
PHYS 555B: Computational Physics Homework 1

Due: Thursday, February 15, 9:30 AM

Important: This assignment requires that you write three f77 programs which involve the solution of
ODEs and nonlinear systems. Please follow the instructions carefully, particularly with regards to command-
line arguments, standard input and standard output. Failure to implement programs which abide by the
specifications given below will probably adversely affect your grade for the assignment.

Should you have any questions concerning the utility routines (such as i4arg or r8arg), libraries (such as
linpack.a or lib410f.a) or visualization programs (such as xfpp3d), and you are unable to find answers
via the online documentation, feel free to contact the instructor for assistance! Also, it is recommended that
you use gnuplot, which has extensive online help facilities, to generate the required postscript plots.

Problem 1: In the directory ∼/hw1/a1, write a Fortran program nlbvp1d4 (source code in nlbvp1d4.f),
which solves the following non-linear boundary value problem:

uxx + (uux)
2

+ sin(u) = f(x) 0 ≤ x ≤ 1 with u(0) = u(1) = 0.

where u ≡ u(x), and f(x) is a specified function. Your program should use a mixture of O(h4) and O(h2)
finite-difference techniques, following the approach described in the notes on the solution of banded systems
using LAPACK. That is, centred, O(h4) accurate approximations for ux and uxx should be used at grid points
xi, i = 3 . . .N−2, whereas centred, O(h2) accurate approximations should be used at x2 and xN−1. Note that
as part of this assignment you will have to derive a centred, O(h4) accurate finite difference approximation for
the first derivative, ux. Your implementation of nlbvp1d4 should also use Newton’s method for non-linear
systems and the LAPACK banded solver dgbsv.f. nlbvp1d4 must have the following usage:

usage: nlbvp1d4 <level> <guess_factor> [<option> <tol>]

Specify option .ne. 0 for output

of error instead of solution

The command line arguments for nlbvp1d4 have precisely the same interpretation as they do for the program
nlbvp1d, which is (minimally) documented online in the ODE notes. Specifically the, required integer

argument, level, controls the discretization level, so that the finite difference grid used for any specific
calculation has 2level + 1 grid points. The required real*8 argument, guess factor, is used to initialize
the Newton iteration as described below. The optional integer argument, option, controls what output is
produced by the program. If option is not specified, or is 0, then the output is xi, ûi, i = 1 · · ·N (two numbers
per line), where ûi is the computed solution. If option is non-zero, then the output is xi, ei, i = 1 · · ·N
(two numbers per line), where ei is the error in the computed solution calculated via ei ≡ ui − ûi, and ui is
the exact solution. Note that ei is only expected to make sense in the case that the exact solution is known,
and that the finite-difference solution is converging to it. Finally, the optional argument tol, which should
default to 1.0d-8, specifies a convergence criteria for the Newton iteration. Iteration should continue until

‖δu(n)‖2

‖u(n)‖2
≤ tol

where ‖ · · · ‖2 denotes the ℓ2 norm of a vector as defined in class.

Test your program by taking
u(x) ≡ uexact = sin(4πx),

computing what f(x) must be so that the differential equation is satisfied, and supplying the appropriate
values of f(x) to your program. Initialize the Newton iteration by setting

u(i) = guess_factor * uexact(i)

1

Note: In implementing nlbvp1d4 you are free to (re)-use any of the code available online through the course
web pages that you feel is useful. (Of course, should you do so, you should provide proper attribution for
the source of the code.)

Important: There are at least three distinct solutions of the differential equation given the right hand
side f(x) implicitly defined by the above choice of uexact. In order for the Newton method to converge to
uexact, you will have to specify a value of guess factor close to 1.0: in fact, I recommend that you use
guess factor = 1.0 until you are sure that you have convergence, both of the Newton’s method, and of
the difference solution to uexact. Once you are confident that your difference solution is converging to uexact,
make postscript plots showing (A) the level 5 numerical solution and the exact solution as function of x
(soln5.ps) and (B) the error for level 4, 5, and 6 solutions, also as a function of x (err456.ps). Using
different values of guess factor, try to find at least two other solutions of the boundary value problem
(keeping f(x) fixed). Make a single postscript plot (allsolns.ps) showing all the solutions which you are
able to find (computed at level 6). Note: All postscript plots should reside in the directory ∼/hw1/a1.

Problem 2: Gravitational n-body simulation. In the directory ∼/hw1/a2 write a reasonably commented f77

program nbody (source code nbody.f) which uses LSODA to integrate the equations of motion for n particles
interacting via the Newtonian gravitational force. Specifically, consider n particles with masses

mi i = 1, 2, . . . n

and position vectors
ri(t) ≡ [xi(t), yi(t), zi(t)] i = 1, 2, . . . n

Then denoting differentiation with respect to time, t, by an overdot, the equations of motion are:

mi r̈i = −G

n
∑

j=1, j 6=i

mi mj

r3
ij

rij i = 1, 2, . . . n

where
rij ≡ ri − rj rij = |rij | = (rij · rij)

1/2

and G is Newton’s gravitational constant which is to be set equal to unity in this calculation.

nbody must have the following usage:

usage: nbody <t final> <dt out> [<tol> <trace>]

where <t final> is the final integration time (the integration is assumed to start at t = 0), <dt out> is
the output interval, <tol> is the LSODA tolerance which should default to 1.0× 10−6, and <trace>, which if
present on the command line, enables tracing output to standard error as described below.

nbody must accept the following input from standard in:

m_1 x0_1 y0_1 z0_1 vx0_1 vy0_1 vz0_1

m_2 x0_2 y0_2 z0_2 vx0_2 vy0_2 vz0_2

.

.

.

m_n x0_n y0_n z0_n vx0_n vy0_n vz0_n

(seven numbers per line), where, for example, m 1, x0 1 and vx0 1 denote the mass, initial x-coordinate
and initial x-component of the velocity, respectively, of the first particle. nbody must produce the following
output on standard out:

n

m_1

m_2

2

.

.

.

m_n

tout_0

x_1(tout_0) y_1(tout_0) z_1(tout_0)

x_2(tout_0) y_2(tout_0) z_2(tout_0)

.

.

.

x_n(tout_0) y_n(tout_0) z_n(tout_0)

tout_1

x_1(tout_1) y_1(tout_1) z_1(tout_1)

x_2(tout_1) y_2(tout_1) z_2(tout_1)

.

.

.

x_n(tout_1) y_n(tout_1) z_n(tout_1)

.

.

.

tout_nt

x_1(tout_nt) y_1(tout_nt) z_1(tout_nt)

x_2(tout_nt) y_2(tout_nt) z_2(tout_nt)

.

.

.

x_n(tout_nt) y_n(tout_nt) z_n(tout_nt)

where the tout i, i = 1 ... nt are the output times 0, dt out, 2 dt out, ... nt dt out, and
the number of output times, nt, can be computed from the final integration time and the output interval.
The line structure implied by the above schematic is important; make sure your program adheres to it. Your
program can restrict the number of particles which can be integrated, but should gracefully handle input
which specifies more than that number.

If output tracing is enabled (i.e. if the <trace> argument appears on the command-line), your program
should produce, on standard error, the following output at each output time (including the initial time):

t x_com y_com z_com E_tot KE_tot PE_tot P_tot J_tot

Where t is the output time, x com, x com and y com are the coordinates of the center of mass of the particle
system:

rcom = [xcom, ycom, zcom] =

∑

i mi ri
∑

i mi

E tot is the total mechanical energy of the system:

Etot = KEtot + PEtot,

KE tot is the total kinetic energy:

KEtot =

n
∑

i=1

1

2
mi vi

2

PE tot is the total kinetic energy:

PEtot = −G

n
∑

i=1

n
∑

j=1, j<i

mi mj

rij

3

P tot is the magnitude of the total linear momentum:

Ptot = |Ptot| Ptot =
∑

i

pi =
∑

i

mivi

and J tot is the magnitude of the total angular momentum computed about the center of mass

Jtot = |Jtot| Jtot =
∑

i

(ri − rcom) × pi

Make sure that all 9 numbers appear on a single line of the standard error: use a format statement such as

2000 format(1P,10E25.16)

Note that in the tcsh, you can redirect standard input and standard error to separate output files using the
construct

% (command > stdoutfile) >& stderrfile

Although your implementation of nbody should treat particle motion in all three dimensions, you may find it
convenient and instructive to consider the case of motion in the xy plane by using initial data with z i = 0,
vx i = 0. For these cases you may find the instructor-supplied program xfpp3d useful for visualizing your
calculations. For information on xfpp3d see the Course-Related Software web page or type xfpp3d -h at a
command prompt on one of the lnx machines. Provided your nbody program produces output as described
above, you should be able to pipe the output from nbody directly into xfpp3d as follows: use a construct
like

% nbody 2.0 0.001 < input | xfpp3d

Let me know if you have problems with xfpp3d, or if you have suggestions for improvements.

Once you have your program de-bugged and tested, there are an abundance of calculations you can perform
with it. At a minimum, find initial conditions which describe:

• A stable orbit of two bodies with masses m1 = 9.0 and m2 = 1.0, respectively, with Ptot = 0, and a
separation of roughly 2.0. Leave your initial conditions in the file ∼/hw1/a2/orbit

• Initial data as described above, but with a third particle with mass m3 = 0.001, which is in as large a
(roughly) circular orbit as possible about m2. As your critertion for stability, demand that m1 and m2

make at least 10 mutual orbits before the orbit of m3 is disrupted. Again, motion should be restricted
to the xy plane. Leave your initial conditions in the file ∼/hw1/a2/satellite, and document how
you found the conditions in ∼/hw1/a2/README.

Feel free to investigate and document evolutions of your own choice, particularly with several particles.
Report any particularly interesting findings in ∼/hw1/a2/README. I will further test and evaluate your
program with my own input.

Problem 3: Consider the differential equation (′ ≡ d/dx)
(

1 − x2
)

C(x)′′ − 1.628 xC(x)′ + λC(x) = 0 (3.1)

on the interval
−1 ≤ x ≤ 1

with boundary conditions
C(−1) = 1 C(1) = ±1 (3.2)

(i.e. C(1) is either +1 or -1, depending on the particular solution). Here, λ (which is a real constant) is
to be viewed as an eigenvalue: solutions Cn(x) of (3.1) satisfying the boundary conditions (3.2) will exist
only for discrete values λn, where n is an integer which labels the eigenvalues and eigenfunctions, but which
is also equal to the number of times C(x) changes sign on the solution domain. In ∼/hw1/a3, write a
f77 program called ortho (source code ortho.f) which uses LSODA, and which can be used to solve this
eigenvalue problem. ortho must have usage:

4

usage: ortho <lambda> [<tol>]

where <lambda> is a trial eigenvalue and <tol> is an optional tolerance for LSODA, which should default to
1.0 × 10−8. ortho should read requested output x-values from standard input (one per line), and should
output xi, C(xi) (two numbers per line) to standard output. Use your program to compute

λn and Cn(x) for n = 1, 2, 3, 4, 5

The λn should be computed to about 7 significant digits. Record your computed λn in ∼/hw1/a3/README

and save your computed Cn(x) (i.e. the standard output from ortho) in files c1, c2, c3, c4 and c5 in
∼/hw1/a3. Make a single postscript plot called ∼/hw1/a3/allc.ps which shows all 5 eigenfunctions on the
solution domain. Minor hint: You may find it convenient to ignore a return code (LSODA parameter istate)
of -1 when integrating on the last interval (i.e. the interval containing x = −1.0.

5

