
PHYS 410: Computational Physics Fall 2005 Homework 1
Due: Thursday, September 22, 10:00 AM

Last Updated: Sunday, September 11, 11:00 AM

PLEASE e-mail bug reports, comments, gripes etc. to Matt: choptuik@phas.ubc.ca

NOTE: The notation/acronym “a.k.a”, means “also known as”, i.e. “is an alias for”.

Problem 1a: Create a ∼/.forward file on your lnx account so that mail sent to your userid at lnx[123]
gets forwarded to your preferred e-mail address.

Problem 1b: Create and/or modify your /mail/$HOME/.procmailrc file on your physics account so that
mail sent to your userid at physics gets forwarded to your preferred e-mail address.

Problem 1c: Send me (choptuik@physics.ubc.ca) an e-mail message from your account on the Physics
& Astronomy Department Sun server, physics.ubc.ca. Use the short form of the system’s “hostname”—
i.e. physics—for the subject of the message. Include your name in the body of the message. Incidentally,
note that there is a Unix command hostname.

IMPORTANT NOTE: The command Mail covered in class appears to be broken on physics.ubc.ca

at the current time. Thus, please do do not use Mail on physics to complete this part of the assignment.
Rather, I suggest that you use pine. On the lnx machines, you can use either Mail or pine (or any other
mail client that you can find, for that matter) as you wish. I apologize for the inconvenience caused to any
student who attempted to use Mail on physics, which no doubt resulted in an obscure error message, and
non-delivery of the mail.

Problem 1d: Send me an e-mail message from your account on the lnx machines. Again, use the hostname
of the specific machine (i.e. lnx1, lnx2 or lnx3) from which you send the message, as the subject, and
include your name in the text of the message.

Problem 1e: Using the ssh-keygen command as discussed in class, and described in the Unix notes, create
(or add to) the files ∼/.ssh/authorized keys on both your physics and lnx accounts so that you can ssh

and scp from physics to lnx1, lnx2, lnx3 and vice versa, without being prompted for a password.

Do the remaining problems using your account on the lnx machines (it doesn’t matter which one or ones
you use). In particular, note that “∼” in the following refers to your lnx home directory, and all file and
directory references are to files on those machines. As always, send me mail immediately if you encounter
problems using any of the machines.

IMPORTANT!! Be sure to read and follow all instructions carefully, as your grade will depend on certain
files being in the right places with the right names. Note that you will be copying files owned by user phys410
several times.

Problem 2: I have created directories for each of you that you may use to “publish” Web pages (related to
this course) via my research group’s web server (http://laplace.physics.ubc.ca). Your personal directory
(which I’ll refer to as your Web directory) is ∼/public html. I have created a “template” homepage named
∼phys410/public html/index.html. Copy this HTML file into your Web directory (use the same name—
index.html) and modify the HTML file to reflect your name, address, phone-number etc. Use your text
editor of choice (presumably vi or emacs) to perform the modifications. If you don’t feel like publishing any
specific piece of information, specify it as “unlisted”. Below the horizontal rule (line) in the template file,
add suitably labelled links to (a) the course home page (b) the instructor’s home page and (c) at least 5
Web pages that have something to do with “negative index of refraction metamaterials”. Check your work
by verifying that you can get to your home page by going to our Course page, selecting “Student Pages”
and then your name. Also, please send me e-mail should the way I have listed your name in the “Student
Pages” list need changing.

1

Problem 3a: I have created a subdirectory named hw1 (for Homework 1) in your home directory. I have
also changed the permissions on this directory so that your work remains private; please do not alter the
permissions until after the homework has been graded. In this new directory, create another subdirectory
named a3. In that directory (∼/hw1/a3), and using vi or emacs, create a file named apple that contains the
following text from Gravitation, by Misner, Thorne and Wheeler. Try to duplicate the spacing, line breaks,
punctuation etc. as closely as possible.

Once upon a time a student lay in a garden under an apple tree reflecting

on the difference between Einstein’s and Newton’s views about

gravity. He was startled by the fall of an apple nearby. As he

looked at the apple, he noticed ants beginning to run along its

surface. His curiousity aroused, he thought to investigate the

principles of navigation followed by an ant. With his magnifying glass,

he noted one track carefully, and, taking his knife, made a cut in the apple

skin one mm above the track and another cut one mm below it. He peeled

off the resulting little highway of skin and laid it out on the face

of his book. The track ran as straight as a laser beam along this

highway. No more economical path could the ant have found to cover

the ten cm from start to end of that strip of skin. Any zigs and

zags or even any smooth bend in the path on its way along the apple

peel from starting point to end point would have increased its length.

‘‘What a beautiful geodesic’’, the student commented.

Problem 3b: Create a file in the same directory (∼/hw1/a3) called kumquat that is identical to apple

except that all occurrences of the word “apple” are replaced with “kumquat”. Leave a brief note in a file
called README (again in the same directory) that describes how you created kumquat and made the changes.

Problem 4: As we will discuss in coming weeks, in the Fortran 77 language, when one wants to continue a
program statement across more than one line, one must use continuation lines following the first line of the
statement. According to Fortran 77’s strict source-code formatting rules, a continuation line is signalled by
five characters of white space at the beginning of a line, followed by an arbitrary non-white space character
in the sixth column. For example, the following Fortran 77 statement has a single continuation line:

a = cos(x) *

& sin(x)

while this statement has two continuation lines

a = cos(x) *

1 sin(x) *

2 tan(x)

In a directory ∼/hw1/a4, create a file called continuation which contains all of the continuation lines in
the file ∼phys410/hw1/q4/input.f, in the order in which they appear in that file. You can assume (and
verify) that the input file contains no TAB characters.

Leave a brief note in ∼/hw1/a4/README that describes how you solved the problem.

2

Problem 5: Make the directory ∼/hw1/a5. The file /usr/share/dict/words contains a list of “words”
(mostly genuine English words—for the purposes of this question, any entry in the file will be deemed a
“word”), one per line.

How many words does the file contain? ANSWER in ∼/hw1/a5/README.

In the following, let us define alphabetical order as the default order used by the Unix sort command.

In ∼/hw1/a5, create files with the following names and contents (words should appear one per line):

1. 9let1vow that lists, in alphabetical order, all of the 9-letter words containing precisely one (1) vowel.
Define the set of vowels to be [aAeEiIoOuUyY].

2. 8let2vow that lists, in reverse alphabetical order, all of the 8-letter words containing precisely two (2)
vowels. Define the set of vowels as above. Hint consider the Unix sort command.

3. 5cons-ng that lists, in alphabetical order, all words that contain at least one string of 5 or more
consecutive consonants, none of which can be an “n” or a “g”. Note that this does not necessarily
mean that there cannot be a “n” or “g” in the word!

Leave comments in ∼/hw1/a5/README that describe how you solved each of the above three
sub-problems.

Finally, using (1) your answers to the above sub-problems, (2) Unix’s backquote mechanism (which lets
us represent the output of a command using the invocation command per se), and (3) the quirky but
venerable expr command, write a “one-liner” that computes how many more words there are in case 2 above
than in case 1. Note that by a “one-liner”, I mean a single Unix command (or pipeline of commands).
Furthermore, the “one-liner” cannot use any shell variables, and it cannot refer to any file other than
/usr/share/dict/words. Using what should now be your beloved editor (i.e. either vi or emacs), record
your one-liner in the file ∼/hw1/a5/thesource. Then, assuming that your working directory is ∼/hw1/a5,
the command

lnx% source thesource

should display, on standard output, the (integer-valued) answer to the question regarding the difference in
cardinality of cases 2 and 1.

Problem 6: Make the directory ∼/hw1/a6. Use the plotting program gnuplot to produce a plot of
cos(3x) sin(4x) cos(5x) for −2 ≤ x ≤ 3.5. Save your plot as the postscript file plot.ps in the directory
∼/hw1/a6. Hint: Use gnuplot’s extensive on-line help: you may find help plot, help postscript and
help output useful.

Problem 7: Make the directory ∼/hw1/a7. In that directory create a (Bourne)-shell script, get-nasa-iod,
which has the following usage:

usage: get-nasa-iod [-q] image-number

Retrieves one of NASA’s Images of the Day using ’wget’.

image-number -- Integer between 1 and 401

Option: -q -- Suppress output from ’wget’

get-nasa-iod uses the very powerful data retrieval command, wget—commonly found on up-to-date Unix
systems—to fetch directly one of NASA’s “Image(s) of the Day”; see

http://www.nasa.gov/multimedia/imagegallery/

3

for more information on the “Image of the Day” gallery, and note that in the following I will make frequent
use of the acronym IOD for “Image of the Day”.

Let us first be clear about the purpose of the script.

NASA has all of these great images that they’ve hand selected from the half a bizillion or so merely wonderful
images they have in stock, but they package and export these images—which are stored as JPEG (Joint
Photographic Experts Group) files—via links to the images, embedded in what amounts to “cover pages”
for the pictures. Now, there are about 400 “Images of the Day”, and, when done, your script will take a
single integer, and go straight to the heart of the matter, retrieving only the way cool image that corresponds
to that specific IOD—i.e. just the .jpg file, ma’am—with none of the artery-clogging and thus potentially
unhealthy HTML that’s nominally wrapped around it—i.e. what you get when the image is served up the
way NASA wants to serve it up to you!

Before proceeding to a “definition by example” for get-nasa-iod, it is instructive to see wget in action in
the context of a simpler example.

As you are all aware (and if you aren’t, you are now!), the document you are reading “lives online” in
the very fundamental sense that, for example, any printed copy that I distribute in class will have been
produced using a web browser that was pointing to some specific HTML page, or some other file (PS, PDF,
...) that I’m maintaining for this course. In Web parlance, we say that this document has a URL (one of
those exceptions to using “an” in front of something starting with a vowel, with URL ≡ Uniform Resource
Locator). Specifically, the URL for this handout is

http://laplace.physics.ubc.ca/410/HW/hw1_0.ps

and thus you can download a copy of what you are reading, or rather, a copy of what you are reading modulo
any changes that I’ve made to the “master” document in the time since what you are reading was printed.

So go ahead! The instructor dares you!!

If it is convenient, log into a Linux system, or some other system that has wget installed, and download this
very document using the command · · ·

wget http://laplace.physics.ubc.ca/410/HW/hw1_0.ps

· · · drum roll, please!! · · · and be sure that you pay careful attention to case in your typing of the URL, since
URLs are case-sensitive!

If that worked, and you haven’t used wget before, then ideally you should have experienced a small warm
glow, or perhaps even slight tingling, as the download proceeded “automatically”. If not, well, that’s about
as exciting as this part of the course gets, I’m sorry to say!

As you might imagine, wget has many options and can handle pretty well all of your network slicing, dicing
and juicing needs, but single argument (single URL) invocations such as the above are all that are required
to complete this exercise.

4

Sample invocations and resulting output:

As the old saying goes, “an invocation is worth a thousand words”, i.e., it is best to describe/define the
functionality of get-nasa-iod through sample invocations, along with (1) the output from the script, and
(2) the image files that are downloaded from NASA, both of which may result from those invocations.

Your mission is to make your script behave just like the key script (i.e. the instructor’s imple-
mentation).

1. Invocation with no (0) arguments. Usage message is triggered.

lnx1% get-nasa-iod

usage: get-nasa-iod [-q] image-number

Retrieves one of NASA’s Images of the Day using ’wget’.

image-number -- Integer between 1 and 401

Option: -q -- Suppress output from ’wget’

2. Invocation with one (1) valid argument. Script first retrieves URL

http://www.nasa.gov ... /image_feature_011.html

then retrieves URL

http://www.nasa.gov/images/content/1428main_MM_Image_Feature_11_rs3.jpg

lnx1% get-nasa-iod 11

--08:55:45-- http://www.nasa.gov/multimedia/imagegallery/image_feature_011.html

=> ‘.get-nasa-iod’

Resolving www.nasa.gov... 65.110.21.226, 65.203.232.4

Connecting to www.nasa.gov[65.110.21.226]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 19,862 [text/html]

0K 100% 497K

08:55:45 (494.72 KB/s) - ‘.get-nasa-iod’ saved [19862/19862]

--08:55:46-- http://www.nasa.gov/images/content/1428main_MM_Image_Feature_11_rs3.jpg

=> ‘NASA-IOD-011.jpg’

Resolving www.nasa.gov... 65.110.21.226, 65.203.232.4

Connecting to www.nasa.gov[65.110.21.226]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 62,090 [image/jpeg]

0K 82% 633K

50K 100% 967K

08:55:46 (670.95 KB/s) - ‘NASA-IOD-011.jpg’ saved [62090/62090]

get-nasa-iod: Input argument ’11’ was encoded as 011

get-nasa-iod:

-rw-r--r-- 1 matt choptuik 62090 Jun 13 2003 NASA-IOD-011.jpg

3. Invocation with another single valid argument. Note that this time the argument (i.e. the number
86) is encoded in the image feature....html file as ’86’, rather than ’086’. Pretty tricky, NASA
web-meisters!

lnx1% get-nasa-iod 86

--08:55:46-- http://www.nasa.gov/multimedia/imagegallery/image_feature_086.html

=> ‘.get-nasa-iod’

5

Resolving www.nasa.gov... 65.110.21.226, 65.203.232.4

Connecting to www.nasa.gov[65.110.21.226]:80... connected.

HTTP request sent, awaiting response... 404 Not Found

08:55:51 ERROR 404: Not Found.

--08:55:51-- http://www.nasa.gov/multimedia/imagegallery/image_feature_86.html

=> ‘.get-nasa-iod’

Resolving www.nasa.gov... 65.203.232.4, 65.110.21.226

Connecting to www.nasa.gov[65.203.232.4]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 20,421 [text/html]

0K 100% 464K

08:55:51 (455.05 KB/s) - ‘.get-nasa-iod’ saved [20421/20421]

--08:55:51-- http://www.nasa.gov/images/content/49705main_MM_Image_Feature_86_rs4.jpg

=> ‘NASA-IOD-086.jpg’

Resolving www.nasa.gov... 65.203.232.4, 65.110.21.226

Connecting to www.nasa.gov[65.203.232.4]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 43,695 [image/jpeg]

0K 100% 628K

08:55:52 (622.13 KB/s) - ‘NASA-IOD-086.jpg’ saved [43695/43695]

get-nasa-iod: Input argument ’86’ was encoded as 86

get-nasa-iod:

-rw-r--r-- 1 matt choptuik 43695 Sep 2 2003 NASA-IOD-086.jpg

4. Invocation with two (2) valid arguments. As for ALL valid two argument calls, the first argument in
this case is ’-q’, which results in the suppression of all output from wget. The script thus does its
downloading from the NASA site silently, and generates only (1) the diagnostic message telling us how
many digits were used in the encoding of the argument integer, and (2) an ls listing of the (renamed)
.jpg file; both are written to standard output.

lnx1% get-nasa-iod -q 99

get-nasa-iod: Input argument ’99’ was encoded as 99

get-nasa-iod:

-rw-r--r-- 1 matt choptuik 44279 Nov 26 2003 NASA-IOD-099.jpg

5. Invocation with a single invalid argument, 0, which is not in the valid range 1 to 401 inclusive. Usage
message is triggered.

lnx1% get-nasa-iod 0

usage: get-nasa-iod [-q] image-number

Retrieves one of NASA’s Images of the Day using ’wget’.

image-number -- Integer between 1 and 401

Option: -q -- Suppress output from ’wget’

6. Invocation with a single invalid argument, 402, which is not in the valid range 1 to 401 inclusive.
Usage message is triggered.

lnx1% get-nasa-iod 402

usage: get-nasa-iod [-q] image-number

Retrieves one of NASA’s Images of the Day using ’wget’.

6

image-number -- Integer between 1 and 401

Option: -q -- Suppress output from ’wget’

7. Invocation with what is ostensibly a valid single argument. Nonetheless, in this instance the script
fails to download the 28th IOD, since, at least as closely as the instructor has looked, 28 is one of 10
exceptional (as I will call them) integers in the range 1 to 401 inclusive, for which there is no IOD.
The last part of this part of the homework, and thus of the entire homework per se has you determine
the other 9 exceptional numbers.

lnx1% get-nasa-iod 28

--08:55:53-- http://www.nasa.gov/multimedia/imagegallery/image_feature_028.html

=> ‘.get-nasa-iod’

Resolving www.nasa.gov... 65.110.21.226, 65.203.232.4

Connecting to www.nasa.gov[65.110.21.226]:80... connected.

HTTP request sent, awaiting response... 404 Not Found

08:55:53 ERROR 404: Not Found.

--08:55:53-- http://www.nasa.gov/multimedia/imagegallery/image_feature_28.html

=> ‘.get-nasa-iod’

Resolving www.nasa.gov... 65.203.232.4, 65.110.21.226

Connecting to www.nasa.gov[65.203.232.4]:80... connected.

HTTP request sent, awaiting response... 404 Not Found

08:55:58 ERROR 404: Not Found.

get-nasa-iod: Could not download ’http://www.nasa.gov/multimedia/imagegallery/image_feature_28.html’

8. The following is NOT an invocation, but rather a “long” (-l) listing of the .jpg files that the sample
invocations have downloaded thus far. Note that by using a relabelling scheme with a width-three (3)
field with leading zeros displayed, our files are automatically listed in numerical order and lexicograph-
ical (or collating sequence order).

Which order does ls use—numerical or lexicographical? ANSWER in ∼/hw1/a7/README.

lnx1% /bin/ls -l *.jpg

-rw-r--r-- 1 matt choptuik 62090 Jun 13 2003 NASA-IOD-011.jpg

-rw-r--r-- 1 matt choptuik 43695 Sep 2 2003 NASA-IOD-086.jpg

-rw-r--r-- 1 matt choptuik 44279 Nov 26 2003 NASA-IOD-099.jpg

Again, as much as possible, your script should behave exactly as above, when invoked as above.

Note in particular (1) the usage message that is printed when the script is invoked with no arguments, or
with invalid arguments, (2) the various diagnostic messages—typically prefaced with get-nasa-iod:—that
appear with successful and unsuccessful downloads alike, and (3) the fact that you can and should require
that the -q option, if present, precede the required integer-valued argument, image number.

Hints, Notes and Additional Questions to be Answered

1. Study the above sample output, and visit the NASA IOD site to glean as much information as you need
concerning the URLs that you must download. This is how the instructor got going on his solution to
the problem.

2. Recall that you can use the -x flag in script headers for debugging purposes:

#! /bin/sh -x

3. Most Unix systems, including Linux and Sun-OS (Solaris) implement the command printf (see man

printf) which has the same name, and essentially the same function and syntax as its C-language
counterpart, printf (see man 3 printf). This command plays a leading role in the instructor’s

7

implementation of get-nasa-iod, and is highly commended to you. Note that man—and you!—
distinguish between commands/functions/... with the same name (i.e. an “overloaded” name) via the
manual section, i.e. the optional, integer valued first argument to man (see man man!).

How does one determine in how many sections in the manual there is a description for a com-
mand/function/... etc. for printf? ANSWER in the README file that you have previously
created for this question.

Why do I go on about the different versions of printf and their corresponding man sections?

Because you quite probably will find “Sec. 1 printf” (the command) useful in completing this question
but, on Linux systems, will get no information about the decidedly non-trivial syntax of “Sec. 1 printf”
in the Sec. 1 man page for printf per se. Rather, presumably since “Sec. 1 printf” is designed to
emulate, in both syntax and functionality, “Sec. 3 printf”, whomever is/was responsible for the Sec. 1
man page was arguably a little lazy, and one must refer to the man page for “Sec. 3 printf” to learn
the syntax to be used with its Sec. 1 cousin. Those of you who know C should have a bit of a headstart
here; the rest of you may find yourselves having to study both man pages a bit. As always though,
experimentation with a few examples is also a powerful approach—remember, almost all respectable
Unix commands are designed to be used interactively!

4. Observe that many sites, particularly popular ones such as NASA, have mechanisms in place that
serve as a first line of defense against rapid-fire downloads, such as the type that could result from
indiscriminate use of the script that you are to write.

Thus, you will find that the .jpg files associated with the various IODs are not stored in the NASA
site in some “logical” (i.e. easily guessable) fashion such as

NASA-Image-of-the-day-001.jpg

NASA-Image-of-the-day-002.jpg

.

.

.

NASA-Image-of-the-day-400.jpg

NASA-Image-of-the-day-401.jpg

Rather, if I were to ask for the images associated with the 1st, 157th, and 302nd IODs, I would be
served up the files:

1424main_MM_Image_Feature_10_mm3.jpg

57640main_image_feature_157_jw4.jpg

112414main_image_feature_302_ajh_4.jpg

respectively.

Thus, although the image number (i.e. which of the 401 or so IODs is this?), namely 1, 157 and 302 for
the above files is, loosely speaking, encoded in the file name, there is apparently also a 4-, 5-, or 6-digit
random number prepended to the image name. This provides the aforementioned first line of defense
against naive script-writers (“script kiddies” and other species of not-native-to-UBC mammals).

Vis a vis the IODs, however, NASA has only that line of defense, plus a slight wrinkle alluded to in the
7th usage example above. This is in contrast to some other busy sites, such as the physics electronic
e-print archive, http://www.arxiv.org, which prohibits any retrievals via wget; otherwise you surely
would be coding a script for this homework that downloaded from that site, since the information
therein is much more interesting in total than the NASA IOD collection, if not so pretty to look at!

We can easily work around NASA’s defense by nothing that a link to each distinct IOD (i.e. the URL
for the actual .jpg image for that IOD) can be found in what is essentially an HTML “cover page” for
that image, and that, happily, these cover pages have URLs that do follow a (mostly) logical naming
sequence.

8

Namely, the cover pages of the IODs that the instructor has been able to track down are either of the
form

http://www.nasa.gov/multimedia/imagegallery/image_feature_001.html

http://www.nasa.gov/multimedia/imagegallery/image_feature_002.html

http://www.nasa.gov/multimedia/imagegallery/image_feature_003.html

.

.

.

http://www.nasa.gov/multimedia/imagegallery/image_feature_401.html

or

.

.

http://www.nasa.gov/multimedia/imagegallery/image_feature_86.html

.

.

http://www.nasa.gov/multimedia/imagegallery/image_feature_99.html

.

.

.

Thus your scripts will likely invoke wget at least twice for every valid invocation of the script per se,
at least once to retrieve the appropriate one of the files

http://www.nasa.gov/multimedia/imagegallery/image_feature_999.html

http://www.nasa.gov/multimedia/imagegallery/image_feature_99.html

where the 9’s in the above denote generic integers, and a second or third time to retrieve the actual
JPEG image, (a.k.a. the actual .jpg file) the URL for which is contained in the .html file. (Note that
.html files are plain-text (ASCII/Unicode) files.)

5. There’s another twist to this assignment in that, for whatever reason, there are 10 integers between 1
and 401 for which no corresponding image feature · · ·.html files seem to exist. 28 is such an integer,
as the 7th invocation above illustrates.

In addition to coding this script, you must determine the other 9 integers between 1 and 401 which
are “exceptional” in this regard. ANSWER in the README file for this question.

6. As well as the wget and printf commands, you may find grep and/or sed useful in the coding of
your script. Review and/or study the course Unix notes for these commands and/or use the man pages
and/or use the Web as necessary.

Once you have coded and debugged (if necessary!) get-nasa-iod, create the directory ∼/bin, write protect
that directory using the command chmod go-rwx ∼/bin, and copy get-nasa-iod—well as any helper scripts
you may have coded for your solution—there. Once this is done, execute the C-shell built-in command rehash

to update the command hash tables, and ensure that get-nasa-iod works as a regular command for you;
for example, verify that you get a usage message from get-nasa-iod when you invoke it from your home
directory:

% cd; get-nasa-iod

usage: get-nasa-iod [-q] image-number

Retrieves one of NASA’s Images of the Day using ’wget’.

image-number -- Integer between 1 and 401

Option: -q -- Suppress output from ’wget’

The grader (and possibly the instructor) will test and evaluate your script using our own series of invocations.

9

