PHYS 210: Introduction to Computational Physics Fall 2013 Homework 2
Version 2: October 10, 2013
Due: Thursday, October 17, 11:59 PM
PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please make careful note of the following information and instructions:

1.

10.

Including this page, this handout has 10 pages. Again, do not be taken aback by its length—most of the
verbosity is problem description/specification, and, with the exception of Problem 1, solutions for virtually all
subproblems can be achieved with just a few lines of Maple. Moreover, 2 pages are devoted to a bonus question
that you need not address/answer to complete the homework.

. The following assignment requires

(a) Using xmaple (the graphical version of Maple) to produce Maple worksheets (Problems 1 and 2).

(b) Preparing source code for Maple procedures in plain-text files that can be input into maple or xmaple
via the read command (Problems 3, 4, and should you choose to complete it, Problem 5).

. Problem 5 is strictly optional, and is for bonus credit. In keeping with the intrinsic nature of a “bonus” activity,

please try to minimize the amount of help/hints you request from the instructor and/or TAs for this problem.

In order to complete your homework—especially for Problems 1 and 2 (and the bonus, 5)—it is recommended
that you use the computer lab. If you try to use xmaple remotely (using, e.g., Xming/putty under Windows, or
a Mac) you are apt to find the performance unacceptably sluggish. However, for Problems 3 and 4, where you
are to write procedures in text files, you should be able to work remotely using command line maple running
on hyper.

. IMPORTANT!! To complete the homework, all of the files specified below must exist and be in their proper

locations within your /phys210/$LOGNAME/hw2 directory. The TAs and I must be able to read all of the
required worksheets and text files into Maple sessions of our own without encountering errors.

. Whenever working with any worksheet in xmaple, be sure to save your work frequently, using, for example,

Ctrl-S. This will minimize the amount of time and effort that you might lose should the interface crash (as it
has been known to do occasionally)

IMPORTANT!! Although Problem 1 is straightforward, it will take some time to fully complete. You will
be provided with some lab time to work on it (and the other problems), but you are advised not to leave its
completion until the last minute.

. Please follow all instructions for each problem carefully, again ensuring that all requested files are in their

correct locations—i.e. within subdirectories of /phys210/$LOGNAME/hw2—and with the correct names. Also
note that any reference to the directory hw2 below is implicitly a reference to /phys210/$LOGNAME/hw2.

. Do not do any of your work, or save any files, in your home directory or anywhere else that is accessible by

your fellow students.

Finally, as always, let me know immediately if there is something that you do not understand, or if you
encounter serious problems with any part of the assignment.

Problem 1: As an introduction to Maple we went through a worksheet that I created, and which was based on
Chapter 2 of the Maple Learning Guide.

IMPORTANT!! I distributed two versions of the worksheet: the copy handed out on Sep. 20 contained a typo and
a misordering of some material, the second, corrected version was given out on Sep. 24. The corrected version is also
available online as a Postscript (not PDF) file via Course Home Page -> Course Notes -> Maple -> Worksheet
[PS] showing calculations PLEASE use the corrected worksheet to complete this problem.

In your hw2 directory create a subdirectory al. In that subdirectory, make a facsimile of my worksheet, called al.mw,
by entering all of the Maple commands contained within it, and providing annotations for the various sections,
commands, etc., as I have done. Recall that I also distributed a hardcopy of Chapter 2 of the Learning Guide in its
entirety. You may wish to use this for supplemental information if you encounter, for example, difficulties getting
commands to evaluate properly—it too is available online through the Course Notes web page.

We went through the procedure for inserting annotations (text comments) in a worksheet during a lab session. For
completeness, that information is reproduced below.

Finally, please observe the cautions made in the preamble concerning:

1. The time it may take to complete this problem.

2. The wisdom of frequent use of Ctrl-S, or some other save mechanism when working with any Maple worksheet.

To create annotations (comments) of the sort I made, use the three icons located roughly under the “Drawing” label
on the top tool bar. From right to left these are

e Anicon that resembles an hourglass—hovering the mouse over it displays the text “Enclose the current selection
in a document block, or create a new one”

e An icon representing the Maple prompt: “Insert Maple Input after the current execution group”

e An upper case T: “Insert plain text after the current execution group”

To insert a comment, position the cursor to the immediate right of the prompt on the line before the location where
you want to do the insertion.

Click on the hourglass icon, and then on the T.

You can then type in plain text to create the annotation. Once the note (section heading, comment etc.) has been
inserted, you can alter its appearance (font, font size, style etc.) by sweeping the text and using the icons and
pulldowns immediately above the main input/output area.

Since text blocks are always inserted after the line on which the cursor is positioned, it is slightly troublesome to
begin a worksheet with an annotation.

One way to do so is as follows. First, insert an execution group before the initial command of the worksheet by
positioning the cursor beside the corresponding prompt and typing Ctrl-k. Using the above prescription, insert the
text that is to appear at the beginning of the worksheet after the new execution group. Now delete the execution
group before the annotation by repositioning the cursor beside the corresponding prompt, pressing and holding the
Ctrl key and pressing the Delete key two times.

Your annotations do not have to match mine precisely (i.e. you don’t have to use the same font [I used Lucida Sans],
font size, style etc.), but, again, you should try to ensure that everything that I have typed into my worksheet is
included in yours.

Problem 2: Make the subdirectory hw2/a2. Within that subdirectory, use xmaple to create a worksheet called
a2.mw in which the following computations and plotting have been carried out:

o3 . _

92057 (Sln (zy) exp (tanh 1 (y/gg))) R (2.1)

2 — 623 +4

y=3 x=2 3 4 2

/ / THAVEY gy (2.3)

y=1 r=1 x +y
Taylor series about = 0, up to and including the O(z'°) term, of \/cos(x) + sin(3x) (2.4)
A plot of the error in the above expansion for 0 < x < 0.01 (2.5)

For (2.1), note that tanh™*(...) denotes 1/ tanh(...), not an application of an inverse hyperbolic function, and that the
result should be a single numerical value. For (2.4) and (2.5), “including the O(x!'%) term” means that the explicit
form of the term with z'° in it must appear in the expansion. As a concrete example, the following expansion for
the exponential function includes the O(x3) term:

exp(z) =14+z+ %xg + éaﬁg’ + O(x%)
You may find (2.5) a bit more challenging that the other parts of this problem. Define “error” as “exact value -
approximate value”, and be sure to set Digits to a value sufficiently large to produce an accurate plot. Finally,
note that you can’t plot a Taylor series directly (due to the O(z?) term that generically appears, and which has no
specific value). However, as discussed in class (in the handout “Some Useful Maple Commands”, also available via
the Course Notes web page), you can readily convert a series to a polynomial using the convert command.

Problem 3: Make the subdirectory hw2/a3 and, within that subdirectory, create two text files, procs and £d2. The
file procs is to contain definitions (code) for two Maple procedures, fcnb5 and prod_even_odd; and OPTIONALLY
for plot5. The file £d2 will define the procedure £d2. The procedures have headers and functionalities as specified
below.

Note that £d2 is to return a list of four values. As a hint for dealing with this aspect of its implementation, the

description of the subproblem includes the definition of a procedure, sumdiff, which returns a 2-element list.

1. Header: fcnb := proc(x::numeric)
Functionality: fcnb returns a value defined as follows

0 for z < -1
2—4(—35—%) for —1<x§—%
—4x for —%<:c§0
4z for 0<$§%
2—4(1:—%) for %<z§1
0 for z>1

2. IMPORTANT!!: This sub-problem is now OPTIONAL: if completed, it will be graded for bonus credit.
Header: plots := proc(xmin::numeric, xmax::numeric)
Functionality: plotb uses the Maple plot procedure to generate a single graph that plots both fcnb and
-fenb—where fcnb is the procedure defined above—on the domain xmin < z < xmax.

3. Header: prod_even_odd := proc(m::integer, n::integer)

Functionality: Given two integers, m and n, with n > m, prod_even_odd returns a value given by

(iz | is even) (iz i is odd)

i=m i=m

For example
prod_even odd(3, 12) =(44+6+8+10+12)(3+5+ 7+ 9+ 11) = 1400

If prod_even_odd is supplied with arguments m and n that do not satisfy n > m, it must invoke the statement
error "second argument, n, must be > first argument, m";

For example

> prod_even_odd(10,10);
Error, (in prod_even_odd) second argument, n, must be > first argument, m

Here and below, recall that execution of the error command/statement causes a procedure to automatically
and immediately exit, without returning a value.

4. Header: £d2 := proc(f::procedure, x::float, h::float)
Functionality: In future lectures we will be studying the topic of finite differencing, where derivatives of
functions are approximated by algebraic expressions. Specifically, for the case of the first derivative, f/(z), of
a function, f(x), of one variable, z, two such approximations that we will consider are

)

&
l
Il
S

-

(1)
flle) = ————— =D (2)

where h is a strictly positive real quantity, and the symbol = is to be interpreted as “is defined to be”. For
both (1) and (2) we expect to recover the exact value of the derivative in the limit ~ — 0.

The procedure £d2 has arguments defined as follows:
(a) £: A Maple procedure that defines a function, f, of one variable, i.e. the procedure takes a single argument,

which you can assume will always be of type float. This procedure can be, for example, one of Maple’s
built-ins, such as sin(x), or a procedure that is user-defined.

(b) x: The specific value of the independent variable at which the approximations (1) and (2) are to be
computed.

(¢) h: The value of h, with h > 0, to be used in calculating the approximations.

Return value: £d2 is to return a length-4 list with elements given by
Lh, Dy, Dy, (Df = Dy)/h]

Also, if h < 0, the procedure must call error "h must be > 0";

Ezxamples:

> fd2(cos, 0.0, 0.1)
[0.1, -0.04995834700, 0.04995834700, -0.9991669400]

> f£d2(cos, 0.0, 0.01)
[0.01, -0.004999960000, 0.004999960000, -0.9999920000]

> fd2(cos, evalf(Pi/4), 0.01)
[0.01, -0.7106305000, -0.7035594900, -0.7071010000]

> fd2(x -> x°3, 1.0, 0.01)
[0.01, 3.030100000, 2.970100000, 6.000000000]

> fd2(cos, 0.0, -0.1)
Error, (in fd2) h must be > 0

Note that the fourth example uses the + — f(z) “arrow notation” for the definition of a function: one might
think that simply supplying 2® as the first argument would produce the same result, but, as you will be able
to verify, it does not (and you should try to understand why it doesn’t).

Once you are confident that your implementation of £d2 is correct, execute the following at the bash command
line—not in a Maple session—ensuring that the working directory is the directory for this problem.

% pwd
/phys210/<your-login>/hw2/a3

% maple < /home/phys210/hw2/prob3/runfd2 > outfd2
Note that the second bash command causes maple to start, read the Maple commands (code) from the file
/home/phys210/hw2/prob3/runfd?2

and redirect the resulting Maple output to the file outfd2. As you can check, one of the statements in the
runfd?2 file is read £d2; so ensure that you have defined the procedure £d2 in the file £d2 before you complete
this part of the question. Also observe that if the file outfd2 exists you will need to explicitly remove it before
issuing the second bash command.

Assuming that you have coded £d2 correctly, the file out£d2 should contain

Invoking fd2(x -> cos(x"2), evalf(Pi/4), h) with a sequence of values of h ...

h := .5
fd2 returns [.5, -1.79413318804, -.361960185842, -2.86434600440]

h := .250000000000
£d2 returns [.250000000000, -1.34951596862, -.573966327592, -3.10219856411]

Output from fd2 ends ...

where the “vertical ellipsis” (dots) denotes portions of the file contents which have not been reproduced here.

What do you notice about the output from £d27 More specifically, considering the sequences of values of Dy,
Dy, and (Dy — Dy)/h that are returned, do you detect any trends, either within any given sequence, or among
two or more of them? If so, what are they? Answer in README (as usual you will need to create this file).

If you can (i.e. this part is optional, and you will not lose marks for not answering it), provide explana-
tions/hypotheses in README for any of the observations that you have made.

Again, should you have difficulty constructing £d2 so that it returns a list of values, here is a simple procedure
that illustrates the basic mechanism (there are more concise implementations, but this one also demonstrates
1) the use of local variables—which you may find convenient in your coding of £d2—and 2) the fact that such
variables should be declared explicitly to be local).

HESH
sumdiff returns a 2-element list: the first element is the sum
its two arguments, the second is their difference.

R

sumdiff := proc(x::numeric, y::numeric)
local xysum, xydiff;

Xysum := X + y;
xydiff := x - y;

Return the two element list
[xysum, xydiff];

end proc;

Ezxample invocation:

> sumdiff(3,4);
(7, -1l

Be sure to test all four procedures using input of your own choosing. The TAs and I must be able to read procs and
£d2 into a Maple session using the read command without encountering errors. We will test your implementations
with our own input.

Summary: File inventory for this question:

1. Text file procs: Contains the definitions of fcnb5, prod_even_odd and, optionally, plot5
2. Text file £d2: Contains the definition of £d2.

3. Text file README: Contains answers to the specific questions posed in part 4, and where some answers/explanations
are optional.

Problem 4: Make the subdirectory hw2/a4 and, within that subdirectory, create a text file procs that contains
definitions for the following three Maple procedures. The procedures must have headers and functionalities as
specified.

1. Header: lweave := proc(l1l::list, 12::1list)
Functionality: Given two lists, 11, 12, of equal length, N, 1lweave returns the list with elements:

[11017, 12[1], 11[2], 12[2], ..., 11[N-1], 12[N-1], 11[N], 12[N]]

If 11 and 12 are not of equal length, 1weave is to invoke error "input lists are not of equal length";

Ezxamples:

> lweave([2, 3, 6], [w, x, y]);
[2, w, 3: X, 6, y]

> lweave([[a, b]l, c, 4], [1, 2, [3, 411);
[[a, b], 1, c, 2, 4, [3, 4]1]

> lweave([1, [1);
(]

> lweave([a, b, cl, [1, 2]);
Error, (in lweave) input lists are not of equal length

2. Header: 1signum := proc(l::1list(float))
Functionality: Given a non-empty list, 1, of floating point values, 1signum returns a 3-element list containing
the number of 1) positive elements, 2) zero elements, and 3) negative elements in 1, and in that order. Note
the use of the “structured” type list(float) in the procedure header. If 1 is the empty list, 1signum is to
invoke error "argument is the empty list";

Ezxamples:

> lsignum([0.0, 6.0, -1.0, 0.0, -2.0, -4.0]);
1, 2, 3]

> lsignum([-3.0, 1.6, 23.5]);
[2, 0, 1]

> 1signum([]);
Error, (in lsignum) argument is the empty list

> lsignum([-3, 1.6, 23.5]);
Error, invalid input: lsignum expects its 1st argument, 1, \
to be of type list(float), but received [-3, 1.6, 23.5]

> 1signum([-3.0, a, 23.5]1);
Error, invalid input: lsignum expects its 1st argument, 1, \
to be of type list(float), but received [-3.0, a, 23.5]

Note that for the last two examples, and provided that your have used a header for 1signum precisely as given
above, the error messages are generated automatically via Maple’s type-checking mechanism (3 is not a float
in the first case [no decimal/radix point], nor is a in the second).

3. Header: 1minmax := proc(l::list(float))
Functionality: lminmax takes a non-empty list of floating point values and returns a 2-element list of 2-element
lists with constitution:

[[Imin, lmin_index], [lmax, lmax_index]]

Here, Imin and lmax are the minimum and maximum values in the list, and 1lmin_index and lmax_index are
the positions in the list of the corresponding values. That is, we have

1[1min_index]
1[1max_index]

1min

1max

If Imin and/or 1max occur more than once in the list, your procedure is free to return any of the corresponding
values of Imin_index. However, to be clear, even if Imin_index and/or lmax_index are not uniquely deter-
mined, the return value from lminmax must always be a 2-element list of 2-element lists, precisely as defined
above.

If 1 is the empty list, lminmax is to call error "argument is the empty list";

Ezxamples:

> Iminmax([10.7, 2.3, -1.4, 12.6, 6.1]);
([-1.4, 3], [12.6, 4]]

> lminmax([3.14]);
[[3.14, 1], [3.14, 11]

> lminmax([1.5, -1.5, 1.5, -1.5, 1.5, -1.5]);
[[_1-53 2]’ [1-5: 1]]

> Iminmax([]);
Error, (in lminmax) argument is the empty list

> Iminmax([-3, 1.6, 23.5]);
Error, invalid input: lminmax expects its 1st argument, 1, \
to be of type list(float), but received [-3, 1.6, 23.5]

Note that—as in the 1signum case—the error message from the fourth example will be generated automatically,
provided you have used a definition for the procedure header precisely as given above.

Importantly, observe that for the third invocation, and per the comment made previously, the following would
also be valid output

[[_1-5: 6]’ [1-5: 5]]

and there are, of course, other possibilities. (However, it is not recommended that you spend time trying to
produce code that generates one of the other acceptable alternatives!)

Test your procedures thoroughly with various input—invalid as well as valid—including empty lists. Again, empty-
list input is valid for lweave, but not for 1signum or lminmax. All three procedure definitions should be commented:
the documentation need not be extensive, but should include, at a minimum, a description of what the procedure
does. Again, the code for the procedures must be prepared in a single Maple source file (plain text file) called
procs. The TAs and I must be able to read procs into a maple or xmaple session using the read command without
encountering errors. We will test your procedures with our own input.

Problem 5 (Optional, for bonus credit): Recall from your studies of the kinematics of one-dimensional particle
motion, that given the particle’s acceleration, a(t), where ¢ is time, the particle’s velocity, v(t) and displacement, s(t)
are given by

<
—~

~~
~

v + /t a(t') dt’ (3)

to

s(t) = so—i-/tu(t’)dt’ (4)

to

respectively, where tg is the initial time for the motion, and vy = v(tg) and so = s(tg) are the initial velocity and
displacement of the particle, respectively. Note that one might often have ¢y = 0, but in the context of this problem,
we want to retain the freedom to set ty to some arbitrary value.

Within the subdirectory hw2/a5, create a text file named kinematics that contains a definition for a Maple procedure
having the following header

kinematics := proc(a::procedure, t::name, sO::numeric, vO::numeric,
t0: :numeric, t1:: numeric)

Here

1. ais a Maple function such as

t -> cos(t)

that is defined using the Maple “arrow notation” and that gives the acceleration of the particle as a function
of time (the independent variable).

2. t is a Maple name, identifying the independent variable, and, in invocations of kinematics will typically be
literally t.

3. s0 and vO0 are numeric values specifying the initial position, s(tg), and initial velocity, v(tg), of the particle,
respectively.

4. t0 and t1 are numeric values giving the initial (t = ¢9) and final (¢ = t;) times of the motion, respectively.

Functionality: Using (3) and (4), your implementation of kinematics is to use the Maple plot procedure to produce
a single plot showing the acceleration, a(t), the velocity v(¢), and the position, s(t), for tg < ¢ < t1, and where ¢t is
understood to be whatever independent variable is actually passed to the procedure. (To get general help on plot
use ?plot: you may find the options subtopic (use the help menu, or ?plot[options]) especially useful for this
problem).

The plots that kinematics generates should include legends that duplicate, as closely as possible, those produced
by my implementation, per the examples shown on the next page. To that end you may wish to consider getting
help on the topics of

e Legends for plots: see the legend section of ?plot [options]

e The sprintf command: use ?sprintf

Here are some sample invocations along with the corresponding output (which, again, in all cases is a single plot that
will appear within the worksheet where it is executed—mno other output is required). Observe the use of T, rather
than t in the bottom-right example. In addition to mimicking the legends my version of kinematics produces, also
try to use the same plotting style and number of symbols per curve (approximately) that my implementation employs
(again, refer to appropriate sections of ?plot [options], where you will need to determine which sections those are!)

> kinematics(t->-9.81, t, 100, 0, 0, 4.5);

100 4#+++44a,

801 *,

601 +
40 +

201 +

0 Y53 : : : .

IZDDDﬂggggBQLBagggﬂDDDD%DDFDDDDDD&LDDDDDDDDDDALDDDDD

%o
-20+ oo°°°ooooo
000
000000000
-40 %0000,
o acceleration: -9.81 ° velocity: vO = 0

+ displacement: sO = 100

> kinematics(t->sqrt(t), t, 0, -1, 0, 4);

4
o
L)
4 o
o+
o
o 4
o
° 4
o
31 o 4
o
o +
°
° +
° +
o
24 good
nnﬂ“ﬂunuu
Y- L E
o
oof% +
oot
a nuﬂuu o° +
of o
11 uun“u) +
° +
oot o° .
o o +
fp ooo 4
o
0 e - - - - !
o +
4) 2 2t 3 4
o
‘+3°o ‘*4ﬁ
00° gttt
1<o°°°

o acceleration: tA(1/2) ° velocity: vO = -1
+ displacement: sO = 0

> kinematics(t->cos(t), t, -1, 0, 0, 10);

L

0.5 e

-0.51 +

NG Ut N

o acceleration: cos(t)
+ displacement: sO = -1

o

velocity: vO = 0

> kinematics(Time->tanh(Time), T, O, O,

n
4
4
5 +
4
4
4
4 +
4
+
4 o
| 4 00°
3 . 00
o0
4+ o
4+ 0
+ 40
450
i o
2 88
o9
0%+
000+
00° 4
1 uunBuaguguEnnnuuunnnunununuunnuunun
nﬂnuu 0° 4
ob 00° w7
°
o +
007 0000, Luat?
0 BogQQQis+tt? . . X
0 1 2 3 4
T

o acceleration: tanh(T)
+ displacement: sO = 0

o

velocity: vO = 0

Even more bonus (one time offer!): Using an acceleration function, a(t), of your own design (try to be imaginative,
but ensure that it’s something for which the requisite anti-derivatives exist!), produce a jpeg image of the resulting
plot produced by your implementation of kinematics and proudly include it in your course web page. If you do this,
leave a comment in a README file in the solution subdirectory that proclaims your heroic effort. Otherwise, there is

no need to create README.

10

