PHYS 410: Computational Physics Fall 2022
Final exam key

Problem 1: [10 pts]
Problem 1.1: Derivative of a polynomial interpolant [5 pts]

Consider 3 equispaced data points:
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Construct the Lagrange interpolating polynomial for these values, then evaluate the derivative at x = 0.
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Now, since the above expression is a polynomial in z, to determine the derivative evaluated at x = 0, we
simply need to read off the coefficient of the linear term of the polynomial. Thus we have
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Problem 1.2: Richardson extrapolating an O(h?) FDA [5 pts]
We are given
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Truncating at the O(Az?) term, we have at scales Az and 2Ax
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We now want to take a linear combination such that
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Solving, we have

Assembling results:
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So our O(h*) approximation is
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Problem 2: [10 pts]

The differential equation is
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Problem 2.1: FDA [2 pts]

The FDA is
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Problem 2.2: Initialization [4 pts]
We need to determine values for ! = 2(0) and 2? = x(At). The latter must be computed up to and

including terms of O(At?) so that the overall scheme is O(At?). We have

:L'lzflio

and using the equation of motion to eliminate the second time derivative in the Taylor series expansion
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Problem 2.3: Determining 2" "! [4 pts]
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The FDA is a nonlinear equation in x"
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We can determine x
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using Newton’s method. Start with the initial estimate




then generate the iterates via
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Problem 3 [15 pts]
Problem 3.1: FDA [2 pts]

Adopting the usual finite difference notation, the FDA is

Problem 3.2: Truncation Error [4 pts]

Compute the truncation error for the O(h?) approximation to the first derivative
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the truncation error is
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Problem 3.3: Initialization [4 pts]

To guarantee an O(h?) accurate solution at any fixed (¢, z) we need to know uj to O(At?) accuracy. Taylor
series expanding, we have

1
u(z, At) = u(x,0) + Atuy(z,0) + EAtQUtt(a:, 0) + O(A#?) (1)
Now, from the initial conditions we have u(z,0) = ug(x), and from the governing PDE we have

ut(x,0) = ug(z,0) + au(z,0) = vy + aug

up(x,0) = (uz(z,0) + au(x,0)); = uzp(z,0) + auy(z,0) = (2, 0) + aug(z, 0)

= uf 4 auf + aufh + oPug = uf + 2auf + a’ug

Substituting in (1) we have
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Problem 3.4: Stability Analysis [5 pts]

First, according to a theorem quoted without proof in class, we can neglect undifferentiated terms when
performing a von Neummann stability analysis.
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Second, rewrite the difference equation in “first order” form, introducing vy =g
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where A = At/Az. In matrix form
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- u?_l. Under Fourier transformation this becomes
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where £ = kh as usual. We must now determine conditions under which the above matrix has eigenvalues
that lie within or on the unit circle. The characteristic equation is
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This equation has roots at

Need sufficient conditions for

or equivalently
(@) < 1.
Two cases to COHSideI‘
1.1 - A%sin?¢é>0—-2<1

2.1 - XAsin?é<0—=A>1

Case 1
111(6)]? = A2sin? € + 1 — A?sin? € = 1, so we have von Neumann stability.
Case 2

The argument of the square root is negative for sufficiently large & so the square root itself is purely
imaginary. Together with the fact that [iAsin(£)| > 1 this implies that pu(§) > 1 for large £, so we have
von Neumann instability.

Thus, the von Neumann stability criterion for this scheme is
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