O O 0O 0O o0 o0 0O 0O 0O o0 0 o0 o0 o0 0 o0 o0 000 o000 o0 o0

Test program for LAPACK "driver" routine ’dgesv’
which computes the solution of a real system
of linear equations: A x =D

This version uses fixed-size 2-d arrays (size fixed at
some maximum value commensurate with needs and/or
available memory), illustrating another commonly used
Fortran technique to implement run-time dimensioning,
PARTICULARLY FOR RANK-2 ARRAYS.

This time the rules are as follows: All subroutines and
functions which manipulate the array must be passed:

(1) The array itself.
(2) The "true" or "physical" dimensions;
i.e. the dimensions in MAIN (x).
(3) The "run-time" or "logical" dimensions (*).

(*) More precisely, due to the nature of the FORTRAN
subscripting computation, the leading d-1 dimensions
must be passed for a rank-d array. In particular,
for rank-2 array (matrices), THE leading physical
dimension (often denoted ’LDA’ in LAPACK code), and
THE leading logical dimension (often denoted ’N’)
must BOTH be passed.

O 0O o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0

@]

Passing the physical dimensions ensures that the
linearization/subscripting calculation is identical
in all program units INCUDING MAIN---so that, e.g.,
one can safely and conveniently use a(i,j) etc. in
MAIN.

Passing the logical dimensions allows us to write
routines which function for a general case (here,
typically for N x N matrices).

Passing BOTH sets of dimensions is slightly cumbersome,
but is the price we pay in this case for convenience
and generality.

program tdgesvl

implicit none

integer maxn
parameter (maxn = 100)

real*8 a(maxn,maxn) ,
& b (maxn)

integer ipiv(maxn)

integer i, nrhs,
& n, info

O o o0 o0 o0 o0 o0 o0 o0 o0 o0 o o0

a(1,1) = 1.23d0
a(1,2) = 0.24d0
a(1,3) = -0.45d0

a(2,1) = -0.43d0
a(2,2) = 2.45d0
a(2,3) = 0.78d0

a(3,1) = 0.51d0
a(3,2) = -0.68d0
a(3,3) = 3.23d0

b(1) = 6.78d0
b(2) = -3.45d0
b(3) = 1.67d0

. and solve it. Note that ’dgsev’ is general
enough to solve A x_i = b_i for multiple right-hand-
sides b_i. Here we have only one right-hand-side.
Also note that the procedure performs the LU
decomposition in place, thus destroying the
input-matrix, it also overwrites the right-hand-side(s)
with the solution(s). Finally, observe that we
pass the "leading dimension" (maxn) of both ’a’ and
’b’ to the routine. Again, this allows us to load array
elements in the main program as we have just done,
without running into troubles due to the fact that
these elements ARE NOT, in general all contiguous in
memory. This certainly includes the current 3 x 3 case.

O o o o0

(@)

=]
H
=
n
Il
—

call dgesv(n, nrhs, a, maxn, ipiv, b, maxn, info)

Solution successful, write soln to stdout.
Note the use of "implied-do-loop" to write a
sequence of elements: the enclosing parenthesis
around the "loop" are required.
write(*,*) (b(i) , i=1, n)

else if(info .1t. O) then

write(0,*) ’tdgesvl: Argument ’, abs(info),
& ’ to dgesv() is invalid’

write(0,*) ’tdgesvl: dgesv() detected singular ’,
& ‘matrix’
end if

stop

end

¥ ¥ X X * * *

¥ X X X X X X X X X X X X X

*

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

-- LAPACK driver routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
March 31, 1993

. Scalar Arguments ..
INTEGER INFO, LDA, LDB, N, NRHS

. Array Arguments ..
INTEGER IPIV(*)
DOUBLE PRECISION A(C LDA, *), B(LDB, *)

Purpose

DGESV computes the solution to a real system of linear equations
A x X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

The LU decomposition with partial pivoting and row interchanges is
used to factor A as

A=PxL=xT,
where P is a permutation matrix, L is unit lower triangular, and U 1
upper triangular. The factored form of A is then used to solve the
system of equations A * X = B.

Arguments

N (input) INTEGER
The number of linear equations, i.e., the order of the

¥ XK K XK K XK K X

*

NRHS

LDA

IPIV

LDB

INFO

matrix A. N >= 0.

(input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.

On exit, the factors L and U from the factorization

A = PxLxU; the unit diagonal elements of L are not stored.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

(output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).

(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS matrix of right hand side matrix B.
On exit, if INFO = O, the N-by-NRHS solution matrix X.

(input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).

(output) INTEGER

= 0: successful exit

< 0: 1if INFO

> 0: if INFO = i, U(i,i) is exactly zero. The factorizatic
has been completed, but the factor U is exactly
singular, so the solution could not be computed.

-1, the i-th argument had an illegal value

* ¥ X ¥ X

*

. External Subroutines ..
EXTERNAL DGETRF, DGETRS, XERBLA

Intrinsic Functions ..
INTRINSIC MAX

. Executable Statements ..
Test the input parameters.

INFO = 0

IF(N.LT.0) THEN
INFO = -1

ELSE IF(NRHS.LT.O0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN
INFO = -4

ELSE IF(LDB.LT.MAX(1, N)) THEN
INFO = -7

END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’DGESV ’, -INFO)
RETURN

END IF

Compute the LU factorization of A.

CALL DGETRF(N, N, A, LDA, IPIV, INFO)
IF(INFO.EQ.O) THEN

Solve the system A*X = B, overwriting B with X.

CALL DGETRS(’No transpose’, N, NRHS, A, LDA, IPIV, B, LDB,
INFO)

END IF
RETURN

End of DGESV

END

FH#HH R R R R R R R R R R R R
Building ’tdgesv’ and sample output on sgil, an SGI

Octane, running IRIX64 6.4
g
sgil’ pwd; 1ls

/usr/people/phys410/1linsys/ex1

Makefile tdgesv.f

sgil’, printenv LIBBLAS
-lblas

sgil) cat Makefile

HHHHHHHHHFHH B R R R R R
IMPORTANT: Note the use of LIBBLAS which should be

set to ’-lblas’ on the SGI and Linux machines.

BLAS is a acronym for Basic Linear Algebra Support

and is a Fortran- and C-callable library which implements
Dbasic manipulations useful in numerical linear algebra.
HHHHHHHHHFHH B H B R R R R R
.IGNORE:

F77_COMPILE
F77_LOAD

$(F77) $(F77FLAGS) $(F77CFLAGS)
$(F77) $(F77FLAGS) $(F77LFLAGS)

$(F77_COMPILE) $x.f
EXECUTABLES = tdgesv
all: $(EXECUTABLES)

tdgesv: tdgesv.o
$(F77_LOAD) tdgesv.o -llapack $(LIBBLAS) -o tdgesv

clean:
rm *.0
rm $(EXECUTABLES)

sgil’ make
f77 -g -64 -c tdgesv.f
f77 -g -64 -L/usr/local/lib tdgesv.o -llapack -lblas -o tdgesv

sgil’ tdgesv
5.426364412431639 -0.3257753768173935 -0.4083508069894624

10

S
Building ’tdgesv’ and sample output on vnfel, a Trisum

PIII running Linux 2.2.14.
s R
vnfel), pwd; 1ls

/home/phys410/1insys/ex1

Makefile tdgesv.f

vnfel), printenv LIBBLAS
-lblas

vnfel), cat Makefile

HHHHHHHHHFHH B R R R R R
IMPORTANT: Note the use of LIBBLAS which should be

set to ’-lblas’ on the SGI and Linux machines.

BLAS is a acronym for Basic Linear Algebra Support

and is a Fortran- and C-callable library which implements
Dbasic manipulations useful in numerical linear algebra.
HHHHHHHHHFHH B H B R R R R R
.IGNORE:

F77_COMPILE
F77_LOAD

$(F77) $(F77FLAGS) $(F77CFLAGS)
$(F77) $(F77FLAGS) $(F77LFLAGS)

.f.o:
$(F77_COMPILE) $x.f

EXECUTABLES = tdgesv
all: $(EXECUTABLES)

tdgesv: tdgesv.o
$(F77_LOAD) tdgesv.o -llapack $(LIBBLAS) -o tdgesv

11

clean:
rm *.0
rm $(EXECUTABLES)

vnfel), make
f77 -g -c tdgesv.f
f77 -g -L/usr/local/lib tdgesv.o -llapack -lblas -o tdgesv

vnfel), tdgesv
5.42636441 -0.325775377 -0.408350807

12

HHHHHHHBHFHH B H R R R R R
Building ’tdgesv’ and sample output on physics, a Sun 4

Ultra-Enterprise running Sun0OS 5.6

HHHFHHHBHFHH BB RS H B R R R R R
physics’ pwd; 1s

/export/ugrad/phys410/1insys/ex1

Makefile tdgesv.f

physics’ make
£77 -0 -c tdgesv.f
tdgesv.f:
MAIN tdgesvl:
f77 -0 -L/homeb5/choptuik/1lib tdgesv.o -llapack -o tdgesv
Undefined first referenced

symbol in file
dscal_ /usr/local/lib/liblapack.a(dgetf2.
dswap_ /usr/local/lib/liblapack.a(dlaswp.
dtrsm_ /usr/local/lib/liblapack.a(dgetrf.
idamax_ /usr/local/lib/liblapack.a(dgetf2.
dgemm_ /usr/local/lib/liblapack.a(dgetrf.
dger_ /usr/local/lib/liblapack.a(dgetf2.

1d: fatal: Symbol referencing errors. No output written to tdgesv
make: [tdgesv] Error 1 (ignored)

AR R R e
00PS ... those are references to BLAS routines! I haven’t
defined the environment variable LIBBLAS which is used in the
Makefile. Best to add a line in “/.cshrc.user. Arguably,
’-1blas’ should just be in the Makefile. However, on SOME
systems, BLAS is effectively "built-in", and then explicit
reference to it can cause problems at load time. With the
current mechanism, we can easily deal with such a case

simply by leaving the environment variable undefined on

H H HF HF H H H H R

those systems.
AR R R e e

13

O O O O O O

physics’ vi ~/.cshrc.user

INSERT -—--> setenv LIBBLAS ’-lblas’

AR R R e
"Activate" the changed .cshrc_user; among other things this
will set LIBBLAS properly.

AR R R e
physics’, source !$

source ~/.cshrc.user

[47]physics{phys410} set prompt="physics?) "

physics’ pwd; 1ls
/export/ugrad/phys410/1insys/ex1
Makefile tdgesv.f tdgesv.o

HAHHHHHHHHHH AR H A RS R HHH SRR ARG HHRHGBHA RSB H ARG R H AR SR HRHHH RS HHHS

This time the build works ...

HAHAHAHE RS HAHHHHHH B AR AR B HAHAHAH AR HBHBHBH RS H ARG RS HAH RS RS H SRS
physics’ make

f77 -0 -L/homeb5/choptuik/1lib tdgesv.o -llapack -lblas -o tdgesv

HHHHHHHHHHHH R R R R R R
... and we get output consistent with the other systems.
HHHHHHHHHFHH B R R R R R
physics’, tdgesv

5.4263644124316 -0.32577537681739 -0.40835080698946

14

