On strong hyperbolicity of Einstein's equations

Oscar Reula
reula@fis.uncor.edu

FaMAF, Córdoba, Argentina

OUTLINE

\square Introduction
The setting

- Questions
. Math
- More questions
- Some answers
- Applications

ADM-BSSN hyperbolicity
\square Subsidiary system hyperbolicity

The Setting

ADM equations I

$$
\begin{gathered}
\left.\partial_{t} h_{i j}=-2 N K_{i j}+\nabla_{(i} N_{j}\right) \\
\partial_{t} K_{i j}=-\nabla_{i} \nabla_{j} N+N\left[{ }^{3} R_{i j}(h)+K_{i j}(\operatorname{tr} K)-2 K_{i m} K_{j}^{m}\right] \\
+\left[N^{m} \nabla_{m} K_{i j}+\nabla_{i} N^{m} K_{j m}+\nabla_{j} N^{m} K_{i m}\right], \\
{ }^{3} R(h)+\operatorname{tr} K^{2}-k_{i j} k^{i j}=0, \\
\nabla^{j} K_{i j}-D_{i} \operatorname{tr} K=0, \\
g=-\left(N^{2}-N_{i} N^{i}\right) d t \otimes d t+N_{i}\left(d x^{i} \otimes d t+d t \otimes d x^{i}\right)+h_{i j} d x^{i} \otimes d x^{j}
\end{gathered}
$$

A DM equations II

$$
\begin{gathered}
\partial_{t} h_{i j}=-2 N K_{i j}+\nabla_{(i} N_{j}, \\
{ }_{\imath}=0 \Rightarrow\left\{\begin{array}{c}
\\
\partial_{t} K_{i j}=-\nabla_{i} \nabla_{j} N+N\left[{ }^{3} R_{i j}(h)+K_{i j}(\operatorname{tr} K)-2 K_{i m} K_{j}^{m}\right] \\
+\left[N^{m} \nabla_{m} K_{i j}+\nabla_{i} N^{m} K_{j m}+\nabla_{j} N^{m} K_{i m}\right], \\
{ }^{3} R(h)+\operatorname{tr} K^{2}-k_{i j} k^{i j}=0, \\
\nabla^{j} K_{i j}-D_{i} \operatorname{tr} K=0, \\
g=-\left(N^{2}-N_{i} N^{i}\right) d t \otimes d t+N_{i}\left(d x^{i} \otimes d t+d t \otimes d x^{i}\right)+h_{i j} d x^{i} \otimes d x^{j}
\end{array}\right.
\end{gathered}
$$

Einstein's equations

Questions (Mostly answered by I. Choquet-Bruhat 50 years ago using another system of equations):
\square Given smooth initial data $\left(h_{i j}, K_{i j}\right)$ is there a unique solution?
Causality?
Are the evolution equations unique?
Which evolutions are stable? (well posed)
Are the constraints satisfied along time evolution if they are satisfied initially?
Which evolution equations satisfy the constraint quantities? (Subsidiary systems)

Einstein's equations

Given smooth initial data $\left(h_{i j}, K_{i j}\right)$ is there a unique solution?
\square No: in terms of metrics: the diffeomorphism freedom implies that if $g_{a b}$ is a solution to Einstein's equations, also is $\phi_{\star} g_{a b}$ where ϕ is any smooth diffeomorphism.

- Yes: in terms of geometries, the equivalent class of metrics under diffeomorphisms.

Einstein's equations

\square Are the evolution equations unique?
\square No: you can add constraint equations to the evolution equations
\square No: you can fix some algebraic or differential relation between some components (exploit the gauge freedom)

Einstein's equations

Which evolutions are stable? (well posed)
We know that many systems are well posed and others not, notably the ADM system is only weakly hyperbolic.

- There are many (several parameter families) that are symmetric hyperbolic.

There are some which are only strongly hyperbolic

- There are second orther systems which are well posed (for can be reduced to first order pseudodifferential systems)
- These systems are all linearly degenerated, so, unlike fluids, no shocks seems to form.

Numerically solutions can behave very bad but even when the system is well posed.

Einstein's equations

\square Are the constraints satisfied along time evolution if they are satisfied initially?

- Yes: at the abstract level and for the initial value problem.
\square For each particular system one has to check that the subsidiary system has a unique (zero) solution.

Numerically there can be constraint modes which diverge exponentially from the constraint surface.

In many numerical problems one has a initial-boundary value problem, very little is known in this case, for constraint preserving boundary conditions must be given and in general they do not result in a well posed system. More in Sarbach's talk.

Constraint Propagation

Constraint Propagation

space

Constraint Propagation

Which evolution equations satisfy the constraint quantities? (Subsidiary systems)
\square Provided the evolution system is strongly hyperbolic, and that the constraint satisfy certain condition, then the subsidiary system they satisfy is also strongly hyperbolic.

Furthermore the characteristics of the subsidiary system are a subset of the characteristics of the evolution system.

There exist symmetric hyperbolic systems whose constraint propagation is not symmetric hyperbolic (but strongly hyperbolic).

Applications:

\square ADM-BSSN first-second order systems [Frittelli-R, Sarbach-Calabrese-Pullin-Tiglio, Kreiss-Ortiz, Nagy-Ortiz-R]
\square Constraint propagation. [Hyperbolicity properties of subsidiary systems of constraints.]

ADM equations I

$$
\begin{gathered}
\mathcal{L}_{n} h_{a b}=-2 k_{a b}, \\
\mathcal{L}_{n} k_{a b}={ }^{(3)} R_{a b}-2 k_{a}{ }^{c} k_{b c}+k_{a b} k_{c}{ }^{c}- \\
{ }^{(3)} R+\left(k_{c}{ }^{c}\right)^{2}-k_{a b} k^{a b}=0, \\
D^{b} k_{b a}-D_{a} k=0,
\end{gathered}
$$

A DM equations II

$$
\begin{aligned}
\mathcal{L}_{(t-\beta)} h_{i j} & =-2 N k_{i j} \\
\mathcal{L}_{(t-\beta)} k_{i j} & =\frac{N}{2} h^{k l}\left[-\partial_{k} \partial_{l} h_{i j}-\partial_{i} \partial_{j} h_{k l}+2 \partial_{k} \partial_{(i} h_{j) l}\right]+B_{i j}
\end{aligned}
$$

where

$$
\begin{aligned}
B_{i j} & :=N\left[\gamma_{i k l} \gamma_{j}^{k l}-\gamma_{i j}{ }^{k} \gamma_{k l}^{l}-2 k_{i}^{l} k_{j l}+k_{i j} k_{l}^{l}-A_{i j}\right], \\
\gamma_{i j}^{k} & :=\frac{1}{2} h^{k l}\left(2 \partial_{(i} h_{j) k}-\partial_{k} h_{i j}\right) \\
A_{i j} & :=a_{i} a_{j}-\gamma_{i j}{ }^{k} a_{k}-2 \gamma_{i k l} \gamma_{j}^{(k l)}+\partial_{i}\left[\left(\partial_{j} N\right) / N\right] \\
a_{i} & :=\left(\partial_{i} N\right) / N .
\end{aligned}
$$

ADM equations III

Hyperbolicity analysis: 1) consider only the principal part, 2) freeze coefficients, 3) substitute all derivatives by Fourier transforms $\left(\partial_{k} h_{i j} \rightarrow i \omega_{k} \hat{h}_{i k}\right)$, and 4) define $\hat{\ell}_{i j}=i \omega \hat{h}_{i j}$. [Kreiss, Ortiz][Taylor]

The associated first order system is then

$$
\begin{aligned}
& \partial_{t} \hat{\ell}_{i j} \hat{=} i \omega\left[-2 N \hat{k}_{i j}+\tilde{\omega}_{k} \beta^{k} \hat{\ell}_{i j}\right], \\
& \partial_{t} \hat{k}_{i j} \hat{=} i \omega\left[-\frac{N}{2}\left(\hat{\ell}_{i j}+\tilde{\omega}_{i} \tilde{\omega}_{j} h^{k l} \hat{\ell}_{k l}-2 \tilde{\omega}^{k} \tilde{\omega}_{(i} \hat{\ell}_{j) k}\right)+\tilde{\omega}_{k} \beta^{k} \hat{k}_{i j}\right]
\end{aligned}
$$

with $\tilde{\omega}_{i}=\omega_{i} / \omega$.
Result:
\square ADM equations are only weakly hyperbolic (3 eigenvectors missing).

ADM equations IV

$N=h Q\left(h=\right.$ determinant of $\left.h_{i j}\right)$
The associated first order system is then

$$
\begin{aligned}
& \qquad \partial_{t} \hat{\ell}_{i j} \\
& \partial_{t} \hat{k}_{i j} \hat{=} i \omega\left[-2 N \hat{k}_{i j}+\tilde{\omega}_{k} \beta^{k} \hat{\ell}_{i j}\right], \\
& \text { Result: }
\end{aligned}
$$

Modified ADM equations for $b>0$ still weakly hyperbolic (2 eigenvectors missing).
\square Adding Hamiltonian constraint does not change hyperbolicity, but does change characteristics.

BSSN equations I

$$
f^{k}=h^{i j} \gamma_{i j}{ }^{k}+d h^{k l} \gamma_{l m}^{m}=h^{k l}\left(h^{i j} \partial_{i} h_{j l}+\partial_{l} \ln h\right)
$$

$$
\mathcal{L}_{(t-\beta)} h_{i j}=-2 N k_{i j}
$$

$$
\mathcal{L}_{(t-\beta)} k_{i j}=\frac{N}{2} h^{k l}\left[-\partial_{k} \partial_{l} h_{i j}-b \partial_{i} \partial_{j} h_{k l}\right]+N \partial_{(i} f_{j)}+\mathcal{B}_{i j}
$$

$$
\mathcal{L}_{(t-\beta)} f_{i}=N\left[-(2-c) D^{k} k_{k i}+(1-c) D_{i} k_{k}^{k}\right]+\mathcal{C}_{i}
$$

BSSN equations II

Hyperbolicity Analysis:

$$
\begin{aligned}
\partial_{t} \hat{\ell}_{i j} & \hat{=} i \omega\left[-2 \alpha \hat{k}_{i j}+\tilde{\omega}_{k} \beta^{k} \hat{\ell}_{i j}\right] \\
\partial_{t} \hat{k}_{i j} & \hat{=} i \omega\left[\frac{\alpha}{2}\left(-\hat{\ell}_{i j}-b \tilde{\omega}_{i} \tilde{\omega}_{j} h^{k l} \hat{\ell}_{k l}+2 \tilde{\omega}_{(i} \hat{f}_{j)}\right)+\tilde{\omega}_{k} \beta^{k} \hat{k}_{i j}\right] \\
\partial_{t} \hat{f}_{i} & \hat{=} i \omega\left[\alpha\left((-2+c) \hat{k}_{i k} \tilde{\omega}^{k}+(1-c) \tilde{\omega}_{i} h^{k l} \hat{k}_{k l}\right)+\tilde{\omega}_{k} \beta^{k} \hat{f}_{i}\right]
\end{aligned}
$$

Result: [Nagy-Ortiz-R]

Modified BSSN equations for $b>0 c>0$ strongly hyperbolic.
Eigenvalues: $(0, \pm 1, \pm \sqrt{b}, \pm \sqrt{c / 2})$

Constraint Propagation

Evolution System:

$$
\partial_{t} u^{\alpha}=A(u, t, x)^{\alpha a}{ }_{\beta} \partial_{a} u^{\beta}+B(u, t, x)^{\alpha},
$$

Constraints:

$$
C^{A}=K(u, t, x)^{A a}{ }_{\beta} \partial_{a} u^{\beta}+L(u, t, x)^{A},
$$

Integrability condition (subsidiary system):

$$
\partial_{t} C^{A}=S(u, t, x)^{A a}{ }_{B} \partial_{a} C^{B}+R(u, \partial u, t, x)^{A}{ }_{B} C^{B},
$$

Want to study what can we say about the properties of the subsidiary system from what we know from the evolution system.

Constraint Propagation II

Problem: In general $S(u, t, x)^{A a}{ }_{B}$ is not unique if the constraint themselves satisfy certain identities.

For instance, if there is an $L_{A}(\omega)$ such that:

$$
L_{A}(\omega) K^{A n}{ }_{\alpha} \omega_{n}=0
$$

we could add to $S(u, t, x)^{A a}{ }_{B}$

$$
M^{A a} L_{B}
$$

With this addition there are easy examples where one can get any sort of badly posed systems!

Constraint Propagation III

\square Assume: For any $\omega_{i}, K^{A n}{ }_{\alpha} \omega_{n}$ is surjective.

- In general this is not satisfied, but in examples of interest one finds subset of constraints which do satisfy it. [Maxwell, EC].

Constraint Propagation IV

Integrability condition implies:

$$
K^{A(a}{ }_{\alpha} A^{|\alpha| b)}{ }_{\beta}-S^{A(a}{ }_{B} K^{|B| b)}{ }_{\beta}=0
$$

Lemma 1: Given any fixed non-vanishing co-vector ω_{a}. If $\left(\sigma, u^{\alpha}\right)$ is an eigenvalue-eigenvector pair of $A^{\alpha a}{ }_{\beta} \omega_{a}$ then $\left(\sigma, v^{A}=K^{A a}{ }_{\alpha} \omega_{a} u^{\alpha}\right)$, if v^{A} is non-vanishing, is an eigenvalue-eigenvector pair of $S^{A a}{ }_{B} \omega_{a}$.

Constraint Propagation IV

Integrability condition implies:

$$
\left[K^{A a}{ }_{\alpha} \omega_{a} A^{\alpha b}{ }_{\beta} \omega_{b}-S^{A a}{ }_{B} \omega_{a} K^{B b}{ }_{\beta} \omega_{b}\right] u^{\beta}=0
$$

Lemma 1: Given any fixed non-vanishing co-vector ω_{a}. If $\left(\sigma, u^{\alpha}\right)$ is an eigenvalue-eigenvector pair of $A^{\alpha a}{ }_{\beta} \omega_{a}$ then $\left(\sigma, v^{A}=K^{A a}{ }_{\alpha} \omega_{a} u^{\alpha}\right)$, if v^{A} is non-vanishing, is an eigenvalue-eigenvector pair of $S^{A a}{ }_{B} \omega_{a}$.

Constraint Propagation IV

Integrability condition implies:

$$
K^{A a}{ }_{\alpha} \omega_{a} A^{\alpha b}{ }_{\beta} \omega_{b} u^{\beta}-S^{A a}{ }_{B} \omega_{a} v^{B}=0
$$

Lemma 1: Given any fixed non-vanishing co-vector ω_{a}. If $\left(\sigma, u^{\alpha}\right)$ is an eigenvalue-eigenvector pair of $A^{\alpha a}{ }_{\beta} \omega_{a}$ then $\left(\sigma, v^{A}=K^{A a}{ }_{\alpha} \omega_{a} u^{\alpha}\right)$, if v^{A} is non-vanishing, is an eigenvalue-eigenvector pair of $S^{A a}{ }_{B} \omega_{a}$.

Constraint Propagation IV

Integrability condition implies:

$$
K^{A a}{ }_{\alpha} \omega_{a} \sigma u^{\alpha}-S^{A a}{ }_{B} \omega_{a} v^{B}=0
$$

Lemma 1: Given any fixed non-vanishing co-vector ω_{a}. If $\left(\sigma, u^{\alpha}\right)$ is an eigenvalue-eigenvector pair of $A^{\alpha a}{ }_{\beta} \omega_{a}$ then $\left(\sigma, v^{A}=K^{A a}{ }_{\alpha} \omega_{a} u^{\alpha}\right)$, if v^{A} is non-vanishing, is an eigenvalue-eigenvector pair of $S^{A a}{ }_{B} \omega_{a}$.

Constraint Propagation IV

Integrability condition implies:

$$
\sigma v^{A}-S^{A a}{ }_{B} \omega_{a} v^{B}=0
$$

Lemma 1: Given any fixed non-vanishing co-vector ω_{a}. If $\left(\sigma, u^{\alpha}\right)$ is an eigenvalue-eigenvector pair of $A^{\alpha a}{ }_{\beta} \omega_{a}$ then $\left(\sigma, v^{A}=K^{A}{ }_{\alpha}{ }_{\alpha} \omega_{a} u^{\alpha}\right)$, if v^{A} is non-vanishing, is an eigenvalue-eigenvector pair of $S^{A a}{ }_{B} \omega_{a}$.

Corollary 1: If the evolution system is strongly hyperbolic then so is the subsidiary system. [It does not work symmetric \rightarrow symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the characteristics of the evolution system. The domain of dependence of the subsidiary system is at least as large as the domain of dependence of the evolution system.

