High-resolution finite volume methods for hyperbolic PDEs on manifolds

Randy LeVeque and James Rossmanith

Reference: J.A. Rossmanith, D.S. Bale and R.J. LeVeque, J. Comput. Phys. 199 (2004), pp. 631-662.
http://www.amath.washington.edu/~rjl/pubs/manifolds/

More complete slides available from a lecture at KITP:
http://online.kitp.ucsb.edu/online/gravity03/leveque/

Overview

- High-resolution methods for first-order hyperbolic systems
- Shock waves in nonlinear problems
- Heterogeneous media with discontinuous properties
- Godunov-type methods based on Riemann solvers
- Second-order correction terms with limiters to minimize dissipation and dispersion

Acoustics on a manifold

$$
\begin{aligned}
\frac{\partial}{\partial t} p+\frac{1}{\sqrt{h}} \frac{\partial}{\partial x^{k}}\left(\sqrt{h} u^{k}\right) & =0 \\
\frac{\partial}{\partial t} u^{m}+\frac{1}{\sqrt{h}} \frac{\partial}{\partial x^{k}}\left(\sqrt{h} T^{k m}\right) & =-\Gamma_{n k}^{m} T^{k n}
\end{aligned}
$$

$p=$ pressure, $u^{m}=$ velocity vector in computational space.
This models compressional waves on a surface, e.g. acoustics in a metal sheet.

At each cell edge:

- Parallel transport cell-centered velocities to edge,
- Change coordinates to a local orthonormal frame at cell edge to obtain normal and tangential velocities,
- Solve 1d Riemann problem normal to cell edge (assuming locally flat)
- Scale resulting waves by length of side, transform back to cell-centered coordinates,
- Update cell averages.

Parallel Transport

$$
\frac{\partial}{\partial x^{k}} u^{m}+\Gamma_{n k}^{m} u^{n}=0 \quad \text { or } \quad \frac{\partial}{\partial x^{k}}\left[\begin{array}{c}
u^{1} \\
u^{2}
\end{array}\right]+\left[\begin{array}{cc}
\Gamma_{1 k}^{1} & \Gamma_{2 k}^{1} \\
\Gamma_{1 k}^{2} & \Gamma_{2 k}^{2}
\end{array}\right]\left[\begin{array}{l}
u^{1} \\
u^{2}
\end{array}\right]=0 .
$$

Approximate using Taylor series:

$$
u^{m}\left(x^{k} \pm \frac{1}{2} \Delta x^{k}\right) \approx u^{m}\left(x^{k}\right) \mp \frac{1}{2} \Delta x^{k} \Gamma_{n k}^{m} u^{n}\left(x^{k}\right) .
$$

Parallel Transport for acoustics

For acoustics with $q=\left(p, u^{1}, u^{2}\right)^{T}$, solve Riemann problem with

$$
q_{i-1 / 2, j}^{\ell}=\left(I-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Gamma_{1 k}^{1} & \Gamma_{2 k}^{1} \\
0 & \Gamma_{1 k}^{2} & \Gamma_{2 k}^{2}
\end{array}\right]\right) q_{i-1, j}
$$

and

$$
q_{i-1 / 2, j}^{r}=\left(I+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Gamma_{1 k}^{1} & \Gamma_{2 k}^{1} \\
0 & \Gamma_{1 k}^{2} & \Gamma_{2 k}^{2}
\end{array}\right]\right) q_{i, j}
$$

f-wave formulation

Split jump in fluxes ΔF into waves.

$$
\begin{aligned}
\Delta F^{1} & =\left(I+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Gamma_{1 k}^{1} & \Gamma_{2 k}^{1} \\
0 & \Gamma_{1 k}^{2} & \Gamma_{2 k}^{2}
\end{array}\right]_{i j}\right) f_{i j}^{1}-\left(I-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Gamma_{1 k}^{1} & \Gamma_{2 k}^{1} \\
0 & \Gamma_{1 k}^{2} & \Gamma_{2 k}^{2}
\end{array}\right]_{i-1, j}\right) f_{i-1, j}^{1} \\
& =f_{i j}^{1}-f_{i-1, j}^{1}-\Delta x^{1} \psi_{i-1 / 2, j}^{1}
\end{aligned}
$$

where
$\psi_{i-1 / 2, j}^{1}=-\frac{1}{2}\left(\left[\begin{array}{c}0 \\ \Gamma_{11}^{1} T^{11}+\Gamma_{2}^{1} T^{21} \\ \Gamma_{11}^{2} T^{11}+\Gamma_{12}^{2} T^{21}\end{array}\right]_{i j}+\left[\begin{array}{c}0 \\ \Gamma_{11}^{1} T^{11}+\Gamma_{12}^{1} T^{21} \\ \Gamma_{11}^{2} T^{11}+\Gamma_{12}^{2} T^{21}\end{array}\right]_{i-1, j}\right)$
This is $n=1$ portion of the source term

$$
\psi=-\Gamma_{n k}^{m} T^{k n} .
$$

Acoustics on a manifold

$$
\begin{aligned}
\frac{\partial}{\partial t} p+\frac{1}{\sqrt{h}} \frac{\partial}{\partial x^{k}}\left(\sqrt{h} u^{k}\right) & =0 \\
\frac{\partial}{\partial t} u^{m}+\frac{1}{\sqrt{h}} \frac{\partial}{\partial x^{k}}\left(\sqrt{h} T^{k m}\right) & =-\Gamma_{n k}^{m} T^{k n} .
\end{aligned}
$$

With finite volume formulation,

- Source term is automatically incorporated by parallel transport of fluxes,
- Covariant divergence is handled by use of edge lengths and cell volume,
- Parallel transport and orthonormalization allows use of standard flat-space Riemann solver at interface.

CLAWMAN software

www.amath.washington.edu/~claw/clawman.html

Currently only 2d.
AMR available by request.
Requires metric tensor H

- 2×2 matrix as function of x^{1} and x^{2},
- Used to compute scaling factors for edge lengths, cell areas,
- Used for orthonormalization at cell edges.

Christoffel symbols are needed for parallel transport

- Computed by finite differencing H.

AMR on a manifold

