
PHYS 410: Computational Physics Fall 2019

Homework 1

Due: Monday, September 23, 11:59 PM

PLEASE report all bugs, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Problem 1

Implement a hybrid algorithm that uses bisection and Newton’s method to locate a root within a given interval
[xmin, xmax]. Assuming that you code in MATLAB, your top-level algorithm should be implemented as a function
with the header

function x = hybrid(f, dfdx, xmin, xmax, tol1, tol2)

where the arguments to the routine are defined as follows:

% f: Function whose root is sought.

% dfdx: Derivative function.

% xmin: Initial bracket minimum.

% xmax: Initial bracket maximum.

% tol1: Relative convergence criterion for bisection.

% tol2: Relative convergence criterion for Newton iteration.

The single output argument is given by

% x: Estimate of root.

Given the initial bracket (interval) [xmin, xmax] such that

f(xmin)f(xmax) < 0

your implementation should perform bisection until the root has been localized to a relative accuracy of tol1. Your
code should then perform Newton iterations until the root has been determined to a relative tolerance of tol2.

Note that in MATLAB functions can be passed to other functions as arguments (e.g. f and dfdx above) using
function handles, as in the following:

function fx = f(x)

fx = cos(x)^2;

end

function val = caller(f, x)

val = f(x);

end

result = caller(@f, 2.0)

Here, result will be assigned the value cos(2)2. In brief, to pass a function to another function, simply prepend a @

to the function name in the argument list.

Test your implementation by determining all roots of the function

f(x) = 128x8
− 256x6 + 160x4

− 32x2 + 1

in the interval [−1, 1].

I leave it to you to determine how to choose the initial intervals for hybrid, but a brute force approach will suffice.
Also, your solution may comprise more than one function—i.e. more functions than hybrid alone.

1



Problem 2

Implement a d-dimensional Newton iteration. Again, assuming that you are coding in MATLAB, your implementation
should be in the form of a function with header

function x = newtond(f, jac, x0, tol)

where the input arguments are defined by

% f: Function which implements the nonlinear system of equations.

% Function is of the form f(x) where x is a length-d vector, and

% returns length-d column vector.

% jac: Function which is of the form jac(x) where x is a length-d vector, and

% which returns the d x d matrix of Jacobian matrix elements.

% x0: Initial estimate for iteration (length-d column vector).

% tol: Convergence criterion: routine returns when relative magnitude

% of update from iteration to iteration is <= tol.

and the output argument is

% x: Estimate of root (length-d column vector)

Use your implementation to find a root of the system

x2 + y3 + z4 = 1

sin(xyz) = x+ y + z

x = yz

in the vicinity of (x, y, z) = (3,−2,−1).

2


