
PHYS 410: Computational Physics Fall 2022
Final exam key

Problem 1: [10 pts]

Problem 1.1: Derivative of a polynomial interpolant [5 pts]

Consider 3 equispaced data points:
(−h, f−1), (0, f0), (h, f1)

Construct the Lagrange interpolating polynomial for these values, then evaluate the derivative at x = 0.

p(x) =
3
∑

j=1

fj lj(x) =
3
∑

j=1

fj

3
∏

i=1,i 6=j

x− xi
xj − xi

= f−1
x(x− h)

(−h)(−2h)
+ f0

(x+ h)(x− h)

(h)(−h)
+ f1

(x+ h)(x)

(2h)(h)

= f−1
x2 − hx

2h2
− f0

x2 − h2

h2
+ f1

x2 + hx

2h2

Now, since the above expression is a polynomial in x, to determine the derivative evaluated at x = 0, we
simply need to read off the coefficient of the linear term of the polynomial. Thus we have

dp

dx

∣

∣

∣

∣

∣

x=0

=
f1 − f−1

2h

Problem 1.2: Richardson extrapolating an O(h2) FDA [5 pts]

We are given

uj+1 − 2uj + uj−1

∆x2
=

d2u

dx2
+

1

12
∆x2

d4u

dx4
+O(∆x4)

Truncating at the O(∆x2) term, we have at scales ∆x and 2∆x

L∆xuj =
uj+1 − 2uj + uj−1

∆x2
∼

d2u

dx2
+∆x2e2(x)

L2∆xuj
uj+2 − 2uj + uj−2

4∆x2
∼

d2u

dx2
+ 4∆x2e2(x)

We now want to take a linear combination such that

αL∆xuj + βL2∆xuj =
d2u

dx2
+O(∆x4)

We thus must have

α+ β = 1

α+ 4β = 0
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Solving, we have

α =
4

3

β = −
1

3

Assembling results:

4

3
L∆xuj −

1

3
L2∆xuj =

16uj+1 − 32uj + 16uj−1

12∆x2
−

uj+2 − 2uj + uj−2

12∆x2

So our O(h4) approximation is

−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2

12∆x2
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Problem 2: [10 pts]

The differential equation is
d2x

dt2
+

(

x
dx

dt

)3

= s(t)

with initial conditions
x(0) = x0

dx

dt
(0) = v0

Problem 2.1: FDA [2 pts]

The FDA is

xn+1 − 2xn + xn−1

∆t2
+

(

(xn)
xn+1 − xn−1

2∆t

)3

= sn

Problem 2.2: Initialization [4 pts]

We need to determine values for x1 = x(0) and x2 = x(∆t). The latter must be computed up to and
including terms of O(∆t2) so that the overall scheme is O(∆t2). We have

x1 = x0

and using the equation of motion to eliminate the second time derivative in the Taylor series expansion

x2 = x1 +∆t
dx

dt
(0) +

1

2
∆t2

d2x

dt2
(0) +O(∆t3)

≈ x0 +∆tv0 +
1

2
∆t2

(

s(0)−

(

x(0)
dx

dt
(0)

)3
)

so

x2 = x0 +∆tv0 +
1

2
∆t2

(

s(0)− (x0v0)
3
)

Problem 2.3: Determining xn+1 [4 pts]

The FDA is a nonlinear equation in xn+1:

F (xn+1) =
xn+1 − 2xn + xn−1

∆t2
+

(

(xn)
xn+1 − xn−1

2∆t

)3

− sn = 0

We can determine xn+1 iteratively

xn+1
(0) → xn+1

(1) → . . . xn+1
(m) → xn+1

(m+1) → . . .

using Newton’s method. Start with the initial estimate

xn+1
(0) = xn
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then generate the iterates via

xn+1
(m+1) = xn+1

(m) −
F (xn+1

(m) )

dF/dxn+1|x = xn+1
(m)

where
dF

dxn+1
=

1

∆t2
+

3(xn)3

8∆t3
(

xn+1 − xn−1
)2
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Problem 3 [15 pts]

Problem 3.1: FDA [2 pts]

Adopting the usual finite difference notation, the FDA is

u
n+1

j
− u

n−1

j

2∆t
=

u
n

j+1
− u

n

j−1

2∆x
+ αu

n

j

Problem 3.2: Truncation Error [4 pts]

Compute the truncation error for the O(h2) approximation to the first derivative

u(x+∆x) = u(x) + ∆xu′(x) +
1

2
∆x2u′′(x) +

1

6
∆x3u′′′(x) +O(∆x4)

u(x−∆x) = u(x)−∆xu′(x) +
1

2
∆x2u′′(x)−

1

6
∆x3u′′′(x) +O(∆x4)

so
u(x+∆x)− u(x−∆x)

2∆x
= u′(x) +

1

6
∆x2u′′′(x) +O(∆x4)

Writing the difference approximation in the form

u
n+1

j
− u

n−1

j

2∆t
−

u
n

j+1
− u

n

j−1

2∆x
− αu

n

j
= 0

the truncation error is

τ =
1

6
∆t2uttt −

1

6
∆x2uxxx

Problem 3.3: Initialization [4 pts]

To guarantee an O(h2) accurate solution at any fixed (t, x) we need to know u
2

j
to O(∆t2) accuracy. Taylor

series expanding, we have

u(x,∆t) = u(x, 0) + ∆tut(x, 0) +
1

2
∆t2utt(x, 0) +O(∆t3) (1)

Now, from the initial conditions we have u(x, 0) = u0(x), and from the governing PDE we have

ut(x, 0) = ux(x, 0) + αu(x, 0) = u′0 + αu0

utt(x, 0) = (ux(x, 0) + αu(x, 0))t = uxt(x, 0) + αut(x, 0) = utx(x, 0) + αut(x, 0)

= u′′0 + αu′0 + αu′0 + α2u0 = u′′0 + 2αu′0 + α2u0

Substituting in (1) we have

u
1

j
= u0j

u
2

j
= u0j +∆t

(

u′0 + αu0
)

j
+

1

2
∆t2

(

u′′0 + 2αu′0 + α2u0
)

j

5



Problem 3.4: Stability Analysis [5 pts]

First, according to a theorem quoted without proof in class, we can neglect undifferentiated terms when
performing a von Neummann stability analysis.

Second, rewrite the difference equation in “first order” form, introducing v
n

j
= u

n−1

j
:

u
n+1

j
= v

n

j
+ λ

(

u
n

j+1
− u

n

j−1

)

,

v
n+1

j
= u

n

j
,

where λ = ∆t/∆x. In matrix form

[

u
v

]n+1

=

[

λD0 1
1 0

] [

u
v

]n

where D0u
n

j
= u

n

j+1
− u

n

j−1
. Under Fourier transformation this becomes

[

ũ
ṽ

]n+1

=

[

2iλ sin ξ 1
1 0

] [

ũ
ṽ

]n

where ξ = kh as usual. We must now determine conditions under which the above matrix has eigenvalues
that lie within or on the unit circle. The characteristic equation is

∣

∣

∣

∣

∣

2iλ sin ξ − µ 1
1 −µ

∣

∣

∣

∣

∣

= 0

or
µ2 − (2iλ sin ξ)µ− 1 = 0 .

This equation has roots at

µ(ξ) = iλ sin ξ ±

√

1− λ2 sin2 ξ ,

Need sufficient conditions for
|µ(ξ)| ≤ 1,

or equivalently
|µ(ξ)|2 ≤ 1.

Two cases to consider

1. 1− λ2 sin2 ξ ≥ 0 → λ ≤ 1

2. 1− λ2 sin2 ξ < 0 → λ > 1

Case 1

|µ(ξ)|2 = λ2 sin2 ξ + 1− λ2 sin2 ξ = 1, so we have von Neumann stability.

Case 2

The argument of the square root is negative for sufficiently large ξ so the square root itself is purely
imaginary. Together with the fact that |iλ sin(ξ)| > 1 this implies that µ(ξ) > 1 for large ξ, so we have
von Neumann instability.

Thus, the von Neumann stability criterion for this scheme is

λ ≤ 1
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