PHYSICS 410

SOLVING BVPs WITH THE ode45
INTEGRATOR AND SHOOTING



Introduction

e Recall: Two pt. boundary value problem (BVP); b.c.'s supplied at two
points—typically end points of soln domain—rather than at some single pt as
in the case of an IVP

e In idealized physical problems, one of the points will often be x =

e 2-pt. BVPs often (but not always) eigenvalue problems

e Problem characterized by parameter (the eigenvalue), and solutions
satisfying b.c.’s only exist for certain values of that parameter
e Often a countable infinity of solutions (eigenfunctions) and parameters



Example

e Second order linear ODE:
u’(x) = —w?u(x) on 0<z<1

with b.c.'s

e Countable infinity of solutions, u,,(x)
Un(x) = sin(w,x)
wn, =mn, n=20,1,2,...

e u,(x) are the eigenfunctions, w,, are the eigenvalues



Example: Toy model for deuteron (proton-neutron)
from Arfken, Ex. 9.1.2

e Potential
V="V, V<O for 0<r<a

V=0 for r>a

Time Independent Schrodinger Equation

h2
— o=V + Vi = EY (1)

2m

where m i1s the “deuteron” mass



e Assume spherical symmetry, then ¢ (x,y, z) — ¥(r)
1 d d
VAp(r) = 5 (rQ—w)

e Define u(r) = ri(r), then (verify)

vE(r) — L)

r dr?

e so (1) can be written

du n 2m
dr2 R’

(FE—=V)u=0



e Now, as discussed in Arfken, progress can be made in solving (2) by writing
down the general solutions in the domains 0 < r < a and r > a and matching
u and du/dr at r = a subject to normalizability of :

/WﬁdV =1 47r/r2|¢(r)|2 =1

which effectively means ¢ (r) — 0 as r — oc.

e Further, for given a and other problem parameters (m, Vj) fixed, normalizable
soln will only exist for specific (i.e. discrete) values of

e |l.e. F is an eigenvalue and the corresponding wave function u(r) = ry(r) is an
eigenfunction



e Let us now consider solving (2) directly using shooting; first rewrite (2) in an
non-dimensional form

o Let x = (2m)'/?r so that

and choose units such that A =1 and Vy = —1 (should establish that this is
possible if it isn't clear to you)

e Problem left with one free parameter, a, equivalently
_ 1/2
ro = (2m)*/“a

and (2) becomes
d2—u—|-(E—V)u—0 (3)
dx? B
. —1 0<x<x
V(ZE) - { 0 r > X



e Again, note that F is an eigenvalue in (3). For specified x(, expect specific £

to result in normalizable u(r) (eigenfunction)
e Boundary conditions are derived from demands that

1. y(r) is regular at r =0

2. lim, oo ¥(r) =0
e Regularity at r =20

lim ¢ (r) = o + 12 + O(r)
lim u(r) = 7(r) = g + 2Py + O(r°)

r—0

e Thus



e Now, note that eqn (1), like all Schrodinger equations, is linear; given any soln
Y(r), cp(r),c € R is also a soln; the particular soln we seek is fixed by
normalization

/ YAV =1

so we can choose (0) arbitrarily (say 1(0) = 1 for convenience) then (for
specific xg) vary F until we find a soln which satisfies lim, ., 1 (r) =0

e This process of varying a parameter and then integrating a set of ODEs
outwards (or inwards) to achieve a bundary condition at the outer (inner) limit
of ihtegration is known as shooting

e Once we have such a solution, we can then normalize it (upcoming tutorial)



e Note that since both of the b.c.’s on the ODE have been set at r = 0, we can
use an initial value solver, such as ode45 to solve this problem

e To that end we rewrite (3) in canonical form by introducing w = du/dz, then

Z—Z = w (4)
W= (v B @

e We can view the task of determining the eigenvalue, F/, for specified x( as
finding a root of a non-linear equation (consider
f(E;x9) = lim, o u(x; E, xq) for example)

e Provided we have an initial bracket of the eigenvalue [Ey o, Fi] such that

Ero < E < Ey1, we can use bisection to systematically refine our estimate of
E (tutorial)



Deuteron Model Recap

e Differential equation
T B V)u=0
- J— u =
dx?

where the potential V(x) is given by

B —1 0<xz<x
V(ZE)—{ 0 xr > X

and the boundary conditions at x = 0 are

w)=0 ) =uv(0) =1

e F is an eigenvalue and, in the solution of the ODE, must be adjusted using
bisection, for example, until the true boundary condition

xlgl;lo u(x) =0

Is achieved



Script deut.m

%» deut: Solves ODE for toy deuteron problem.
global x0 E;

%» Domain outer boundary ...

xmax = 60.0;

%» Tolerance parameters

abstol = 1.0e-8;

reltol = 1.0e-8;

options = odeset(’AbsTol’, abstol * [1 1]’, ’RelTol’, reltol);
% Parameters

x0 = 6.0;

E = -0.80067

%» Integrate ODE ...

[xout yout] = ode45(@fcn_deut, [0.0 xmax], [0.0 1.0]’, optiomns);
%» Make plot and output as JPEG ...
figure(1);

clf;

hold on;

axis square;

xlabel(’x’);

ylabel(’u’);

plot(xout, yout(:, 1));

print (’deut. jpg’,’-djpeg’);



Function fcn_deut

function dydx = fcn_deut(x, y)
% Function fcn_deut evaluates derivatives for toy deuteron problem.
global x0 E;

dydx = ones(2,1);

dydx(1,1) = y(2);
if x <= x0
dydx(2,1) = (-1 - E) * y(1);
else
dydx(2,1) = -E * y(1);
end
end



e Sample output during bisection procedure (shooting) for o = 2.0
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e Normalized wave function for z¢o = 2.0

Toy deuteron problem: X,

= 2
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e Normalized wave function for z¢o = 4.0
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e Normalized wave function for g = 6.0

Toy deuteron problem: x_. =6
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e Normalized wave function for £y = 8.0

Toy deuteron problem: x_, = 8
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