
Physics 210: Unix / Linux

Please report all errors/typos. etc to choptuik@phas.ubc.ca

Last updated September 4, 2009.

Index

Introduction and motivation
Files and Directories

Absolute and relative pathnames, working directory
Home directories
"Dot" and "Dot-Dot"
Filenames

Commands Overview
General Structure
Executables and Paths
Control Characters
bash Startup Files
Hidden Files
Shell Aliases
Shell Options

Basic Commands
Getting Help or Information

man
Communicating with Other Machines

ssh
Mail

Exiting bash / Logging out
exit
logout

Creating, Manipulating and Viewing Files
Text editors: gedit, kate, vi/vim (gvim) or emacs (xemacs)
more
lpr
cd and pwd
ls
mkdir
cp
mv
rm
chmod
scp

More about bash
Environment Variables
Using bash Pattern Matching
Using the bash History and Event Mechanisms
Standard Input, Standard Output and Standard Error
Input and Output Redirection
Pipes
Regular Expressions and grep
Using Quotes: (' ', " ", and ` `)

Forward quotes: ' '
Double quotes: " "
Backward quotes: ` `

Job control
Basic Shell Programming

INTRODUCTION AND MOTIVATION

The main purpose of these notes is to get you familiar with the interactive use of Unix for day-to-day organizational and programming
tasks. First, we note that Unix is an operating system (OS), which we can loosely define as a collection of programs (often called 
processes) that manage the resources of a computer for one or more users. These resources include the CPU, network facilities,
terminals, file systems, disk drives and other mass-storage devices, printers, and many more. During the course, one common way
you will be encouraged to use Unix is through a command-line interface; you will type commands to create and manipulate files and
directories, start up applications such as text-editors or plotting packages, commnuicate with other machines etc. etc. As some of you
may be aware, various Unix vendors have written GUIs (Graphical User Interfaces) for their particular versions of Unix. As with
similar systems on Macs and PCs, these GUIs largely eliminate the need to issue commands by providing intuitive visual metaphors
for most common tasks. However, the command-line approach is still well worth mastering for a variety of reasons, including:

Portability: All Unix systems support the command-line approach, and by sticking with standard features, what you learn on the
Linux machines that you will be using in the course will be applicable on virtually all Unix systems.
Power: Commands can be extended and combined in a straightforward way. These new commands include not only those
supplied by the operating system, but also new commands (programs) that you can create using shell scripting and
programming features, or with specific programming languages such as C, Fortran, Java, Python and many others.



Speed: Command-line interfaces minimize the amount of information that needs to be passed from machine to machine when
working remotely. If you just want to accomplish a few quick tasks, few things are more annoying than a sluggish GUI. As
available network speeds get faster and faster, this becomes less of a concern, but one still encounters situation where the
command-line is more effective than a GUI.

The versions of Unix implemented by specific vendors (or programming teams) typically have specific names. In particular, on the
Physics & Astronomy machine hyper you will be using the Linux variant of Unix, originally coded in large part by Linus Torvald for
PCs, and now widely distributed by many different companies and organizations. Further, the specific flavour of Linux that is installed
on hyper is Ubuntu. Again, however, what is described in the following should work largely as-is on other Linux flavours, as well as
on other vendor-specific flavours of Unix.  You should also note that the TAs and I will be happy to help you install Linux on your
laptop and/or PC, although we will recommend that you install Mandriva on your machines, primarily since that is the type of Linux
with which we are most familiar.

When you type commands in Unix, you are actually interacting with the OS through a special program called a shell, which provides
a more user-friendly command-line interface than that defined by the basic Unix commands themselves. In this course, we will  focus
on the use of bash ("bourne again shell") which over the years has become the most commonly used shell in the Linux community.
However, you should be aware that there are other shells available for your use, and that you in fact change your default shell using
the chsh command. In particular, tcsh is still in widespread use and if you are interested in learning a bit about its features, you can
start with a version of these notes that discusses it in some detail. 

One very useful feature of bash is the ability to recall previously executed commands as well to edit them via the "arrow" keys (as
well as "Delete" and "Backspace"). After you have typed a few commands, hit the "up arrow" key a few times and note how you scroll
back through the commands you have previously issued. Use the "down arrow" the same number of times to return to the basic
prompt.

You should also become familiar with the use of the mouse (or equivalent mouse device) to select, cut and paste text within a shell,
as well as within many other Unix applications.  Unix systems tend to use a three button mouse, and the following instructions
assume that you are using one: if your mouse (device) only has two buttons, then third-button-actions can often be emulated by
depressing the two buttons simultaneously.  Here, then, are the basic text manipulation actions that can be achieved using the
mouse:

Select (highlight) arbitrary text: Depress and hold down the left mouse button while sweeping over the desired selection.
The selected text will be highlighted.
Select a single white-space-delimited string (word): Double click on the word using the left button. The selected word will
be highlighted.
Select a single line of text: Triple click with the left button anywhere on the desired line. The selected line will be highlighed.
Paste selected (highlighted) text:  Position the cursor at the desired insertion point using a single click of the left mouse or
via the arrow keys. Notice that this action will clear the highlighting of the selected text, but that in all of the above cases, the
selection process has automatically copied the selected text to a global buffer (what you might know as a clipboard). Depress
the middle button, and the previously selected text will be inserted before the cursor.  The buffer/clipboard contents remain
intact until the next selection action.
Cut text: Select text as above and then depress either the delete or backspace key.  The selected text will be deleted and
stored in the buffer/clipboard so you can, for example, subsequently paste it per the previous instruction.

Note that you can you these techniques to transfer selected text between different windows; i.e. between different shells, a shell and
a text editor window, text displayed in some window, and the URL type-in of your browser etc. etc.   Also observe that in many
applications, depressing the right mouse button (which is not used for the actions described above) will bring down a menu that will
typically have selections such as copy, paste, cut, undo ..., and it's a good idea to become familiar with that mechanism. In addition,
the mapping of mouse buttons tends to be configurable in Linux distributions, so you may sometimes encounter a system where the
right button acts like the left normally does and vice versa.  Finally, if you intend to use a Mac to do some of the course work, I
assume that you already know how to accomplish text selection, cut and paste and the like.

In the following, commands that you type to the shell, as well as the output from the commands and the shell prompt (denoted "% ")
will appear in typewriter font. Here's an example

% pwd
/home/choptuik
% date
Mon Aug 31 13:58:54 PDT 2009
%

If you are going through these notes on-line (and if you aren't familiar with Unix, then you should!), then you should have at least one
active shell running in which to type sample commands. I will often refer to a window in which a shell is executing as the terminal.

FILES AND DIRECTORIES

It is important that you be familiar with the notion of a hierarchical organization (tree structure) of files and directories that most
modern operating systems employ. If you are not, refer to one of the Unix references or on-line tutorials that I have suggested, or ask
myself or one of the TAs for help. There are essentially only two types of files in Unix:

Plain files: that contain specific information such as plain text, C or Fortran source code, object code, executable code,
postscript code, a Maple worksheet etc. 
Directories: special files that serve as containers for other files (including other directories). In the Windows/Mac worlds,
directories are known as folders, and although the 'directory' terminology is used exclusively in these notes, I fully expect that
many of you will only find it natural to use 'folder'

Absolute and relative pathnames, working directory: All Unix filesystems are rooted in the special directory called /. All files
within the filesystem have absolute pathnames that begin with / and that describe the path down the file tree to the file in question.



Thus

/home/choptuik/junk

refers to a file named junk that resides in a directory with absolute pathname

/home/choptuik

that itself lives in directory

/home

that is contained in the root directory

/

In addition to specifying the absolute pathname, files may be uniquely specified using relative pathnames. The shell maintains a
notion of your current location in the directory hierarchy, known, appropriately enough, as the working directory (hereafter
abbreviated WD). The name of the working directory may be printed using the pwd command:

% pwd
/home/choptuik

If you refer to a filename such as

foo

or a pathname such as

dir1/dir2/foo

so that the reference does not begin with a /, the reference is identical to an absolute pathname constructed by prepending the WD
followed by a / to the relative reference. Thus, assuming that my working directory is

/home/matt

the two previous relative pathnames are identical to the absolute pathnames

/home/matt/foo
/home/matt/dir1/dir2/foo

Note that although these files have the same filename foo, they have different absolute pathnames, and hence are distinct files.

Home directories: Each user of a Unix system typically has a single directory called his/her home directory that serves as the base 
of his/her personal files. The command cd (change [working] directory) with no arguments will always take you to your home
directory. On hyper (full internet address hyper.phas.ubc.ca, note that phas and physics are synonymous in the context of this
type of domain name, so you can use either interchangeably) you should see something like this

% cd
% pwd
/home2/phys210t

When using bash, you may refer to your home directory using a tilde (~). Thus, assuming my home directory is

/home/choptuik

then

% cd ~

and

% cd ~/dir1/dir2

are identical to

% cd /home/choptuik

and

% cd /home/choptuik/dir1/dir2

respectively. (Note that the command cd changes the working directory.) bash will also let you abbreviate other users' home
directories by prepending a tilde to the user name. Thus, provided I have permission to change to phys210t's home directory,

% cd ~phys210t

will take me there.

"Dot" and "Dot-Dot": Unix uses a single period (.) and two periods (..) to refer to the working directory and the parent of the working



directory, respectively:

% cd ~phys210t/dir1
% pwd
/home2/phys210t/dir1
% cd ..
% pwd
/home2/phys210t
% cd .
% pwd
/home2/phys210t

Note that

% cd .

does nothing---the working directory remains the same. However, the . notation is often used when copying or moving files into the
working directory. See below.

Filenames: There are relatively few restrictions on filenames in Unix. On most systems (including Sun and Linux systems), the
length of a filename cannot exceed 255 characters. Any character except slash (/) (for obvious reasons) and "null" may be used.
However, you should avoid using characters that are special to the shell (such as ( ) * ? $ !) as well as blanks (spaces). In fact, it is
probably a good idea to stick to the set:

a-z A-Z 0-9 _ . -

As with other operating systems, the period is often used to separate the "body" of a filename from an "extension" as in:

program.c  (extension .c)
paper.tex  (extension .tex)
the.longextension (extension .longextension)
noextension (no extension)

Note that in contrast to some other operating systems, extensions are not required, and are not restricted to some fixed length (often
3 on other systems). In general, extensions are meaningful only to specific applications, or classes of applications, not to all
applications. The underscore and minus sign are often used to create more "human readable" filenames such as:

this_is_a_long_file_name
this-is-another-long-file-name

You can embed blanks in Unix filenames, but it is not recommended.

Unix generally makes it difficult for you to create a filename that starts with a minus. It is also non-trivial to get rid of such a file, so be
careful. If you accidentally create a file with a name containing characters special to the shell (such as * or ?), the best thing to do is
remove or rename (move) the file immediately by enclosing its name in single quotes to prevent shell evaluation:

% rm -i 'file_name_with_an_embedded_*_asterisk'
% mv 'file_name_with_an_embedded_*_asterisk' sane_name

Note that the single quotes in this example are forward-quotes (' ').   Backward quotes (` `). have a completely different meaning to
the shell.

COMMANDS OVERVIEW

General Structure: The general structure of Unix commands is given schematically by

command_name [options] [arguments]

where square brackets ('[...]') denote optional quantities. Options to Unix commands are frequently single alphanumeric characters
preceded by a minus sign as in:

% ls -l
% cp -R ...
% man -k ...

On Linux systems, many commands also accept options that are longer than a single character; by convention, these options are
preceded by two minus signs as in:

% ls --color=auto -CF

Arguments are typically names of files or directories or other text strings that do not start with - (or --). Individual arguments are
separated by white space (one or more spaces or tabs):

% cp file1 file2  
% grep 'a string' file1

There are two arguments in both of the above examples; note the use of single quotes to supply the grep command with an 



argument that contains a space. The command

% grep a string file1

which has three arguments has a completely different meaning.

Executables and Paths: In Unix, a command such as ls or cp is usually the name of a file that is known to the system to be
executable (see the discussion of chmod below). To invoke the command, you must either type the absolute pathname of the
executable file or ensure that the file can be found in one of the directories specified by your path. In bash, the current list of
directories that constitute your path is maintained in the environment variable, PATH (note that case is significant for bash variables). 
To display the contents of this variable, type:

% echo $PATH

(Note that the $ mechanism is the standard way of evaluating local variables and environment (global) variables alike, and that the
echo command simply "echoes" its arguments) On hyper, the resulting output should look something like

.:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

Note that the directories in the path are separated by a colon (:) and no white space and that the . in the output indicates that the
working directory is in your path. The order in which path-components (first ., then /usr/local/sbin, then /usr/local/sbin, etc.) appear
in your path is important. When you invoke a command without using an absolute pathname as in

% ls

the system looks in each directory in your path---and in the specified order---until it finds a file with the appropriate name. If no such
file is found, an error message is printed:

% helpme
-bash: helpme: command not found

The path variable is often set for you in a special system file each time a shell starts up (/etc/csh.cshrc on the lnx machines), and it 
is conventional to modify the default setting by setting the PATH environment variable in your ~/.bashrc file. 

Control Characters: The following control characters typically have the following special meaning or uses within the C-shell. (If they
don't, then your keyboard bindings are "non-standard" and you may wish to contact the system administrator about it.) You should
familiarize yourself with the action and typical usage of each. I will use a caret (^) to denote the Control (Ctrl) key. Then

% ^Z 

for example, means depress the z-key (upper or lower case) while holding down the Control key.

^D: End-of-file (EOF). Type ^D to signal end of input when interacting with a program (such as Mail) that is reading input from
the terminal. Here's an example using Mail on hyper machines:

% Mail -s "test message" choptuik@physics.ubc.ca
This is a one line message.
^D
Cc:
% 

If you try the above exercise, you will notice that the shell does not "echo" the ^D. This is typical of control characters---you
must know when and where to type them and what sort of behaviour to expect. In this case, Mail prompts for an optional list of 
addresses to which the message is to be carbon-copied, but other commands, such as cat, will not echo anything. In almost
all cases, however, you should be presented with a command prompt, once your have typed ^D. Also, by default, bash exits
when it encounters EOF, so if you type ^D at a shell prompt, you may find that you are logged out from the terminal session. If
you don't like this behaviour (I don't), put the following line in your ~/.bashrc:

set -o ignoreeof

Note that set is a bash builtin command (i.e. a sub-command of the bash interpreter) that controls many features of the
operation of bash, and is discussed in slightly more details in the shell options section below.

^C: Interrupt. Type ^C to kill (stop in a non-restartable fashion) commands (processes) that you have started from the
command-line. This is particularly useful for commands that are taking much longer to execute or producing much more output
to the terminal than you had anticipated.

^Z: Suspend. Type ^Z to suspend (stop in a restartable fashion) commands that you have started from the shell. It is often
convenient to temporarily halt execution of a command as will be discussed in job control below.

^V: Escape Special Characters: Type ^V in order to "escape" (protect from shell evaluation) certain other control characters
and special keys.

Example 1: Search for [TAB] characters in file foo using grep: 

% grep '^V[TAB]' foo

Example 2: Removing "Carriage returns" (^M) using vi 



:%s/^V^M//g

bash Startup Files: You can customize the environment that exists whenever a new bash starts through creation and/or
modification of certain startup files that reside in your home directory.  Before  proceeding however, we must note that bash makes a 
distinction between login shells and purely interactive shells, and executes a different startup file (assuming that it exists) in each
case.  You will start a bash login shell if you, for example, connect to hyper from a remote machine such as your home computer.  In
this case you will have to go through the login procedure of typing your user (account) name and your password.  On the other hand,
shells that you start from the Linux GUI on one of the terminals in the computer lab, for example, will be purely interactive. In this
instance the computer already "knows" who you are and that you are logged in, and does not ask you for your login name or
password.  Given this, the two most important startup files (there are more, but we don't have to discuss them here, and you can get
the full details from the bash man page) are as follows

~/.profile
Commands in this file are executed each time a login bash is started. 
~/.bashrc
Commands in this file are executed each time a purely interactive bash is started.

For the purposes of this course (and for most users, in my opinion) it is a bit of a nuisance to have two separate startup files, each of
which is only executed only when a particular type of bash starts since one will generally want the same customization commands
executed in both cases.  Fortunately, there is a relatively easy fix to this nuisance which is to 

do all of your customizations in the ~/.bashrc file,1.
Keep the ~/.profile file as simple as possible2.
At the end of the ~/.profile file, execute the commands in the ~/.bashrc file, using for 

if [ -f ~/.bashrc ]; then
  source ~/.bashrc
fi

Note that the first and third lines of the above constitute a test for the existence of the ~/.bashrc file, while the source 
~/.bashrc command then executes the contents of the ~/.bashrc file, provided that it exists (i.e. the source command tells the
shell to execute the commands in the file that is supplied as an argument to it). When sourcing or otherwise manipulating files
in startup files, you should always perform this type of existence check.  Otherwise an error message is apt to be generated,
and this can sometimes cause problems with the overall startup process. 

3.

IMPORTANT!!  Whenever you modify ~/.profile and/or ~/.bashrc on hyper (or any other Unix system, for that matter) you should
abide by the following procedure:

ALWAYS MAKE A BACKUP COPY of  the startup file, using for example

% cp ~/.bashrc ~/.bashrc-save

1.

During the process of modifying one of the startup files, always keep at least one terminal window open to the machine until
you have tested (via ssh to the machine, for example, see below for information on ssh) that you can still login.  The reason
that this is so vital is that it is possible that your modifications will have introduced one or more bugs into the startup files which
will make it impossible for you to log in.  However, as long as the terminal window to the machine remains open, you can kill
the failed login process (e.g. the ssh command) as necessary using ^C, try to correct the bugs, and repeat the test login
procedure.  Finally, if you can't get your desired modifications to work, you can restore the original contents of the startup
file(s) from the saved copy using, e.g.

% cp ~/.bashrc-save ~/.bashrc

2.

Hidden Files: Note that files whose name begins with a period (.) are called hidden files since they do not normally show up in the 
listing produced by the ls command. Use 

% cd; ls -a

for example, to print the names of all files in your home directory. Note that I have introduced another piece of shell syntax in the
above example; the ability to type multiple commands separated by semicolons (;) on a single line. There is no guaranteed way to list
only the hidden files in a directory, however

% ls -d .??*

will usually come close. At this point it may not be clear to you why this works; if it isn't, you want try to figure it out after you have
gone through these notes and possibly looked at the man page for ls.

Shell Aliases: As you will discover, the syntax of many Unix commands is quite complicated and furthermore, the "bare-bones"
version of some commands is less than ideal for interactive use, particularly by novices. bash provides a simple mechanism called
aliasing that allows you to easily remedy these deficiencies in many cases. The basic syntax for aliasing is

% alias name=string

where name is the name (use the same considerations for choosing an alias name as for filenames; i.e. avoid special characters) of
the alias and string is a text string that is substituted for name when name is used as if it were a command. The following examples
should illustrate the basic idea, (see the bash documentation (man bash) for a few more details, should you wish):

% alias ls='ls -FC'



provides an alias for the ls command that uses the -F and -C options (these options are described in the discussion of the ls
command below). Note that the single quotes in the alias definition are essential if the definition contains special characters,
inculding whitespace; it is good defensive programming to always include them.

The following lines define aliases for rm, cp and mv (see below) that will not clobber files without first asking you for explicit
confirmation. They are highly recommended for novices and experts alike.

% alias rm='rm -i'
% alias cp='cp -i'
% alias mv='mv -i'

The following lines define aliases RM, CP, and MV that act like the "bare" Unix commands rm, cp and mv (i.e. that are not cautious).
Use them when you are sure you are about to do the correct thing: the presumption being that you have to think a little more to type
the upper-case command.

% alias RM='/bin/rm'
% alias CP='/bin/cp'
% alias MV='/bin/mv'

To see a list of all your current aliases, simply type

% alias

Note that all of the preceding aliases (and a few more) are defined in the file ~phys210/.aliases on hyper. If you adopt the .bashrc 
from ~phys210/.bashrc, as we will ask you to do in an early lab session, and also copy ~phys210/.aliases to your home directory,
then the aliases will automatically be available for your use when bash starts up since the lines 

if [ -f ~/.aliases ]; then
   source ~/.aliases
fi

appear in the template .bashrc. (The source command tells the shell to execute the commands in the file supplied as an argument).
Although the use of a separate ~/.alias file is not a "standardized" approach, I commend it to you as a means of keeping your
~/.bashrc relatively uncluttered if you define a lot of aliases. However, if you wish, you can simply add alias definitions to your
~/.bashrc or define them interactively at the command line at any time.

Note that (in contrast to the tcsh, for example) there is no facility for processing command arguments when using bash aliases: the
alias mechanism simply (non-recursively) replaces one piece of text with another. However, should you wish to define your own shell
commands that do process arguments, this can be readily done using shell scripts or shell functions, both of which are discussed
below in the Basic Shell Programming section.

You can view the contents of ~phys210/.profile, ~phys210/.bashrc and ~phys210/.aliases by clicking on the links below.

.profile

.bashrc

.aliases

Shell Options: As already mentioned above in the context of the End-of-file control character, ^D, many features of bash can be
controlled using the set builtin command.  You can refer to the set builtin section of the online manual (as well as the man page for 
bash) for complete details on what can be configured, and how to use set to do the configuration.

The local variable SHELLOPTS stores a colon-delimited list of the currently defined options, so you can view the current options
using

% echo $SHELLOPTS
braceexpand:emacs:hashall:histexpand:history:ignoreeof:interactive-comments:monitor:noclobber

where the output from the echo command is typical of what you can expect to see on your hyper account.

BASIC COMMANDS

The following list is by no means exhaustive, but rather represents what I consider an essential base set of Unix commands
(organized roughly by topic) with which you should familiarize yourself as soon as possible. Refer to the man pages, or one of the
suggested Unix references for additional information. 

Getting Help or Information:

man

Use man (short for manual) to print information about a specific Unix command, or to print a list of commands that have something to
do with a specified topic (-k option, for keyword). It is difficult to overemphasize how important it is for you to become familiar with this
command. Although the level of intelligibility for commands (especially for novices) varies widely, most basic commands are
thoroughly described in their man pages, with usage examples in many cases. It helps to develop an ability to scan quickly through
text looking for specific information you feel will be of use. Examples of man invocations include:

% man man



to get detailed information on the man command itself,

% man cp

for information on cp and

% man -k compiler

to get a list of commands having something to do with the topic 'compiler'. The command apropos, found on most Unix systems, is
essentially an alias for man -k.

Output from man will typically look like 

% man man

NAME
       man - an interface to the on-line reference manuals

SYNOPSIS
       man  [-C  file]  [-d]  [-D]  [--warnings[=warnings]]  [-R encoding] [-L
       locale] [-m system[,...]] [-M path] [-S list]  [-e  extension]  [-i|-I]
       [--regex|--wildcard]  [--names-only]  [-a]  [-u] [-P pager] [-r prompt]
       [-7] [-E encoding] [--no-hyphenation]  [-p  string]  [-t]  [-T[device]]
       [-H[browser]] [-X[dpi]] [-Z] [[section] page ...] ...
       man -k [apropos options] regexp ...
       man -f [whatis options] page ...
       man  -l  [-C  file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
       locale] [-P pager] [-r prompt] [-7]  [-E  encoding]  [-p  string]  [-t]
       [-T[device]] [-H[browser]] [-X[dpi]] [-Z] file ...
       man -w|-W [-C file] [-d] [-D] page ...
       man -c [-C file] [-d] [-D] page ...
       man [-hV]

DESCRIPTION
       man  is  the  system’s manual pager. Each page argument given to man is
       normally the name of a program, utility or function.  The  manual  page
       associated  with each of these arguments is then found and displayed. A
       section, if provided, will direct man to look only in that  section  of
       the  manual.   The  default action is to search in all of the available
       sections, following a pre-defined order and to show only the first page
       found, even if page exists in several sections.
                                 .
                                 .
                                 .

for a specific command and,

% man -k language

QLocale (3qt)        - Converts between numbers and their string representati...
asy (1)              - Asymptote: a script-based vector graphics language
awk (1)              - pattern scanning and text processing language
bc (1)               - An arbitrary precision calculator language
conjure (1)          - interprets and executes scripts written in the Magick ...
debconf-getlang (1)  - extract a language from a templates file
                               .
                               .
                               .
ruby (1)             - Interpreted object-oriented scripting language
ruby1.8 (1)          - Interpreted object-oriented scripting language
runantlr (1)         - ANother Tool for Language Recognition
texlua (1)           - An extended version of pdfTeX using Lua as an embedded...
texluac (1)          - An extended version of pdfTeX using Lua as an embedded...
Text::WrapI18N (3pm) - Line wrapping module with support for multibyte, fullw...
update-language (1)  - update various TeX-related configuration files
vmsish (3perl)       - Perl pragma to control VMS-specific language features
xasy (1x)            - script-based vector graphics language
XtSetLanguageProc (3) - set the language procedure                    .

for a keyword-based search. Note that the output from man -k ... is a list of commands and brief synopses. You can then get detailed
information about any specific command (say awk in the current example), with another man command:

% man awk

Also note that the output from man is fed (piped) into the more command, so refer to the description of more below (or the man
page for more!) for some details that will allow you to page forward and backward, and search for text, in a particular man page.
 



Communicating with Other Machines:

ssh

Use ssh to establish a secure (i.e. encrypted) connection from one Unix machine to another. This is the basic mechanism that can
be used to (1) start a Unix shell on a remote host and (2) execute one or more Unix commands on such a machine.

Typical usage of ssh is

bh0% ssh hyper.phas.ubc.ca -l choptuik

which will initiate a remote-login for user choptuik on the machine hyper.phas.ubc.ca.  When I enter this command, I will be
prompted for my password (for the account choptuik) on hyper.

choptuik@hyper.phas.ubc.ca's password:

The following commands are equivalent to the above invocation:

% ssh choptuik@hyper.phas.ubc.ca
% slogin hyper.phas.ubc.ca -l choptuik
% slogin choptuik@hyper.phas.ubc.ca

The first of the above alternate forms is generally the most convenient to type, and is the one that I use.

If additional arguments are supplied to ssh, they are interpreted as commands to be executed remotely. In this case, control
immediately returns to the invoking shell after completion (successful, or otherwise) of the command(s), as seen in the following
examples, where the password prompts have been supressed:

hyper% ssh matt@bh0.phas.ubc.ca date
Mon Aug 31 18:57:41 PDT 2009

hyper% ssh matt@bh0.phas.ubc.ca 'pwd; date'
/home2/matt
Mon Aug 31 18:58:18 PDT 2009

hyper%

Gory Details: In contrast to many of the other commands described here, the behaviour of ssh depends crucially on the current
context for the command, which, by convention, ssh stores as a number of files in the directory ~/.ssh (i.e. as a number of files in a
directory named .ssh, located in your home directory). If ~/.ssh does not exist (which nominally means that you have yet to issue the
ssh command from that specific account), it will automatically be created, and certain files within ~/.ssh will be created and/or
modified.

For example, assume that as choptuik@hyper.phas.ubc.ca, I have never used the ssh command. However, I can and do login into
hyper.phas.ubc.ca (as choptuik) using one of the terminals in the computer lab, and start up a command shell. I can now establish
a secure connection to my account on bh0.phas.ubc.ca via ssh as follows:

hyper% ssh matt@bh0.phas.ubc.ca

The authenticity of host 'bh0.phas.ubc.ca (142.103.234.164)' can't be established.
RSA key fingerprint is 14:82:47:40:80:9f:52:7f:39:1f:17:a1:df:76:b2:54.
Are you sure you want to continue connecting (yes/no)?

This message from ssh is a warning that is essentially telling me that I have not connected before to the host bh0.phas.ubc.ca.  It
gives me a chance to check the ssh invocation to ensure that I've typed everything correctly, to safeguard against security issues that
we won't delve into here.  Because I'm sure that I want to connect, I enter yes.  The output from the ssh command then continues:

Warning: Permanently added 'bh0.phas.ubc.ca,142.103.234.164' (RSA) to the list of known hosts.
matt@bh0.phas.ubc.ca's password:    

After correctly typing my password for matt@bh0, I am left in a shell running on bh0, and I can now "work" (i.e. issue Unix
commands) within that shell.

When I'm done my work on bh0, I can use the logout (or exit) command

bh0% logout
Connection to bh0.phas.ubc.ca closed.
hyper%

to return to hyper.

Assuming I've done the above, I now see that the directory ~/.ssh has been created, and contains the file known_hosts:

hyper% cd ~/.ssh
hyper% ls
known_hosts

The purpose of the known_hosts file is to maintain identification information for hosts to which I've previously ssh'ed.  In particular,
the next time I ssh from hyper to bh0, the message 'The authenticity of host ...' will not appear, and ssh will 



"automatically" connect to bh0.

hyper% ssh matt@bh0.phas.ubc.ca
matt@bh0.phas.ubc.ca's password:

Refer to the man page on ssh  for full details on this command.

Mail

I believe that it is a safe assumption that all of you are already experts in the sending and receiving of e-mail, using one or more of
your favorite mail clients, and I will be using the broadcast facility provided via the Student Service Centre (as well as the course
News page) to communicate electronically with the class as a whole. At least at the current time, all of the students registered in the
course have an e-mail address linked into this facility, so, in principle, if I send a broadcast message, and assuming everyone checks
their appopriate mailbox, you should all receive it.  Note that the SSC setup does not allow me to directly see your individual e-mail
addresses, so if you want to get personalized e-mail from myself or the TAs, you will need to first send us a message to whcih we
can reply.

In this course, we will not require you to regularly use any mail client on hyper unless you wish to do so.  If you do, however, be
aware that there are a large number of clients available, and that theTAs and I will tend to have little, if any, experience with many of
them.  That said, there is one text-based (i.e. doesn't use a GUI) client that many users in the Physics and Astronomy Dept
(especially the older ones) use, which is called alpine (a variant of an older client called pine).  alpine is relatively easy to use, has
an extensive on-line help facilty, and the TAs will be able to provide you assistance with it as necessary.  The home page for alpine, 
which contains links to thorough documentation, is located here. In addition, should you decide to use mail on hyper on a regular
basis, I recommend that you consult the PHAS Computing Staff's on-line E-mail FAQ.

However, in the spirit of mastering command-line Unix we conclude this section with a brief illustration of the use of a very old, and,
especially for your generation, a very primitive, mail client known as Mail (we've already encountered this program in our discussion
of special characters):

Again, here's a basic example showing how to use Mail to send a message:

% Mail -s "this is the subject" choptuik@phas.ubc.ca
This is a one line test message.
^D
Cc:
%

Note that multiple recipients can be specified on the command line. Another form involves redirection from a file.

% Mail -s "sending a file as a message" matt@laplace.phas.ubc.ca < message

sends the contents of file message with the subject field of the e-mail set to 'sending a file as a message'.

If you are interested, you can consult the man page for Mail for additional information on its use, but primarily you should note that
although it may seem like obsolete technology, the type of usage illustrated above (which, I should  mention, can also be achieved
using alpine), can be quite useful.  For example, you might write a script that takes a long time to accomplish some task, and it can
then be convenient to have the script send you a message when it has completed. This is cumbersome, if not impossible, to
accomplish using fancy GUI-based mail clients, but is essentially trivial with Mail.

Exiting bash / Logging out:

exit

Type exit to leave both login and purely interactive shells.

If there are suspended jobs (see job control below), you will get a warning message, and you will not be logged out.

% exit
There are stopped jobs

If you then type exit a second time (with no intervening command), the system assumes you have decided you don't care about the
suspended jobs, and will log you out. Alternatively, you can deal with the suspended jobs, and then exit. 

logout

logout has the same effect as exit, but can only be used in login shells.  If you enter logout in a purely interactive shell, you will
receive the message

% logout
bash: logout: not login shell: use `exit'

Creating, Manipulating and Viewing Files (including Directories):

Text editors: gedit, kate, vi / vim (gvim) or emacs (xemacs)

Although you may find it somewhat painful (especially if you've developed a serious relationship with Microsoft Word), I consider it an



absolutely key goal for everyone in this course to become reasonably proficient in at least one of the text editors: vi, emacs or gedit. 
Note that a text editor, although similar in spirit to a word processor, really has a different fundamental purpose, which is to, as the
name suggests, create and manipulate files that contain plain text (i.e. files for which many of the features of modern word
processors, such as the ability to create documents that use different fonts, font-sizes, styles, colors, include figures etc. etc. are
completely irrelevant).  Plain text files are central to the use of most programming languages and programming environments in Unix,
as well as to the configuration and customization of the operating system itself. During the course, many of the homework
assignments, as well as many of your term projects, will require the creation of this type of file.

For many, if not most of you, gedit or kate are probably the most straightforward choices (they are part of the GNOME and KDE
graphical desktop environments, respectively, but both can run within either GNOMEor KDE) . Of all of the editors listed above, they
provide the most intuitive interface, namely GUIs which, though not as snazzy looking, closely resemble those of word processors
with which you will no doubt be familiar. I expect that most of you will be able to start using either, and to readily master whichever
you choose, with little, if any, help,  If you do need assistance, the application provides extensive help facilities. Note that both editors
implement the mouse-text-manipulation features discussed in the introductory section, although it also has GUI menus and buttons
for those actons. Also observe that gedit and/or kate may not be available on some non-Linux Unix systems that you may need to
work on, but given the introductory nature of this course, I don't consider that sufficient reason to dissuade you from their use.

vi and emacs are the two major "traditional" text-editors that are found on most Unix implementations (certainly vi should be!) Both
were themselves text-based; that is, they did not provide a GUI, and for the most part, did not allow for manipulation of the text using
the mouse.  Moreover, vi developed a reputation for being suitable mainly for "hardcore" users, who didn't mind dealing with its
rather unique, simplistic, and not entirely intuitive (to put it mildly!) user interface. emacs, on the other hand, was viewed as a much
more elegant, powerful and full-featured editor, to the point that with a suitable configuration, you could get emacs to do just about
everything but make coffee.  Personally, I use vi, since that's the editor I first encountered on Unix, and although it is a good idea for
any Unix user to know a bit about vi (if only because some of its syntax appears in many other standard Unix commands), I would
strongly recommend that any of you who know neither vi or emacs, and who wish to learn one of them, seriously consider learning
emacs, at least to start.  In addition, if you intend to become a serious Unix user, then you really should learn how to use one of
these text-based editors---probably vi due to its ubiquity and relative simplicity---since you will almost certainly encounter situations
where you need to edit files using a basic terminal session that will not support the use of a GUI.

Over the years, vi on Linux systems has evolved to become vim (for Vi IMproved), so that, for example, if you execute vi on hyper, it 
is actually vim that starts up.  This is a minor point, but something to keep in mind should you be looking on line for information
concerning vi (i.e. you should probably serach for information on vim). 

The good news is that there are GUI-based versions of both of these editors, gvim, for vi / vim and xemacs for emacs and you are 
more than welcome to use these rather than their text-based antecedents for course work. Note, however, that these GUIs are not as
user friendly as the word processing software that you are probably accustomed to, but they will, for example, allow you to use the
mouse to position the cursor as well as to highlight text and cut & paste, again as described previously.  Again, it is up to you which
text editor you choose to use, but we really want you to learn to use at least one.

Not least because all of these text editors are complex pieces of software, it is impossible to give any sort of an overview of their use
in these introductory notes.  You are therefore directed to the help facilities supplied by the editors themsleves, as well as to the
online resources listed in the course Online Resources page, for links to web sites and specific documents that should aid in you in
your task of mastering your editor of choice.  This in one job that we expect you to do largely on your own, but the TAs and I, will of 
course, be more than happy to help out as we can, and, I hope, some of your classmates will be able to be of assistance as well.

Finally, if you know of, or find, another text editor on hyper that you would prefer to use, please send me an e-mail message and I
will let you know whether I approve of its use, or whether I would rather you make another choice. 

more

Use more to view the contents of one or more files, one page at a time. For example:

% more /usr/share/dict/words
A
a
aa
aal
aalii
aam
Aani
aardvark
aardwolf
Aaron
Aaronic
Aaronical
Aaronite
--More--(0%) 

In this case I have executed the more command in a shell window containing only a few lines (i.e. my pages are short). The

--More--(0%)

message is actually a prompt: hit the spacebar to see the next page, type b to backup a page, and type q to quit viewing the file. You
can also search for a string in the output by typing a '/' (forward slash) followed by text to be located:

/misspell

...skipping
misspeak
misspeech



misspell
misspelling
misspend
misspender
misstate
misstatement
misstater
misstay
misstep
missuade
--More--(49%)    

Refer to the man page for additional features of the command.  We have already noted that output from man is typically piped
through more.

lpr

Use lpr to print files. If no options are passed to lpr, files are sent to the system-default printer, or to the printer specified by your
PRINTER environment variable (see below). Typical usage is

lpr file_to_be_printed

The default printer on hyper machines is the HP LaserJet 4100 in Hennings 205 and, by default, printing will be two-sided (duplex).
Should you need to make one-sided hardcopy, print the file using the -Psimplex option:

hyper% lpr -Psimplex file

Note that this last form of the lpr command is specific to the phas.ubc.ca machines. 

cd and pwd

Use cd and pwd to change (set) and print, respectively, your working directory. We have already seen examples of these commands
above. Here's a summary of typical usages (again note the use of semi-colons to separate distinct Unix commands issued on the
same line):

% cd
% pwd
/home/choptuik
% cd ~; pwd
/home/choptuik
% cd /tmp: pwd
/tmp
% cd ~phys210; pwd
/home/phys210
% cd ..; pwd
/home
% cd phys210; pwd
/home/phys210

Recall that .. refers to the parent directory of the working directory so that

% cd ..

takes you up one level (closer to the root) in the file system hierarchy. 

ls

Use ls to list the contents of one or more directories. On Linux systems, I advocate the use of the alias

% alias ls='ls --color=auto -FC'

which will cause ls to 

Append special characters (notably * for executables, / for directories and @ for symbolic links) to the names of certain files
(the -F option),

1.

 List in columns (the -C option)2.
Color-code the output, again according to the type of the file. 3.

Example (with color coding suppressed)

% cd ~phys210t
% ls
cmd*  dir1/  dir2/
%

Note that the file cmd is marked executable while dir1 and dir2 are directories. To see hidden files and directories, use the -a option:

% cd ~phys210t; ls -a 
./   .aliases       .bash_profile@  cmd*   dir2/  .viminfo
../  .bash_history  .bashrc         dir1/  .ssh/  .Xauthority



and to view the files in "long" format, use -l:

% cd ~phys210t; ls -l
-rwxr-xr-x 1 phys210t ugrad   53 2009-08-31 20:12 cmd*
drwxr-xr-x 4 phys210t ugrad 4096 2009-08-31 20:15 dir1/
drwxr-xr-x 2 phys210t ugrad 4096 2009-08-31 20:16 dir2/

The output in this case is worthy of a bit of explanation. First observe that ls produces one line of output per file/directory listed. The
first field in each listing line consists of 10 characters that are further subdivided as follows:

first character: file type: - for regular file, d for directory.
next nine characters: 3 groups of 3 characters each specifying read (r), write (w), and execute (x) permissions for the user
(owner of the file), user's in the owner's group and all other users. A - in a permission field indicates that the particular
permission is denied.

Thus, in the above example, cmd is a regular file, with read, write and execute permissions enabled for the owner (user phys210t)
and read and execute permissions enabled for members of group ugrad and all other users. dir1 and dir2 are seen to be directories
with the same permissions. Note that you must have execute permission for a directory in order to be able to cd to it, and read 
permission in order to access any of the files it contains (including getting a listing of those files via ls).  See chmod below for more
information on setting file permissions. Continuing to decipher the long file listing, the next column lists the number of links to this file
(advanced topic) then comes the name of the user who owns the file and the owner's group. Next comes the size of the file in bytes,
then the date and time the file was last modified, and finally the name of the file.

If any of the arguments to ls is a directory, then the contents of that directory are listed. Finally, note that the -R option will recursively
list sub-directories:

% cd ~phys210t; pwd
/home/jdoe

% ls -R
.:
cmd*  dir1/  dir2/

./dir1:
file_1  subdir1/  subdir2/

./dir1/subdir1:
file_s

./dir1/subdir2:
file_3

./dir2:
file_4

Note how each sub-listing begins with the relative pathname to the directory followed by a colon. For kicks, you might want to try

% cd /
% ls -R

which will list essentially all the files on the system which you can read (have read permission for). Type ^C when you get bored.

mkdir

Use mkdir to make (create) one or more directories. Sample usage:

% cd ~
% mkdir tempdir
% cd tempdir; pwd
/home/choptuik/tempdir

If you need to make a 'deep' directory (i.e. a directory for which one or more parents does not exist) use the -p option to automatically
create parents when needed:

% cd ~
% mkdir -p a/long/way/down
% cd a/long/way/down; pwd
/home/choptuik/a/long/way/down

In this case, the mkdir command made the directories

/home/choptuik/a   /home/choptuik/a/long    /home/choptuik/a/long/way

and, finally

/home/choptuik/a/long/way/down

cp

Use cp to (1) make a copy of a file, (2) copy one or more files to a directory, or (3) duplicate an entire directory structure. The



simplest usage is the first, as in:

% cp foo bar

which copies the contents of file foo to file bar in the working directory. Assuming that cp is aliased to cp -i, as recommended, you
will be prompted to confirm overwrite if bar already exists in the current directory; otherwise a new file named bar is created. Typical
of the second usage is

% cp foo bar /tmp

which will create (or overwrite) files

/tmp/foo   /tmp/bar

with contents identical to foo and bar respectively. Finally, use cp with the -r (recursive) option to copy entire hierarchies:

% cd ~phys210t; ls -a
./   .aliases       .bash_profile@  cmd*   dir2/  .viminfo
../  .bash_history  .bashrc         dir1/  .ssh/  .Xauthority

% cd ..; pwd
/home2
% cp -r phys210t /tmp
cp: cannot open `phys210t/.viminfo' for reading: Permission denied
cp: cannot access `phys210t/.ssh': Permission denied
cp: cannot open `phys210t/.Xauthority' for reading: Permission denied
cp: cannot open `phys210t/.bash_history' for reading: Permission denied

% cd /tmp/phys210t; ls -a
./  ../  .aliases  .cshrc  .ssh/  cmd*  dir1/  dir2/  tmp/

Study the above example carefully to make sure you understand what happened when the command

% cp -r ~phys210t /tmp

was issued. In brief, the directory /tmp/phys210t was created and all contents of /home2/phys210t (including hidden files) for which 
I had read permission were recursively copied into that new directory: sub-directories of /tmp/phys210t were automatically created
as required. 

mv

Use mv to rename files, or to move files from one directory to another. Again, I assume that mv is aliased to mv -i so that you will be
prompted if an existing file will be clobbered by the command. Here's a "rename" example

% ls
thisfile
% mv thisfile thatfile
% ls 
thatfile

while the following sequence illustrates how several files might be moved up one level in the directory hierarchy:

% pwd 
/tmp/lev1
% ls
lev2/
% cd lev2
% ls
file1 file2 file3 file4
% mv file1 file2 file3 ..
% ls
file4
% cd ..
% ls
file1 file2 file3 lev2/

rm

Use rm to remove (delete) files or directory hierarchies. The use of the alias rm -i for cautious removal is highly recommended. Once 
you've removed a file in Unix there is essentially nothing you can do to restore it other than restoring a copy from backup media 
(assuming the system is regularly backed up), and if the file was created since the last backup, you're really out of luck! Examples
include:

% rm thisfile

to remove a single file,

% rm file1 file2 file3 



to remove several files at once, and

% rm -r thisdir

to remove all contents of directory thisdir, including the directory itself. Be particularly careful with this form of the command and
note that

% rm thisdir

will not work. Unix will complain that thisdir is a directory. 

chmod

Use chmod to change the permissions on a file. See the discussion of ls above for a brief introduction to file-permissions and check
the man pages for ls and chmod for additional information. Basically, file permissions control who can do what with your files. Who
includes yourself (the user u), users in your group (g) and the rest of the world (the others o). What includes reading (r), writing (w, 
which itself includes removing/renaming) and executing (x). When you create a new file, the system sets the permissions (or mode)
of a file to default values that you can modify using the umask command. (See the discussion of umask in the man page for bash
for more information).

On hyper, your defaults should be such that you can do anything you want to a file you've created, while the rest of the world
(including fellow group members) normally has read and, where appropriate, execute permission. As the man page will tell you, you
can either specify permissions in numeric (octal) form or symbolically. I prefer the latter. Some examples that should be useful to you
include:

% chmod go-rwx file_or_directory_to_hide

which removes all permissions from 'group' and 'others', effectively hiding the file/directory,

% chmod a+x executable_file

to make a file executable by everyone (a stands for all and is the union of user, group and other) and

% chmod a-w file_to_write_protect

to remove everyone's write permission to a file, including yours (i.e. the user's), which prevents accidental modification of particularly
valuable information. Note that permissions are added with a + and removed with a -. You can also set permissions absolutely using 
an =, for example

% chmod a=r file_for_all_to_read

scp

Use scp (whose syntax is an extension of cp) to copy files or hierarchies from one Unix system to another. scp is part of the ssh
distribution, so will prompt you for a password for access to the remote account.

For example, assume I am logged into hyper and that I want to copy my ~/.bashrc file to a file named ~/.bashrc-hyper in my home 
directory on matt@bh0.phas.ubc.ca.  The following will do the trick

hyper% scp ~/.bashrc matt@bh0.phas.ubc.ca:~/.bashrc-hyper
matt@bh0.phas.ubc.ca's password:
.bashrc                                       100% 1813     1.8KB/s   00:00

The last line in the above output is a status report that lists, in order, the name of file that was transferred, the percentage of the file
transmitted  (you will see this number being update in "real time" when you are scp-ing large files), the number of bytes transferred,
the approximate speed of the transfer, and the elapsed time for the copy.  If you wish to suppress this output use the -q (for quiet)
option to the command:

hyper% scp ~/.bashrc matt@bh0.phas.ubc.ca:~/.bashrc-hyper

The above example copies a file from the local host to a remote host.  You can use scp to go the other way as well: i.e. the
command can be used bi-directionally between hosts.  Thus, for example, the following invocation will copy my ~/.aliases file on bh0
to the file ~/.aliases-bh0 on my account on hyper:

hyper% scp -q matt@bh0.phas.ubc.ca:~/.aliases ~/.aliases-bh0

will copy my ~/.cshrc file on physics to the file ~/sun_cshrc on lnx1.

Be very careful using scp, particularly since there is no -i (cautious) option. Also note that there is a -r option for remote-copying
entire hierarchies. 

MORE ABOUT bash

Local Variables: bash allows for the definition of variables, which are used to store various pieces of information in the form of text
strings. Indeed this basic notion of "variable" should be familiar to you if you have experience programming in a language such as C, 
maple, mathematica, python, MATLAB etc. etc. Further, bash distinguishes between two types of variables: local variables, whose
values are available only in the current shell, and environment or global variables, whose values are inherited (accessible) by
processes (including other shells) that are started within the current shell. 



The syntax for defining a new local variable (or for changing its value) is simple:

% varname=valueecho

As with file names and aliases, you should avoid names for shell variables (of either type) that contain special characters. Also, a
variable name cannot begin with a number.  To access the value of a variable (or, synonymously, to evaluate the variable) we simply
prefix the variable name with a $ (dollar sign). We can then use the echo command, which, as already mentioned in the section on
executables and paths, simply "echoes" its arguments (see man echo for full details) to display the value.  Here are some examples:

% var1=val1
% echo $var1
val1

% var1='val1'
% echo $var1

% var2='val1 val2 val3'
% echo $var2
val1 val2 val3

You should observe that the use of the prefix $ to evaluate a shell variable is quite different from the evaluation mechanism found in
many other programming languages (e.g. maple, C, MATLAB), where use of the variable name itself generally results in evaluation
(except when the name appears on the left hand side of an assignment).  When writing scripts that use variables it is a common
mistake to forget to use the $ when needed, so be extra vigilant about this point.  

Also, note the usage of the single quote character (') to delimit the assignment value in the second and third examples: this is
completely analogous to their use in our previous discussion of alias definitions. In the third example, the quotes are necessary since
the value being assigned contains whitespace.  In the second example, the quotes aren't  needed, but they don't hurt either (i.e. we
can view their inclusion as a bit of defensive programming).  It is also important to understand that the quotes themselves do not
become part of the assigned value.  Finally, the double quote character (") can also be used as a delimiter in variable assignment,
but as we will discuss in the section on using quotes, depending on the string that is enclosed in quotes, the ultimate value that is
assigned to the variable can differ from that which would be obtained by using single quotes. 

For us, a major use of local variables will be in the context of bash programming (writing bash scripts), as we will see below.

Environment Variables: As mentioned above, bash uses another type of variable---called an environment variable---which is often 
used for communication between the shell and other processes (possibly another shell, which does not necessarily have to be
bash).  To see a list of all currently defined environment variables type

% env

TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=dd7960f4980905b6f1adf1bb4a82e093-1251778554.439092-1315938975
SSH_CLIENT=174.6.42.200 44784 22
SSH_TTY=/dev/pts/22
USER=choptuik
MAIL=/var/mail/choptuik
         . 
         .
         .

or

% printenv

TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=dd7960f4980905b6f1adf1bb4a82e093-1251778554.439092-1315938975
SSH_CLIENT=174.6.42.200 44784 22
SSH_TTY=/dev/pts/22
USER=choptuik
MAIL=/var/mail/choptuik
         . 
         .
         .

and to display the values of one or more specific environment variables, supply the variable name(s) to printenv or use the echo
command in conjunction with the $ evaluation mechanism. 

% printenv PWD
/home/choptuik

% printenv HOME PATH
/home/choptuik
.:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

% echo $LOGNAME
choptuik



% echo $SHELL $USER
/bin/bash choptuik

Many environment variables are automatically defined whenever bash starts; a list of a few of these is given below.  If you want to
define your own environment variable, MYENV, say, and set its (initial) value, use the syntax

% export MYENV='value'
% printenv MYENV

The export keyword tells the shell that you are defining an environment variable, and not a local variable, but otherwise the
assignment syntax is identical to that of local variables.  It is conventional, but not mandatory, to use all-uupercase names for
environment variables. Also, once an environment variable is defined, and you wish to change its value, it is not necessary to use the
export keyword again:

% MYENV='newvalue'; printenv MYENV 
newvalue

Note that a key aspect of the global nature of environment variables is that they (and their values) are "inherited" by any shell that is
executed within a running bash (which includes the shells that are always started whenever a bash script is executed). Thus, if after
having executed the assignments above, I now start a new shell, the environment variable MYENV will be defined with its expected
value:

% bash
A new shell starts ...
% printenv MYENV
newvalue

Following is a list of a few of the environment variables that are predefined by bash:

PATH: Stores the current list of directories that are searched for commands (executables). 
HOME: Stores the user's home directory;

% cd $HOME/dir1

is equivalent to

% cd ~/dir1

PWD: Stores the current working directory.
USER: Stores the name of the user account (login name)

Note that some environment variables, such as PATH are often modified by the user (typically in a startup file).  Others, such as
HOME and PWD, should not be altered from their system-defined values, for reasons that will hopefully be clear to you. 

Using bash Pattern Matching: bash provides facilities that allow you to concisely refer to one or more files whose names match a
given pattern. The process of translating patterns to actual filenames is known as filename expansion or globbing. Patterns are
constructed using plain text strings and the following constructs, known as wildcards

 
?       Matches any single character

*       Matches any string of characters (including no 
        characters)

[a-z]   (Example) Matches any single character contained 
        in the specified range (the match set)---in this 
        case lower-case 'a' through lower-case 'z'

[^a-z]  (Example) Matches any single character 
        not contained in the specified range

Match sets may also be specified explicitly, as in

[02468]

Examples:

ls ??

lists all regular (not hidden) files and directories whose names contain precisely two characters.

cp a* /tmp

copies all files whose name begins with 'a' to the temporary directory /tmp.

mv *.f ../newdir

moves all files whose names end with '.f' to directory ../newdir. Note that the command



mv *.f *.for 

will not rename all files ending with '.f' to files with the same prefixes, but ending in '.for', as is the case on some other operating
systems. This is easily understood by noting that expansion occurs before the final argument list is passed along to the mv
command. If there aren't any '.for' files in the working directory, *.for will expand to nothing and the last command will be identical to

mv *.f 

which is not at all what was intended.

Using the bash History and Event Mechanisms: bash maintains a numbered history of previously entered command lines.
Because each line may consist of more than one distinct command (separated by ;), the lines are called events rather than simply 
commands. Type 

% history

(which I personally alias as hi) after entering a few commands to view the history. Although bash allows you to work back through
the command history using the up-arrow and down-arrow keys, the following event designators for recalling and modifying events are
often still useful

!!       Repeat the previous command line

!21      (Example) Repeat command line number 21

!a       (Example) Repeat most recently issued command line 
         that started with an 'a'.  Use an initial sub-string 
         of length > 1 for more specificity.

!?b      (Example) Repeat most recently issued command line 
         that contains 'b'; any string of characters can be 
         used after the '?'

(Note that Unix users often refer to an exclamation point (!) as "bang".) The following constructs are useful for recycling command
arguments:

!*       Evaluates to all of the arguments supplied to 
         the previous command

!$       Evaluates to the last argument supplied to the 
         previous command

Finally, the following construct is useful for correcting small typos in command lines:

^old_string^new_string

This changes the first occurrence of old_string in the previous command to new_string, then executes the modified command.
Example:

% cp foo /hmoe/choptuik
cp: cannot create regular file `/hmoe/choptuik': No such file or directory
% ^mo^om
cp foo /home/choptuik

Note that whenever any of the above constructs are used, the shell echoes the effective command before it is executed.

Standard Input, Standard Output and Standard Error: A typical Unix command (process, program, job, task, application) reads
some input, performs some operations on, or depending on, the input, then produces some output. It proves to be extremely powerful
to be able to write programs that read and write their input and output from "standard" locations. Thus, Unix defines the notions of

standard input: default source of input 
standard output: default destination of output 
standard error: default destination for error messages and diagnostics

Many Unix commands are designed so that, unless specified otherwise, input is taken from standard input (or stdin), and output is
written on standard output (or stdout). Normally, both stdin and stdout are attached to the terminal. The cat command with no
arguments provides a canonical example (see man cat if you can't understand the example):

% cat 
foo
foo
bar
bar
^D

Here, cat reads lines from stdin (the terminal) and writes those lines to stdout (also the terminal) so that every line you type is
"echoed" by the command. A command that reads from stdin and writes to stdout is known as a filter.

Input and Output Redirection: The power and flexibility of the stdin/stdout mechanism becomes apparent when we consider the
operations of input and output redirection that are implemented in bash (and many other shells). As the name suggests, redirection
means that stdin and/or stdout are associated with some source/sink other than the terminal.



Input Redirection is accomplished using the < (less-than) character, followed by the name of a file from which the input is to be
extracted. Thus the command-line

% cat < input_to_cat

causes the contents of the file input_to_cat to be used as input to the cat command. In this case, the effect is exactly the same as if

% cat input_to_cat

had been entered

Output Redirection is accomplished using the > (greater than) character, again followed by the name of a file into which the
(standard) output of the command is to be directed. Thus 

% cat > output_from_cat

will cause cat to read lines from the terminal (stdin is not redirected in this case) and copy them into the file output_from_cat. Care
must be exercised in using output redirection since one of the first things that will happen in the above example is that the file
output_from_cat will be clobbered. If the shell option noclobber has been  set using

set -o noclobber

which is highly recommended for novices (and included in ~phys210/.bashrc), then output will not be allowed to be redirected to an
existing file. Thus, in the above example, if output_from_cat already existed, the shell would respond as follows:

% cat > output_from_cat
output_from_cat: File exists

and the command would be aborted.

The standard output from a command can also be appended to a file using the two-character sequence >> (no intervening spaces).
Thus

% cat >> existing_file

will append lines typed at the terminal to the end of existing_file.

From time to time it is convenient to be able to "throw away" the standard output of a command. Unix systems have a special file
called /dev/null that is ideally suited for this purpose. Output redirection to this file, as in:

verbose_command > /dev/null

will result in the stdout from the command disappearing without a trace.

Pipes: Part of the "Unix programming philosophy" is to keep input and output to and from commands in "machine-readable" form:
this usually means keeping the input and output simple, structured and devoid of extraneous information which, while informative to
humans, is likely to be a nuisance for other programs. Thus, rather than writing a command that produces output such as:

% pgm_wrong
Time = 0.0 seconds  Force = 6.0 Newtons
Time = 1.0 seconds  Force = 6.1 Newtons
Time = 2.0 seconds  Force = 6.2 Newtons

we write one that produces

% pgm_right
0.0   6.0
1.0   6.1
2.0   6.2

The advantage of this approach is that it is then often possible to combine commands (programs) on the command-line so that the
standard output from one command is fed directly into the standard input of another. In this case we say that the output of the first
command is piped into the input of the second. Here's an example:

% ls -1 | wc
10     10     82

The -1 option to ls tells ls to list regular files and directories one per line. The command wc (for word count) when invoked with no
arguments, reads stdin until EOF is encountered and then prints three numbers: [1] the total number of lines in the input [2] the total
number of words in the input and [3] the total number of characters in the input (in this case, 82). The pipe symbol "|" tells the shell to
connect the standard output of ls to the standard input of wc. The entire ls -1 | wc construct is known as a pipeline, and in this case, 
the first number (10) that appears on the standard output is simply the number of regular files and directories in the current directory.

Pipelines can be made as long as desired, and once you know a few Unix commands, and have mastered the basics of the C-shell
history mechanism, you can easily accomplish some fairly sophisticated tasks by interactively building up multi-stage pipelines.

Regular Expressions and grep: Regular expressions may be formally defined as those character strings that are recognized
(accepted) by finite state automata. If you haven't studied automata theory, this definition won't be of much use, so for our purposes
we will define regular expressions as specifications for rather general patterns that we will wish to detect, usually in the contents of
files. Although there are similarities in the Unix specification of regular expressions to bash wildcards (see above), there are



important differences as well, so be careful. We begin with regular expressions that match a single character:

a         (Example) Matches 'a', any character other than 
          the special characters: . * [ ] \ ^ or $ may be 
          used as is

\*        (Example) Matches the single character '*'.  
          Note that `\' is the "backslash" character.  A 
          backslash may be used to "escape" any of the 
          special characters listed above
          (including backslash itself)

.         Matches ANY single character.

[abc]     (Example) Matches any one of 'a', 'b' or 'c'.

[^abc]    (Example) Matches any character that ISN'T an 
          'a', 'b' or 'c'.

[a-z]     (Example) Matches any character in the inclusive 
          range 'a' through 'z'.

[^a-z]    (Example) Matches any character NOT in the 
          inclusive range 'a' through 'z'.

^         Matches the beginning of a line.

$         Matches the end of a line.

Multiple-character regular expressions may then be built up as follows:

ahgfh     (Example) Matches the string 'ahgfh'.  Any string 
          of specific characters (including escaped special 
          characters) may be specified in this fashion.

a*        (Example) Matches zero or more occurrences of the 
          character 'a'.  Any single character expression 
          (except start and end of line) followed by a '*' will 
          match zero or more occurrences of that particular 
          sequence.

.*        Matches an arbitrary string of characters.

All of this is may be a bit confusing, so it is best to consider the use of regular expressions in the context of the Unix grep command.

grep

grep (which loosely stands for (g)lobal search for (r)egular (e)xpression with (p)rint) has the following general syntax:

   grep [options] regular_expression [file1 file2 ...]

Note that only the regular_expression argument is required. Thus

% grep the

will read lines from stdin (normally the terminal) and echo only those lines that contain the string 'the'. If one or more file arguments
are supplied along with the regular expression, then grep will search those files for lines matching the regular expression, and print
the matching lines to standard output (again, normally the terminal). Thus

% grep the *

will print all the lines of all the regular files in the working directory that contain the string 'the'.

Some of the options to grep are worth mentioning here. The first is -i which tells grep to ignore case when pattern-matching. Thus

% grep -i the text

will print all lines of the file text that contain 'the' or 'The' or 'tHe' etc. Second, the -v option instructs grep to print all lines that do not
match the pattern; thus

% grep -v the text

will print all lines of text that do not contain the string 'the'. Finally, the -n option tells grep to include a line number at the beginning of
each line printed. Thus

% grep -in the text

will print, with line numbers, all lines of the file text that contain the string 'the', 'The', 'tHe' etc. Note that multiple options can be
specified with a single - followed by a string of option letters with no intervening blanks.



Here are a few slightly more complicated examples. Note that when supplying a regular expression that contains characters such as
'*', '?', '[', '!' ..., that are special to the shell, the regular expression should be surrounded by single quotes to prevent shell
interpretation of the shell characters. In fact, you won't go wrong by always enclosing the regular expression in single quotes.

% grep '^.....$' file1

prints all lines of file1 that contain exactly 5 characters (not counting the "newline" at the end of each line):

% grep 'a' file1 | grep 'b'

prints all lines of file1 that contain at least one 'a' and one 'b'. (Note the use of the pipe to stream the stdout from the first grep into
the stdin of the second.)

% grep -v '^#' input > output

extracts all lines from file input that do not have a '#' in the first column and writes them to file output.

Pattern matching (searching for strings) using regular expressions is a powerful concept, but one that can be made even more useful
with certain extensions. Many of these extensions are implemented in a relative of grep known as egrep. See the man page for 
egrep if you are interested.

Using Quotes (' ', " ", and ` `): Most shells, including bash, use the three different types of quotes found on a standard keyboard

    ' ' ->  Known as forward quotes, single quotes, quotes 
    " " ->  Known as double quotes
    ` ` ->  Known as backward quotes, back-quotes

for distinct purposes. 

Forward quotes: ' ' We have already encountered several examples of the use of forward quotes that inhibit shell evaluation of any 
and all special characters and/or constructs. Here's an example:

% a=100
% echo $a
100

% b=$a
% echo $b
100

% b='$a'
% echo $b
$a

Note how in the final assignment, b='$a', the $a is protected from evaluation by the single quotes. Single quotes are commonly used
to assign a shell variable a value that contains whitespace, or to protect command arguments that contain characters special to the
shell (see the discussion of grep for an example). 

Double quotes: " " Double quotes function in much the same way as forward quotes, except that the shell "looks inside" them and
evaluates (a) any references to the values of shell variables, and (b) anything within back-quotes (see below). Example:

% a=100
% echo $a
100

% string="The value of a is $a"
% echo $string
The value of a is 100

Backward quotes: ` ` The shell uses back-quotes to provide a powerful mechanism for capturing the standard output of a Unix
command (or, more generally, a sequence of Unix commands) as a string that can then be assigned to a shell variable or used as an
argument to another command. Specifically, when the shell encounters a string enclosed in back-quotes, it attempts to evaluate the
string as a Unix command, precisely as if the string had been entered at a shell prompt, and returns the standard output of the
command as a string. In effect, the output of the command is substituted for the string and the enclosing back-quotes. Here are a few
simple examples:

% date
Tue Sep  1 16:50:10 PDT 2009

% thedate=`date`
% echo $thedate
Tue Sep 1 16:50:15 PDT 2009

% which true
/bin/true

% file `which true`
/bin/true: ELF 64-bit LSB executable, x86-64, ...

% file `which true` `which false`



/bin/true:  ELF 64-bit LSB executable, x86-64, ...
/bin/false: ELF 64-bit LSB executable, x86-64, ...

Note that the file command attempts to guess what type of contents its file arguments contain and which reports full path names for
commands that are supplied as arguments. Observe that in the last example, multiple back-quoting constructs are used on a single
command line.

Finally, here's an example illustrating that back-quote substitution is enabled for strings within double quotes, but disabled for strings 
within single quotes:

% var1="The current date is `date`"
% echo $var1
The current date is Tue Sep 1 16:50:40 PDT 2009

% var2='The current date is `date`'
% echo $var2
The current date is `date`

Job Control: Unix is a multi-tasking operating system: at any given time, the system is effectively running many distinct processes
(commands) simultaneously (of course, if the machine only has one CPU, only one process can run at a specific time, so this
simultaneity is somewhat of an illusion). Even within a single shell, it is possible to run several different commands at the same time.
Job control refers to the shell facilities for managing how these different processes are run. It should be noted that job control is
arguably less important in the current age of windowing systems than it used to be, since one can now simply use multiple shell
windows to manage several concurrently running tasks.

Commands issued from the command-line normally run in the foreground. This generally means that the command "takes over"
standard input and standard output (the terminal), and, in particular, the command must complete before you can type additional
commands to the shell. If, however, the command line is terminated with an ampersand: &, the job is run in the background and you
can immediately type new commands while the command executes. Example:

% grep the huge_file > grep_output &
[1] 1299

In this example, the shell responds with a '[1]' that identifies the task at the shell level, and a '1299' (the process id) that identifies the
task at the system level. You can continue to type commands while the grep job runs in the background. At some point grep will
finish, and the next time you type 'Enter' (or 'Return'), the shell will inform you that the job has completed:

[1]+    Done   grep the huge_file > grep_output

The following sequence illustrates another way to run the same job in the background:

% grep the huge_file > grep_output 
^Z  
[1}+ Stopped    grep the huge_file > grep_output 
% bg
[1]+ grep the huge_file > grep_output &

Here, typing ^Z while the command is running in the foreground stops (suspends) the job, the shell command bg restarts it in the
background. You can see which jobs are running or stopped by using the shell jobs command.

% jobs
[1] + Stopped    grep the huge_file > grep_output
[2]   Running    other_command

Use

% fg %1

to have the job labeled '[1]' (that may either be stopped or running in the background), run in the foreground. You can kill a job using
its job number (%1, %2, etc.)

% kill %1
[1]  Terminated    grep the huge_file > grep_output

You can also kill a job using its process ID (PID), which you can obtain using the Unix ps command. See the man pages for ps and
kill for more details.

On many Unix systems, including Linux, there is a killall command, which allows you to kill processes by name. Finally, the shell will
complain if you try to logout or exit the shell when one or more jobs are stopped. Either explicitly kill the jobs (or let them finish up if
that's appropriate) or type logout or exit again to ignore the warning, kill all stopped jobs, and exit.

Another useful, though Linux-specific, command is pstree, which shows processes currently running on the host machine in the form
of a tree. If you want to limit the output to your own processes (and not, for example, root's), use 

% pstree -u your_userid

BASIC SHELL PROGRAMMING



For the novice user a Unix shell can be viewed primarily as a command interpreter. However, shells are actually fully functional
programming languages and it is extremely useful to know at least a little about shell programming, also known as writing shell 
scripts, for the following reasons (not an exhaustive list!):

Scripts can be used to customize or extend Unix commands in a more powerful and robust fashion than the aliasing
mechanism discussed above.

1.

Scripts can be used to automate sequences of Unix commands, with the possibility of changing one or more of the arguments
to one or more of the commands. If you find yourself typing a series of commands several times, it takes very little time to
create a script to accomplish the task, after which the execution of a single command does the trick. This has the added bonus
that the script per se provides documentation for the job you are doing.

2.

Many tasks that are cumbersome to perform in the context of a general purpose programming language, such as C or 
Fortran, are easy to accomplish using a script. This particularly applies to issues involving file and directory manipulation, or
the processing of output from a number of programs.

3.

Time constraints preclude anything but a basic overview of bash programming; if you wish to become a wizard of this particular craft,
you might want to consult the classic text, The UNIX Programming Environment, by Kernighan and Pike, cited in the following as
reference [1], although there is plenty of information to be found about the subject online (see the links at the end of this document,
for example. which are also available via the Course Resources page). In addition, should you find yourself in need of complex
scripts, you may wish to consider learning/using perl, which is an extremely powerful scripting language that has become very
popular in the Unix community over the past couple of decades (the python language is another good choice in this regard).

We start with a very simple example. Consider the problem of "swapping" the names of two files, which arises more often in practice
than one might expect, and which cannot be accomplished with a standard Unix command. Assuming that no file t exists in the 
working directory, the command sequence

% mv a t
% mv b a
% mv t b

will exchange the names of files a and b. Building on this sequence, here's a script called swap that, naturally enough, "swaps" the
names of an arbitrary pair of files:

#! /bin/sh

# Bare-bones script to swap names of two files

# Usage: swap file1 file2

mv $1  t
mv $2 $1
mv t  $2

The first line of the script

#! /bin/bash

is an important bit of Unix magic that tells the shell that when the name of the file containing the script is used as a command, the
shell should start up a new shell (in this case another bash) and execute the remaining contents of the script in the context of that
new shell. Every shell-script that you write should start with this incantation. 

IMPORTANT!! When the new bash associated with the execution of any script starts, it does NOT execute the commands in either 
~/.profile or ~/.bashrc. This means, in particular, that none of the aliases that are defined through execution of  ~/.bashrc (including
the indirect definitions that may be made via a source ~/.aliases or equivalent) will be active during the execution of the script,
unless you redefine them within the script itself. The same applies to bash options such as noclobber. So be very careful when
using commands such as rm, cp, mv etc. as well as output redirection since the commands will be the "bare-bones" version that will
not prompt for confirmation in case an existing file will be overwritten, and output redirection similarly will clobber existing files (unless
you include set -o noclobber somewhere before the first use of output redirection). 

In this regard it is impossible to overstate the importance that you develop the habit of making back-up copies of any files that have
value to you, before you start making significant modifications to them, or feeding them to a script that could potentially and
unintentionally change them.  This applies not only in the context of writing scripts, but anytime that you are about to modify a file that
has taken you non-trivial effort to create!

Continuing with our disection of the script, lines that begin with a hash ("number sign") # (excluding the magic first line) such as

# Bare-bones script to swap names of two files

# Usage: swap file1 file2

are comments, and are ignored by the shell.

The final three lines of the script

mv $1  t
mv $2 $1
mv t  $2

do all the work. The constructs $1 and $2 evaluate to the first and second arguments, respectively, which are supplied to the script.
In general, one can access the first nine arguments of a script using $1, $2, ..., $9, and, if more than nine arguments need to be
parsed (!), using ${10}, ${11}, etc. If a specific argument is missing, the corresponding construct will evaluate to the null string, i.e. to



"nothing".

Having created a file called swap containing the above lines, I set execute permission on the file with the chmod command

% chmod a+x swap
% ls -l swap
-rwxr-xr-x    1 phys410  phys410       114 Aug 31  2001 swap*

and the script is ready to use:

% ls 
f1  f2  swap*
% cat f1
This is the first file.
% cat f2
This is the second file.
% swap f1 f2
% cat f1
This is the second file.
% cat f2
This is the first file.

When developing and debugging a shell program, it is often very useful to enable "tracing" of the script. This is done by adding the -x
option to the header line:

#! /bin/sh -x

Having made this modification, I now see the following output when I invoke swap a second time:

% swap f1 f2
+ mv f1 t
+ mv f2 f1
+ mv t f2

Note how each command in the script is echoed to standard error (with a + prepended) as it is executed. Also observe that the mv
command used in this instance is the "bare bones" version; i.e. any aliases that I have defined for use in interaction with tcsh will not
be in effect since the commands are being executed by a different shell.

Although swap as coded above is reasonably functional, it is not very robust and can potentially generate undesired "side-effects" if
used incorrectly. Observe, for example, what happens when the script is invoked without any arguments (tracing has now been
disabled by removing the -x option in the header)

mv: missing file argument
Try `mv --help' for more information.
mv: missing file arguments
Try `mv --help' for more information.
mv: missing file argument
Try `mv --help' for more information.

or, worse, with one argument

% swap f1
mv: missing file argument
Try `mv --help' for more information.
mv: missing file argument
Try `mv --help' for more information.
% ls
f2  swap*  t

Here's a second version of swap that fixes several of the shortcomings of the naive version, and that also illustrates a few more shell
programming features:

#! /bin/bash

# Improved version of script to swap names of two files

# Set shell variable 'P' to name of script
P=`basename $0`

# Set shell variable 't' to name of temporary file
t=.swap.tempfile.3141

# Usage function
usage () {
cat << END
usage: $P file1 file2
 
       Swaps filenames of file1 and file2
END
exit 1



}

# Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file '$t' exists.  
$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

# Function that checks that its (first) argument is an
# existing file
check_file () {
if [ ! -f $1 ]; then
   echo "$P: File '$1' does not exist"
   error="yes"
fi
}

# Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

# Check that the arguments refer to existing files
check_file $1
check_file $2

# Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

# Ensure that temporary file doesn't already exist
test -f $t && t_exists

# Do the swap
mv $file1 $t
mv $file2 $file1
mv $t     $file2

# Normal exit, return 'success' exit status
exit 0

Let us examine this new version of swap in detail.

As the comment indicates, the command

# Set shell variable 'P' to name of script
P=`basename $0`

sets the shell variable P to the filename of the script, i.e. to swap in this case. This happens as follows. First, $0 is a special 
shell-script variable that always evaluates to the invocation name of the script---i.e. what the user actually typed in order to execute
the script. Second, as man tells us, the basename command deletes any prefix ending in / from its argument and prints the result on
the standard output. Third, the backquotes around the basename invocation capture the standard output of the command, which is
then assigned to the shell variable P via the assignment statement.

We use basename here so that if someone invokes our script using its full path name, perhaps

% /home/phys410/shellpgm/ex2/swap f1 f2

the shell variable P will still be assigned the value swap. The value of P is subsequently used in diagnostic messages, to make the
origin of the messages clear to the user. Use of this mechanism can save some typing if one is writing a script that prints many such
messages. In addition, if the script is subsequently used as a basis for a new shell program, a minimum of changes (perhaps none)
are necessary in order that the new script output the "correct" diagnostics.

The next assignment sets the shell variable t to the name of a temporary file that, under normal circumstances, should never exist in
the directory in which swap is executed. This isn't the most bullet-proof of strategies, but it's better than using t itself for the name for
the temporary file!

# Set shell variable 't' to name of temporary file
t=.swap.tempfile.3141

The next section of code defines a shell function, called usage, which can be invoked from anywhere in the script. When called, the
function will print a message to standard output informing the user of the proper usage of the command, and then exit (stop
execution of the script).

# Usage function



usage () {
cat << END
usage: $P file1 file2

       Swaps filenames of file1 and file2
END
exit 1
}

The general form of a function definition is

routinename () {
   command
   command
   ...
}

The parentheses pair after routinename tells the shell that a function is being defined, while the braces enclose the body of the
function.

Within the usage routine appears the construct

cat << END
   ...
END

known as a "here document". Here documents can be used anywhere in a script to provide "in-place" input for the standard input of a
command. You can refer to the man page on bash for full details, but the basic idea and mechanics are quite simple. To provide
"in-place" input to an arbitrary command, append << END after the command name, any arguments to the command, and any output
redirection directives. Be certain that there is no white space after the token END. Subsequent lines are then the standard input to
the command. A line that exactly matches the string END (i.e. grep '^END$' succeeds) signals end-of-file (so be sure you have such 
a line in your script!). Again, beware of leading or trailing white space in the end-of-file marker. Finally, note that the string END is
arbitrary; you can use essentially any string you wish as long as you use the identical string in both contexts. END is simply my
convention.

An interesting and useful feature of here-documents is that they are partially interpreted by the shell before being fed into their
destination command. In particular, shell-variable-evaluations 

$var

are executed, as are

`command [arguments]`

constructs. Thus, when the usage function is executed, the message

usage: swap file1 file2

       Swaps filenames of file1 and file2

will appear on standard output, after which the execution of

exit 1

will return control to the invoking shell. Here, the argument to the exit command is an exit code indicating a completion status for the
script. Since there is generally only one way for a command to succeed, but often many ways it can fail, a exit status of 0 indicates
success in Unix, while any non-zero value (1 in this case), indicates failure.

All Unix commands return such codes (scripts that terminate without an explicit exit, implicitly return success to the invoking shell)
and they can be used in the context of shell-control structures such as if, while and until statements.

The function t_exists is very similar in construction to usage, and is used in the unlikely event that a file named
.swap.tempfile.3141 does exist in the directory in which the script is invoked.

# Function that is invoked if temporary file already exists
t_exists () {
cat << END
$P: Temporary file '$t' exists.
$P: Remove it explicitly before executing this script.

/bin/rm -f $t
END
exit 1
}

Function check_file illustrates the use of function arguments, as well as the shell if statement.

# Function that checks that its (first) argument is an
# existing file
check_file () {



if [ ! -f $1 ]; then
   echo "$P: File '$1' does not exist"
   error="yes"
fi
}

As with arguments to the script itself, function arguments are accessed positionally, via $1, $2, ... . Note, then, that the evaluation of
$1, for example, depends crucially on context (or scope): within a function, $1 evaluates to the first argument to the routine, while
outside of any function it evaluates to the first argument to the script.

For our purposes, a suitably general form of the shell if statement is

if command a; then
   commands 1
elif command b; then 
   commands 2
elif command c; then
   commands 3
   ...
else command last
   commands n
fi

All clauses apart from the first are optional, as is apparent from the if statement in the check_file routine. The evaluation of the if
statement begins with the execution of command a. If this command succeeds (returns exit status 0), then commands 1 are executed
(commands must appear on separate lines, or be separated by semicolons) and control then passes to the command following the
end of the if statement (i.e. after the fi token). Otherwise, command b is executed; if it succeeds, commands 2 are performed,
otherwise command c is executed, and so on.

The if statement in our check_file routine

if [ ! -f $1 ]; then
   echo "$P: File '$1' does not exist"
   error="yes"
fi

uses the Unix test command, for which [ is essentially an alias (the ] is "syntactic-sugar" and does nothing but make the expression
"look right"). Thus an equivalent form is

if test ! -f $1; then
   echo "$P: File '$1' does not exist"
   error="yes"
fi

test accepts a general expression expr as an argument, evaluates expr and, if its value is true, sets a zero exit status (success);
otherwise, a non-zero exit status (failure) is set. test accepts many different options for performing a variety of tests on files and
directories, and implements a fairly complete set of logical operations such as negation, or, and, tests for string equality/non-equality,
integer equal-to, greater-than, less-than etc.; see man test for full details.

In the current case, the -f $1 option returns true if the first argument to the routine is an existing regular file (i.e. not a directory or
other type of special file). The ! is the negation operator, so the overall test command returns success (true) if the first argument is
not an existing regular file.

The next section of code introduces the shell case statement:

# Argument parsing---script requires exactly 2 arguments
case $# in
2) file1=$1; file2=$2 ;;
*) usage;;
esac

A general case statement looks like

case word in 
pattern) commands ;;
pattern) commands ;;
...
esac

Starting from the top, and using essentially the same pattern-matching rules used for filename matching, the case statement 
compares word to each pattern in turn, until it finds a match. When a match is found the corresponding commands (and only those
commands) are executed, after which control passes to the statement following the end of the case statement (i.e. after the esac
token). Note that the commands associated with each case must be terminated with a double semi-colon.

In our current example, we match on the built-in shell variable $#, which evaluates to the number of arguments that were supplied to
the shell. The first set of actions

2) file1=$1; file2=$2 ;;

is evaluated if precisely two arguments have been supplied. If the script has been invoked with anything but two arguments, $# is 



then matched against *, which will always succeed; i.e.

*) usage ;;

serves as a "default" case, and the usage function will thus be called if we've used an incorrect number of arguments.

Using the check_file function, the script then ensures that each argument names an existing regular file:

# Check that the arguments refer to existing files
check_file $file1
check_file $file2

Note that if either or both of the checks fail, then the shell variable error (all variables are global in a shell script unless explicitly
declared local, see man bash for more information) will be set to yes. The calls to check_file are followed by a command list that
tests whether error has been set, and exits the script if it has:

# Bail out if either or both arguments are invalid
test "X${error}" = X || exit 1

The expression

"X${error}" = X

illustrates a little shell trick that tests whether a shell variable has been defined. If error has been set to yes by check_file, then
"X${error}" evaluates to Xyes; otherwise it evaluates to X. The binary operator || (double pipe) can be used between any two Unix
commands (or, more generally, pipelines):

command 1 || command 2

and has the following semantics: command 1 is executed, and if and only if the command fails (returns a non-zero exit status),
command 2 is executed. Thus, the sequence is equivalent to

if [ ! command 1 ]; then
   command 2
fi

Similarly, the next piece of the script

# Ensure that temporary file doesn't already exist
test -f $t && t_exists

illustrates the use of the binary operator && (double ampersand), which also can be used between any two commands:

command 1 && command 2

In this case command 1 is executed, and if and only if the command succeeds (returns a 0 exit status), command 2 is executed.
Thus, an equivalent form is

if [ command 1 ]; then
   command 2
fi

In the current example, if the temporary file .swap.temp.3141 does exist, the function t_exists is called to print the diagnostic
message and exit.

Finally, if we've made it past all of the error-checking, it's time to actually swap the filenames, and have the script return a "success"
exit status to the invoking environment:

# Do the swap
mv $file1 $t
mv $file2 $file1
mv $t     $file2

# Normal exit, return 'success' code
exit 0

We can now test our improved version of swap, exercising in particular all of the error-checking features that have been incorporated.
Here again is a contents-listing of the directory containing the script:

% ls
f1  f2  swap*
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the first file.
::::::::::::::
f2
::::::::::::::
This is the second file.



We start with a no-argument invocation:

% swap
usage: swap file1 file2
 
       Swaps filenames of file1 and file2

followed by single-argument execution:

% swap f1
usage: swap file1 file2
 
       Swaps filenames of file1 and file2

In both cases swap dutifully prints the usage message to standard output as desired.

We now invoke swap in a "normal" fashion, and verify that it is working properly:

% swap f1 f2
% more f1 f2
::::::::::::::
f1
::::::::::::::
This is the second file.
::::::::::::::
f2
::::::::::::::
This is the first file.

Supplying swap with two arguments that are not names of files in the working directory results in appropriate error messages:

% swap a1 a2
swap: File 'a1' does not exist
swap: File 'a2' does not exist

as does an invocation where one of the arguments is invalid:

% swap a1 f2
swap: File 'a1' does not exist

Finally, after (perversely) creating .swap.tempfile.3141,

% touch .swap.tempfile.3141

execution of swap with valid arguments triggers the t_exists routine:

swap: Temporary file '.swap.tempfile.3141' exists.  
swap: Remove it explicitly before executing this script.

/bin/rm -f .swap.tempfile.3141

Removing the file as instructed, the script once again silently performs its job:

% /bin/rm -f .swap.tempfile.3141
% swap f1 f2

We will conclude our whirlwind tour of shell programming with a description of a few more control structures, some additional niceties
concerning shell variable evaluation, and a glimpse at a command useful for writing scripts that "interact" with the user.

The shell provides three structures for looping. The first is a for loop:

for var in word list; do
   commands  
done

Here, for each word (token) in word list, the commands in the body of the loop are executed, with the shell variable var being set to
each word in turn. As usual, an example makes the semantics clear:

% cat for-example
#! /bin/sh

# Illustrates shell 'for' loop

for i in foo bar 'foo bar '; do
        echo "i -> $i"
done

% for-example
i -> foo
i -> bar



i -> foo bar

Note that a "word" can contain white space if it has been quoted, as is the case for 'foo bar '

In many instances, a for loop in a script will loop over all of the arguments supplied to the script. The built-in shell variable $*
evaluates to the argument list, so we can write

for i in $*; do
   commands
done

but the shell also has a shorthand for this particular case, namely:

for i; do
   commands
done

In addition to for iterations, there are also while loops:

while command; do
   commands
done

and until loops:

until command; do
   commands
done

For these iterations, the body of the loop is repetitively executed as long as command succeeds or fails, respectively.

The following table summarizes some built-in shell variables that are particularly useful for script writing [1]:

Variable Evaluates to

$# number of arguments

$* all arguments

$? return value of last command

$$ process-id of the script

Also observe that, as intimated above in the discusson of environment variables, a bash script inherits all of the environment
variables (such as $HOME, $PATH, ...) that have been set in the invoking shell.

As shown in the next table [1], we can also use some tricks in the evaluation of shell variables to make writing scripts a little easier at
times:

Expression Evaluates to

$var value of var, nothing if var undefined

${var} same as above; useful if alphanumerics follow variable name

${var-thing} value of var if defined; otherwise thing; $var unchanged.

${var=thing} value of var if defined; otherwise thing; if undefined $var set to thing

${var+thing} thing if var defined; otherwise nothing

${var?message} if defined, $var; otherwise print message and exit shell.

Finally, the read command can be used to interactively provide input to a script. Here's an example

% cat read-example
#! /bin/sh

echo "Hello there!  Please type in your name:"
read name
echo "Pleased to meet you, $name"

% read-example
Hello there!  Please type in your name
Matthew Choptuik
Pleased to meet you, Matthew Choptuik

References / Additional Information

[1] Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice Hall, 1984
[2] Bash Guide for Beginners (Includes sections on writing scripts.)
[3] Bash Reference Manual


