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Hydrodynamics in GR

• the stress-energy tensor and mass flux of an ideal fluid is

Tµν = (ρ + P )uµuν + Pgµν

Jµ = ρ0u
µ

• the total energy density
ρ = ρ0(1 + ε)

• equations of motion of the fluid are derived from the conservation laws

Tµν
;ν = 0

Jµ
;µ = 0

• additional equation – equation of state

P = P (ρ0, ε) = (Γ− 1)ρ0ε
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HYDRODYNAMICS IN GR

• for ultrarelativistic fluid the internal energy dominates ε � 1 ⇒ ρ ≈ ρ0ε

P = P (ρ) = (Γ− 1)ρ
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Hydrodynamics in Sperical Symmetry

• we use spherical polar coordinates for the metric

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + r2dΩ2

• primitive variables
u = (ρ, v)

• conservative variables
q = (S, E)

• relation between them
S = (ρ + P )W 2 v

E = (ρ + P )W 2 − P

• the velocity v and the Lorentz factor W are defined as

v =
aur

αut
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HYDRODYNAMICS IN SPERICAL SYMMETRY

W =
1√

1− v2

• equations of motion for the fluid

Ṡ +
1
r2

[
r2α

a
(Sv + P )

]′
= Σ

Ė +
1
r2

[
r2α

a
S

]′
= 0

• the (elliptic) equations for the metric functions a, α

a′

a
= a2

(
4πrE − m

r2

)
α′

α
= a2

(
4πr(Sv + P ) +

m

r2

)
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HYDRODYNAMICS IN SPERICAL SYMMETRY

• the mass function is defined as

m(r, t) =
r

2

(
1− 1

a(t, r)2

)

• in calculations we use new set of conservative variables

Φ = E − S

Π = E + S
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Type II Critical Phenomena for Ultrarelativistic Fluids

• discovered by Choptuik (93) in scalar field collapse, for fluid collapse
investigated by Evans etal , Koike etal, Neilsen etal, Noble etal

• dynamical system with two possible outcomes - BH or empty ST

• initial data are controlled by one tunable parameter p

• end state of evoluton

• for p > p∗ BH
• for p < p∗ empty ST (matter disperses to infinity)

• scaling relation for values of p “close” to the critical value p∗

MBH =|p− p∗|γ

• the scaling exponent is universal
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Continuously Self-Similar Solutions

• the critical solutions happen to be continuously self-similar

• self-similar coordinates

x = log
(
−r

t

)
s = − log (−t)

• self-similar variables
N =

α

aex

A = a2

w = 4πr2a2ρ

v = v

• if we assume CSS solutions then EOM depend only on x ⇒ set of ODEs

M(y)y′ = f(y)

with y = (Nss(x), Ass(x), wss(x), vss(x))T
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Continuously Self-Similar Solutions

• the ODEs can be solved subject to regularity condition at sonic point (x = 0)

det(M(x = 0)) = 0

• the solution is then characterized by a single value v(0)

• v(0) is tuned so that v(x) remains bounded as x → −∞
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Perturbations of the CSS Solutions

• the scaling exponent can be calculated using perturbation theory

• the ansatz is (H is one of {log(N), log(A), log(w), v})

H(x, s) = Hss(x) + εhvar(x, s)

• we choose the eigenmodes of the form

hvar(x, s) = hp(x)eκs κ ∈ C

• κ is not arbitrary — we require that vp does not blow up as x → −∞

• the scaling exponent γ is related to the largest κ

γ =
1
κ
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Limiting CSS Solutions and their Perturbations (Γ → 1)

• as Γ → 1 we observe the following behaviour (k =
√

Γ− 1)

Nss = N̄0e
−x/k

Ass(x) = 1 + Ā(x) k2

wss(x) = w̄(x) k2

vss(x) = v̄(x) k

• for the perturbations we have

Np = N̄p

Ap = Āp

wp = w̄p/k2

vp = v̄p/k
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (Γ → 1)

• we also observe the following dependence

κ = κ̄ + O(k2)

• we can substitute the above expressions into the ODEs and calculate all
the limiting (“barred”) quantities

• the equations for the limiting CSS solution are the equations of a
Newtonian theory

• in particular we can calculate

κ̄ = lim
k→0

κ(k)

• this in turn allows us to calculate the limiting value of the scaling exponent

γ̄ = lim
k→0

γ(k) =
1
κ̄
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (Γ → 1)

Results of the critical exponents calculations

k2 κ γss γfit error(%)
10−2 8.748687152 0.1143028643 0.1148 0.4
10−3 9.386603219 0.1065348110 0.1071 0.5
10−4 9.455924881 0.1057538012 0.1062 0.4
10−5 9.462917038 0.1056756596 0.1062 0.5
10−6 9.463616859 0.1056678451 0.1064 0.7

0 9.463694624 0.1056669768
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LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (Γ → 1)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-6 -4 -2  0  2  4  6

x

Limiting CSS solutions

A(x)

w(x)

10*v(x)

N(x)/500

15



LIMITING CSS SOLUTIONS AND THEIR PERTURBATIONS (Γ → 1)
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Results of Numerical Calculations

• main features:

• high resolution shock capturing method used
• adaptive mesh refinment (AMR) necessary to capture dynamics on

continuously decreasing length scales
• quadruple precision used to tune p up to 30 significant digits
• no “floor” in vacuum regions

• initial data — Gaussian with p ≡ ρ(0)

• simulations performed for k2 = 10−2, 10−3, 10−4, 10−5, 10−6

• critical exponent calculated from subcritical runs

• the order parameter is the maximum of Tµ
µ = 3P − ρ

max(Tµ
µ) = |p− p∗|−2γ
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RESULTS OF NUMERICAL CALCULATIONS

Fitted data for k2 = 0.01
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RESULTS OF NUMERICAL CALCULATIONS

Fitted data for k2 = 10−5
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RESULTS OF NUMERICAL CALCULATIONS

Windowed fits of data for k2 = 0.01
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the density profile ρ
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the a2 − 1 and grid hierarchy in self-similar coordinates
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of the velocity profile v
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RESULTS OF NUMERICAL CALCULATIONS

Evolution of w
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Supercritical collapse

• Harada and Maeda (PRD 63, 2001) suggested that the universal attractor
for collapse of an ultrarelativistic fluid with small Γ− 1 is not a black hole but
a general relativistic Larson-Penston solution (GRLP)

• GRLP is a “pure collapse” self-similar solution (not asymptotically flat)

• Ori and Piran (PRD 42, 1990) showed that the GRLP exists only for
Γ− 1 < 0.036± 0.002 and contains naked singularity for Γ− 1 < 0.0105

• the critical exponents were calculated from subcritical solutions because no
signs of black hole formation were observed

• the AMR code with quadruple precision is an ideal tool to test the
hypothesis

• tests were performed for Γ− 1 = 0.01 and Γ− 1 = 10−6

• generic initial data were taken (no fine tuning)
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SUPERCRITICAL COLLAPSE

• for Γ− 1 = 10−6 the refinment level reached 100 and the central density
reached 1054 (∆r = 10−32)

• for Γ− 1 = 10−6 the refinment level reached 65 and the central density
reached 1038 (∆r = 10−22)

• control supercritical run was performed for Γ− 1 = 0.02 and we observed
2m/r approaching 1, i.e. the formation of a black hole
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SUPERCRITICAL COLLAPSE

Comparison of the supercritical numerical solution and the GRLP solution for Γ− 1 = 0.01
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SUPERCRITICAL COLLAPSE

Comparison of the supercritical numerical solution and the GRLP solution for Γ− 1 = 10−6
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Summary

• we obtained the critical solutions and critical exponents for small values of
Γ− 1 both analytically and numerically

• the numerical solutions agree very well with the analytical calculations

• we calculated the CSS limiting solution (which is the Newtonian limit) and
its perturbations

• we found the limiting value of the scaling exponent

lim
k→0

γ(k) = 0.1056669768

• our calculations seem to confirm the hypothesis of the formation of generic
naked singularities in the collape of matter with the equation of state
P = (Γ− 1)ρ for values of Γ− 1 ≤ 0.01
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