these complicated equations are difficult to solve. Only a few analytic solutions have been found in the century since the equations were first introduced. Luckily, the rapid development of supercomputers has thrown open the door to a wide range of problems in general relativity. Using advanced algorithms and high-powered supercomputers, the Einstein field equations can be solved numerically for strong-field, high-energy systems. This is the bread and butter of our research.

Our group focuses on black hole formation, black hole collisions/dynamics, the generation of gravitational waves and relativistic hydrodynamics. We also study critical phenomena in gravitational collapse (a field that was pioneered by Choptuik).

This simulation was done by Caltech/MIT (SXS Project): www.black-holes.org

The theory of special relativity tells us that an object can never travel faster than the speed of light. Although this "universal speed limit" holds true in flat space, it has been proposed that distortions in spacetime could permit apparent faster-than-light travel. Within the context of general relativity, the Alcubierre metric (AM) provides a mathematical description of a spacetime that would allow an object to traverse a vast distance in an arbitrarily small time period. To an observer at rest in flat space, it looks as if the object has a speed *V > c*. This idea is reminiscent of the "warp drive" of science fiction and has led to the AM being coined the "Alcubierre warp drive".

Our research investigates the propagation of electromagnetic waves in the AM. The wave equation for the AM is difficult to solve analytically. As a consequence, most studies of null geodesics (light ray trajectories) have been limited to numerical methods or ray-tracing techniques. We find an analytic method for describing how an arbitrary wave packet will transform as it propagates in this spacetime.

M. P. Kinach, *Light Propagation in a Warp Drive Spacetime*, B.Sc. thesis, St. Francis Xavier University, 2017.

with K. Dare, W. Gunton, K. W. Madison at UBC's QDG Lab (2015)

In recent years, laser cooling and trapping techniques have progressed to the point where atoms and molecules can be cooled to near-zero temperatures. At extremely low temperatures, these atoms and molecules can exhibit some unique quantum effects. One of the main ways of gathering data from these systems is through optical imaging. In general, these imaging systems need to achieve high-resolutions in order to resolve features that are typically on the order of micrometers.

In this project, I was responsible for designing, assembling and characterizing a high-performance imaging system that is capable of imaging with a spatial resolution of 1-2 micrometers. This apparatus will be used in experiments with ultra-cold lithium and rubidium at UBC's QDG Lab.

M. P. Kinach, *Designing and Constructing a High-Resolution Imaging Apparatus*, Technical Report, Quantum Degenerate Gases Laboratory, University of British Columbia, 2015 (Unpublished).

Raman scattering is a useful process for identifying and investigating organic molecules. The prospect of combining surface-enhanced Raman scattering with in-line digital holography is appealing because it could have a wide range of medical and biophysical applications. In particular, this new molecular imaging method, called 'holographic Raman imaging', would serve as a powerful microscopy technique that could act as an alternative to CT scans and MRIs.

In this project, we provided theoretical support for an experiment performed at Dr. Kevin Hewitt's research lab at Dalhousie University. I developed a Mathematica program that uses coherence functions to achieve holographic reconstructions of molecular interference patterns.