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Black Hole Criticality in the Brans-Dicke Model
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We study the collapse of a free scalar field in the Brans-Dicke model of gravity. At the critical
point of black hole formation, the model admits two distinctive solutions dependent on the value of
the coupling parameter. We find one solution to be discretely self-similar and the other to exhibit
continuous self-similarity. [S0031-9007(96)00835-6]

PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.—b, 04.50.+h

Studies of black hole formation from the gravitational the model is quite different from the Yang-Mills model
collapse of a massless scalar field have revealed interestudied in [3].
ing nonlinear phenomena at the threshold of black hole Subsequent to our study, Hirschmann and Eardley,
formation [1,2]. These studies have shown that Einstein’svorking in an even more general model, the nonlinear
field equations possess solutions which occur precisely aigma model, which includes ours, carried out a perturba-
the black hole threshold and which are universal withtion analysis and confirmed a change in stability near the
respect to the initial conditions of the evolution. More value we find for the transition coupling parameter [4].
specifically, for any type of initial field configuration Further, from the eigenvalues of the unstable modes, they
whose energy is parametrized by some parametethe  have been able to compute mass-scaling exponents. Their
critical solution occurs at a value ¢f = p* such that for results concur with those we find from our numerical
all p < p* no black hole is formed, and for ai > p*  evolutions.
a black hole is necessarily formed. This critical solution, We work in spherical symmetry with the metric
whether obtained with an initial pulse shape such as tanh
or a Gaussian pulse, is identical, erasing all detail of the ds> = —a(r,0)*dt* + a(r,1)*dr* + r*dQ*, (1)
initial field configuration. L

Though univegrsal with respect to initial conditions, theWhere.a(r’ f) represents the lapse function in the+ 1

iormallsm andr measures proper surface area.

critical solution is dependent on the specific matter mode : ! , .
involved. In the case of a real scalar field [1], a discretely The Brans-Dicke model is described by the field

self-similar solution (DSS) is found, characterized by anequatlons
echoing exponenf. In other words, were an observer G 87 ol ,
to take a snapshot of the solution at some timehe wy = —¢(1’, 0 Turs (2)

would find the same picture as when he zoomed in to a

spatial scale exph) smaller than the original at a time Where1/¢(r,1) represents the freedom of the conven-

t + exp(—A) later. tional gravitational constant to vary [5]. The total stress-
In contrast to this DSS solution, other researchers, workeNergy tensor consists of two terms

ing in an axion or dilaton model, have found that the equa- ptotal _ pmatier | BD 3)

tions possess a continuously self-similar (CSS) solution my 4 124

[2]. Because they found this solution by assuming continy, hare TEP represents the energy associated with the

uous self-similarity and solving the appropriate ordinaryg,,ns-Dicke fieldp and7™ e s the conventional tensor
uv

differentia[ eq_ua_tions, they.c.:ould not show whether thisygqsciated with matter sources [5]. For this study our sole
CSS solution is indeed a critical solution.

. X matter source is a free massless minimally coupled scalar
We find that a free real scalar field coupled to Brans

Dicke gravity contains two distinct dynamic critical solu- field y(r. 1) governed by

tions. As a special case, the model includes the real scalar Oy =0 (4)
field in general relativity and recovers the DSS solution as

in [1]. Further, this model is sufficiently general that it and whose associated stress energy is

contains the model studied in [2] as another special case. atter !

For this case, we find that the CSS solution is an attracting Ty & = by = 380", ®)
critical solution. Hence we present the novel result that fo
a single matter model, adjustment of a coupling paramet
transitions between two unique, dynamic, attracting critica
solutions. Because these two solutions are both dynamic, O¢ = 477/\T,T,i‘"er, (6)

The Brans-Dicke field satisfies the generally covariant
ave equation
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where A, a constant, represents the strength of theinstein’s field equations;,, = 87 7T,,. In accordance
coupling between the Brans-Dicke field and matter [6].with the 3 + 1 formalism, we have the Hamiltonian

Its associated stress-energy tensor is constraint
w 1 @ - a
T;fy = 87T¢<¢,u.¢v - Eg,uv(ﬁ,p(ﬁ’p) a = - 2y + 2mrar
1
L _ _ 1
3 (P~ 8urI), @ < (et@p + 1 + S @f+mh) A
where ) and the polar slicing condition
A= o 13 (8) / <1 — 22 a/> (18)
a = — - — |,
The equations described above are said to be in the r a

Brans-Dicke framavhere masses are constant but inertia
forces depend on the distribution of mass in the Univers
However, it is possible to transform to a conformal frameb
in which the geometry is described by Einstein’s field
equations with vanishing second derivativesfof In this
frame, theEinstein framemasses vary with time, but the
gravitational constant is indeed constant.

k/vhich enable us to solve for the geometry in terms of the
0 sourcesyy and¢. These equations suffice to evolve
oth the fields¢(r,r) and &(r,t), and the geometric
variablesa(r, t) anda(r, t) [7].
To show that the model found in [2] is a special case of
our model, we compare our Lagrangian

We achieve this conformal transformation via 1 _ 1
LD = =S e Yty — 676, (19)
e‘f E¢ , TA
with that of [2
8uv _’efg,u,v > 9 (2] !
gt —e Egh, L = ———(e*aja* + 4¢ ,¢"), (20)

327

8efined in terms of the axiorg, and the dilaton,¢.
Comparing Egs. (19) and (20), we see a correspondence

after which we have the equations (now expressed in th
Einstein frame)

34+ 2w 1 between the two models with a trivial rescaling of the
BD _ )
Ty = < 167 ><§,u§,v - 3‘5’#1}5;754))’ 10)  fields
1 1
matter _, = -matter = —4 s = a, A=8. 21
T p Tmater (11) 3 ¢ W — (21)
Dg = _477-)\’675‘!/’“(#’# ’ (12) T T T T T T T T T T T T T T T T
i
Oy = ¢, . (13) 10 - R -
We define auxiliary variables in terms of the derivatives N €SS
of the scalar fields .
d a 9
=—¢ and Il; = —— 14 1= A .
€= 58 ES Lt (14) <
d a o
o, = — and II, = —— ¢, 15
=Y =y a? (15)
so that the wave equations result in 0.1 = i =
, PSS
. o
b~ (< n,).
3 a 3
. 1 rza / a O 1 L 1 I : 1 I 1 I ‘ I I 1 I : I I 1 I
L A n ¢ 2 52 _ 2 -1 -0.5 0 0.5 1
. a ! FIG. 1. Schematic of the configuration space. The horizontal
v\ e axis represents the mixing ratio between the free scalar fie
P pl i he mixi o b he f lar field

and the Brans-Dicke field. The darkened triangles represent
. 1 (r’a ! «a the locations of the profiles displayed in Fig. 2. The darkened
IL, = 2 <7 q)(ﬂ) + a (LI — @y D). circle represents the location of the real scalar field in general
. relativity studied in [1]. Fori < 2/3, only the DSS solution
The only other necessary conditions come from thes the attractor. Abover ~ 2/3 the CSS solution attracts

field equations, which, in the Einstein frame, are simplywhenever both fields are initially present.
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We have found the critical solutions for a variety of TABLE I. Mass-scaling exponentg and the spatial scaling
initial data. Specifically, we input the initial configuration exponentsA for the various discretely self-similar solutions

of the two fields, and specify the value df The space of found.
initial configurations is schematically represented in Fig. 1. A ® v A
We observe for an initially vanishing scalar field that
Egs. (16)-(18) describe the real scalar field case studied ino'ggl 11%%0 85’7795
[1]. Consistent with this observation, our results recover g g7 10 0.374
the same DSS solution found for the real scalar field case.q 4 1.0 0.374
The equivalence between this model witkr, ) = 0 and 05 05 0.378
that of the real scalar field is shown in Fig. 1 as the vertical 0.57 0.25 0.373 3.447
line extending through the middle of the graph. 0.615 0.125 0.373
When A — 0+, Weinberg shows that the Brans-Dicke 0.67 0.0 0.375 3.447
model goes over to general relativity. Hence, for the 0-73 —0.125 0.372
general situation in which both fields are preseats # : —0.25 0.371
0), we expect to recover the results from general relativity. i'gs :8'32 8'22‘21
We do recover the general relativity result, that being the 50 100 0.348
DSS solution. As shown in Fig. 1, the critical solution 4 —125 0.314
is discrete for generic initial data asis increased upto g ~1375 0.263
A= 2/3. 10 —1.40 0.245
Shown in Fig. 2 fora = 0.09, we have verified that 20 —1.45 0.205
this is the same DSS solution obtained for the real scalat
field in general relativity [1]. In Table I, we show the
computed values of the echoing exponeht These Both the critical solutions exhibit mass scaling in the
values correspond to that found in [1]. supercritical regime. Specifically, for some family of

Around A = 2/3, a remarkable transition occurs in the sojutions wherep* represents the critical value of a
criical solution. As one increases in this region, the  parameter, the masses of the black holes formed in the
echoes displayed by the critical solution are damped by fegime wherep > p* follow
decreasing envelope as shown in Fig. 2. .

At A = 8, we recover, as expected from Eq. (21), the Mgu = c(p — p7), (22)
CSS solution found in [2]. In Fig. 3 we demonstrate thatwhere y depends onA and ¢ is a family dependent
the solution found by [2] by demanding continuous self-constant. Figure 4 shows four power-law fits and the
similarity is indeed the attracting critical solution. Here gssociated’s.
we show that by a trivial rescaling of the fields at one |n keeping with the correspondence between this model
time slice, our solution is identical to theirs. for very small A and that of general relativity, we find

0.1

0.08
5 S
J0.06
£ 1N
FO [ ,‘; \
0.04 T, 00
g - A=1
| A=2
0.02 H — A=4 T=-5.7
[|—- r=8
— Aleo — L LT FIG. 3. Demonstration of equivalence between the CSS so-
O,G 4 5 0 lution obtained from [2] and our critical solution obtained

with A = 8. The solid line shows the metric functian(r, ¢)
versus In- provided by Eardley. The crosses denote data
FIG. 2. Demonstration of regime in which the solution transi- points from our solution. Four time profiles are shown with
tions from the DSS to the CSS. We show here the midsectionr = In(T — T*), where T is the central proper time of the
of the seven solutions for various For A = 0.09 the solution  slice and T is the critical time of collapse. The Eardley
is clearly the DSS; however, the next solution demonstrates thatnd Hirschmann solution is scaled to match our profile at
the echoes get damped as one moves towards the origin. Even-= —3.3. The congruence at other times displays the equiva-
tually the solutions become the CSS. lence of the two solutions.
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FIG. 4. lllustration of the power-law mass-scaling relation.
The markers display the mass obtained for the normalizedrIG. 5. Black hole mass-scaling exponents for various
distance from criticality. The lines designate the least-square$he dotted line displays the values obtained for the nonlinear
fit line with slopey. sigma model in [4]. The open pentagons represent the scaling
exponent obtained by least-squares fits using our numerical
] . ) ) ) results. The error bars represent a range of three standard
v = 0.37, matching that found in [1]. Likewise, we find deviations.

agreement between our values pfand those found by

perturbation analysis in [4]. We display both these sets of . .
values in Fig. 5. No. PHY9318152 helped support this research, along with

The appearance of these two disparate solutions leads Cray Research Grant. Computations were performed
one to examine the transition im space from the on the _faC|I|t|es at .the Center for High Performance
DSS to the CSS. Bracketing solutions have shown that©@mputing at the University of Texas System.
around A = 2/3 the transition occurs (see Fig. 2). As
A is increased around this transition value, an envelope
dampens the discrete echos into the smoothly continuous
self-similar solution. Perturbation results in the nonlinear [1] M. W. Choptuik, Phys. Rev. LetZ0, 9—-12 (1993).
sigma model confirm a change in stability of the CSS [2] D. Eardley, E. Hirschmann, and J. Horne, Phys. Rev. D
solution nean = 2/3 [4]. 52, 5397-5401 (1995).

Further parameter surveys are needed to specify thd3] M.W. Choptuik, T. Chmaj, and P. BiZorLANL Report
transition point between the two self-similar solutions. = NO: 9r-q¢/9603051, 1996.

We also anticipate interestimgegative massolutions for 141 E-W- gérffggaqgggd D.M. Eardley, LANL Report No.
A < 0. However, our studies have clearly shown the [5] ?;r'qéfans and R.H. Dicke Phys. Red24 925-935
richness of the solution space for even a simple, two- (i961). o ' ' ’

scalar field, one-dimensional problem such as this one. 5] S \Weinberg, Gravitation and CosmologyWiley, New
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