
PHYSICS 410

SOLVING BVPs WITH THE ode45
INTEGRATOR AND SHOOTING



Introduction

• Recall: Two pt. boundary value problem (BVP); b.c.’s supplied at two
points—typically end points of soln domain—rather than at some single pt as
in the case of an IVP

• In idealized physical problems, one of the points will often be x =∞

• 2-pt. BVPs often (but not always) eigenvalue problems

• Problem characterized by parameter (the eigenvalue), and solutions
satisfying b.c.’s only exist for certain values of that parameter
• Often a countable infinity of solutions (eigenfunctions) and parameters
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Example

• Second order linear ODE:

u′′(x) = −ω2u(x) on 0 ≤ x ≤ 1

with b.c.’s
u(0) = u(1) = 0

• Countable infinity of solutions, un(x)

un(x) = sin(ωnx)

ωn = πn, n = 0, 1, 2, . . .

• un(x) are the eigenfunctions, ωn are the eigenvalues
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Example: Toy model for deuteron (proton-neutron)
from Arfken, Ex. 9.1.2

• Potential
V = V0, V0 < 0 for 0 ≤ r ≤ a

V = 0 for r > a

Time Independent Schrödinger Equation

− h̄2

2m
∇2ψ + V ψ = Eψ (1)

where m is the “deuteron” mass
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• Assume spherical symmetry, then ψ(x, y, z)→ ψ(r)

∇2ψ(r) =
1

r2
d

dr

(
r2
dψ

dr

)

• Define u(r) ≡ rψ(r), then (verify)

∇2ψ(r)→ 1

r

d2u(r)

dr2

• so (1) can be written
d2u

dr2
+

2m

h̄2
(E − V )u = 0 (2)
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• Now, as discussed in Arfken, progress can be made in solving (2) by writing
down the general solutions in the domains 0 ≤ r ≤ a and r > a and matching
u and du/dr at r = a subject to normalizability of ψ:∫

ψψ∗dV = 1→ 4π

∫
r2|ψ(r)|2 = 1

which effectively means ψ(r)→ 0 as r →∞.

• Further, for given a and other problem parameters (m,V0) fixed, normalizable
soln will only exist for specific (i.e. discrete) values of E

• I.e. E is an eigenvalue and the corresponding wave function u(r) = rψ(r) is an
eigenfunction
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• Let us now consider solving (2) directly using shooting; first rewrite (2) in an
non-dimensional form

• Let x ≡ (2m)1/2r so that
d2u

dr2
→ 2m

d2u

dx2

and choose units such that h̄ = 1 and V0 = −1 (should establish that this is
possible if it isn’t clear to you)

• Problem left with one free parameter, a, equivalently

x0 ≡ (2m)1/2a

and (2) becomes
d2u

dx2
+ (E − V )u = 0 (3)

V (x) =

{
−1 0 ≤ x < x0
0 x > x0
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• Again, note that E is an eigenvalue in (3). For specified x0, expect specific E
to result in normalizable u(r) (eigenfunction)

• Boundary conditions are derived from demands that

1. ψ(r) is regular at r = 0
2. limr→∞ψ(r) = 0

• Regularity at r = 0
lim
r→0

ψ(r) = ψ0 + r2ψ2 +O(r4)

lim
r→0

u(r) = rψ(r) = rψ0 + r3ψ2 +O(r5)

• Thus
u(0) = 0

du

dr
(0) = ψ(0)
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• Now, note that eqn (1), like all Schrödinger equations, is linear; given any soln
ψ(r), cψ(r), c ∈ < is also a soln; the particular soln we seek is fixed by
normalization ∫

ψψ∗dV = 1

so we can choose ψ(0) arbitrarily (say ψ(0) = 1 for convenience) then (for
specific x0) vary E until we find a soln which satisfies limr→∞ψ(r) = 0

• This process of varying a parameter and then integrating a set of ODEs
outwards (or inwards) to achieve a bundary condition at the outer (inner) limit
of ihtegration is known as shooting

• Once we have such a solution, we can then normalize it (upcoming tutorial)
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• Note that since both of the b.c.’s on the ODE have been set at r = 0, we can
use an initial value solver, such as ode45 to solve this problem

• To that end we rewrite (3) in canonical form by introducing w ≡ du/dx, then

du

dx
= w (4)

dw

dx
= (V − E)u (5)

• We can view the task of determining the eigenvalue, E, for specified x0 as
finding a root of a non-linear equation (consider
f(E;x0) = limx→∞ u(x;E, x0) for example)

• Provided we have an initial bracket of the eigenvalue [ELO, EHI] such that
ELO ≤ E ≤ EHI, we can use bisection to systematically refine our estimate of
E (tutorial)
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Deuteron Model Recap

• Differential equation
d2u

dx2
+ (E − V )u = 0

where the potential V (x) is given by

V (x) =

{
−1 0 ≤ x < x0
0 x > x0

and the boundary conditions at x = 0 are

u(0) = 0
du

dr
(0) = ψ(0) = 1

• E is an eigenvalue and, in the solution of the ODE, must be adjusted using
bisection, for example, until the true boundary condition

lim
x→∞

u(x) = 0

is achieved
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Script deut.m

% deut: Solves ODE for toy deuteron problem.

global x0 E;

% Domain outer boundary ...

xmax = 60.0;

% Tolerance parameters ...

abstol = 1.0e-8;

reltol = 1.0e-8;

options = odeset(’AbsTol’, abstol * [1 1]’, ’RelTol’, reltol);

% Parameters ...

x0 = 6.0;

E = -0.80067

% Integrate ODE ...

[xout yout] = ode45(@fcn_deut, [0.0 xmax], [0.0 1.0]’, options);

% Make plot and output as JPEG ...

figure(1);

clf;

hold on;

axis square;

xlabel(’x’);

ylabel(’u’);

plot(xout, yout(:, 1));

print(’deut.jpg’,’-djpeg’);
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Function fcn deut

function dydx = fcn_deut(x, y)

% Function fcn_deut evaluates derivatives for toy deuteron problem.

global x0 E;

dydx = ones(2,1);

dydx(1,1) = y(2);

if x <= x0

dydx(2,1) = (-1 - E) * y(1);

else

dydx(2,1) = -E * y(1);

end

end
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• Sample output during bisection procedure (shooting) for x0 = 2.0
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• Normalized wave function for x0 = 2.0
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• Normalized wave function for x0 = 4.0
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• Normalized wave function for x0 = 6.0
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• Normalized wave function for x0 = 8.0
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