4. Discretization: step 2-derivation of FDAs

- Consider 4 FDAs:
- 3 for first derivative
- 1 for second derivative
- First write down and demonstrate level of accuracy, then illustrate one technique for derivation
- Formula here will be for x derivs, but will work for derivs in any coordinate direction (e.g. t)
4.1 FIRST ORDER FORWARD FDA for first derivative $f^{\prime}(x)$

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

- "forward difference" since we use a value "forward" of x, i.e. $x+\Delta x$ to compute the approximation
- Grid function notation

$$
f_{j}^{\prime} \equiv f^{\prime}\left(x_{j}\right) \approx \frac{f_{j+1}-f_{j}}{\Delta x}
$$

- Use \rightarrow to denote "is replaced with" - have first of three FDA formulae for $f^{\prime}(x)$

$$
\begin{equation*}
f^{\prime}\left(x_{j}\right) \rightarrow \frac{f_{j+1}-f_{j}}{\Delta x} \tag{1}
\end{equation*}
$$

- Accuracy?
- Use Taylor series: $h \rightarrow \Delta x$ in eqn (TS)

$$
f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)+\frac{\Delta x^{3}}{6} f^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right)
$$

- From (1) we have

$$
\begin{aligned}
\frac{f(x+\Delta x)-f(x)}{\Delta x} & =f^{\prime}(x)+\frac{1}{2} \Delta x f^{\prime \prime}(x)+\frac{1}{6} \Delta x^{2} f^{\prime \prime \prime}(x)+O\left(\Delta x^{3}\right) \\
& =f^{\prime}(x)+\frac{1}{2} \Delta x f^{\prime \prime}(x)+O\left(\Delta x^{2}\right) \\
& =f^{\prime}(x)+O(\Delta x)
\end{aligned}
$$

- Error term $O \Delta x$ means we have first order accurate approximation for the derivative of $f(x)$ at x
- I.e. as $\Delta x \rightarrow 0$ error in approximation will tend to decrease linearly in Δx, e.g. $\Delta x \rightarrow \Delta x / 2$, error \rightarrow error/2
- Similar to previous approximation, but now we "backwards difference"

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-\Delta x)}{\Delta x}
$$

- Grid function notation

$$
f_{j}^{\prime} \equiv f^{\prime}\left(x_{j}\right) \approx \frac{f_{j}-f_{j-1}}{\Delta x}
$$

- Second FDA formula for $f^{\prime}(x)$

$$
\begin{equation*}
f^{\prime}\left(x_{j}\right) \rightarrow \frac{f_{j}-f_{j-1}}{\Delta x} \tag{2}
\end{equation*}
$$

- Accuracy?
- Again, use Taylor series

$$
f(x-\Delta x)=f(x)-\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)-\frac{\Delta x^{3}}{6} f^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right)
$$

- From (2) we have

$$
\begin{aligned}
\frac{f(x)-f(x-\Delta x)}{\Delta x} & =f^{\prime}(x)-\frac{1}{2} \Delta x f^{\prime \prime}(x)+O\left(\Delta x^{2}\right) \\
& =f^{\prime}(x)+O(\Delta x)
\end{aligned}
$$

- Also a first order accurate approximation for the derivative of $f(x)$ at x.
4.3 SECOND ORDER CENTRED FDA for first derivative, $f^{\prime}(x)$
- Have two distinct first-order approximations for $f^{\prime}(x)$
- Intuitively, if we take the average of formulae (1) and (2) we should get another approximation
- Try

$$
\frac{1}{2}\left(\frac{f(x+\Delta x)-f(x)}{\Delta x}+\frac{f(x)-f(x-\Delta x)}{\Delta x}\right)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}
$$

- Grid function notation

$$
f_{j}^{\prime} \equiv f^{\prime}\left(x_{j}\right) \approx \frac{f_{j+1}-f_{j-1}}{2 \Delta x}
$$

- Third FDA formula for $f^{\prime}(x)$

$$
\begin{equation*}
f^{\prime}\left(x_{j}\right) \rightarrow \frac{f_{j+1}-f_{j-1}}{2 \Delta x} \tag{3}
\end{equation*}
$$

- Accuracy?
- Taylor series

$$
\begin{aligned}
& f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)+\frac{\Delta x^{3}}{6} f^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right) \\
& f(x-\Delta x)=f(x)-\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)-\frac{\Delta x^{3}}{6} f^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right)
\end{aligned}
$$

- From (3) we have

$$
\begin{aligned}
\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x} & =f^{\prime}(x)+\frac{1}{6} \Delta x^{2} f^{\prime \prime \prime}(x)+O\left(\Delta x^{4}\right) \\
& =f^{\prime}(x)+O\left(\Delta x^{2}\right)
\end{aligned}
$$

- So this is a second order approximation of the first derivative $f^{\prime}(x)$ at x; i.e. as $\Delta x \rightarrow 0$ error in the approximation will tend to decrease quadratically in Δx, e.g. $\Delta x \rightarrow \Delta x / 2$, error \rightarrow error $/ 4$
- Approximation is called "centred": structure of formula is symmetric about point of approximation (i.e. we use both forward and backward values).

