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Black Hole Criticality in the Brans-Dicke Model
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(Received 6 May 1996)

We study the collapse of a free scalar field in the Brans-Dicke model of gravity. At the cri
point of black hole formation, the model admits two distinctive solutions dependent on the val
the coupling parameter. We find one solution to be discretely self-similar and the other to e
continuous self-similarity. [S0031-9007(96)00835-6]

PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.–b, 04.50.+h
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Studies of black hole formation from the gravitation
collapse of a massless scalar field have revealed inte
ing nonlinear phenomena at the threshold of black h
formation [1,2]. These studies have shown that Einste
field equations possess solutions which occur precise
the black hole threshold and which are universal w
respect to the initial conditions of the evolution. Mo
specifically, for any type of initial field configuratio
whose energy is parametrized by some parameter,p, the
critical solution occurs at a value ofp ­ pp such that for
all p , pp no black hole is formed, and for allp . pp

a black hole is necessarily formed. This critical soluti
whether obtained with an initial pulse shape such as
or a Gaussian pulse, is identical, erasing all detail of
initial field configuration.

Though universal with respect to initial conditions,
critical solution is dependent on the specific matter mo
involved. In the case of a real scalar field [1], a discre
self-similar solution (DSS) is found, characterized by
echoing exponentD. In other words, were an observ
to take a snapshot of the solution at some timet, he
would find the same picture as when he zoomed in
spatial scale expsDd smaller than the original at a tim
t 1 exps2Dd later.

In contrast to this DSS solution, other researchers, w
ing in an axion or dilaton model, have found that the eq
tions possess a continuously self-similar (CSS) solu
[2]. Because they found this solution by assuming con
uous self-similarity and solving the appropriate ordin
differential equations, they could not show whether
CSS solution is indeed a critical solution.

We find that a free real scalar field coupled to Bra
Dicke gravity contains two distinct dynamic critical so
tions. As a special case, the model includes the real s
field in general relativity and recovers the DSS solution
in [1]. Further, this model is sufficiently general that
contains the model studied in [2] as another special c
For this case, we find that the CSS solution is an attrac
critical solution. Hence we present the novel result tha
a single matter model, adjustment of a coupling param
transitions between two unique, dynamic, attracting crit
solutions. Because these two solutions are both dyna
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the model is quite different from the Yang-Mills mod
studied in [3].

Subsequent to our study, Hirschmann and Eard
working in an even more general model, the nonline
sigma model, which includes ours, carried out a pertur
tion analysis and confirmed a change in stability near
value we find for the transition coupling parameter [
Further, from the eigenvalues of the unstable modes, t
have been able to compute mass-scaling exponents. T
results concur with those we find from our numeric
evolutions.

We work in spherical symmetry with the metric

ds2 ­ 2asr , td2 dt2 1 asr , td2 dr2 1 r2 dV2, (1)

whereasr , td represents the lapse function in the3 1 1
formalism andr measures proper surface area.

The Brans-Dicke model is described by the fie
equations

Gmn ­
8p

fsr, td
T total

mn , (2)

where 1yfsr, td represents the freedom of the conve
tional gravitational constant to vary [5]. The total stres
energy tensor consists of two terms

T total
mn ­ Tmatter

mn 1 T BD
mn , (3)

where TBD
mn represents the energy associated with

Brans-Dicke fieldf andT matter
mn is the conventional tenso

associated with matter sources [5]. For this study our s
matter source is a free massless minimally coupled sc
field csr , td governed by

hc ­ 0 (4)

and whose associated stress energy is

Tmatter
mn ­ c,mc,n 2

1
2 gmnc ,rc,r . (5)

The Brans-Dicke field satisfies the generally covari
wave equation

hf ­ 4plT matter
mn , (6)
© 1996 The American Physical Society
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where l, a constant, represents the strength of
coupling between the Brans-Dicke field and matter [
Its associated stress-energy tensor is

T f
mn ­

v

8pf

µ
f,mf,n 2

1
2

gmnf,rf,r

∂
1

1
8p

°
f,mn 2 gmnhf

¢
, (7)

where

l ;
2

2v 1 3
. (8)

The equations described above are said to be in
Brans-Dicke framewhere masses are constant but iner
forces depend on the distribution of mass in the Univer
However, it is possible to transform to a conformal fram
in which the geometry is described by Einstein’s fie
equations with vanishing second derivatives off. In this
frame, theEinstein frame,masses vary with time, but th
gravitational constant is indeed constant.

We achieve this conformal transformation via

ej ;f ,

gmn !ejgmn , (9)

gmn !e2jgmn ,

after which we have the equations (now expressed in
Einstein frame)

TBD
mn ­

µ
3 1 2v

16p

∂ µ
j,mj,n 2

1
2

gmnj,rj,r

∂
, (10)

Tmatter
mn !

1
f

Tmatter
mn , (11)

hj ­ 24ple2jc ,mc,m , (12)

hc ­ c ,mj,m . (13)

We define auxiliary variables in terms of the derivativ
of the scalar fields

Fj ;
≠

≠r
j and Pj ;

a
a

≠

≠t
j , (14)

Fc ;
≠

≠r
c and Pc ;

a
a

≠

≠t
c , (15)

so that the wave equations result in

ÙFj ­

µ
a

a
Pj

∂0

,

ÙPj ­
1
r2

µ
r2a

a
Fj

∂0

1 4ple2j a

a
sF2

c 2 P2
c d, (16)

ÙFc ­

µ
a

a
Pc

∂0

,

ÙPc ­
1
r2

µ
r2a

a
Fc

∂0

1
a

a
sPcPj 2 FcFjd.

The only other necessary conditions come from
field equations, which, in the Einstein frame, are simp
e
.

e
l
.

e

Einstein’s field equations,Gmn ­ 8pTmn. In accordance
with the 3 1 1 formalism, we have the Hamiltonia
constraint

a0 ­ 2
a3 2 a

2r
1 2par

3

µ
e2jsF2

c 1 P2
c d 1

1
8pl

sF2
j 1 P2

jd
∂

(17)

and the polar slicing condition

a0 ­ 2

µ
1 2 a2

r
2

a0

a

∂
a , (18)

which enable us to solve for the geometry in terms of
two sources,c andj. These equations suffice to evolv
both the fieldscsr , td and jsr , td, and the geometric
variablesasr , td andasr , td [7].

To show that the model found in [2] is a special case
our model, we compare our Lagrangian

LBD ­ 2
1
2

e2jc ,rc,r 2
1

16pl
j,rj,r (19)

with that of [2]

Lt ­ 2
1

32p
se4fa,ma,m 1 4f,mf,md, (20)

defined in terms of the axion,a, and the dilaton,f.
Comparing Eqs. (19) and (20), we see a correspond
between the two models with a trivial rescaling of t
fields

j ­ 24f, c ­
1

p
16p

a, l ­ 8 . (21)
e

FIG. 1. Schematic of the configuration space. The horizo
axis represents the mixing ratio between the free scalar
and the Brans-Dicke field. The darkened triangles repre
the locations of the profiles displayed in Fig. 2. The darke
circle represents the location of the real scalar field in gen
relativity studied in [1]. Forl , 2y3, only the DSS solution
is the attractor. Abovel ø 2y3 the CSS solution attract
whenever both fields are initially present.
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We have found the critical solutions for a variety
initial data. Specifically, we input the initial configuratio
of the two fields, and specify the value ofl. The space o
initial configurations is schematically represented in Fig

We observe for an initially vanishing scalar field th
Eqs. (16)–(18) describe the real scalar field case studi
[1]. Consistent with this observation, our results reco
the same DSS solution found for the real scalar field c
The equivalence between this model withcsr , td ­ 0 and
that of the real scalar field is shown in Fig. 1 as the vert
line extending through the middle of the graph.

Whenl ! 01, Weinberg shows that the Brans-Dic
model goes over to general relativity. Hence, for
general situation in which both fields are present (cyj fi

0), we expect to recover the results from general relativ
We do recover the general relativity result, that being
DSS solution. As shown in Fig. 1, the critical soluti
is discrete for generic initial data asl is increased up t
l ø 2y3.

Shown in Fig. 2 forl ­ 0.09, we have verified tha
this is the same DSS solution obtained for the real sc
field in general relativity [1]. In Table I, we show th
computed values of the echoing exponentD. These
values correspond to that found in [1].

Around l ø 2y3, a remarkable transition occurs in t
critical solution. As one increasesl in this region, the
echoes displayed by the critical solution are damped
decreasing envelope as shown in Fig. 2.

At l ­ 8, we recover, as expected from Eq. (21),
CSS solution found in [2]. In Fig. 3 we demonstrate t
the solution found by [2] by demanding continuous s
similarity is indeed the attracting critical solution. He
we show that by a trivial rescaling of the fields at o
time slice, our solution is identical to theirs.
si
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so-
d
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th

y
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va-
FIG. 2. Demonstration of regime in which the solution tran
tions from the DSS to the CSS. We show here the midsec
of the seven solutions for variousl. For l ­ 0.09 the solution
is clearly the DSS; however, the next solution demonstrates
the echoes get damped as one moves towards the origin. E
tually the solutions become the CSS.
1426
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TABLE I. Mass-scaling exponentsg and the spatial scaling
exponentsD for the various discretely self-similar solution
found.

l v g D

0.001 1000 0.375
0.01 100 0.379
0.087 10 0.374
0.4 1.0 0.374
0.5 0.5 0.378
0.57 0.25 0.373 3.44
0.615 0.125 0.373
0.67 0.0 0.375 3.44
0.73 20.125 0.372
0.8 20.25 0.371
1.0 20.50 0.364
1.33 20.75 0.362
2.0 21.00 0.348
4.0 21.25 0.314
8.0 21.375 0.263

10 21.40 0.245
20 21.45 0.205

Both the critical solutions exhibit mass scaling in th
supercritical regime. Specifically, for some family o
solutions wherepp represents the critical value of
parameter, the masses of the black holes formed in
regime wherep . pp follow

MBH ­ csp 2 ppdg , (22)

where g depends onl and c is a family dependent
constant. Figure 4 shows four power-law fits and t
associatedg’s.

In keeping with the correspondence between this mo
for very small l and that of general relativity, we find
-
n

at
en-

FIG. 3. Demonstration of equivalence between the CSS
lution obtained from [2] and our critical solution obtaine
with l ­ 8. The solid line shows the metric functionasr , td
versus lnr provided by Eardley. The crosses denote d
points from our solution. Four time profiles are shown wi
t ­ lnsT 2 T pd, where T is the central proper time of the
slice and T p is the critical time of collapse. The Eardle
and Hirschmann solution is scaled to match our profile
t ­ 23.3. The congruence at other times displays the equi
lence of the two solutions.
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FIG. 4. Illustration of the power-law mass-scaling relatio
The markers display the mass obtained for the normali
distance from criticality. The lines designate the least-squa
fit line with slopeg.

g ­ 0.37, matching that found in [1]. Likewise, we find
agreement between our values ofg and those found by
perturbation analysis in [4]. We display both these sets
values in Fig. 5.

The appearance of these two disparate solutions le
one to examine the transition inl space from the
DSS to the CSS. Bracketing solutions have shown t
around l ­ 2y3 the transition occurs (see Fig. 2). A
l is increased around this transition value, an envel
dampens the discrete echos into the smoothly continu
self-similar solution. Perturbation results in the nonline
sigma model confirm a change in stability of the CS
solution nearl ­ 2y3 [4].

Further parameter surveys are needed to specify
transition point between the two self-similar solution
We also anticipate interestingnegative masssolutions for
l , 0. However, our studies have clearly shown t
richness of the solution space for even a simple, tw
scalar field, one-dimensional problem such as this one

We are grateful to Douglas Eardley and Er
Hirschmann for discussions and for providing
with their data. NSF Grants No. PHY9310083 a
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FIG. 5. Black hole mass-scaling exponents for variousl.
The dotted line displays the values obtained for the nonlin
sigma model in [4]. The open pentagons represent the sca
exponent obtained by least-squares fits using our nume
results. The error bars represent a range of three stan
deviations.
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