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Hyperbolic tetrad formulation of the Einstein equations for numerical relativity
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The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are sim-
plified and adapted for numerical relativity. We show that the evolution equations as partial differential equa-
tions for the Ricci rotation coefficients constitute a rather simple first-order symmetrizable hyperbolic system,
not only for the Nester gauge condition on the acceleration and angular velocity of the tetrad frames considered
by Estabrooket al., but also for the Lorentz gauge condition of van Putten and Eardley and for a fixed gauge
condition. We introduce a lapse function and a shift vector to allow general coordinate evolution relative to the
timelike congruence defined by the tetrad vector field.

DOI: 10.1103/PhysRevD.67.084017 PACS number~s!: 04.25.Dm
lit
t

ly

d

ta
of

t
ve
he

m
wi

is
e-

h

e
n
h

rs
s
s,

h
ith
-

ic

tet-
a-
f
ay

ari-
nts

the
tes

the
ling
to
uc-
the

e
on-

sor
in-

ions
ru-
l

e
ce-

ddi-
ns

e of

ly
and

-
con-

al-
fa-

rtan
I. INTRODUCTION

Gravitational wave detection is soon to become a rea
However, the scientific community has not yet been able
calculate gravitational waveforms from the most like
source, namely the violent and dynamic merger phase
binary black hole collisions@1#. We hope to contribute to this
effort with detailed small-scale studies. Our first such stu
of 1D colliding gravitational plane waves@2# indicated that
two important factors which improve the accuracy and s
bility of the numerical calculations are the hyperbolicity
the equations and evolving variables which are related
physical quantities. As a way to generalize our results
black hole spacetimes and higher dimensions, we are in
tigating a tetrad approach based on the formalism publis
by Estabrook, Robinson, and Wahlquist~ERW! @3#. In this
paper, we present a modified version of the formalis
adapted for numerical relativity. Subsequent papers
present our numerical results.

The standard approach to vacuum numerical relativity
311 decomposition, of the type introduced by Arnowitt, D
ser, and Misner@4#. The 311 formulations slice four-
dimensional spacetime into three-dimensional spacelike
persurfaces~see @5# for a recent review!. They evolve the
spatial metric and extrinsic curvature of the hypersurfac
which are expressed in a coordinate basis. The evolutio
the coordinates is described by a lapse function and s
vector, which may or may not be dynamic.

A tetrad formulation uses orthonormal basis vecto
ea (a50, 1, 2, 3), which describe local Lorentz frame
The spacetime metric, the dot product of the basis vector
everywhere the Minkowski metric,gab5ea• eb5hab . The
timelike vector field of the orthonormal frames,e0, defines a
preferred timelike congruence, to which it is tangent. T
spatial triad vectors in a particular rotational orientation w
respect toe0 aree1 , e2, ande3. The dual basis of orthonor
mal one-forms isea such that ^ea, eb&5db

a and ea
• eb

5hab. As Estabrook and Wahlquist point out@6#, these tet-
rad frames are natural for measuring observable phys
quantities.
0556-2821/2003/67~8!/084017~11!/$20.00 67 0840
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Most of the recent tetrad formalisms assume that the
rads are tied to the physically defined flow of a fluid, prim
rily in the context of cosmology or of interior metrics o
rotating stars. Here, we advocate that a tetrad formalism m
be useful even in vacuum black hole spacetimes. The v
ables in a tetrad formalism are the connection coefficie
~often called the Ricci rotation coefficients!, the tetrad vector
components, and, typically, the tetrad components of
Weyl tensor or the Riemann tensor. The spatial coordina
are often assumed from the start to be comoving with
timelike congruence generated by the tetrad field. In dea
with black hole event horizons, however, it is important
allow general choices of coordinates. We do this by introd
ing a lapse function and a shift vector defined relative to
congruence world lines~see also van Putten and Eardley@7#!.

The ERW formulation is a quasi-FOSH~first order sym-
metric hyperbolic! system. We use the term ‘‘quasi’’ becaus
the directional derivatives along the spatial tetrad legs c
tain partial time derivatives~also see@8#!. The basic quasi-
FOSH structure of the equations involves the Weyl ten
components as variables. The quasi-FOSH system also
cludes equations derived from the Nester gauge condit
@9#. These equations evolve the acceleration of the cong
ence world lines,a, and the angular velocity of the spatia
tetrad vectors relative to Fermi-Walker transport,v. The tet-
rad componentsaa and va are gauge quantities since th
spacetime orientation of the tetrad is not fixed by the spa
time geometry. Botha andv are orthogonal toe0, and there-
fore have only the three spatial tetrad components. In a
tion to evolution equations, the Nester gauge conditio
provide equations which constrain the spatial dependenc
the aa and theva at any given time.

ERW’s formalism can be modified to give a particular
simple quasi-FOSH system, as suggested by Estabrook
Wahlquist ~EW! @10#, by eliminating the Weyl tensor com
ponents as separate variables, and adding the Nester
straint equations to the evolution equations.

In this paper, we discuss the derivation of the EW form
ism in a way which is perhaps more accessible to those
miliar with standard tensor analysis, as opposed to Ca
©2003 The American Physical Society17-1
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differential form analysis. What distinguishes the EW fo
malism is that the basic quasi-FOSH structure involves o
the connection coefficients. Most of the tetrad formulatio
in the literature include the Weyl tensor or the Riemann t
sor to get a simple quasihyperbolic structure. Unless
adds the constraints to the Einstein equations in the partic
way we present in this paper, the quasihyperbolic sys
involving only the connection coefficients is quite comp
cated. We do not claim that the EW system is simpler
more elegant than those involving the Weyl or Riemann t
sor; however, it has fewer variables and fewer constra
modes, which may be advantageous in 3D codes.

After deriving the EW formalism, we proceed to extend
into a form useful for vacuum numerical relativity. We co
sider two gauge conditions other than the Nester ga
which also give quasi-FOSH systems of equations. These
the Lorentz gauge used by van Putten and Eardley@7#, and a
fixed gauge, whereaa andva are fixed functions of time and
space. Additionally, we allow for a completely arbitrary r
lationship between the congruence and the hypersurface
nally, we analyze the true hyperbolicity of the equatio
when expressed in terms of partial derivatives. The par
differential system contains evolution equations for eighte
nongauge connection coefficients, six gauge quantities~if a
dynamic gauge condition is chosen!, three components of a
vector describing the velocity of the congruence relative
the hypersurface, and nine components of the spatial te
vectors projected into at5const hypersurface. These la
twelve variables, together with our lapse function and s
vector ~which we do not evolve!, completely determine the
sixteen tetrad vector components. The flux Jacobian of
partial differential system of equations has a complete se
eigenvectors and real eigenvalues, thus satisfying the
quirement for hyperbolicity as per LeVeque@11#. Further-
more, these equations are symmetrizable hyperbolic as
fined by Lindblom and Scheel@12#.

Tetrad formulations for general relativity other than ER
and EW include those by Friedrich@13#, Jantzen, Carini, and
Bini @14#, van Elst and Uggla@15#, Choquet-Bruhat and York
@8#, and van Putten and Eardley@7#. Except for EW, all of
these systems include the Weyl or Riemann tensor com
nents as fundamental variables. Friedrich’s paper is a de
tive discussion of hyperbolicity for both tetrad and 311 rep-
resentations. Janzten, Carini, and Bini give an extens
historical review of the tetrad and 311 approaches. They
provide a unified framework for the two approaches in w
they call ‘‘gravitoelectromagnetism,’’ in which, howeve
they only consider comoving spatial coordinates. van E
and Uggla’s formalism applies only to nonrotating cong
ences and orthogonal hypersurface slicings. Also, they do
bring the equations into a quasi-FOSH form. The main e
phasis of Choquet-Bruhat and York’s paper is a tetrad form
lation for fluids, where the congruence is aligned with t
fluid flow lines, and the spatial coordinates are comov
with the congruence. The acceleration of the congrue
world lines is given by the acceleration of the fluid, and t
angular velocity variables~our va’s! are fixed functions.
Choquet-Bruhat and York do briefly mention the vacuu
case, in which their system is quasi-FOSH for arbitrary giv
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acceleration and angular velocity. van Putten and Eardley
the Lorentz gauge condition to obtain second-order w
equations for the connection coefficients. van Putten give
first-order form of these equations, involving the Riema
tensor as well as the connection coefficients, for his num
cal implementation in 1D Gowdy wave vacuum spaceti
@16#. The van Putten–Eardley formulation allows for com
plete freedom in the choice of spacetime foliation.

An example of using orthonormal frames in spatial hyp
surfaces is the Ashtekar formulation~with subsequent modi-
fications! @17–21#. Ashtekar follows a 311 split in the sense
that his variables are defined relative to a hypersurface. H
ever, his description of the geometry of the hypersurface i
terms of orthonormal triads instead of the metric. He u
complex variables to give a compact formalism, requiri
the use of reality constraints to recover real spacetime.
subsequently modified by Yoneda and Shinkai, Ashteka
formulation becomes a FOSH system of partial differen
equations. Shinkai and Yoneda@22,23# have published nu-
merical studies using this formulation in 1D plane wa
vacuum spacetime.

II. VARIABLES

Throughout this paper, lower case Greek letters den
spacetime indices~0-3!, and lower case Latin letters deno
only spatial indices~1-3!. The letters in the beginning of th
alphabets, (a, b, g, d, e) and~a, b, c, d, e, f!, denote tetrad
indices. Mid-alphabet letters (l, m, n) and~i, j, k, l! denote
coordinate indices. Repeated indices are summed in
cases.

For an orthonormal tetrad of basis vector fields, there
twenty-four distinct connection coefficients. These coe
cients are scalar fields under coordinate transformations,
are defined as

Gabg5ea•¹g eb52Gbag , ~1!

with “ the covariant derivative operator. TheGabg are the
same as Ricci rotation coefficients~see Wald@24#!. They can
be written in terms of commutators of the basis vectors:

Gabg5
1

2
$^ed,@ea ,eb#&hdg1^ed,@ea ,eg#&hdb

2^ed,@eb ,eg#&hda%. ~2!

Just as in the 311 formalisms, it is convenient to make
space-time split in the tetrad formulation. Here, however,
split is relative to the timelike congruence defined by t
tetrad rather than the constant-t spacelike hypersurface.
connection coefficients can then be relabeled as 3D qua
ties with spatial triad indices~see Wahlquist@25# and ERW!.
To begin,

Kba[Ga0b , ~3!

where the symmetric part ofKba is the rate of strain of the
congruence, and the antisymmetric part,
7-2
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Va[
1

2
«abcKbc , ~4!

is the vorticity of the congruence. IfVa50, the congruence
is hypersurface orthogonal, andKba is the traditional extrin-
sic curvature of the orthogonal hypersurface. Note that
sign of Kba here is the same as in ERW and Wald, but o
posite to that of Misner, Thorne, and Wheeler@26#.

The spatial tetrad connection coefficients can be
pressed more compactly as a two-index quantity defined

Nba[
1

2
«acdGcdb . ~5!

The diagonal components,N11, N22, andN33, describe the
twists of the spatial triads along the 1, 2, or 3 directio
respectively. The combinationsNab1Nba of the nondiagonal
components represent gravitational wave degrees of f
dom. It is sometimes convenient to represent the antis
metric part ofNba by its own symbol

na[
1

2
«abcNbc . ~6!

The acceleration of the congruence is

aa[Ga00, ~7!

and the angular velocity of the spacelike triads relative
Fermi propagated axes is

va[
1

2
«abcGcb0 . ~8!

There are nineKba and nineNba , giving eighteen primary
variables to be evolved. The threeaa and threeva are gauge
quantities, which, in this paper, are evolved by either
Nester or Lorentz gauge, or kept fixed.

Numerical calculations are performed with a particu
choice of coordinatesxm. Hyperbolic evolution consists in
calculating variables on the spacelike hypersurfaces cha
terized byx05t2 from an initial state specified by values o
the variables on an earlier spacelike hypersurfacex05t1. Let
la

m denote the transformation matrix between coordinate
sis vectors and the tetrad basis vectors:

ea5la
mem . ~9!

From Eq. ~9!, we obtain directional derivatives along th
tetrad directions in terms of the partial derivatives along
coordinate directions,

Da5la
m ]

]xm
. ~10!

The la
m are the coordinate components of the tetrad ba

vectors. The coordinate metric is constructed from these
rad vector components asgmn5hab la

m lb
n .
08401
e
-

-
y

,

e-
-

o

e

r

c-

a-

e

is
t-

We find it simpler to use as variables not the sixteenla
m ,

but the following sixteen quantities which completely dete
mine the tetrad vector components: nineBa

k , the coordinate
components of projections of the spatial tetrad vectors i
the hypersurface; threeAa , which measure the tilts of the
spatial tetrad vectors relative to the hypersurface and are~mi-
nus! the tetrad components of the 3-velocity of the hypers
face frame relative to the tetrad frame; the tetrad lapse fu
tion a and the three coordinate components of the tetrad s
vector bk, which describe the evolution of the coordinat
relative to the tetrad congruence. In this paper we evolve
Ba

k and theAa as dynamic variables, but takea and thebk to
be fixed functions of the coordinates. Eventually we m
want to expand the hyperbolic system to include dynam
equations for the lapse and the shift.

In a 311 formalism, the lapse functionN is the rate of
change of proper time with respect to coordinate time alo
the hypersurface normal, and the shift vectorNk is the rate of
displacement of the spatial coordinates with respect to co
dinate time relative to the hypersurface normal, such that
coordinate velocity of the normal world linedxk/dt52Nk.
Our tetrad lapse functiona is the rate of change of prope
time with respect to coordinate time along the tetrad cong
ence, and our tetrad shift vectorbk is the rate of displace-
ment of the spatial coordinates relative to the tetrad cong
ence world lines per unit coordinate time. For simp
comoving coordinates, the spatial coordinates are cons
along the congruence, andbk50. However, comoving coor-
dinates are not desirable in black hole calculations, si
with a finite acceleration tetrad world lines will be contin
ously advected inward across the event horizon. The te
lapse must be chosen so that the constant-time hypersur
remain spacelike, which is equivalent to the conditi
AaAa,1.

The projection ofea into the hypersurface is done alon
the congruence world lines, such that

ea5Aae01Ba . ~11!

Figure 1 shows how these various vectors are related f
the point of view of a frame at rest with respect to the h
persurface.

FIG. 1. Decomposition ofea into a vector tangent to the hyper
surface,Ba , and a vector parallel to the congruence,Aa e0. Dis-
placements of the spatial coordinates,xk, relative to the congruence
world line equalbkdt, wherebk is our tetrad shift vector. Displace
ments ofxk relative to the hypersurface normaln areNkdt, where
Nk is the 311 shift vector.
7-3
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L. T. BUCHMAN AND J. M. BARDEEN PHYSICAL REVIEW D67, 084017 ~2003!
The directional derivative along a spatial tetrad direct
is

Da5AaD01Ba
k ]

]xk
, ~12!

and the directional derivative along the congruence is

D05
1

a S ]

]t
2bk

]

]xkD . ~13!

Plugging Eq.~13! into Eq. ~12!, we get

Da5S Ba
k2

Aa

a
bkD ]

]xk
1

Aa

a

]

]t
. ~14!

Comparing Eqs.~13! and~14! with Eq. ~10!, we can read off
the tetrad vector components. They are

la
m5F l0

0 l0
k

la
0 la

k
G5F 1

a
2

bk

a

Aa

a S Ba
k2

Aa

a
bkD G .

~15!

The 311 lapse function,N, and shift vector components
Nk, can be expressed in terms ofa, bk, Aa , and Ba

k by
constructinggtt and gtk from the tetrad vector componen
usinggmn5hab la

m lb
n . With the relations

gtt52
1

N2
and gtk52

Nk

N2
, ~16!

we get

N5
a

A12AaAa

, ~17!

Nk5bk1
a AaBa

k

12AaAa
. ~18!

The tetrad lapse is smaller than the 311 lapse due to the time
dilation of the tetrad observer in the rest frame of the hyp
surface.

III. THE TETRAD EQUATIONS

In this section, we present the evolution and constra
equations for the connection coefficients defined in Sec. I
terms of directional derivative operators along the tetrad
rections. The structure of the equations in this form is dec
tively simple. One has to keep in mind that partial differe
tial equations are solved in numerical relativity, so t
directional derivatives have to be expanded into partial
rivatives using Eqs.~13! and ~14!. In terms of directional
derivatives, the equations are quasi-FOSH. We will pres
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the necessary steps to obtain the true hyperbolic form in S
IV. Furthermore, we call the ‘‘constraint’’ equations pre
sented in this section quasiconstraint equations, as is don
@8#, because although they contain only spatial directio
derivatives, these spatial directionals contain time part
@see Eq.~14!#. The details of converting the quasiconstra
equations into true constraint equations are given in App
dix A.

In both the tetrad and 311 approaches, there is an orde
ing ambiguity inherent in the derivation of a first order h
perbolic evolution system from the Einstein equations.
first order 311 formalisms, the spatial derivatives of th
metric are independent variables,D jkl ~which equal12 ] jhkl ,
wherehkl is the spatial metric!. Index reordering of the Rie-
mann tensor is an interchange of spatial partial derivati
such that

] iD jkl5] jDikl . ~19!

Exploiting this freedom leads to a wide variety of hyperbo
formulations@27#. The standard energy and momentum co
straint equations can also be added to the evolution syste
get additional hyperbolic or nonhyperbolic structures. In t
context of a tetrad approach, the connection coefficients
given in terms of the commutation relations, Eq.~2!. To de-
rive integrability conditions from Eq.~2! is messy. We find it
is much easier to approach the question of ordering amb
ity from the symmetries of the Riemann tensor, especia
since these symmetries are explicit when the indices are
up or down, and it is trivial to raise and lower indices wi
the Minkowski metric. We do not consider a whole range
schemes as do Kidder, Scheel, and Teukolsky@27#, but rather
a particular scheme which leads to a simpler hyperbo
structure than the others. To focus on the quasi-FOSH st
ture of the equations, we present only the principal ter
here. The second order source terms are given in Appe
A.

The Riemann tensor projected onto a tetrad is

Rabgd5ea•~¹g¹d2¹d¹g2¹[eg ,ed] !eb

5DgGabd2DdGabg1GaegG bd
e 2GaedG bg

e

1Gabe~G gd
e 2G dg

e !, ~20!

whereDa represents directional derivatives along the tet
directions. The antisymmetry ofRabgd on the second pair o
indices is explicit in Eq.~20!. The antisymmetry on the firs
pair is also trivial because of the antisymmetry ofGabg on
the first two indices. However, the Riemann identities

Rabgd5Rgdab , ~21!

Rabgd1Radbg1Ragdb50 ~22!

lead to new Riemann constraints, which we exploit in t
following.

First we derive all the possible quasiconstraint equatio
noting the use of Eq. 14.7 from Misner, Thorne, a
Wheeler. The energy quasiconstraint equation is
7-4
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G005R12121R23231R3131;2Dana . ~23!

An analogous quasiconstraint equation forVa is derived us-
ing the cyclic identity, Eq.~22!, on 0abc:

05R02131R03211R0132;2 DaVa . ~24!

The momentum quasiconstraint equations are obtained f
G0a50:

G015R02121R0313

;2D1~K221K33!1D2K121D3K13, ~25!

G025R01211R0323

;2D2~K111K33!1D1K211D3K23, ~26!

G035R01311R0232

;2D3~K111K22!1D1K311D2K32. ~27!

Similar quasiconstraint equations involvingNab are derived
solely from Eq.~21! applied to spatial indices of the Rie
mann tensor:

R12132R1312;D1~N221N33!2D2N122D3N13, ~28!

R23212R2123;D2~N111N33!2D1N212D3N23, ~29!

R31322R3231;D3~N111N22!2D1N312D2N32. ~30!

We now to turn to evolution equations. By using Eq.~21!
in the momentum quasi-constraint equations, we calcu
evolutionequations for the nondiagonal components ofNab .
For example, interchanging the first and second pairs of
dices in Eq.~27! as shown below gives evolution equatio
for N21 andN12:

G035R01311R3202

;2D0N212D2v12D3K111D1K31, ~31!

G035R31011R0232

;D0N121D1v21D2K322D3K22. ~32!

Evolution equations for the diagonal components ofNab are
obtained solely from applications of Eq.~21!:

R23012R0123;D0N111D1v11D2K312D3K21, ~33!

R31022R0231;D0N221D2v21D3K122D1K32, ~34!

R12032R0312;D0N331D3v31D1K232D2K13. ~35!

Evolution equations forKab are obtained from the Ein
stein equations. As is done elsewhere~see for example@28#!,
a multiple of the energy quasiconstraint equation times
spatial metric can be subtracted from theKab evolution equa-
tions. In the formulation we are presenting, this amounts
subtracting a multiple of Eq.~23! from the diagonal spatia
components of the Ricci tensor, since our metric is justda

b .
08401
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The same type of procedure in 311 formulations affects the
evolution equations for the nondiagonal as well as the di
onal components ofKab , since the spatial metric there is, i
general, nondiagonal. The number we choose to multiply
energy quasiconstraint equation by is 1, to bring the evo
tion equations for the diagonalKab into the same form as
those for the nondiagonal components. With the aid of
~21!, we derive sample evolution equations forKab below:

R1252R10201R132352R10201R2313

;D0K212D2a12D3N111D1N31, ~36!

R1252R20101R1323

;D0K122D1a22D2N321D3N22, ~37!

R112G0052R01012R2323

;D0K112D1a12D2N311D3N21. ~38!

If the gauge quantitiesaa and va are fixed functions of
time, then the quasi-FOSH structure is now complete an
represented by the following system of eighteen equati
for the nineKab and nineNab :

D0Kab2Daab2«acdDcNdb5S_Kab , ~39!

D0Nab1Davb1«acdDcKdb5S_Nab , ~40!

whereS_Kab and S_Nab are source terms quadratic in th
connection coefficient variables.~See Appendix B.!

Alternatively, one can implement a dynamic gauge. Bo
the Nester gauge used by ERW and EW and the Lore
gauge used by van Putten and Eardley result in evolu
equations foraa andva which, when added to Eqs.~39! and
~40!, form a quasi-FOSH system.

The Nester gauge conditions in@9# are defined for an
arbitrary number of dimensions. In 4D spacetime, the Ne
conditions state that two 1-forms,q̃ andq̂, whose tetrad com-
ponents are

q̃a5Ga g
g , q̂a5«abgd Gbgd, ~41!

are closed. This implies vanishing exterior derivatives
that, in tetrad component form, the Nester conditions are

¹aq̃b2¹bq̃a50, ~42!

¹aq̂b2¹bq̂a50. ~43!

The Nester conditions result in six evolution equations,

D0ab2DcKcb52~vc22Vc!Ncb1~Tr N!vb ,

D0vb1DcNcb52~vc22Vc!Kcb2~Tr N!ab , ~44!

and six quasiconstraint equations,

«abcDb~ac22 nc!52~Tr K !Va2~Tr N!~aa22na!

1~ad22 nd!Nda ,
7-5
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«abcDb~vc22 Vc!52~Tr N!va1~vd22Vd!Nda .
~45!

The Lorentz gauge condition in@7# is ¹gvgab50, where
vgab5Gabg . For fixeda andb, the vgab are the compo-
nents of connection 1-forms~see Wald@24#!. Expressed in
terms ofGabg , the Lorentz gauge condition is

DdGab
d1Gab

gG gd
d 50. ~46!

The Lorentz gauge results in six evolution equations:

D0ab2DcKcb5~ac22 nc!Kcb2~Tr K !ab ,

D0vb1DcNcb52~ac22 nc!Ncb2~Tr K !vb , ~47!

and no additional constraint equations. Note that the prin
pal terms in Eq.~47! are identical to those for the Neste
gauge evolution equations, Eq.~44!.

The evolution equations expressed in terms of directio
derivatives, Eqs.~39!, ~40!, and~with a dynamic gauge! ~44!
or ~47!, can be written in a condensed notation,

D0q1MaDaq5S, ~48!

where q is a vector of the twenty-four variable
Nab , Kab , aa , and va . Furthermore,Ma are three sparse
24324 matrices whose only nonzero elements are61, and
S is a vector of source terms. If one orders the variables
that

q5~N11,N21,N31,a1 ,K11,K21,K31,v1 ,N12,N22,N32,a2 ,

K12,K22,K32,v2 ,N13,N23,N33,a3 ,K13,K23,K33,v3!,

~49!

then theMa matrices have a simple block diagonal structu
Each is composed of three identical 838 blocks, respec-
tively:

Mblock
1 53

0 0 0 0 0 0 0 1

0 0 0 0 0 0 21 0

0 0 0 0 0 1 0 0

0 0 0 0 21 0 0 0

0 0 0 21 0 0 0 0

0 0 1 0 0 0 0 0

0 21 0 0 0 0 0 0

1 0 0 0 0 0 0 0

4 ,

~50!
08401
i-

al

o

.

Mblock
2 53

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 21 0 0 0

0 0 0 0 0 21 0 0

0 0 21 0 0 0 0 0

0 0 0 21 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

4 ,

~51!

Mblock
3 53

0 0 0 0 0 21 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 21 0

0 1 0 0 0 0 0 0

21 0 0 0 0 0 0 0

0 0 0 21 0 0 0 0

0 0 1 0 0 0 0 0

4 .

~52!

IV. HYPERBOLIC STRUCTURE OF THE COORDINATE
EQUATIONS

The beautiful quasi-FOSH tetrad formulation with co
stant coefficients given in Eqs.~48! to ~52! is not so simple,
or so beautiful, when expressed in terms of coordina
However, we proceed to show that the coordinate equat
are still quite manageable and are, indeed, symmetriz
hyperbolic.

Substituting Eqs.~13! and ~14! into Eq. ~48!, we express
the tetrad evolution equations in terms of partial derivativ
along coordinate directions:

TD0q1MaBa
k ]q

]xk
5S, ~53!

where

T[@ I1MaAa#, ~54!

andI is the identity matrix. For clarity of notation, we letD0
represent the partials in Eq.~13!. The T matrix has a block
diagonal structure composed of three identical 838 entries
which are
7-6



Tblock53
1 0 0 0 0 2A3 A2 A1

0 1 0 0 A3 0 2A1 A2

0 0 1 0 2A2 A1 0 A3

0 0 0 1 2A1 2A2 2A3 0

0 A3 2A2 2A1 1 0 0 0

2A3 0 A1 2A2 0 1 0 0 4 . ~55!

HYPERBOLIC TETRAD FORMULATION OF THE . . . PHYSICAL REVIEW D 67, 084017 ~2003!
A2 2A1 0 2A3 0 0 1 0

A1 A2 A3 0 0 0 0 1

We now multiply Eq.~53! by T21 to give

D0q1CaBa
k ]q

]xk
5T21S, ~56!

where

Ca[T21Ma. ~57!

T21 is straightforward to calculate, since it is a block diagonal matrix with each block equal to the inverse ofTblock in Eq. ~55!,
where

Tblock
21 5

1

12AaAa 3
1 0 0 0 0 A3 2A2 2A1

0 1 0 0 2A3 0 A1 2A2

0 0 1 0 A2 2A1 0 2A3

0 0 0 1 A1 A2 A3 0

0 2A3 A2 A1 1 0 0 0

A3 0 2A1 A2 0 1 0 0

2A2 A1 0 A3 0 0 1 0

2A1 2A2 2A3 0 0 0 0 1

4 . ~58!
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The system given in Eq.~56! is hyperbolic according to
the definition given in@11# if any linear combinationba Ca

of C1, C2, andC3 can be diagonalized with a complete set
eigenvectors and real eigenvalues. The linear combina
for propagation in thexk coordinate direction hasba5Ba

k .
Solving the eigensystem of the combined 838 matrix in
MATHEMATICA gives for the eigenvalues

b•A7Ab•b2~b3A!•~b3A!

12A•A
, ~59!

whereb and A are the 3-vectors in the spatial orthonorm
frame with componentsba andAa , respectively. The dot and
cross products are the standard vector operations, and
upper or lower signs on the square root are for left or rig
propagating~relative tob) modes. The eigenvalues are re
as long asA•A5AaAa,1. The eigenvectors~given in Ap-
pendix B! form a complete set. The lapse and shift hidden
theD0 operator modify the eigenvalues in a trivial way~mul-
tiply by the lapsea, then subtract the shiftbk), but have no
effect on the eigenvectors.
08401
f
n

l

the
-
l

n

For Eq.~56! to also be symmetrizable by the definition
Lindblom and Scheel@12#, a positive definite symmetric ma
trix must be found which multiplies theCa matrices to give
symmetric matrices. The obvious candidate for such a s
metrizer isT, sinceT Ca5Ma by Eq. ~57!, and theMa ma-
trices are symmetric.T is real and symmetric so a necessa
and sufficient condition for it to be positive definite is that a
its eigenvalues are positive@29#. This requires thatAaAa
,1.

Note that our saying the system is hyperbolic is cont
gent on the evolution of theBa

k being hyperbolic. This is
discussed further in Sec. V.

V. EVOLUTION AND CONSTRAINT EQUATIONS FOR Aa

AND Ba
k

The commutators of the orthonormal basis vectors are

@ea ,eb#5¹aeb2¹bea5~Gba
g 2Gab

g !eg . ~60!

Expressed in terms of tetrad components and partial der
tives,
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@ea ,eb#5S la
m

]lb
n

]xm
2lb

m
]la

n

]xm D ]

]xn
. ~61!

Expanding Eq.~61! and collecting terms gives

S la
t
]lb

k

]t
1la

k
]lb

k

]xk
2lb

t
]la

k

]t
2lb

k
]la

k

]xk D ]

]xk

1S la
t

]lb
t

]t
1la

k
]lb

t

]xk
2lb

t
]la

t

]t
2lb

k
]la

t

]xk D ]

]t
. ~62!

Doing the same in Eq.~60!, we get

@~G ba
0 2G ab

0 !l0
k1~G ba

c 2G ab
c !lc

k#
]

]xk

1@~G ba
0 2G ab

0 !l0
t 1~G ba

c 2G ab
c !lc

t #
]

]t
.

~63!

Set Eqs.~62! and~63! equal, and let the indexa50 and the
index b5a. Simplifying, we obtain evolution equations fo
Ba

k andAa :

D0Ba
k1

Ba
l

a

]bk

]xl
5

1

a S ]

]t
2LbDBa

k

52«abcvbBc
k2KacBc

k , ~64!

D0Aa5aa2«abcvbAc2KacAc2
Ba

l

a

]a

]xl
, ~65!

whereLb in Eq. ~64! is the Lie derivative. For fixed laps
and shift, the evolution of both theBa

k and theAa is just
advection along the congruence world lines and trivially h
perbolic.

The congruence can always be chosen to be orthogon
the initial hypersurface, soAa50 initially. However,Aa will
not remain zero during the subsequent evolution unless
condition

Ba
l ]

]xl
loga5aa ~66!

is satisfied at all times. For either the fixed or the dynam
gauge conditions onaa considered here, the evolution ofBa

l

and/oraa is inconsistent with Eq.~66!, except possibly for
very special initial conditions.

Repeating the same process as above, but with the in
a5a and the indexb5b, we obtain constraint equations fo
Ba

k andAa :
08401
-

to

he

c

ex

«cabBa
l

]Bb
k

]xl
5NdcBd

k2~Tr N!Bc
k1«cabAa~«bd fvdBf

k

1KbdBd
k!, ~67!

«cabBa
l ]Ab

]xl
52Vc1NdcAd2~Tr N!Ac1«cabAa

3~2ab1«bd fvdAf1KbdAd!. ~68!

Note that if Aa50, the constraint of Eq.~68! is satisfied
automatically, and Eq.~67! can be used to calculate all of th
Nab from theBa

k .

VI. THE INITIAL VALUE PROBLEM

Initial conditions for the variables must be chosen so
relevant constraints are satisfied on the initial hypersurfa
This is most easily accomplished if the initial tetrad is o
ented so the tetrad congruence is orthogonal to the in
hypersurface. Then,Va50 and Aa50 initially. The initial
Ba

k are the components of an orthonormal triad of vect
lying in the initial hypersurface, related to the inverse of t
spatial metric of the hypersurface byhkl5Ba

kBa
l . One way to

construct consistent initial conditions is to solve the init
value problem using standard 311 methods for the spatia
metric and the extrinsic curvature. Construct orthonorm
triad fields by a Gramm-Schmidt orthogonalization proc
dure, orienting theB1 vector along thex1 coordinate direc-
tion, andB2 in the x12x2 plane, for instance. Find theNab
from the commutators of theBa 3-vectors using Eq.~67!.
TheKab are simply the projections of the coordinate comp
nents of the extrinsic curvature as found from the 311 initial
value problem along the orthonormal triad vectors. This p
cedure is guaranteed to give consistent initial conditions
the tetrad vectors, as long as the spatial coordinates are
sically Cartesian, i.e., there are no spatial coordinate sin
larities. The initial acceleration and angular velocity of t
tetrad are arbitrary, except in the context of the Nester gau
In this case, the initial angular velocityva and the initial
aa22 na must have vanishing exterior derivatives. How
ever, there is no guarantee that there are not large twist
the initial triad vectors, possibly leading to large gauge tra
sients in the context of one of the dynamical gauge con
tions.

A more elegant and, likely, a better-behaved choice for
initial spatial triad is to require that it satisfy the 3D Nest
gauge conditions in the hypersurface. These conditions
that the 3D one-formq̃ a , whose triad components areGa b

b ,
has zero exterior derivative, and that the trace of theNab
matrix vanish, i.e.N111N221N3350. For simple topolo-
gies, the first condition is equivalent to the condition th
2na5«abcNbc be the gradient of a scalar. Finding a solutio
for the Ba

k which satisfies these conditions is, in general
nontrivial elliptic problem~see@30# and@31#!. However, the
situation is much simpler for conformally flat 3-geometrie
Taking Cartesian basis vectors in the conformal geome
the conformalNab are zero. If the conformal factor which
7-8
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generates the physical metric ise4c, the conformal transfor-
mation simply rescales theBa

k by a factore22c. The physical
na equal22Dac ~the gradient of a scalar!, and the symmet-
ric part of Nab is still zero. The 3D Nester condition is sa
isfied.

VII. DISCUSSION

Although the emphasis of the tetrad formalisms in t
literature is on evolving spacetimes with physically defin
flows, we think a tetrad formalism may be useful for vacuu
numerical calculations of black hole spacetimes. The te
formulation we have presented, based on that of Estabr
Robinson, and Wahlquist@3#, allows control of the evolution
of the timelike congruence through either dynamic or fix
gauge conditions onaa andva . The lapse and shift we hav
introduced allow for a completely arbitrary evolution of th
coordinates with minimal complication of the formalism
Furthermore, since the variables evolved are defined rela
to the orthonormal frames, the metric is the Minkowski m
ric and there are no nonlinearities in the equations associ
with the inverse metric. The system of equations based
coordinate derivatives is symmetrizable hyperbolic, thou
admittedly more complicated than the quasi-FOSH sys
based on directional derivatives. Finally, the variab
Nab , Kab , aa and va are all scalars, so derivatives of th
shift only appear in the evolution equations forBa

k . We have
successfully implemented this tetrad formalism for 1D c
liding gravitational plane waves@32#, where it results in sub-
stantially better accuracy and stability compared with o
calculations in the 311 framework@2#.

There are still important issues to be worked out in or
to apply this tetrad formalism to 3D black hole codes. Fir
one must deal with the complications that arise when evo
ing the congruence as well as the hypersurface. The con
ence stays timelike as long as the acceleration is boun
however, in order for the hypersurfaces to remain space
the condition AaAa,1 must be satisfied at all times.
AaAa51, the system breaks down completely. The hypers
faces become null, causing the 311 lapse to blow up. In
addition, the coordinate equations become singular~see Ap-
pendix B!. AaAa can be kept small by an adjustment of t
lapse as the calculation proceeds. Such a resetting of
lapse invalidates theorems which bound the growth of
solution based on the symmetrizable hyperbolic structure
the system, but does not affect other advantages of the
perbolic formulation, such as dealing with boundary con
tions.

Second, attaining a stationary solution at late times
general 3D black hole numerical calculations may be pr
lematic in a tetrad formulation. Such solutions are potentia
desirable for long-term stability. With bounded accelerati
congruence world lines just outside the apparent horizon
necessarily cross the horizon and be trapped by the b
hole. World lines further out may actually accelerate outw
relative to a static or stationary observer. While a shift a
justed just right may keep grid stretching under control
spite of this, the adjustment will have to be time-depend
except for very special initial conditions on the congruen
08401
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Knowing what these special initial conditions are requir
knowing the whole future solution ahead of time, and thus
not practical.

Both of these issues will probably best be addressed
extending the symmetrizable hyperbolic system to allow
a dynamic lapse, to keepAaAa small, and a dynamic shift, to
control grid stretching.
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APPENDIX A: SOURCE TERMS OF TETRAD EVOLUTION
AND QUASI-CONSTRAINT EQUATIONS

The tetrad energy quasiconstraint equation, derived fr
G0050, is

2Dana522vaVa1NcdNcd1
1

2
„KcdKdc2~Tr K !2

2NcdNdc2~Tr N!2
…. ~A1!

The tetrad momentum quasiconstraint equations, obta
from G0a50, are

D1~K221K33!2D2K122D3K13

52«1bcab Vc1«1bcKbdNdc22K1cnc , ~A2!

D2~K111K33!2D1K212D3K23

52«2bcabVc1«2bcKbdNdc22K2cnc , ~A3!

D3~K111K22!2D1K312D2K32

52«3bcabVc1«3bcKbdNdc22K3cnc . ~A4!

Analogous quasiconstraint equations forVa andNab are

2DaVa52aaVa14naVa , ~A5!

D1~N221N33!2D2N122D3N13

522«1bcvbVc12K1cVc2«1bcN1bNc1

12n1~N221N33!, ~A6!

D2~N111N33!2D1N212D3N23

522«2bcvbVc12K2cVc2«2bcN2bNc2

12n2~N111N33!, ~A7!

D3~N111N22!2D1N312D2N32

522«3bcvbVc12K3cVc

2«3bcN3bNc312n3~N111N22!. ~A8!
7-9
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To obtain the true constraint equations from these qu
constraint equations, Eq.~12! must be substituted for eac
appearance ofDa . Then Eq.~56! must be used to eliminat
the terms involvingD0 that have been introduced. The tru
constraints are only needed to check accuracy as the sol
evolves, once consistent initial data is obtained.

The sources forKab andNab evolution Eqs.~39! and~40!
are

S_Kab5aaab1«bcd~2Nacad1Kacvd!1«acdKcbvd

1
1

2
«ad f«bce~KdcK f e2NdcNf e!1~Tr N!Nab

2NcaNcb2KacKcb12vbVa , ~A9!

S_Nab52aavb1«bcd~Kacad1Nacvd!1«acdNcbvd

1«ad f«bceNdcK f e2~Tr N!Kab1NcaKcb2KacNcb

12abVa . ~A10!
08401
i-
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APPENDIX B: DETAILS OF COORDINATE EQUATIONS

In this appendix, we expand Eq.~56!. Because of the
block diagonal structure of theCa andMa matrices, it is only
necessary to work with one set of eight variables. We will
the free indexd51, 2, or 3~for the first, second, and third
set of eight variables in the vectorq!, i.e.

qd5~N1d ,N2d ,N3d ,ad ,K1d ,K2d ,K3d ,vd!. ~B1!

So as to include a nonzero shift with minimal notation, w
useD0 to represent the partial derivatives in Eq.~13!. Then
we can write Eq.~56! as

D0qd1@Cblock
1 B1

k1Cblock
2 B2

k1Cblock
3 B3

k#
]qd

]xk
5Sd ,

~B2!

where
Cblock
1 5

1

12AaAa 3
A1 2A2 2A3 0 0 0 0 21

A2 A1 0 2A3 0 0 1 0

A3 0 A1 A2 0 21 0 0

0 A3 2A2 A1 1 0 0 0

0 0 0 1 A1 2A2 2A3 0

0 0 21 0 A2 A1 0 2A3

0 1 0 0 A3 0 A1 A2

21 0 0 0 0 A3 2A2 A1

4 , ~B3!

Cblock
2 5

1

12AaAa 3
A2 A1 0 A3 0 0 21 0

2A1 A2 2A3 0 0 0 0 21

0 A3 A2 2A1 1 0 0 0

2A3 0 A1 A2 0 1 0 0

0 0 1 0 A2 A1 0 A3

0 0 0 1 2A1 A2 2A3 0

21 0 0 0 0 A3 A2 2A1

0 21 0 0 2A3 0 A1 A2

4 , ~B4!

Cblock
3 5

1

12AaAa 3
A3 0 A1 2A2 0 1 0 0

0 A3 A2 A1 21 0 0 0

2A1 2A2 A3 0 0 0 0 21

A2 2A1 0 A3 0 0 1 0

0 21 0 0 A3 0 A1 2A2

1 0 0 0 0 A3 A2 A1

0 0 0 1 2A1 2A2 A3 0

0 0 21 0 A2 2A1 0 A3

4 , ~B5!

and
7-10



Sd5
1

12AaAa 3
A3S_K2d2A2 S_K3d1S_N1d2A1 S_vd

2A3S_K1d1A1 S_K3d1S_N2d2A2 S_vd

A2S_K1d2A1 S_K2d1S_N3d2A3 S_vd

S_ad1A1 S_K1d1A2 S_K2d1A3 S_K3d

A1S_ad1S_K1d2A3 S_N2d1A2 S_N3d

A2S_ad1S_K2d1A3 S_N1d2A1 S_N3d

A S_a 1S_K 2A S_N 1A S_N
4 . ~B6!

g

al

the
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3 d 3d 2 1d 1 2d

2A1S_N1d2A2 S_N2d2A3 S_N3d1S_vd

The expressions forS_N1d , S_N2d , S_N3d , S_K1d , S_K2d , S_K3d in Eq. ~B6! are obtained from Eqs.~A9! and ~A10!.
Those for S_ad andS_vd are from either Eqs.~44! or Eqs.~47!.

The eight eigenvectors of the arbitrary linear combinationba Cblock
a consist of four pairs of left and right-propagatin

modes. Each pair can be chosen to involve only one of the four variablesK1d , K2d , K3d , vd . For propagation in thexk

coordinate direction,ba5Ba
k . As in Sec. IV, we simplify notation by usingb and A to denote the 3-vectors in the spati

orthonormal frame with componentsba and Aa . Then thevd eigenvectors, normalized sovd5b•b5ubu2, haveNbd5@b
3(b3A)#b6bbAubu22ub3Au2, andad50. TheKad eigenvectors, normalized soKad5ubu2, haveNbd5«abc(@b3(b3A)#c

6bcAubu22ub3Au2) and ad52(@b3(b3A)#a6baAubu22ub3Au2). The upper sign on the square root corresponds to
upper sign in Eq.~59! for the eigenvalues. Note thatNad is zero in theKad eigenvectors.
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