
1 Equations of Motion

We want to take the first-order equations of motion

Φ̇ =
(α

a
Π

)′
(1)

Π̇ =
(α

a
Φ

)′
+

aα

r2
W (1−W 2) (2)

a′

a
+

a2 − 1
2r

− 1
r

(
Φ2 + Π2 +

a2

2r2
(1−W 2)2

)
= 0 (3)

α′

α
− a2 − 1

2r
− 1

r

(
Φ2 + Π2 − a2

2r2
(1−W 2)2

)
= 0 (4)

ȧ =
2α

r
ΠΦ (5)

Φ = W ′ (6)

Π =
a

α
Ẇ , (7)

and write them as second-order in W . This is achieved somewhat easily by
using the formula for Π̇, so

˙(a

α
˙

)
W =

(α

a
W ′

)′
+

aα

r2
W (1−W 2) (8)

gives the equation for W. However, α and a become even more tricky than
before, since we have

a′

a
+

a2 − 1
2r

− 1
r

(
W ′2 +

a2

α2
Ẇ 2 +

a2

2r2
(1−W 2)2

)
= 0, (9)

α′

α
− a2 − 1

2r
− 1

r

(
W ′2 +

a2

α2
Ẇ 2 − a2

2r2
(1−W 2)2

)
= 0. (10)

So if we are considering a three-level difference scheme, there are a few
problems that we need to consider.

1. The presence of the (a
α)t term in (8) after applying the product rule.

Without it we could explicitly find Wn+1 knowing the n, n−1 time levels.
But with it, we need to know an+1

j and αn+1
j to find Wn+1

j . This would
seem to imply that we need to solve for alpha and a iteratively at each
time step along with W . I know RNPL solves for W iteratively because
we gave it explicit residuals, but will it do the same for α and a? It seems
like the answer is no, but then in what order does it solve things in?

2. The Hamiltonian constraint and slicing condition are now coupled to-
gether. There are two suggested ways to approach this:

1

(a) Iterate between the two. With a good guess for α, the equation
for a has the exact same form (assuming Ẇ is somehow known).
The equation for α is now more tricky to solve, having an α−2 term
appearing. Appropriate changes to the slicing condition solver would
need to be made.

(b) Solve the two of them simultaneously, step by step. α may be rescaled
afterwards to satisfy the boundary conditions. This also requires
fairly significant changes to the HC solver.

3. Ẇ now appears in the afforementioned constraint equations, which may be
gotten around by applying the conditions at an in-between time level n+ 1

2 ,

which is probably better than using a differencing like ˙Wn+1
j =

W n+1
j −W n

j

∆t .

2 Three-Level Difference Scheme

2.1 Implementation

In evaluating (8), we look to evaluate the quantity λj =
(

aj

αj
Ẇj

)
at time levels

n + 1
2 , n− 1

2 , so that we approximate

λ̇j ≈
λ

n+1/2
j − λ

n−1/2
j

∆t
. (11)

We’ll let q = a
α so λ = qẆ , and it turns that we’re okay if we use

λ
n+ 1

2
j = q

n+1/2
j

Wn+1
j −Wn

j

∆t
(12)

and similarly at n− 1
2 .

I’ve worked it out on paper and have shown that using q
n+1/2
j =

qn+1
j +qn

j

2

gives the O(h2) expression for λ̇ so we have that

λ̇n
j =

[
q

n+1/2
j (Wn+1

j −Wn
j)− q

n−1/2
j (Wn

j −Wn−1
j)

]
/(∆t)2 + O(h2), (13)

where we have the governing equation for W,

λ̇n
j =

[
(qn

j+1 + qn
j)(Wn

j+1 −Wn
j)− (qn

j + qn
j−1)(W

n
j −Wn

j−1)
]
/(2∆r)2+

an
j αn

j

r2
j

Wn
j (1− (Wn

j)2) + O(h2). (14)

The discretization of ′ follows exactly like that of .̇

2

2.2 Issues

We have an evolution equation that gives us Wn+1
j explicitly, but requires know-

ing a, α at level n+1, or at least q = a
alpha at level n+ 1

2 . a and α are determined
by spatial integration at whatever time level is chosen. Both a′ and α′ depend
on a, α, W and Ẇ at the current indices. Because it’s unfeasible to get Ẇ at
time level n+1, we need to apply the constraint equations at level n+ 1

2 , which
would get us qn+1/2.

If we’re just going to iterate solving these three, the equation for a as men-
tioned has nothing new in the HC solver; at time level n+ 1

2 then Ẇ = W n+1−W n

∆t ,
you plug it in and it (should) all work as before. The equation for α is more
tricky, because we have a 1

α2 that we need to deal with, as in eqn (10).
So we’ll want to put the slicing condition solver in the form of

ln (α)′ + f0 +
f2
α2

= 0 (15)

at some time step, with f0 and f2 as known functions at the spatial grid points
j.

In the previous incarnation of the HC solver we’d have used f0 and f2 at
point j + 1

2 (by taking the average) and then using ajaj+1 as the approximation
for a2, and ln (aj+1)−ln (aj)

∆r as the approximation for ln(a)′ = a′

a .
So I propose we use 1

αjαj+1
as the approximation for 1

α2 that we now need.

3 Summary

I need to know what iterations RNPL does and what iterations I explicitly need
to do. Do everything look okay? Do the HC / SC solver ideas look right? I
hope this is what you were looking for.

3

