PHYS 210: Introduction to Computational Physics Fall 2012 Homework 3
 Due: Thursday, November 8, 11:59 PM
 PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please make careful note of the following information and instructions:

1. The following assignment requires you to write two octave functions to solve tasks as described in the problem specifications.
2. For each problem, there is an associated instructor-supplied "driver" script that you will use to generate the final results for the question. In each case these results will consist of an inventory of files which is listed at the end of the problem description. Also note that for each problem you will have to prepare a single .m file that will contain the definition of the required octave function: that .m file will be part of the inventory.
You can also use the instructor-supplied driver scripts as guides/templates for the design of your own scripts to test your octave functions as you code them.
Warning!! If you do modify these scripts for your own purposes, ensure that you give them different names. That is, the scripts tchaos and tfdas that you must eventually execute to complete the homework must be the ones defined in /home/phys210/octave/hw3, not your own versions.
You will definitely lose marks if you don't heed this warning, so let me know if there is anything about it that you don't understand!!
3. Important!! In order to be able to execute the instructor-supplied driver scripts in your octave session, ensure that the following line is in your $\sim /$. octaverc file.
```
addpath('/home/phys210/octave/hw3')
```

This should be the case if you have followed the instructions about $\sim /$. octaverc that we discussed in the labs.
If you don't have an $\sim /$. octaverc file, copy it from \sim phys210 as follows:
\% cp ~phys210/.octaverc.
4. If you want to work on this homework using octave on your laptop or home machine, then you will need to copy the contents of /home/phys210/octave/hw3 from hyper to some directory on your personal machine(s), and ensure that the target directory has been added to your octave path as above.
5. Since both of the driver scripts produce Postscript files, recall that you can use evince and/or okular to view such files. Please use one of these viewers to ensure that all of the files that are to contain Postscript versions of plots, actually do contain Postscript plots. I recommend that you use evince, especially for Problem 1.
6. As usual, it is your responsibility to ensure that when your homework is complete, all requested files are in their correct locations with the correct names, and that all code executes properly on the lab machines.
Warning!! At this stage in the course, the TA has the authority to begin deducting marks if you do not follow this protocol!!
Also as usual, note that any reference below to the directory hw3 is implicitly a reference to /phys210/\$LOGNAME/hw3.
7. Comments and error checking: Your functions should be commented at about the same level as my driver scripts are. Also, unless explicitly stated otherwise, your functions do not have to perform any checks for validity of input arguments.
8. Loopless coding: In the spirit of making use of octave's powerful facilities for performing whole-array operations, you should attempt to solve problem 2 using as few for or while loops as possible.
9. Due to the amount of programming involved in this assignment relative to the previous two, as well as to the fact that it involves some mathematics that may be somewhat unfamiliar to you, this problem set may be quite challenging for some of you.
However, the homework, it has also been designed to help you gain a level of proficiency in octave programming that will be necessary, in most cases, for the successful completion of your term projects (assuming that you will be using octave for your projects).

Moreover, as you probably suspect, the length of this handout does not reflect the total length of code that must be written to complete the homework. Excluding comments (but including some tracing code), my solutions amount to about 50 lines of code.
In any case I strongly recommend that you begin work on the assignment as soon as possible, and to seek help should you find yourself spending an undue amount of time (i.e. hours and hours) on any given problem.

PROBLEM 1: The Chaos Game

1.1 Mathematical specification

Consider the $x-y$ plane and let

$$
\begin{equation*}
V_{i} \equiv\left(x_{i}, y_{i}\right) \quad i=1,2,3 \tag{1}
\end{equation*}
$$

be the vertices of an equilateral triangle that lies in that plane and which is inscribed in the unit circle defined by $x^{2}+y^{2}=1$ (i.e. the circle with unit radius whose center is located at the origin $\left.(0,0)\right)$. Specifically, the coordinates of the V_{i} are as follows:

$$
\begin{align*}
& V_{1}=\left(\cos \left(\frac{\pi}{2}\right), \sin \left(\frac{\pi}{2}\right)\right) \tag{2}\\
& V_{2}=\left(\cos \left(\frac{7 \pi}{6}\right), \sin \left(\frac{7 \pi}{6}\right)\right) \tag{3}\\
& V_{3}=\left(\cos \left(\frac{11 \pi}{6}\right), \sin \left(\frac{11 \pi}{6}\right)\right) \tag{4}
\end{align*}
$$

The game is to be initialized by choosing, at random, some point-also in the $x y$ plane-that lies on the circle centred at the origin, but with a radius $r=1.25$. Call this randomly chosen point the active point, V_{p}. With this initialization, the game is played by repeating the following operations any desired number of times (steps):

1. Choose one of the three vertices, V_{i}, of the triangle randomly.
2. Consider the line segment $\overline{V_{i} V_{p}}$ between the active point, V_{p}, and the randomly chosen triangle vertex, V_{i}.
3. Bisect $\overline{V_{i} V_{p}}$ to define a new point, V_{q}, that thus lies exactly at the midpoint of $\overline{V_{i} V_{p}}$.
4. Make this new point V_{q} the active point V_{p}.

If one plots all the active points V_{p} which are generated, an interesting pattern appears after a sufficiently large number of iterations.

1.2 The problem per se

Make the directory hw3/a1 and within that directory create an octave source file chaos.m that defines an octave function with the following header:

```
function [x y] = chaos(nsteps)
```

The single input argument to chaos is defined as follows:

- nsteps: Number of steps to play. This should be an integer scalar greater than 0 , and your implementation of chaos can assume that it is (i.e. you don't need to do any error checking of nsteps).

The output arguments of chaos are:

- x and y : Vectors of length nsteps +4 containing the x and y coordinates, respectively, of all of the active points generated by playing the game, as well as the vertices of the equilateral triangle. Specifically, on return x and y should be defined as follows
$-x(k), y(k), k=1,2,3:$ Vertices of triangle as defined in (2)-(4)
$-x(4), y(4):$ Coordinates of randomly chosen initial active point.
$-x(k), y(k), k=5, \ldots$ nsteps +4 : Coordinates of subsequently generated active points.
The driver script for chaos is defined in

/home/phys210/octave/hw3/tchaos.m

As noted above, you can use this script as a template for the purposes of guiding the development and testing of your implementation of chaos, but, as emphasized in the preliminary comments, if you do so, make sure that you don't call it tchaos.m!-call it mytchaos.m, or some such, so that there can be no confusion with the true driver.

Once you are confident that your implementation of chaos is working properly, invoke the driver script tchaos: i.e. ensuring that octave is executing in hw3/a1, type tchaos at the octave prompt. As the script executes you should see the following on your terminal:

```
>> tchaos
Type 'Enter' to continue:
Type 'Enter' to continue:
This make take a few seconds ...
Please be patient!
Type 'Enter' to continue:
Done!!
```

Here (as well as in the subsequent problem) each time you see the text Type 'Enter' to continue:, you must do as instructed in order for the script to continue execution. Once you see the text Done!! you can check in the working directory for various .ps (Postscript) files that should have been generated, ensuring that they do contain plots. You should use evince to do this, and look at the thumbnails, since the graphed points on some of the plots will be very difficult to discern if you use okular. If you don't see a thumbnail when evince starts, select View \rightarrow Side Pane from the pull down menus.

You should also see various plots appear on your screen as the script executes.
File Inventory for directory hw3/a1

1. chaos.m
2. chaos-1000.ps
3. chaos-10000.ps
4. chaos-100000.ps

Optional! Generalize the game in various ways such as

1. Adding an option which controls the number of fixed vertices used (i.e. so that you can play with $4,5,6, \ldots$ fixed vertices, rather than just 3).
2. Adding an option which controls the placement of new points: new points should continue to be placed along a line segment connecting the previous point and the randomly chosen vertex, but need not be at the mid-point of the line segment.
3. Implementing the game in three dimensions.

If you do chose to generalize the game, be sure to create a new .m file that defines an octave function with a name different than chaos-chaos must execute precisely as specified above. Leave comments describing your generalization(s) in a README file in the solution directory.
Some bonus marks will be available for successful implementation of one or more of these extensions, as well as for suitably imaginative generalizations of your own invention.

PROBLEM 2: Finite Difference Approximations

2.1 Mathematical specification

Consider a uniform finite difference grid, x_{j}, defined on some domain, $x_{\min } \leq x \leq x_{\max }$

$$
\begin{equation*}
x_{j}=x_{\min }+(j-1) \Delta x \quad j=1,2, \cdots n_{x}, \tag{5}
\end{equation*}
$$

where the grid spacing (or mesh spacing or discretization scale), Δx, is given by

$$
\begin{equation*}
\Delta x=\frac{x_{\max }-x_{\min }}{n_{x}-1} . \tag{6}
\end{equation*}
$$

We adopt the following notation (introduced in class) to denote the values of an arbitrary function $f(x)$ at the grid points, x_{j} :

$$
\begin{equation*}
f_{j}=f\left(x_{j}\right) \tag{7}
\end{equation*}
$$

Then as also discussed in class, the following finite difference expressions define approximations to the first derivative, $f^{\prime}(x)=d f(x) / d x$, evaluated at the grid points x_{j} :
First order forward difference approximation of $f^{\prime}\left(x_{j}\right)$

$$
\begin{equation*}
\frac{f_{j+1}-f_{j}}{\Delta x}=f^{\prime}\left(x_{j}\right)+O(\Delta x) \approx f^{\prime}\left(x_{j}\right) \tag{8}
\end{equation*}
$$

First order backward difference approximation of $f^{\prime}\left(x_{j}\right)$

$$
\begin{equation*}
\frac{f_{j}-f_{j-1}}{\Delta x}=f^{\prime}\left(x_{j}\right)+O(\Delta x) \approx f^{\prime}\left(x_{j}\right) \tag{9}
\end{equation*}
$$

Second order centered difference approximation of $f^{\prime}\left(x_{j}\right)$

$$
\begin{equation*}
\frac{f_{j+1}-f_{j-1}}{2 \Delta x}=f^{\prime}\left(x_{j}\right)+O\left(\Delta x^{2}\right) \approx f^{\prime}\left(x_{j}\right) \tag{10}
\end{equation*}
$$

In addition, we introduced the following finite difference formula that approximates the second derivative, $f^{\prime \prime}(x)=$ $d^{2} f(x) / d x^{2}$, once again at the mesh points x_{j} :
Second order centered difference approximation of $f^{\prime \prime}\left(x_{j}\right)$

$$
\begin{equation*}
\frac{f_{j+1}-2 f_{j}+f_{j-1}}{\Delta x^{2}}=f^{\prime \prime}\left(x_{j}\right)+O\left(\Delta x^{2}\right) \approx f^{\prime \prime}\left(x_{j}\right) \tag{11}
\end{equation*}
$$

2.2 The problem per se

Make the directory hw3/a2, and within that directory create an octave source file, fdas.m, that defines the function fdas having the following header
function $[x$ df $d b \mathrm{dc} d d c]=\mathrm{fdas}(f c n, x m i n, x m a x$, level)

The input arguments to fdas are as follows:

- fcn: Function handle for $f(x)$. This will typically be a handle to one of octave's built-in math functions, such as sin, sqrt, cosh etc.
- xmin: Minimum coordinate, $x_{\min }$, of the finite difference grid.
- xmax: Maximum coordinate, $x_{\max }$, of the finite difference grid.
- level: Discretization level. As discussed in class, this provides a convenient way of specifying the number of grid points (or equivalently the grid spacing), particularly for the purpose of testing convergence of finite difference approximations. The finite difference grid will contain $n_{x}=2^{\text {level }}+1$ points, and will have a mesh spacing, Δx, as defined by (6).

Your implementation of fdas must define the 5 output arguments as follows:

- x : Vector of length n_{x} containing the values x_{j} as defined by (5).
- df: Vector of length n_{x} containing the first order forward difference approximation of $f^{\prime}\left(x_{j}\right)$ as defined by (8).
- db: Vector of length n_{x} containing the first order backward difference approximation of $f^{\prime}\left(x_{j}\right)$ as defined by (9).
- dc: Vector of length n_{x} containing the second order centred difference approximation of $f^{\prime}\left(x_{j}\right)$ as defined by (10).
- ddc: Vector of length n_{x} containing the second order centred difference approximation of $f^{\prime \prime}\left(x_{j}\right)$ as defined by (11).

Note that all of the vectors returned by fdas must be of length n_{x}. This means that you must evaluate all of the finite difference approximations (8)-(11) at all of the grid points, x_{j}, including the end points $x_{1}=x_{\min }$ and $x_{n_{x}}=x_{\max }$.
Hint (may be helpful for implementing the computations in fdas without the use of for loops):
Assume that we have defined an octave vector x of length n_{x} using (5). We can then "temporarily" add additional values to the ends of the vector using a statement such as

```
x = [(x(1) - deltax) x (x(nx) + deltax)];
```

and then later delete them using the sequence

```
x(1) = [];
x(nx+1) = [];
```

The driver script for this problem is

/home/phys210/octave/hw3/tfdas.m

When you are satisfied that you have implemented fdas correctly, execution of the driver should produce output as follows:

```
>> tfdas
Type 'Enter' to continue:
Type 'Enter' to continue:
Type 'Enter' to continue:
Type 'Enter' to continue:
Scaled RMS errors for O(h) forward FDA of d/dx
Level Scaled Error
    .
    .
Scaled RMS errors for O(h) backward FDA of d/dx
Level Scaled Error
        .
        .
Scaled RMS errors for O(h^2) centred FDA of d/dx
Level Scaled Error
        .
        .
        .
```

Scaled RMS errors for $0\left(h^{\wedge} 2\right)$ centred FDA of $d^{\wedge} 2 / d x \wedge 2$
Level Scaled Error
where output that constitutes part of the solution has been suppressed. Again, various plots should appear on your screen as the script executes.

If you examine the output labelled

Scaled RMS errors for $0\left(h^{\wedge} 2\right)$ centred FDA of $d^{\wedge} 2 / d x \wedge 2$
you should notice something suspicious about the final few numbers.
Question to be answered in a2/README: What do you notice, and can you provide an explanation for the observed behaviour?

File Inventory for directory hw3/a2

1. fdas.m
2. dsin-6.ps
3. edsin-6.ps
4. ddsin-6.ps
5. eddsin-6.ps
6. README
