AMO Physics at UBC

Open House, March 21 2014

Canadian Centre for Research on Ultra-Cold Systems

AMPEL (AMO + Condensed matter) (Advanced Materials and Process Engineering Lab)

Canadian Centre for Research on Ultra-Cold Systems

Ultra-fast optics and coherent control

Valery Milner (E): femtosecond control of atoms and molecules David Jones (E): femto-second frequency combs and EUV generation

Quantum gases

Kirk W. Madison (E) : quantum gases (atoms & molecules) Fei Zhou (T) : many-body quantum mechanics with atoms Roman Krems (T / Chem) : ultra-cold chemistry Takamasa Momose (E) : cold molecules Edward Grant (E / Chem) : ultra-cold plasmas

AMPEL : Advanced Materials and Process Engineering Lab

Photonics of micro and nano-structures Jeff Young (E): photonic band-gap materials and quantum dots

photonic band-gap material

TRIUMF : Canada's national lab for particle and nuclear physics Trapping of radioactive species John A. Behr (E): laser cooling of neutral atoms Jens Dilling (E): ion traps for radioactive isotopes

Milner Research Group

Control and Study of Molecular Dynamics with Shaped Laser Pulses

Extreme Rotational States

Super-Fast Rotation

Jones Group (AMO + Condensed Matter)

XUV femtosecond, time-resolved studies of correlated electron systems using Angle Resolved Photo-Emission Spectroscopy (APRES) with A. Damascelli and S. Burke

We have developed a world-unique femtosecond XUV source at UBC enabling a study of electron/phonon dynamics across an unprecedented range of quantum materials and electron momentum for truly *complete* studies of:

- Topological insulators (Jones/Damascelli)
- High T_c superconductors (Jones/Damascelli)
- Metal ligand dyes for next generation solar cells (Jones/Burke/Schiffrin)

Opportunities:

- Further laser development (MSc thesis projects)
- Ultrafast spectroscopy studies of materials (MSc and PhD thesis projects)

Momose Research Group

Development of various molecular decelerators and traps towards the first production of quantum gases of molecules and the study of ultracold chemistry (interstellar chemistry)

Zeeman decelerator

Superconducting cavity MW decelerator

Counter rotating nozzle

Photoassociation

Development of a new laser and optical detection system for ALPHA@CERN and UCN@TRIUMF

Madison Research Group

Quantum gases and quantum sensors with cold atoms and molecules

Madison Research Group

Quantum gases and quantum sensors with cold atoms and molecules

Madison Research Group

Quantum gases and quantum sensors with cold atoms and molecules

MOLECULAR QUANTUM GAS

Jones/Madison/Momose (AMO for CPT tests)

Participation in International Ultra-Cold Neutron Collaboration (Japan, Canada, USA)

Goal is to measure the (hopefully zero) electric dipole moment of neutrons

Jones/Madison/Momose (AMO for CPT tests)

