
PHYS 410/555: Computational Physics Fall 2005 Homework 4
DUE: December 1, 10:00 AM Report bugs to choptuik@physics.ubc.ca

WARNING!!! This is BY FAR the most challenging 410 assignment I have ever assigned, since it is, in

fact, the base of a regular 410 term project.

Why, you ask is it so challenging?

Fundamentally, since it requires the synthesis of everything that we’re supposed to take out of the course,
including the stuff that I have no hope in Hades of covering at anything less than supersonic speed, especially
given the whole Thunderbirds thing from last week.

Specifically, to complete this assignment, and believe me, most or all of you WILL complete it, you must
master the following hand-tooled techniques of numerical analyisis kung-foo-ery (you know, ”when you can
snatch the pebbles from my hand, Grasshopper, then you will be ready to leave”)

1. Finite differencing of time dependent PDEs with quite arbitary spatial operators using uniformly O(h2)
”Crank-Nicholson-type” schemes (O(h2) CN schemes, or sometimes simply ”standard CN schemes in
what follows).

2. The solution of non-linear banded systems, of the sort that result from application of standard schemes
to equations such as the KdV equation using

(a) Newton’s method to solve systems of non-linear equations

(b) The use of the LAPACK routine DGBSV to solve the banded (pentadiagonal, 5-diagonal) system
that results from application of the standard CN scheme to the KdV equation

BUT WAIT, ISN’T MATT IN THIS HAPPY GO LUCKY LET’S DO XMAS YEAR ROUND
KIND OF MOOD. Indeed, this assignment is also unique in that you can choose to do it in groups of up to

three, with only a single hand in, no questions asked–although I reserve the right to ask probing questions to

test understanding on the part of any and all group members. Grading will take into account the composition

of the groups, and believe me, that can work out more ways than you can start to imagine.

Also note that this was, after all, only half of one assigment for the poor foobars that took Phys 381C back
in Austin TX (yee hah) in 1997.

XXX, XXX, XXX, XXX and XXX you get the pleasure of doing the other (first) half of the project which is
to strip down an FAS Multigrid code for nonlinear problems to produce an LCS scheme for linear problems.
Stay tuned.
Problem 1 and only: Consider the Korteweg and de Vries (KdV) equation for u ≡ u (x, t):

ut + ux + 12 u ux + uxxx = 0 on − xmax ≤ x ≤ xmax 0 ≤ t ≤ tmax (2.1)

with initial and boundary conditions

u (x, 0) = u0 (x) u (−xmax, t) = u (xmax, t) = 0 (2.2)

This equation admits “wave-like” solutions (solitons) which propagate in one direction (−xmax → xmax;
i.e. “to the right”). The “vacuum” (or quiescent) state is u = κ, for an arbitrary real constant κ, which,
without loss of generality, we can choose to be κ = 0. The boundary conditions (BCs) are thus compat-
ible with quiescence, as should be the initial condition u0 (x) (i.e. u0 (x) should always satisfy—at least
approximately—u0 (−xmax) = u0 (xmax) = 0). The right BC is not compatible with disturbances impinging
on x = xmax; thus, once any signal has reached x = xmax, the “well-posedness” of the evolution is ques-
tionable, and you can expect “strange things” to happen. This problem could be remedied by working on
a periodic domain (i.e. by identifying −xmax and xmax), but this would also complicate the finite-difference
solution of the equation. Furthermore, periodic boundary conditions are unnecessary, since by appropriate
choice of u0(x) and xmax, all of the interesting dynamics in the model can be studied on a finite spatial do-
main. Simply bear in mind that for any specific choice of initial data and xmax, the amount of physical time,

1

tphys for which the evolution can be meaningfully simulated will be finite, and thus tmax should normally be
chosen (possibly empirically) so that tmax < tphys.

Use an O(h2) “Crank-Nicholson” finite-difference scheme combined with a multi-dimensional Newton it-
eration to approximately solve (2.1). Implement your solution as a well-documented f77 program kdv in
∼/hw4/a2/ (source code kdv.f). kdv must have the following usage:

usage: kdv <xmax> <tmax> <level> <olevel> <dt/dx> <a> <x0> [<a> <x0> ...]

where

• <xmax> ≡ xmax

• <tmax> ≡ tmax

• <level> ≡ discretization level. Number of spatial grid points, nx = 2<level> + 1

• <olevel> ≡ output level. Output produced every 2<level>−<olevel> time steps (see below).

• <dt/dx> ≡ “Courant number”. Ratio of time step △t to mesh spacing △x = h. I recommend that
you use <dt/dx> ≤ 0.5, and you may find that even smaller values are required (for stability) for
high-amplitude pulses.

• <a> <x0> [<a> <x0> ...]. Initial data parameters: ai, x0i, i = 1, · · · np (interpretation described
below). Note that these parameters come in pairs (all but the first pair are optional), and that your
program may assume that at most 20 pairs will be specified on the command line.

Initial data: kdv must set initial data as follows:

u0(x) =

np
∑

i=1

Π(x; ai, x0i) where Π (x; a, x0) =
1

4
a2 cosh−2

[

1

2
a (x − x0)

]

(2.3)

Note that Π (x; a, x0) is a “pulse” profile whose maximum amplitude scales with a and which is centred at
x = x0. Thus, (2.3) generically represents the superposition of np separate pulses.

Finite differencing: Use an O(h2) two-level scheme—time-centred at t = tn+1/2 ≡ tn + △t /2—of the
schematic form

u
n+1

j
− u

n

j

△t
+ µt

(

Dxu
n

j

)

+ 12
(

µt u
n

j

)

µt

(

Dxu
n

j

)

+ µt

(

Dxxxu
n

j

)

= 0 (2.4)

where µt is the time averaging operator

µt v
n

j
≡

1

2

(

v
n

j
+ v

n+1

j

)

(2.4)

and Dx and Dxxx are centred, O(h2) FD approximations of ∂x and ∂xxx respectively.

Solving the algebraic equations: The discretization sketched above should yield a set of nonlinear equations:

F
j

[

u
n+1

j′

]

= 0 j = 3, 4, . . . , nx− 2 ; j′ = 1, 2, . . . , nx (2.5a)

to which you should adjoin the following 4 equations:

u
n+1

1
= u

n+1

2
= u

n+1

nx−1
= u

n+1

nx
= 0 (2.5b)

to yield a set of nx equations in the nx unknowns un+1
j , j = 1, 2, . . . , nx. You should find that the Jacobian

matrix of (2.5) is 5-diagonal (pentadiagonal). At each time step then, solve for the un+1
j using an nx-

dimensional Newton method. Use the LAPACK banded-solver, dgbsv (discussed in class), to solve the linear
systems which arise in the Newton iteration and use

‖δu‖2

‖u‖2

≤ 1.0−10

2

as your convergence criterion for the Newton method.

Output: The command-line parameter <olevel> controls the frequency of standard output. Specifically,
every 2<level>−<olevel> time steps (including the 0th timestep t0 = 0), kdv must produce output as follows
(your variable names may differ, of course):

write(*,*) t, nx

do i = 1 , nx

write(*,*) x(i) , u(i)

end do

where t is the integration time, nx is the number of spatial grid points, x(1:nx) is the spatial coordinate
vector, and u(1:nx) is the difference-solution vector (at time t). You may find it convenient to output other
quantities in other fashions as you develop kdv, but your final program should produce only the above on
standard output. If you are interested in using my SGI-specific visualization utility (ser aka vs) which was
custom-built for this type of application, please see me personally.

Testing and results: Test your program thoroughly, particularly for convergence. Investigate the behaviour of
the solution for single-pulse initial profiles of varying amplitude. Attempt to determine how the propagation
speed of a pulse varies with amplitude. What typically happens to the difference solution if a disturbance is
allowed to hit x = xmax? Report your findings and anything else you find interesting in ∼/h4/a2/README.
Finally, using the output from

kdv 15.0 0.33 13 8 0.35 8.0 -11.0 6.0 -6.0 2.0 -1.0

make a figure consisting of nine plots arranged in a 3 x 3 configuration, which shows u(x, t) at all nine output
times. Save a Postscript version of your plot in ∼/h4/a2/soliton3.ps. Let me know immediately if you
have (or perceive) undue difficulty making such a plot. Also note that the above level-13 run is likely to take
a minimum of several minutes on the lnx.

Once you have finished debugging your program (presumably before you make the level-13 run!), you should

re-compile and re-link using the f77 flags -O2 -n32 (instead of -g -n32) in order to optimize your code,

and thus minimize run-time.

3

