Astronomy and Astrophysics at UBC

Astronomy Faculty:

Aaron Boley: Planetary Science Brett Gladman: Planetary Science Mark Halpern: Cosmology Gary Hinshaw: Cosmology Jeremy Heyl: Compact Objects Paul Hickson: Galaxies, Instrumentation Jaymie Matthews: Extrasolar Planets Bill McCutcheon: Interstellar Medium Harvey Richer: Stellar Populations Douglas Scott: Large Scale Structure Kris Sigurdson: Particle Astrophysics Ingrid Stairs: Pulsars and Gravity Ludovic van Waerbeke: Weak Lensing Jasper Wall: Radio Galaxies www.astro.ubc.ca

Photo: Alma as seen from the Atacama Cosmology Telescope. Chile

The Solar SystemPlanet formation and evolutionExtra-solar planets

Modeling of how particles are altered as they pass through a bow shock connects properties of meteroites to their history and that of the solar system

1000 ⁿ

800

600 400

200

Tempera

Search for and detection of Kuiper belt objects provides a data set from which the dynamic history fo the solar system can be inferred

Figure 1. MOST 2012 light curve after de-correlation of magnitudes from sky background and x and y pixel position, and the running average correction for straylight variations at the MOST orbital period.

Figure 2. 2011 and 2012 photometry phased at the orbital period of 55 Cnc e and averaged in 5-min phase bins. The red line is the best-fitting transit model without a secondary eclipse parameter, based on the values in column 2 of Table 1. See Section 3 for details

Harvey Richer Jeremy Heyl Stellar Populations

Some of the deepest images ever made with Hubble lead to new determinations of stellar ages and new understanding of formation dynamics

Harvey Richer

Winner of the Beals Award for Outstanding achievement in Research for 2013-2014

Ingrid Stairs, Jeremy Heyl

Pulsar Astrophysics

- •Pulsar searches and high precision timing
- Tests of Relativity
- •Binary stellar evolution
- •Mechanical properties of neutronstar crusts
- •Birthrate of magnetars

LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES

Nano-grav is a program to search for very low frequency (f~1/y) Gravitational radiation by timing many pulsars.

FIG. 1.— Overview of timing residuals for all sources, showing observational cadence and coverage during the five-year time span. The gap in 2007 was due to an extended maintenance period at both telescopes. The full scale of the y-axis is 10 μ s in all cases.

Physical Cosmology:

Mark Halpern, Gary Hinshaw, Douglas Scott,

Kris Sigurdson, Ludo van Waerbeke

CHIME: Halpern Hinshaw Sigurdson,

- Thirty Meter Telescope
 - Science Advisory Committee
 - Adaptive optics system
 - Sodium LIDAR studies
- Other Projects
 - LZT 6-m telescope
 - Robotic telescope in Chile
 - Site testing in the Arctic

