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Finite difference numerical methods will be used to investigate critical phenomena in spherically
symmetric gravitational collapse of an abelian gauge, magnetic ansatz SU(2) Yang-Mills field and
a massless scalar field minimally coupled to gravity. We wish to confirm the existence and univer-
sality of critical solutions for different families of initial data, which exhibit time-repeating spatial
structure, and the power-law mass scaling of black holes. With an appropriate choice of coordi-
nates, the geometry is specified by only two functions; these are to be solved for, along with the
equations of motion of each field. The resultant coupled partial differential equations will be solved
by use of finite difference approximations, employing techniques such as adaptive mesh refinement
as necessary for computational efficiency.

I. MOTIVATION

A generic, isolated system acting under general relativ-
ity evolves on a long time scale based on the competition
between the dispersive effects of the kinetic energy of the
system and its gravitational self-attraction. With mini-
mal gravitational interaction, a system will tend to dis-
perse to infinity. Systems with strong gravitational self-
interaction will tend to collapse, forming a black hole. A
binary system of two black holes orbiting each other, for
example, will also collapse into a single black hole, due
to emission of gravitational waves [16].

Historically, the model problem for critical collapse
consisted of a massless scalar field in spherical symmetry.
A massless scalar field corresponds to radiation propa-
gating at the speed of light. The dynamics of the so-
lution depend greatly on the initial radial distribution
of the scalar field, with large qualitative differences be-
tween weak and strong (roughly, low and high energy
density, respectively) initial data. With sufficiently weak
initial data, the system disperses, and evolves into an in-
creasingly flat spacetime [10]. However, with sufficiently
strong initial data, the system collapses into a black hole,
with very little radiation dispersing to infinity [11]. The
phenomenon of critical behaviour in gravitational collapse
was found through investigation of initial data with en-
ergy densities between the aforementioned limits. There
are three principle features of critical behaviour, here-
after described.

Critical behaviour arises from consideration a family of
initial data parameterized by p. For example, the initial
data could be a Gaussian distribution, while the parame-
ter p could be the amplitude or width of the distribution.
In general, p is chosen to scale with the energy density or
strength of gravitational self-interaction of the field, so
smaller p limit to weak initial data, and larger p limit to
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strong initial data with the behaviour discussed above.
The hallmark of critical behaviour is the existence of a
it critical parameter value p∗ that bisects the range of p,
with black holes forming for p > p∗ [6].

The first feature of critical behaviour is universality.
This means that the behaviour of the critical solution for
p = p∗ is unique, up to rescaling of units, across different
families of initial data. Figure 1 shows the universality
of a near-critical solution with a massless scalar field as
the matter source. Each of the four solutions evolve with
identical profiles over time, despite being given different
families of initial conditions.

FIG. 1: Universality of a near-critical solution of a massless
scalar field. At each time coordinate τ is a group of four dif-
ferent solutions of a massless scalar field. Each profile has a
different family of initial data, with scaling chosen for each
family to maximize agreement at the earliest τ . The consis-
tent evolution shows the universality of the critical solution,
independent of its initial form.

The second feature of critical behaviour is called scale
echoing. The critical solution φcrit(r, t) is invariant under
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a certain scaling of both space and time, namely

φcrit(r, t− t∗) = φcrit(e∆r, e∆(t− t∗)), (1)

for t < t∗, with t∗ the time after which all scale echoing is
completed. Here ∆ is a dimensionless parameter that is,
like the critical solution itself, family-independent. Fig-
ure 2 shows this behaviour for a near-critical solution of
a massless scalar field, where the profile is identical to
one at a time e∆ closer to t∗, but on a spatial scale e∆

smaller.

FIG. 2: Scale echoing property of a near-critical solution of
a massless scalar field. The curve marked with solid circles
is on a spatial scale e∆ρ ≈ 30 times smaller than the curve
marked by open squares, but is at a time e∆τ ∼= e∆ρ closer
to the time when the ‘echoing’ behaviour ceases. The two
profiles agree under this specific scaling.

The third and perhaps most interesting feature of crit-
ical behaviour is the scaling of the black hole mass with
the parameter p. In the region p > p∗, where black holes
form, it is found that the mass of the black hole, MBH,
varies as

MBH = cf |p− p∗|γ . (2)

Here, γ is a second family-independent dimensionless pa-
rameter; only the scaling factor cf depends on the family
of initial data. This is referred to as type II critical phe-
nomena, where black holes of arbitrarily small mass can
be created. Figure 3 shows the mass scaling relation-
ship in type II black hole formation for a massless scalar
field. The identical slopes seen for all three types of initial
data indicates the same power law growth of the black
hole mass with parameter p, regardless of the form of the
initial data.

There is also a classification of type I critical behaviour,
characterized by the creation of a minimum mass black
hole at the critical value of the parameter p∗. Instead
the lifetime of the solution, τ0, the length of time that
it corresponds to the critical solution, obeys the scaling
relationship

τ0 = df |p− p∗|σ. (3)

As usual, σ is family independent. In type I behaviour,
the near-characteristic solutions are invariant under time
translations rather than time and space rescaling; thus,
they are either static or period. This behaviour has been
observed, for example, in the collapse of a massive scalar
field [4].

FIG. 3: Black hole mass scaling in type II gravitational col-
lapse of a massless scalar field. The black hole mass variation
with the difference of the initial data parameter p from the
critical value p∗ is plotted on a log-log scale. Each of the three
markers corresponds to a different type of initial data. Each
family of markers is plotted so as to normalize the domain
and place the smallest-mass black hole at the origin.

As with the proposed research, much of the investi-
gation of critical phenomena has been done in spheri-
cal symmetry. However, critical behaviour is not merely
an accident of the dynamics of a spherically symmetric
massless scalar field. Critical behaviour of the massless
scalar field has been documented in four and five spatial
dimensions [12]. Most investigations, however, assume
a matter content different from a massless scalar field.
Among these are massive scalar fields, scalar fields cou-
pled to electromagnetism, perfect fluids, and Yang-Mills
fields, all of which generate critical behaviour. The few
investigations in axial symmetry suggest that critical be-
haviour is more general than spherical symmetry [1, 8].

In this investigation we focus on the critical behaviour
of Yang-Mills fields – in particular, an abelian gauge,
magnetic ansatz SU(2) field – along with a massless scalar
field, minimally coupled to gravity. This is a simple
model that will be used to explore the possible dynam-
ics and phenomena that can arise in the collapse of a
non-abelian gauge field. Gauge theories enforce not only
global symmetries under certain transformation, but also
ask for symmetries to hold locally as well. The SU(2)
Yang-Mills field is a canonical example of a field in such
a theory, while the abelian gauge magnetic ansatz is a
further simplification, made to capture the essential dy-
namics while keeping the system easy to describe.
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II. THEORY

Most numerical work in relativity decomposes the
spacetime into the temporal dimension and spatial di-
mensions. The most often used formalism is called the
3+1 ADM formalism, first seen from Arnowitt, Deser
and Misner [2]. This views the spacetime as a family
of three-dimensional spacelike hypersurfaces. Since ordi-
nary matter moves along timelike curves, its trajectory
will be given by a unique position along each hypersur-
face. This formalism will generate the spacetime and
matter field as an initial value problem, once a particu-
lar initial hypersurface is completely characterized.

In relativity, the metric provides infinitesimal distances
between neighbouring points in spacetime, thus describ-
ing its geometry. The most general time-dependent met-
ric under spherical symmetry can be written [14] as

ds2 = (−α2+a2β2)dt2+2a2βdtdr+a2dr2+r2b2dΩ2, (4)

with α, β, a and b functions of r and t, and

dΩ2 = dθ2 + sin2 θdϕ2. (5)

Here, θ and ϕ comprise the usual set of angles in spherical
coordinates. It is convenient to adopt polar and areal
coordinates, with β = 0 and b = 1 [3]. This simplifies the
metric to

ds2 = −α2dt2 + a2dr2 + r2dΩ2. (6)

This makes the hypersurfaces of the 3+1 formalism nor-
mal to the t coordinate. Furthermore, the coordinate r
provides a measure of the proper surface area in this case,
with A = 4πr2.

Under the imposition of spherical symmetry, the choice
of metric (6), and the particular assumptions regard-
ing the SU(2) field (namely, abelian gauge and magnetic
ansatz), it happens that one can view the matter content
as a single function W (r, t), which acts analogous to a
potential [7]. There is an associated Lagrangian scalar

LM = −
(

gµν∇µW∇νW

r2
+

1
2

(1−W 2)2

r4

)
. (7)

The by the principle of minimal coupling, one can picture
the system as being given by a total Lagrangian which is
the sum of the free gravitational Lagrangian Lg and the
matter Lagrangian LM ,

L = Lg + LM =
√
−g (R + LM ) , (8)

with R the Ricci scalar, and g the determinant of the
metric (6). In minimally coupling another field – like the
proposed massless scalar field – to the system, one would
add a Lagrangian scalar Lφ to (8) that describes the new
field.

The Einstein equations governing the geometric vari-
ables (metric coefficients) a and α are recovered by ex-
tremizing the action with respect to variations in a and

α, after suitable definition of the stress-energy tensor Tµν

that satisfies local conservation. The equations of motion
are given by extremizing the action with respect to vari-
ations in the specific field [5]. Since minimal coupling as
in (8) is linear, extremizing the action with respect to
variations in a specific field will yield the same equations
of motion regardless of any other couplings to the sys-
tem. Each field evolves solely due to the geometry of the
spacetime and its equation of motion; the geometry itself
evolves based on the matter content – namely, the fields
that have been coupled.

Solving the equations of motion for the system given
by the Lagrangian (8) can be reduced to solving a system
of partial differential equations for the metric coefficients
and the derivatives of the Yang-Mills potential:

Φt =
(α

a
Π

)
r
, (9)

Πt =
(α

a
Φ

)
r
+

aα

r2
W (1−W 2), (10)

0 =
ar

a
+

a2 − 1
r2

(11)

−1
r

(
Φ2 + Π2 +

a2

2r2
(1−W 2)2

)
,

0 =
αr

α
− a2 − 1

r2
(12)

−1
r

(
Φ2 + Π2 − a2

2r2
(1−W 2)2

)
,

where

Φ = Wr, (13)

Π =
a

α
Wt, (14)

so that

W (r, t) = W0 +
∫ r

0

Φ(x, t)dx (15)

describes the Yang-Mills field.
These equations are subject to the usual initial condi-

tions and boundary conditions, but also regularity con-
ditions at the coordinate boundary r = 0. Because the
Yang-Mills field has two vacuum states, W = ±1, then we
may choose to set W (0, t) = W0 = 1, with W (∞, 0) = ±1
following from that choice [7]. Specifying the initial con-
ditions involves specifying W (r, 0) with W (0, 0) = 1. The
regularity conditions imply a(0, t) = 1, ar(0, t) = 0, and
αr(0, t) = 0. We have further freedom to specify a bound-
ary condition that has t measuring the proper time of
observers at constant r, as r →∞.

The SU(2) Yang-Mills field, coupled only to gravity,
has been studied and displays all behaviour characteris-
tic of critical phenomena [7]. In particular, it displays
both type I and type II black hole formation. Figure 4
shows a schematic repesentation of the type of critical
behaviour that could occur from a general family of ini-
tial data with two parameters p1 and p2. Either type
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of black hole formation could occur depending on the
curve followed in parameter space (p1, p2). This provides
the encouragement to look for even more interesting be-
haviour when the SU(2) field is minimally coupled along
with a massless scalar field, in particular in the region of
parameter space accessible from types I and II collapse.

FIG. 4: Schematic representation of type I and type II black
hole formation in the collapse of an SU(2) Yang-Mills field.
For certain two-parameter families of initial data, there is a
critical line OO′ separating black hole formation from none,
and a critical point C on that line separating the different
types of critical behaviour. The overlap of type I and II crit-
ical behaviour indicates different behaviour of solutions ap-
proaching from the area of parameter space where no black
holes form, depending on the direction of approach.

III. DETAILS OF PROPOSED CALCULATION

We aim to solve the system of partial differential equa-
tions (9-12) through the use of finite difference approxi-
mations. These methods replace the continuum solutions
u with a discrete solutions û. If the solution is given by
a system of partial differential equations represented by
Lu = f , with f some function and L some differential op-
erator, then we aim to solve a discretized system L̂û = f̂ .
We take the solutions û given on some uniform grid in
the coordinates r, t, so that f̂ may be evaluated exactly
at the grid points, and we seek some discretization L̂ of
L.

A finite difference operator, L̂, is a weighted sum of
the discretized solution û. In the one-dimensional single
function case we may write this as

L̂ûi = . . . + a−1ûi−1 + a0ûi + a1ûi+1 + . . . (16)

with an constants depending on L̂. The spacing between
the grid points xn (at which we find un) is a constant h.
If we assume a Taylor expansion of u about xi, then after

replacing the ûn in (16) by the expansion of u evaluated
at xn, and rearranging terms, we get

Lûi = u (. . . + a−1 + a0 + a+1 + . . .)
+ u′h (. . .− 2a−2 − a−1 + a1 + 2a2 + . . .)

+ u′′
h2

2
(
. . . + 22a−2 + a−1 + a1 + 22a2 + . . .

)
+ . . . (17)

From this, one may make appropriate choices of the an

in order to obtain the kth order derivative by letting the
sum of coefficients in front of u′, ... , u(k−1) to be 0, and
the sum of coefficients in front of u(k) to be k!

hk . One
may furthermore obtain this accurate to the lth order by
requiring the sum of coefficients in front of u(k+1), ... ,
u(k+l) to be 0 as well [15].

Following this procedure, one may find an appropriate
finite difference operator L̂ for the system, which yields
an algebraic system of equations over the grid. In general,
given our view of an initial value problem, we will be
determining the solution on the spatial grid at successive
time steps. In most cases, however, the solution at some
spatial grid point xJ at time step n + 1 will depend not
only on the solution up to the previous time step n, but
also on other spatial locations at the time step n + 1. In
order to solve these coupled algebraic equations, one may
need to use iterative methods, the choice of which could
greatly impact the efficiency of the computation.

The technique of Adaptive Mesh Refinement (AMR)
will be considered in order to produce a precise solution
where it is needed, without using an unnecessarily fine
mesh everywhere. The AMR technique uses a hierarchy
of grid coarseness, and in different sections of the spatial
domain, evaluates the discrete solution û on a grid of
a certain coarseness. The coarseness of the grid can be
increased for a particular region of the spatial domain if
doing so makes a sufficiently small change to the solution,
or decreased if further resolution benefits the solution.
The coarseness of the grids may be changed throughout
the course of the computation, perhaps periodically after
a certain number of time steps. This allows the accuracy
of a fine grid precisely when and where the evolution
demands it. Furthermore, this avoids the complication
of choosing appropriate finite difference operators for a
non-uniform grid, a considerably more difficult task than
for the case of a uniform grid.

In order to detect the formation and mass of black
holes, it is convenient to define the mass aspect function
m(r, t) by

a2(r, t) =
(

1− 2m(r, t)
r

)−1

. (18)

Then if a black hole is formed in our chosen coordinates,
the quantity 2m

r rapidly asymptotes to 1 at some value
of r = RB, the radius of the black hole [6]. Also, the
mass of the black hole is given by MB = RB

2 . This allows
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convenient detection of black hole formation and inves-
tigation of critical behaviour, despite the fact that our
choice of coordinates becomes singular when a black hole
forms.

IV. RESOURCES LIST

Imposing the condition of spherical symmetry yields
a computation far less resource intensive than one even
with cylindrical symmetry. Spherical symmetry reduces
the problem to a single spatial dimension. This yields a
number of grid points, N , on the order of L

h , where h is
the grid point spacing and L the size of the spatial do-
main. However, in n spatial dimensions the grid size will
be on the order of Nn, meaning there are Nn−1 times
as many grid points to update every time step. Further-
more, imposing spherical symmetry means great simpli-
fications to Einstein’s equations, reducing the problem
to only two metric components. This puts the bulk of
the work into solving the equations of motion for the
matter fields. The vn cluster at UBC will be used for
the majority of the computations. As outlined above,
the computational requirements will be rather minimal,
and many of the computations may be reasonably per-
formed on a personal computer [9]. In contrast, the fully
three-dimensional case is still too resource intensive to be
solved to reasonable accuracy [13].

V. PLANNED SCHEDULE

Much of the background theory and numerical meth-
ods will be analogous to the case of collapse problems

with a single massless scalar field as a matter source. The
more complicated nature of the Yang-Mills field, com-
bined with the additional coupling of a massless scalar
field, increases the size and complexity of the system of
partial differential equations that we are solving. How-
ever, the spirit of the computation is the same. With this
in mind, we propose the schedule given in table I.

Date Goal

December Derivation of equations of motion com-
pleted, and choice of coordinates made.
Initial, boundary and regularity conditions
derived.

Mid-January Numerical solution to the massless scalar
field collapse completed. Choice of numeri-
cal scheme made, based on results of mass-
less scalar field collapse.

February Code for full problem completed.
Late February Simulations run, and analysis of critical be-

haviour completed.
Mid-March Thesis completed, subject to final revisions.

TABLE I: Planned Schedule
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