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FIGURE 12.21: Earthquake distribution for a system of 100 blocks and the friction law described in
Exercise 5. The straight fine corresponds to the Gutenberg-Richter law (12.2) with b ~ 0.35.

with the frictional force (12.6). However, the slope for small M now corresponds
to a value of b that is much smaller than 1, so the model still seems to lack
an important ingredient. Study the behavior with other forms for the frictional
force and try to determine one that gives a power law with a larger value of b.

12.3 NEURAL NETWORKS AND THE BRAIN

The Ising model consists of a large number of very simple units, that is, spins,
which are connected together in a very simple manner. By “connected” we mean
that the orientation of any given spin s;, is influenced by the direction of other
spins through the interaction energy Js;s;. The behavior of an isolated spin, as
outlined in our discussions leading up to mean-field theory, was unremarkable.
Things only became réally. interesting when we considered the behavior of a large
number of spins and allowed them to interact. In that case we found that under the
appropriate conditions some remarkable things could occur, including the singular
behavior associated with a phase transition. In this section we will explore a rather
different system, which shares some of these features.

The human brain consists of an extremely large number (~ 10*?) of basic units
called neurons, each of which is connected to many other neurons in a relatively
simple manner. A biologically complete discussion of neurons and how they function
is a long story. Here we will give only a brief description of those features that seem
to be most relevant to a physicist’s understanding of the brain.A schematic picture
of two neurons is given in Figure 12.22. Each neuron has a body (called a soma),
along with dendrites and an axon.?? The size scale depends on the type of neuron,

23There are other parts as well, but keep in mind that we are giving only a simplified description
here.
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FIGURE 12.22: Schematic of two connected neurons.

but the body is typically of order 10 yum across. Neurons are electrically active and
communicate with other neurons through electrical signals carried by the dendrites
and axons. The dendrites serve as the input lines of a neuron, while the axons are
output lines. The axon of one neuron is “connected” to the dendrite of another via
a synapse, through which is transmitted the electrical output signal of one neuron
to the input of the other.

The axon of the hypothetical neuron (number 1) on the left in Figure 12.22 .

connects to a dendrite of neuron number 2 via the synapse, as indicated. A very
important feature is that an axon is generally split into many branches, and thereby
connects to many other neurons. Correspondingly, each neuron generally has many
dendrites and thus accepts inputs from many other neurons. When we say many,
the number we have in mind is typically ~10%. The neurons are thus highly inter-
connected.

Neurons communicate using electrical pulses carried by the axons and den-
drites. These pulses are typically of order 10~3 s in duration and 5 x 10-2 V in
magnitude. A neuron emits these pulses (this is called firing) in a roughly periodic
manner, with the period being a function of the input signals experienced by the
neuron at that moment. If the inputs are very active, that is if there are many
pulses being received through the dendrites, the neuron will fire often. On the
other hand, if its inputs are not active, the neuron will fire at a much lower rate.
The picture is actually a bit more complicated than this. The interface where an
axon and a dendrite meet (the synapse) may be either excitory or inhibitory. In
the former case a high firing rate of the sending neuron will favor a high firing rate
of the receiving neuron. With an inhibitory synapse, a high input firing rate will
tend to cause a low firing rate of the receiving neuron.

The firing rate of a particular neuron is a function of all of its inputs. To a
very rough approximation, this rate is determined by the sum of all inputs that
come into a neuron through excitory synapses minus the total of the inputs that
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Firing rate

FIGURE 12.23: Firing rate function. The dotted curve is closer to that found in real neurons. The
dashed curve is the step function used in our modeling.

enter through inhibitory synapses.?* The firing rate, R, can thus be written as

R = ZM S,v , (12.13)

where V; is the input signal from dendrite i (which may be either positive or neg-
ative). Experiments show that the firing function f is significantly nonlinear, as
shown schematically in Figure 12.23. Because of this nonlinearity, a neuron is often
modeled as a sort of on/off device.

A neural network is composed of a very large number of neurons whose basic
properties we have just described. Such a network, that is, a brain, is perhaps
the most remarkable object in nature, as it is responsible for the intelligence of
living organisms.?® The problem of understanding how a brain functions is of
great concern to biologists, psychologists, computer scientists, and (believe it or
not) physicists. It is useful to state this problem in the following way. The brain
consists of a very large number of neurons that are highly interconnécted. The
connections are not limited to neighboring neurons, but can extend to neurons in
remote areas of the brain. The state of a neuron can be described by its firing
rate, which is a function of the firing rates of all of the neurons that have inputs
to the neuron in question. The connectivity of the network and thée strength of the
connections vary from brain to brain. They vary from individual to individual (even
within the same species, although there are many common features), and with time

24The synapses also vary in strength, so some signals contribute more strongly to this sum than
others, We will ignore this slight complication here, although it will be included in the model we
construct below.

25Some people (the authors included) believe that a brain is a neural network (essentially no
more and no less), while others believe that a real brain contains some physics that is not contained
in such a network. Arguments over this point have filled many books (but not this one). In any
case, the majority of people on both sides of the argument would probably dgree that neural
networks are a major component of biological brains, and this is énough to make them worth
studying.
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for a given individual. On a very coarse scale, brains seem to possess a significant
degree of randomness, yet we know that they are capable of very precise behavior,
such as logical reasoning and memory. Understanding how such an arrangement of
neurons can actually function as a brain is a key problem.

In this section we will consider how a neural network can function as a memory.
Many aspects of biological memories®® are not understood. For example, it is not
yet known how information is stored (and forgotten) or how it is recalled. However,
some ideas from physics have contributed greatly o recent progress in this area,
and the answers to these questions may not be far away. Rather than try to give
a logical or historical derivation (or justification) of the model of memory that we
will study, it is simpler to just plunge ahead, and that is what we will now do. A
little bit of the history of this model will be given at the end of this section.

We will model a neuron as a simple Ising spin. As we saw in Chapter 8,
such a spin has two possible states, up and down. We will therefore assume that
a neuron also has only two possible states, firing or not firing. This will, among
other things, mean that we will approximate the firing function by a step function
(the dashed curve in Figure 12.23), which has only two possible values. These two
values will correspond to the two possible states of an Ising spin, s = +1. The
value of s; corresponds to the current firing rate of neuron i. By convention we
take s; = +1 to correspond to a firing rate of 1, and s; = —1 to 0 firing rate.2” By
associating the firing rate with the value of the spin we have glossed over the time
dependence of the synaptic signals. At first sight this might seem to be a rather
drastic approximation, but there are good reasons for believing that the timing of
synaptic pulses does not play an important role in real neural networks. First, it
is known from experiments that the firing times of different neurons are generally
not correlated. That is, the brain does not appear to operate like a conventional
computer in which all neuronal firing occurs in synchrony with a master clock.
Second, the interneuronal signals travel at a speed of ~ 1 m/s, so the propagation
delay (which is different for each pair of connected neurons) makes a significant
contribution to the pulse arrival times. For these reasons it is generally argued
that the timing of the pulses does not play an essential role.28 Rather, the average
arrival rate seems to be an essential feature, and this can be modeled with simple
Ising spin variables.

In the Ising model studied in Chapter 8, the effect of a spin on its neighbors
was through the exchange energy, and for our neural network we can model the
effect of one neuron on another in a similar way. We will assume that our spins
(that is neurons; we will use the two terms interchangeably) experience an exchange
interaction, but now we will permit an interaction between every pair of spins. This

26 As compared to computer memories.

27We could have chosen the pseudospin values to be +1 and 0 so as to correspond directly with
the firing rate. For the way we have chosen to write the energy this would contribute a constant
term to E and would not affect the behavior of the model.

28While this seems to be the current conventional wisdom, it has recently been suggested that
correlated firing times are essential for understanding certain types of computations carried out
by the brain. While the verdict has not yet been reached on this issue, it seems safe to conclude
that much (if not all) of the brain’s operation, including the memory functions we consider in this
section, does not depend on precise timing of neuronal firing.
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is necessary in order to mimic the highly interconnected nature of a real neural
net, which is believed to be crucial for its operation. We will find it very useful
to consider the effective energy of our neural network/spin system, which can be

written as
E= -3 Jijsis;, (12.14)
i3

where the J; ; are related to the strengths of the synaptic connections, as we will
describe shortly. The sum here is over all pairs of spins 7 and j in the network.
The exchange, or more properly the synaptic, energies J; ; describe the influence of
neuron ¢ on the firing rate of neuron j. One way to view (12.14) is as follows. The
sum of the synaptic inputs to neuron i will be MUN. Ji,585, and this will determine the
firing rate, that is, the direction of spin 1. If this input is negative, then according
to our model it will be energetically preferred for neuron i to have a firing rate that
is also negative, s; = —1. If the synaptic input is positive, s; = +1 will be favored.
This is precisely analogous to an Ising spin model since as we saw in Chapter 8,
each Ising spin prefers to point in the direction of the effective field established by
the exchange energy due to its neighboring spins. Hence, our neural network can be
described by the energy function (12.14), in close correspondence with the behavior
of an Ising magnet. Individual neurons will prefer to fire at rates determined by
the effective fields established by the interactions with other neurons, and this will
make the network prefer states that minimize this energy.

As implied by Figure 12.22, the connections in a real neural network are not
symmetric. The connection of the axon from neuron i to a dendrite of neuron J
is completely separate from the connection between the axon of neuron j and a
dendrite of neuron i. Indeed, there may be a connection in only one direction.
The biological importance of this asymmetry in Ji,; is not known. For now we will
assume that the connections are symmetric, as this will allow us to make use of
some ideas and results from statistical mechanics. The more realistic asymmetric
case will be explored in the exercises.

The energy function (12.14) enables us to model our neural net as an Ising
model, which can be simulated using the Monte Carlo method. However, we have
not yet specified how the exchange energies should be chosen, or even how our lattice
of spins can function as a memory. A useful memory must be able to store, recall,
and display patterns, so let us consider how these operations can be implemented.
The display operation is the easiest and is illustrated in Figure 12.24. On the left
we show a lattice of spins with a particular spin configuration. This configuration
was chosen so that it stores the letter 4, which is seen more clearly on the right,
where we show the same lattice, but with the spins for which s = —1 replaced by
blanks. In this way the spins can be used as pixels to display whatever character
or other type of pattern is desired.

In order for our memory to recall a pattern, we require that the spin directions
change with time in such a way that the spin configuration eventually ends up in the
desired state. For example, if we want to recall the letter A, we want the system
to take on the configuration in Figure 12.24. The recall process thus involves
first giving the spins a configuration, then allowing the spin arrangement to evolve
with time until the system settles into a new, and we hope stable, configuration.
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FIGURE 12.24: Left: a 10 x 10 lattice of spins with a particular configuration of + and — spins; right:
the same lattice but with the spins for which s = —1 replaced by blanks. This network holds (i.e.,
displays) the letter A.

This time evolution is accomplished using an algorithm similar to the Monte Carlo
method employed in Chapter 8. Starting from some particular configuration of
the entire network, a spin is chosen and the energy required to flip it, AEg;p, is
calculated using (12.14). If AEg, is negative, that is, if flipping the spin would
lower the energy, the spin is reversed. If AEgip > 0, the spin is left unchanged.
This is precisely the Monte Carlo flipping rule employed in our work on the Ising
model, with the assumption that the effective temperature is zero. We will have
more to say about temperature and what it means in this problem a little later.
For now, the important point is that the Monte Carlo rules ensure that the system
will always evolve in time to states with the same or lower energy. If conditions
are right, the memory will end up in a state in which the spins cease changing with
time. This state corresponds to the pattern that is recalled by our memory.

The Monte Carlo rules, n,omazﬁ_. with the energy function, determine how
the spin system changes with time, and it is instructive to observe this directly in
a simulation. Here, and with all of the other simulations below, we have used a
10x 10 lattice of spins. For the moment we will not worry about how the interaction
energies J; ; are determined. While their values are central to the behavior, it is
simplest to postpone a discussion of how to calculate them until later. We are
thus “given” a neural network, which in our specific case is a lattice of 100 spins
interacting according to a certain collection of interactions J; ;. We have, of course,
chosen these interactions to yield some interesting behavior! On the left side of
Figure 12.25 we show our lattice in a state that is close to the pattern for the
letter A that we considered earlier. Even though a few of the spins are in the
wrong state, that is, have been flipped with respect to Figure 12.24, it should be
clear to your (human) brain that this pattern represents the letter A. We started
a simulation with the lattice in this configuration, and after one pass through the
lattice we obtained the state shown on the right side of Figure 12.25. Subsequent
Monte Carlo sweeps through the lattice produced no further changes. The system
thus found the ideal letter A, and recalled it. The memory worked as it should.

An important feature of human brains is that they are able to generalize in
a reasonable manner. For example, you can usually recognize a. letter even if it
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FIGURE 12.25: Left: spin arrangement close to the letter A, but with a few spins flipped to the wrong
state; right: spin configuration after one Monte Carlo pass through the lattice.

is shown to you in a different TvpE face or STYLE. There is some property of
A-ness that you are able to recognize, and all patterns that fall into this class will
cause you to recall the same fundamental letter A. Our model exhibits similar
behavior. The left side of Figure 12.26 shows the letter A in outline form. When
we initialized our lattice of spins with this pattern, one Monte Carlo sweep through
the lattice yielded the ideal letter A shown on the right. At least with this simple
test of A-ness, the model responded correctly.2?

A similar test is shown in Figure 12.27, where the left side shows a damaged
version of the ideal A. Here we have flipped 20% of the spins at random, and
the resulting pattern only faintly resembled the ideal one. Nevertheless, after one
Monte Carlo sweep through the lattice, the ideal pattern was recovered.
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FIGURE 12.26: Left: spin'arrangement that shows the letter A, but with a different pattern (that is,
font) than used previously; right: spin configuration after one Monte Carlo pass through the lattice.

At this point you might suspect that we are playing a joke, as our model
memory seems to recognize every pattern as the letter A. To demonstrate that
this is not the case, we show in Figures 12.28 and 12.29 the results obtained when
the lattice was initially given a configuration that resembled the letters B and C,

29We will leave the more challenging problems of a letter that is rotated or rescaled in size to
the inquisitive reader.
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FIGURE 12.27: Left: spin arrangement that shows the letter A, but with 20% of the spins flipped at
random; right: spin configuration after one Monte Carlo pass through the lattice.
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FIGURE 12.28: Left: spin arrangement that shows the letter B, but with 10% of the $pins flipped at
random; right: spin configuration after one Monte Carlo pass through the lattice.

respectively. In each case the initial patterns were barely recognizablé, but mmﬁ.» one
sweep through the lattice the ideal patterns were recovered. Our model memory
was thus able to recognize several different letters. )
Observing the model in operation raises several important pdints and 4 few
questions. First, the model is seen to opérate as a content addressable meinory.
This is in contrast to the type of memory we are familiar with in connection with a
conventional computer. In the case of a computer memory, a piece of information,
such as the value of a particular variable, is given a name or address. In order
to recall the value of the variable, the address must be presented to the memiory,
which is then able to retrieve the desired value. However, with a content addressible
memory, information is retrieved by giving a rough description of the information
itself. For example, the value of  could be retrieved by giving only the fitst few
digits. This is a very important property of human brains. As another example; we
might want to recall a friend’s face given only a vague recollection of thé shape of
her chin and her hair style. In addition, such a memory should be able to recognize
her face even if she cuts her hair or dyes it green. Human brains are able to handle
such tasks, which are difficult for the more conventional computer-style meniories.
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FIGURE 12.29: Left: spin arrangement that shows the letter C, but with 10% of the spins flipped at
random; right: spin configuration after one Monte Carlo pass through the lattice.
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FIGURE 12.30: Schematic energy landscape. The vertical axis is energy as calculated from (12.14),
while the horizontal axis corresponds to the spin configuration. The basins of attraction of several
stored patterns are indicated by the shaded areas.

Second, we have seen that our memory can generalize in a reasonable manner.
When presented with a pattern that is similar but not identical to one that it
“knows,” the memory is able to choose the correct response in a reasonable way.
This behavior can be understood in terms of the energy landscape of the spin
system. The energy of the network depends on the specific spin configuration, that
is, memory pattern, at that time. Since the interactions J;,; (which we promise
to explain shortly) have widely varying magnitudes and signs, this energy function
will depend in a complicated way on the spin configuration. Schematically it will
resemble the landscape shown in Figure 12.30. Each stored pattern, the letters 4, B,
and C'in the example we have just considered, corresponds to minima in the energy.
The Monte Carlo procedure guarantees that given an initial spin configuration, that
is, some initial pattern, the system will evolve into a pattern with the same or, most
likely, lower energy.
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In general, the pattern presented to the network will not be one of the stored
patterns, so the system will initially be situated on one of the slopes in the energy
landscape. The Monte Carlo flipping rules then take it to the bottom of the nearest
valley, and it thus ends up “recalling” the stored pattern associated with that
minima. But what do we mean when we say that an initial pattern is close to
a stored pattern? There are two ways to answer this question. In terms of the
energy landscape there will be a basin of attraction in the neighborhood of each
minima. If the network is within the basin corresponding to a particular minima,
the associated stored pattern is the one that it will eventually locate. Topologically,
these basins are the “valleys® surrounding each minima in Figure 12.30.

A quantitative answer to this question requires that we be a little more specific
concerning the horizontal axis in Figure 12.30. A useful measure of the distance
between two patterns is

Bnp = 3 3 bsstm) = si(m) (12.15)

where m and n denote two different patterns, s;(m) is the configuration of spin
in pattern m, and N is the total number of spins. This is usually referred to as the
Hamming distance between the two states of the system. Two patterns that are
separated by a large Hamming distance will usually flow to different final stored
patterns, while if the separation is small, there is a much better chance that they
will flow to the same final state. For example, the letters C and O have many
features in common, and will thus be closer in pattern space than are the letters
A and V. Our memory will generally do a better Jjob if the stored patterns are as
different as possible.

While the Hamming distance is a quantitative measure of how similar two
patterns are, it is difficult to be more precise in predicting how a particular network
will respond to patterns that differ only slightly. This difficulty can again be traced
to the energy landscape. Two patterns might be extremely similar, but if. they
happen to fall on opposite sides of an energy maxima. they will flow to different
final states.

The interaction energies .J;, j are, as we have noted several times, key elements
in our model memory. We are now ready to discuss how they should be chosen so
as to yield a useful memory. We again let si(m) denote the configuration of spin ¢
in pattern m, and assume that we want our network to have this configuration as
one of its stored patterns. That means that the Ji,; must be chosen so as to make
the energy a minima for this spin configuration. While there is no unique solution
for this problem, a popular and very convenient choice is

Jig = si(m) s;(m) (12.16)

which is often associated with the names of Hebb and Cooper; two important
researchers in this area.’ We can see that this choice for Ji,; will make s;(m) an

30Their work is described by Hertz, Krogh, and Palmer (1991).
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energetically stable pattern as follows. Inserting (12.16) into (12.14) yields

E(m) = - M Jijsis; = — M sj(m) si(m) s; 85 . (12.17)

If the network is in pattern m, we will have s; = s; (m) and s; = s;(m), so each term
in this sum will be unity, making the energy large and negative. On the other hand,
arandom pattern (we will be more precise about this in.a moment) will, on average,
have half of its spins flipped with respect to si(m}, so roughly half of the terms
in (12.17) will be positive and half negative, leading to E ~ 0. Thus, our desired
paftern will have a much lower energy than a random pattern. Furthermore, the
energy of our stored pattern will correspond to & stable minima of the landscape,
since flipping any one spin from the pattern value s;(m) will increase E.

The prescription (12.16) tells us how to store a single pattern, but a useful
memory must be able to store many patterns. In that case we choose the Jii
according to ’

Jij = M_\m m si(m) s5(m) , (12.18)

where the index m refers to the stored patterns, and there are a total of M such
patterns (we will see in a moment that there is a limit on the total number of
vmg.mgm that can be stored). The arguments we just gave can be used to show that
the energy associated with each stored pattern will be much lower than the energies
of a random pattern. In addition, if the stored patterns are sufficiently different
from one another, they will each correspond to distinct, well-separated EMEEW in
the energy landscape. This is how the values of J;,; were chosen in the calculations
deseribed above. We used the letters A, B, and C as our stored patterns, and
calculated the energies J; ; using (12.18).

We have now completed the description of our neural network memory model.
The key features are:

¢ An Ising spin is used to model the on/off behavior of a neuron. The firing
rate of a neuron is assumed to have only two possible states, corresponding
to the spin values s = 1.

o The connections between the spins Jy,; are not limited to nearest neighbors,
but link all pairs of spins in the network.

¢ Given a collection of patterns that we want to store, the J;i; are calculated
according to (12.18).

¢ The network operates as a content addressable memory. The lattice of neurons

- (that is, spins) is initialized with a configuration that resembles the pattern
we want to recall. The Monte Carlo rules for T = 0 are then used, and the
system evolves to a pattern that'is at a minima in the energy landscape. This
is the pattern that is “recalled” by the network.

The programming of this procedure is similar to the Monte Carlo routines
described in Chapter 8, so we will leave the details to the exercises. However, we
will give a few tips later in this section.
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The modeling of neural networks is a vast industry, and we have been able
to touch on only a very small piece of it here. A brief discussion of several other
aspects of this field and some historical notes are given at the end of this section.
However, before finishing we want to touch on a few issues associated with the
choice of J;; and the desired stored memories. Our network contains N spins,
and since each pair is connected, there are ~ N2 different, values of the interaction
energies J; ;. We have described a procedure for storing a collection of patterns,
and it should be clear that this information is stored in the Jij- This brings up
several questions. (1) How many different, patterns can be stored? (2) Can we add
the concept of “learning” to the model, so as to bring it closer to the operation of
a biological memory? (3) What happens if the Ji,; are damaged in some way? We
know that real memories can function even if some of the neurons die. Is our model
able to function in the presence of such damage?

Each pattern involves the configuration of N spins and there are ~ N? dif-
ferent J; 5, so the maximum amount of information that can be stored is of order
~ N?/N = N different patterns.®! However, it turns out that the maximum num-
ber of stored patterns is much less than this for several reasons. First, if two desired
stored patterns happen to be close to each other (in terms of their Hamming dis-
tance), they can interfere with one another. This may make one of the patterns
unstable, or cause it to be recalled in a distorted (imperfect) form. This problem
can be minimized by choosing the stored patterns to be orthogonal to one another
to the fullest extent possible. Here orthogonal means that Y si(m)si(n) ~ 0 if
m # n. In our simple example involving letters such orthogonality was not under
our control, as it was determined by the shapes of the letters. While we can often
preprocess the patterns to make them orthogonal before encoding them in the net-
work, this may not always be convenient in cases such as, for example, the storage
of arbitrary optical images.

The use of orthogonal stored patterns can increase the storage capacity some-
what, but it turns out that there is a more fundamental limit. As we use more and
more patterns in the calculation of J; ;, the nature of the energy landscape changes.
Increasing the number of stored patterns means that more and more local minima
must be crowded together, and this also affects the depth of each minima. It has
been found that if the number of stored patterns exceeds ~ 0.13N , the landscape
changes dramatically. In this case all of the stored patterns become unstable, and
the system ceases to function as a memory. This abrupt change is actually a type
of phase transition and has much in common with a system known as a spin glass.
This is a type of spin system in which the interactions are randomly distributed
and which have been studied extensively by physicists over the past 30 years.>? We
do not have time here to say anything about spin glasses or how they are related
to neural networks, other than to note that this is a very nice example of how

31This simple argument ignores the fact that the spins are binary objects, while the Ji,; are
real numbers, so this may be an underestimate of the capacity of the network.

32y fact, spin glasses were studied long before it was appreciated that they had anything in
common with neural networks. It turns out that spin glasses are typical of random systems with
energy landscapes given by functions such as {(12.14). The protein-folding problem falls into this
class as well.
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FIGURE 12.31: Operation with 80% of the Ji,; set to zero. Left: initial pattern; middle: spin
configuration after one Monte Carlo sweep through the lattice; right: configuration after two sweeps.
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FIGURE 12.32: Operation with 90% of the Ji,; set to zero. Left to right: m:?.mm_ pattern and spin
configurations after one, two, five, and nine Monte Carlo sweeps through the lattice.

ideas developed for one problem (spin glasses) can be profitably applied to a rather
different, area.

We next consider the effects of damage on the operation of our model memory.
Since the information is stored in the interactions J; ;, it is these connection values
that will be damaged. We start with the J;; calculated using (12.18) and the ﬁw.nmm
stored patterns, 4, B, and C. We then “damage” these values by randomly setting
the elements of the J;; matrix to zero with probability piamage- Some results .mOn
Pdamage = 0.8 are shown in Figure 12.31, where the initial pattern was an A, which
itself has been altered, from the stored pattern with probability 0.3. We recall
that with the ideal J; ;, our memory immediately found the correct maﬂ.unma pattern;
that is, it took only one Monte Carlo pass through the lattice to obtain the stored
pattern, which was then stable for all future times. With Pdamage = 0.8 and after
one Monte Carlo time step (one complete pass through the lattice), the system
was closer to the stored pattern, but there were still some spins pointing in the
wrong direction. However, after two time steps the system reached the correct, and
perfect, final pattern.

The corresponding result with pdamage = 0.9 is shown in Figure 12.32. In
this case it took nine Monte Carlo time steps to reach a stable pattern, but the
system did eventually come to the correct final state. However, if the Ji g wnm
damaged much further, the network fails, as illustrated in Figure 12.33. mm.mm, with
Pdemage = 0.95, the system was unable to find the correct pattern. Instead, it ended
up in a state unlike any of the stored patterns. )

These simulations show that our model memory continues to function, even
when severely damaged. It thus has an important feature in common with human
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FIGURE 12.33: Operation with 95% of the J; ; set to zero. Left to right: initial pattern and spin
configurations after three, four, five, and ten Monte Carlo sweeps through the lattice. In this case our
memory did not recall the letter A.

brains. Indeed, it is amazing that the memory works so well, even with 90% of
the connections removed. The level of damage that can be tolerated depends on
the number of stored patterns. In this example, with only three stored patterns
in a system of 100 neurons, we were well below the ideal theoretical limit of ~ 13
patterns. If the number of stored patterns had been closer to this limit, the level of
damage that could have been be tolerated would have been smaller. Nevertheless,
neural network memories can continue to function well even when significantly
damaged. Intuitively, this can be understood in terms of their redundancy. With
a network that contains the theoretical limit of ~ 0.13N patterns, ~ 87% of its
information content is effectively redundant. A network’s operation may not be
adversely affected if some of this redundant information is lost.

One aspect of neural networks that we haven’t really touched on is learning.
The problem is extremely important for two reasons. First, if our goal is to model
a real (biological) brain, learning must be accounted for. Second, neural networks
of the type described here are being considered for a number of applications, such
as image processing and handwriting recognition. These applications require that
the network be able to incorporate new patterns, and in some cases forget old
ones. The development of learning algorithms is an active area of research, and a
number of alternative ways for calculating the J; ; have been proposed. One of the
simplest learning procedures is based on (12.18). Consider a working network that
contains several stored patterns. A new pattern can be learned by adding a small
contribution to the interactions

Jij(new) = BJi;(0ld) + @ si(p)s;(p) (12.19)

where s;(p) is the new pattern, o is a parameter that controls how fast the learning
should occur, and the value of B can be adjusted to allow for the fading of old
memories. This learning algorithm has also been proposed on biological grounds.
If a real network is presented with a pattern s;(p), it is believed that the synapses
can adjust their strengths with time so as to make the pattern a stable configuration
of the network. That is, the strengths and signs of a synapse adjust so that they
are “consistent” with the states of the neurons that are involved. We will explore
the behavior of this and several related learning procedures in the exercises.
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FIGURE 12.34: Numbering scheme. N is the number of spins in one row.

PROGRAMMING NOTES
The simulation of a neural network memory involves the following steps.

o The desired stored patterns must be chosen. For the example calculations de-
scribed above these were just letters laid out on a 10 x 10 grid, but you could use
any other patterns including other characters or pictures.®® You could also use a
larger array of spins. This would allow more detail in the patterns and enable the
system to store more patterns, but at the cost of additional mermory requirements
(memory in your program).

¢ A natural way to store the spin values is to use a two-dimensional array spin(m,n)
where the indices m and n specify the row and column where the spin is located.
This storage scheme is convenient for displaying the stored pattern. However, we
also have to store the interaction energies J; ;. Here the indices 7 and j do not refer
to rows and columns. You will recall that our model allows an interaction between
each pair of spins. Hence, J;; is the strength of the interaction between the ith
and jth spins in the lattice, where i and j refer to a particular numbering scheme.
One possible scheme is illustrated in Figure 12.34. The spins in the first row (m=1)
are numbered i = 1,2,..., N, those in the second row (z=2) have the numbers
i=N+1,N+2,..., 2N, and so on up to the final spin, which is number ¢ = N2.
Given the row and column numbers, m and n, the spin number is

i= N@m-1) +n. (12.20)

Note that this mapping can be inverted, that is, given i we can uniquely determine
m and n, although we will not need to do this in our simulations.

The stored patterns can be described using the labeling scheme in terms of
spin number ¢, with s;(p) denoting the value of the i-th spin for the p-th maowom
pattern. These in turn are used to calculate the interaction energies Ji,; according
to (12.18). Storage of the interaction energies requires a two dimensional array of
size N? x N2. Thus, a 10 x 10 array of spins requires ~ 10% interaction energies.3

33Black-and-white pictures would be simplest. We will leave gray scale or color images to the
industrious reader. . .

3%An salternative scheme for storing the J;; would be to use a mo:ni_am:m_ou.n._ array
J(m1,n1,m2,n2) to store the interaction energy for spin(m1,n1) and spin(m2,n2). This makes
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o After the interaction energies have been calculated, the memory is ready for
operation. The spins are given values corresponding to a particular pattern. In our
examples this was a character that was similar, though not identical, to a letter
in the alphabet, but it could be a picture or other type of image. The Monte
Carlo method is then used to calculate the spin directions at future times. The
method is very similar to the one used to simulate the Ising model in Chapter 8.
A spin is selected and the energy required to make it flip, Egip is calculated from
(12.18). If Eqip, is negative, that is, if the energy would be reduced by flipping
the spin, then the spin is reversed. If Efip > 0, the spin is left unchanged. These
flipping rules correspond to a system in thermal equilibrium with a heat bath at
zero temperature. . In this case the Monte Carlo procedure takes the system to the
nearest energy minima, in the spirit of the energy landscape in Figure 12.30.

o The Monte Carlo procedure is used repeatedly, giving every spin a chance to
flip. The spins can be chosen at random, or they can be selected by systematically
moving through each row and column of the lattice. The two choices hoth work
well. The most important thing is that each spin be given at least one chance to
flip, so the systematic approach is often preferred. The Monte Carlo procedure is
used until the state of the spin system becomes stable, indicating the pattern that
is recalled by the memory. A network will usually find the desired pattern after
only one or two Monte Carlo passes through the lattice, as the system will quickly
locate the nearest energy minima. However, the behavior can sometimes be more
complicated. If the number of stored patterns is close to the theoretical limit, or
if two of the stored patterns are similar (have a small Hamming separation), the
memory recall may not be ideal. The system may then recall a pattern that is
different from any of the stored patterns (often an approximate Bmxncum,v‘ or the
network might never locate a time independent state. In the latter case it may
switch back and forth in time between two or more patterns; such behavior is
known as a, limit cycle. In human terms we might think of this as corresponding to
confusion! s F ‘

Historical Notes

The field of neural networks is much too vast for us to be able to give a complete
description in this section. A good Emeo.lom_ discussion of the field is given in Hertz,
Krogh, and Palmer (1991) which is listed in the references. In 1943 McCulloch
and Pitts recognized that a network of simple neurons was capable of universal
computation. This means that such a network could, in principle, perform' any
calculation that could be carried out.with the most general computer imaginable.33
This attracted a good deal of interest from researchers interested in modeling the
brain. - .

the bookKeeping simpler orm_c the scheme involving (12.20), but some computer languages do not
permit four-dimensional arrays. In addition, the method (12.20) for encoding two :EBJmG into
one in an invertible manner can be useful in other situations. .

35More precisely, such a network can calculate any computable function in the sense of a general
purpose Turing machine.
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One of the first specific network models was proposed by Rosenblatt, who
introduced a model known as the perceptron. This is a network composed of
layers of neurons (i.e., spins), with neurons in each layer receiving connections only
from neurons within the same layer and from the preceding layer. These are often
referred to as feedforward networks, since information flows from one layer to the
next and never interacts back with earlier layers. Many related network schemes
were devised and studied, both from a physics perspective (in work by Cragg and
Temperley, and Little, for example) and from the viewpoint of artificial intelligence.
Hebb introduced the learning rule mentioned above, and it was proven that if a
particular network was capable of computing a certain function, this learning rule
would yield the appropriate interaction energies.

Unfortunately, some of the simplest perceptron networks are not capable of
universal computation. This point was emphasized by Minsky and Papert in a very
influential book that caused many workers, especially those interested in artificial
intelligence, to abandon the field. Nevertheless, work on neural networks continued
(albeit at a reduced level), and gradually it came back into fashion. In particular,
the work of Hopfield stimulated enormous interest in the physics community. The
network model we have studied in this section is often referred to as a Hopfield
net and is distinguished by full connectivity (every spin is coupled to every other
spin; it does not have a layered structure as in some models). In addition, the
connections are often chosen to be symmetric (J;,; = J;;) as this makes the model
closely analogous to a spin model for which the theoretical machinery of statistical
mechanics can be most readily applied.

Neural networks are now of very great interest to scientists from a number
of different fields. They are studied as models of real (biological) brains and are
used to gain insights to processes such as learning and memory. Neural networks
are also attracting much interest in the computer science community, as they seem
capable of massively parallel processing and could provide an efficient means for
solving certain computationally very difficult problems, such as those connected
with image processing. Artificial intelligence researchers are also studying neural
networks, since they seem capable of generalization and association, two phenomena
that have proved difficult to capture with conventional computational approaches.

In this section we havé been able to give only a very brief description of one
particular neural network model and have illustrated its behavior with a few simple
examples. Our emphasis has been on the most important and unique features of
neural networks and how these are related to the physics that we have encountered
earlier in this book.

EXERCISES

12.11. Write programs to perform all of the calculations described in this section.
Then, first encode a single pattern into memory in a 10 x 10 neural network.
Start with no damage in bonds and see if there is any difference in recalling
this pattern in memory starting from an arbitrary initial trial pattern. Try to
quantify the relationship between the difference between the stored and initial
patterns and the number of sweeps of the grid required to recall the former. Do
the same with increasing damage and locate the maximum damage to still be
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able to recall the original pattern. Study the relationship between the required
sweep numbers and the amount of damage. Second, encode multiple patterns
(say, starting from 2 and gradually increasing to 5). Study the accuracy of the
neural network, i.e., its ability to recall the right pattern in the sense that the
random initial pattern may tend to converge to a stored pattern that is closest
to it. Try the same with varying amounts of damage.

12.12. Investigate what happens when a network is overloaded with too many stored
patterns. Do this by adding additional letters of the alphabet to the patterns
stored by a 10 x 10 neural network. You should find that after storing about
the first five letters in the alphabet, some of the patterns are no longer stable.
However, the theoretical upper limit on the number of stable stored patterns is
~ 0.13N2, which is 13 for a 10 x 10 network. Explain why you are not able to
successfully store this many letters.

12.13. In the previous problem we found that the maximum number of stable stored
patterns may be less than the theoretical upper limit of ~ 0.13N? for an N x N
network. Using a 10 x 10 network, try to devise 10 patterns that can all be stored
simultaneously. Hint: It is best if the patterns are as different from each other
as possible (see our discussion of the importance of orthogonality).

12.14. The learning rule (12.18) yields values of J; ; that vary widely in magnitude. In-
vestigate the effect of restricting J; ; to the values +1. Do this by first calculating
the Hebb/Cooper interaction strengths J; ; (Hebb) using (12.18), then determine
the final value using J; ; = sign[J; j(Hebb)]. Compare the performance of this
network with the one we studied above. Of particular interest is the maximum
number of stored patterns and the sensitivity to damage. You should find that
this network works nearly as well as one in which the Ji,j are continuous vari-
ables. This result is important for those who are interested in making neural
network integrated circuits. It is much easier to design such circuits with only
two different interaction strengths than to arrange for the interactions to vary
continuously.

12.15. A two-layer perceptron can be useful for classifying patterns. The structure of
such a network is shown in Figure 12.35. The spins/neurons in the input layer
are given a configuration corresponding to a pattern to be identified and locked
rigidly in place. The Monte Carlo algorithm is then used to enable the spins
in the output layer to reach the lowest energy state. The energy has the form
(12.14), but the J; ; are now asymmetric; the direction of a spin ¢ in the input
layer can affect the direction of spin j in the output layer, but not vice versa.
The interactions may be calculated with an expression similar to (12.18)

Jij = mw > sim)s(n) (12.21)

where m refers to the input pattern and n now refers to the desired output
pattern. Implement such a network and use it to classify patterns. For example,
choose the J;; so that several different patterns are recognized as the letter A,
several others as the letter B, etc.

*12.16. Throughout this section we have used the Monte Carlo procedure appropriate
for a system at zero temperature. As discussed in connection with Figure 12.30,
this algorithm takes the system to the nearest accessible energy minima. A draw-
back with this method is that a deeper minima will not be located unless it is
directly “downhill” from the initial pattern. One way to avoid this problem is to
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FIGURE 12.35: Schematic two-fayer perceptron. Each layer contains a network of neurons, and the
arrows between planes denote interactions. There are also interactions within each layer that are not
shown.

use the Monte Carlo method with T > 0. In this case we accept spin flips with
positive flipping energy with a probability exp(~Egip/T), as discussed in Chap-
ter 8. If the effective temperature is comparable to the energy barrier separating
a metastable pattern from a more stable one, the Monte Carlo algorithm will
enable the system to spend more time near the stable pattern. If the tempera-
ture is then slowly reduced, the network can sometimes locate the more stable
pattern. Implement this procedure and study its performance. You should find
that if T is too small, the network will be trapped in undesired states, as before.
On the other hand, if T is too large, the system will quickly move far from the
initial pattern and the final state will not resemble the initial one. This is not
the way a memory should function. The best performance is obtained with an
intermediate value of T, which is just large enough that the system can overcome
the smallest energy barriers. This approach is similar to the annealing procedure
. we employed in our studies of protein folding.

*12.17. Investigate the behavior of the learning algorithm (12.19). Use a 20 20 network
and begin with the J; ; chosen according to (12.16) so as to store the letter A.
Then add more patterns to the memory using (12.19) and the stored patterns of
your choice. Study the behavior for different values of the parameters o and 3.

12.4 REAL NEURONS AND ACTION POTENTIALS

In our work with neural networks we introduced some of the essential properties
of neurons, and we mentioned that they communicate with each other via voltage
pulses called action potentials. In this section we want to consider, in a fairly
realistic way, how these action potentials are generated. An understanding of action
potentials will give us insight into some of the basic physics of how neurons and
the nervous system function at the molecular level.
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FIGURE 12.36: Schematic of a real neuron. A system of molecular pumps causes the concentration
of K ions inside the cell to be larger than the concentration outside. Likewise, the concentration of
Nat is higher outside the cell. These concentration differences lead to a potential difference, which is
typically 70 mV when the cell is “at rest.”

Figure 12.36 shows a somewhat realistic picture of a real neuron. Here we
show only the central portion of the neuron (the soma) and omit the dendrites
and axons that carry signals to and from the soma (compare with Figure 12.22).
We want to first understand and model how action potentials are generated in the
soma. After that we will add axons and dendrites back into the model, and discuss
how they are involved in signal propagation.

Cells are complicated systems (any biologist would tell us that). The inside of
the cell is separated from the outside by the cell membrane. One might think that
this membrane merely keeps the inside from spilling out, but it does much more
than that. A number of different proteins reside inside and near the cell membrane,
and these membrane proteins serve several functions. Some act as pumps that
transport ions from one side to the other. For example, in typical neurons the
concentration of K* inside the cell is much higher (by a factor of 10 or more) than
the concentration outside, and this concentration difference is maintained by a ion
pump protein. Likewise, an ion pump also transports Na* ions out of the cell, so
that the concentration of Na*t is about an order of magnitude lower inside the cell
than outside. These concentration differences lead to a potential difference between
the inside and outside.®® When the neuron is “at rest,” i.e., not firing an action
potential, this potential difference is typically 70 mV, with the inside being negative
with respect to the outside. This is called the resting potential.

In addition to ion pump proteins, the membrane of a neuron also contains
proteins that wind their way through the membrane so as t6 form an open chan-
nel through which ions can pass, Figure 12.37. These channels are VEry narrow,
typically only a few A at their narrowest point, and they have the very interesting
property that they are extremely selective. That is, some channels will pass only

36 As you might expect, other ions (such as Ca** and Cl1™), in addition to K+ and Nat, are also
present and can play important roles. However, to get a basic understanding of action potentials
we can get away with including only K+ and Na+t.
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FIGURE 12.37: The cell membrane is a thin (~ 100A) lipid fayer containing ion channels that ailow
selected ions to pass through.

K+ ions, while others will pass only Na*. In addition, these ion channels can open
and close in response to the voltage across the membrane.

We have given only a rough, schematic description of a neuron, but even this
description became available only about 50 years ago, with the work of Hodgkin and
Huxley. While they built on the results of many others, their results and insights
truly revolutionized our understanding of the nervous system. We will now discuss
the nature of action potentials as developed by the experimental and theoretical
work of Hodgkin and Huxley (HH).

Many neurons are relatively small, perhaps only tens of microns in diameter.
This makes it hard, even with today’s techniques, to probe neurons in great detail.
HH understood this problem, and therefore focussed their experiments on neurons
found in the squid. In particular, they studied the squid giant axon — here the term
“giant” refers to the axon (not the squid). These axons are of order a millimeter in
diameter, and HH were able to insert wires®” and other probes inside these neurons
and thereby perform a number of very detailed experiments.3®

Hodgkin and Huxley realized that the membrane of the squid giant axon is a
complicated electrical system, and that current flow across the membrane involves
different types of charge carriers. Through some very clever experiments3® they
were able to show that most of the current through the membrane is carried by
K* and Na* ions. These_currents depend on the voltage across the membrane,
but this dependence is much more complex than a simple Ohm’s law behavior. By

inserting wires inside the axon, Figure 12.38, (and without completely disrupting
the function of the cell), HH were able to probe how these two currents behave in
detail. Figure 12.38 shows how the current of K* across the membrane depends on
voltage. Here the system was initially at rest (i.e., at the resting potential), with no
current flowing. The voltage was then increased abruptly by an amount V, and we

37In the simplest experiment they inserted a wire along the axis of the axon (see the schematic
on the left in Figure 12.38). This allowed them to measure the cross-membrane current very
precisely, and it also meant that the entire axon was isopotential so that the action potentials did
not, propagate along the axon. This simplified an analysis of the time dependence of the current.

381t turns out that the properties of other types of neurons, including those found in mammals
(us) are very similar to those of the giant squid axon, so the findings of HH apply quite widely.

39We do not have space here to give all of the background for, or a complete description of the
HH experiments (an interested reader can find much more in the references). What follows should
be viewed as an “abridged” version.
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FIGURE :.,um“ Left: Schematic of the experimental setup used by Hodgkin and Huxley to study the
membrane conductance. A wire inserted along the axis of the axon was used to generate and probe
axon potentials generated in a section of axon. Center: K+ current as a function of time in response
to a stepwise increase in the membrane voltage (by an amount V'), for three different values of V.
Here, by convention, a positive current corresponds to a current flowing out of the neuron. Right:
Na*t current as a function of time in response to a stepwise increase in the membrane voltage.

see that the potassium current I, then increased with time. These results for J K
are schematic (we’ll see below how to describe them mathematically), but HH were
actually able to measure Ik in real experiments. There are two important aspects
to these results. First, Ix takes several milliseconds to grow to its full value, and
the time it takes to do this depends on V (it is shorter for larger V). Second, the
magnitude of the Ik is not proportional to V; the current at V = 100 mV is about
8 times larger than at V' = 30 mV. Hence, (as we have already mentioned) this is
not a simple Ohm’s law type of system.

Hodgkin and Huxley devised the following model to explain the behavior of
Ix. According to this model K* flows through ion channels in the membrane (Fig-
ure 12.37), and these channels can be in either an open or closed state. The state
of a channel is controlled by “gating” particles whose states are described by the
variable n. The value of n gives the probability that one of these particles will be
in its open state. However, it turns out that there are four gating particles asso-
ciated with each channel, and each particle must be in its open state in order for
the channel to be open for K* jons. Hence the open probability for the ensemble
of potassium channels, and hence the K* conductance is proportional to nt. To
understand the behavior and function of the HH gating particles requires a micro-
scopic picture of an jon channel. Such pictures are only now being developed, but
the evidence suggests that the protein that makes up a channel can be in several
different structural (i.e., conformational) states. When it is in its closed state, the
channel is too small for an ion to pass through. The value of n then corresponds
to the structural state of the protein, and there are multiple (in this case four)
structural segments that must each be “open” in order for the entire channel to be
conducting.

As we have seen from Figure 12.38, the conductance of the K+ channels, i.e.,
the value of n, depends on the voltage across the membrane. Hodgkin and Huxley




