Black Hole Critical Phenomena—Results

1 Initial Data Profiles

The basic idea is to choose a family of initial data parametrized by a single variable p and let the
system evolve. Observing the dynamics, we note whether or not the outcome is formation of a
black hole at some future time. We then successively adjust the value of p to the critical value
p* which marks the threshold of black hole formation: if p > p* the system forms a black hole, if
p < p* it does not.

Now, since the scalar field is complex
®=¢1+ide, (1)
its conjugate momentum will also be complex
[l = 11y, +lly, . (2)

In terms of the scalar field and conjugate momenta, electromagnetic coupling parameter e, and
radial metric function a, the electric charge density is explicitly

pQ = —2;1—6 (¢111p, — ¢oIly,) - (3)

Families of initial data can therefore possess a variety of charge density profiles, depending on the
choice of ¢1, ¢, Iy, Iy, and e.

For a given value of e, we choose one of four different families for initial data and tune the free
parameter to its critical value. The four families are tabulated below, and the tuning parameter is
either a1, ag, d1, or ds.

family b1, b2, gy, Iy, pgle #0)
A $1(r,t = 0) = a1 exp(— ((7"—?“1)/51)2% #0
¢pa(r,t = 0) = agexp(—((r —r2)/82)?),
Mg, (r,t = 0) = azexp(—((r — r3)/33)?),
Iy, (7, = 0) = agexp(=((r —r4)/d4)%)
B ¢1(r,t =0) = a1 exp(—((r —r1)/61)?), =0
(]52(7‘,t = 0) = 0,

H¢1 (T,t = 0) = 07
My, (r,t = 0) = agexp(—((r — r4)/0s)?)
C ¢1(r,0) = a; (tanh(r — r1) — tanh(r — d171)), #0
¢2(r,0) = ag (tanh(r — r9) — tanh(r — dars))
Iy, (r,0) = a3 (tanh(r — r3) — tanh(r — 537"33
)

)7
Iy, (r,0) = a4 (tanh(r — ry) — tanh(r — d474)),
D ¢1(r,0) = a1 (tanh(r — r1) — tanh(r — d171)), =0
(}52 (7", 0) = 0,
H¢1 (7", O) = 07

Iy, (r,0) = a4 (tanh(r — ry) — tanh(r — d474)),

2 Results for e =0, mg =0

As expected, we recover Choptuik’s original discretely self-similar and universal solution [1] in the
limit e — 0 and me — O.



3 Results for e 20, mg =0

For relatively small values of e # 0 with me = 0 we again observe a discretely self-similar and
universal solution, but the solution now carries electric charge.

3.1 Discrete Self-Similarity and Universality

The solution represents itself as an infinite series of echoes as the scalar field repeatedly attempts
to collapse to a black hole, but never quite makes it. With each failed attempt some scalar field is
shed, and the succeeding echo occurs on an exponentially smaller spatial scale after an exponentially
shorter interval of time.

The discrete self-similarity of the critical solution is apparent in successive maxima of the
quantity
2m/r = (1 —a™2) + Q,%/(4nr?) , (4)

where ¢ is the radial metric function and @), is the net charge enclosed by a sphere of radius r. For
example, we take the profile of 2m/r at the maximum of its third echo for family A and spatially
rescale it by a factor exp(A), A ~ 3.473. We then find the rescaled profile matches that of the
preceding (second) echo. This result is displayed in the figure below.
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Figure 1: Discrete self-similarity for family A as demon-
strated by spatially rescaling the third echo of 2m/r by
exp(A) and comparing it to the unscaled second echo.

The universality of the solution is manifest in the facts that all critical solutions exhibit like
profiles and that the scaling exponents A are essentially the same for all families.

3.2 Mass and Charge Scaling

As the critical solution is approached from above, the black holes we form are arbitrarily small.
Their masses observe a power-law behavior

In(mpw) = ymIn ((p — p*)/p") + cl, (5)

where cl is a family dependent constant. For family A we find a value -, =~ 0.3849.
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Figure 2: Power-law scaling of the black hole mass mpy as
the critical solution is approached from above for family A.
We find a power 7, =~ 0.3849.

Not only do the black hole masses observe a power-law relationship with respect to the critical
parameter, but so do the black hole charges. The power-law has the functional form

In(@pr) = voIn((p —p")/p*) + 2, (6)

where c2 is another family dependent constant. However, vg > 7., so the black hole sheds charge
more rapidly than mass with each successive echo as the critical solution is approached from above.
For family A we find g ~ 0.8541.

74~0.8541

In(Qg,)

\\‘\\H‘\\H‘HH‘HH‘HH‘HHF

e=1.0, m@:0.0é
family A A
p=a,, p'RR.160x107"
7\\\\‘\\\\‘\\\\‘\\\\‘\\
-5 —-20 —15 —10 -5
In((p = p)/p")

[
(o)
T HH‘\\H‘\\H‘HH‘\H\‘HH‘HH‘HH‘HHL

Figure 3: Power-law scaling of the black hole charge Qg
as the critical solution is approached from above for family
A. We find a power yg ~ 0.8541.



4 Results for e # 0, mg # 0

When the scalar field mass parameter mg is sufficiently larger than zero, the critical solution
ceases to be discretely self-similar. Rather, it becomes periodic—an oscillating perturbed boson
star with nonzero electric charge. This is apparent from the evolution of 2m/r. Figure 4 shows
the maximum of 2m/r in time for family A. Figure 5 shows the location of the maximum of
2m/r for the same evolution. An MPEG animation for a portion of the evolution is available at

http://laplace.physics.ubc.ca/People/petryk/periodic.mpeg .
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Figure 4: Maximum of 2m/r in coordinate time ¢ for family
A shows the critical solution is periodic.
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Figure 5: Location of the maximum of 2m/r as a function
of coordinate time ¢ for family A.
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