PHYS 410/555 Computational Physics: Solution of Non Linear Equations

 (a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.4)- We will consider two cases

$$
\begin{array}{ll}
\text { 1. } & f(x)=0 \\
\text { 2. } & \mathbf{f}(\mathbf{x})=\mathbf{0} \\
& \text { "1-dimensional" } \\
& \mathbf{x} \equiv\left[x_{1}, x_{2}, \ldots, x_{d}\right] \\
& \mathbf{f} \equiv\left[f_{1}\left(x_{1}, x_{2}, \ldots, x_{d}\right), \ldots, f_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)\right]
\end{array}
$$

1. Solving Nonlinear Equations in One Variable

- We have briefly discussed bisection (binary search), will consider one other technique: Newton's method (Newton-Raphson method).

Preliminaries

- We want to find one or more roots of

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

We first note that any nonlinear equation in one unknown can be cast in this canonical form.

- Definition: Given a canonical equation, $f(x)=0$, the residual of the equation for a given x-value is simply the function f evaluated at that value.
- Iterative technique: Assume $f(x)=0$ has a root at $x=x^{\star}$; then consider sequence of estimates (iterates) of $x^{\star}, x^{(n)}$

$$
x^{(0)} \rightarrow x^{(1)} \rightarrow x^{(2)} \rightarrow \cdots \rightarrow x^{(n)} \rightarrow x^{(n+1)} \rightarrow \cdots \rightarrow x^{\star}
$$

- Associated with the $x^{(n)}$ are the corresponding residuals

$$
\text { Locating a root } \equiv \text { Driving the residual to } 0
$$

- Convergence: When we use an iterative technique, we have to decide when to stop the iteration. For root finding case, it is natural to stop when

$$
\begin{equation*}
\left|\delta x^{(n)}\right| \equiv\left|x^{(n+1)}-x^{(n)}\right| \leq \epsilon \tag{2}
\end{equation*}
$$

where ϵ is a prescribed convergence criterion.

- A better idea is to use a "relativized" δx

$$
\begin{equation*}
\frac{\left|\delta x^{(n)}\right|}{\left|x^{(n+1)}\right|} \leq \epsilon \tag{3}
\end{equation*}
$$

but we should "switch over" to "absolute" form (2) if $\left|x^{(n+1)}\right|$ becomes "too small" (examples in on-line code).

- Motivation: Small numbers often arise from "unstable processes" (numerically sensitive), e.g. $f(x+h)-f(x)$ as $h \rightarrow 0$, or from "zero crossings" in periodic solutions etc.-in such cases may not be possible and/or sensible to achieve stringent relative convergence criterion

Newton's method

- Requires "good" initial guess, $x^{(0)}$; "good" depends on specific nonlinear equation being solved
- Refer to Numerical Recipes for more discussion; we will assume that we have a good $x^{(0)}$, and will discuss one general technique for determining good initial estimate later.
- First consider a rather circuitous way of solving the "trivial" equation

$$
\begin{equation*}
a x=b \quad \longrightarrow \quad f(x)=a x-b=0 \tag{4}
\end{equation*}
$$

Clearly, $f(x)=0$ has the root

$$
\begin{equation*}
x^{\star}=\frac{b}{a} \tag{5}
\end{equation*}
$$

- Consider, instead, starting with some initial guess, $x^{(0)}$, with residual

$$
\begin{equation*}
r^{(0)} \equiv f\left(x^{(0)}\right) \equiv a x^{(0)}-b \tag{6}
\end{equation*}
$$

Then we can compute an improved estimate, $x^{(1)}$, which is actually the solution, x^{\star}, via

$$
\begin{equation*}
x^{(1)}=x^{(0)}-\delta x^{(0)}=x^{(0)}-\frac{r^{(0)}}{f^{\prime}\left(x^{(0)}\right)}=x^{(0)}-\frac{f\left(x^{(0)}\right)}{f^{\prime}\left(x^{(0)}\right)} \tag{7}
\end{equation*}
$$

"Proof":

$$
\begin{equation*}
x^{(1)}=x^{(0)}-\frac{r^{(0)}}{a}=x^{(0)}-\frac{a x^{(0)}-b}{a}=\frac{b}{a} \tag{8}
\end{equation*}
$$

- Graphically, we have

- Summary

$$
\begin{equation*}
x^{(1)}=x^{(0)}-\delta x^{(0)} \tag{9}
\end{equation*}
$$

where $\delta x^{(0)}$ satisfies

$$
\begin{equation*}
f^{\prime}\left(x^{(0)}\right) \delta x^{(0)}=f\left(x^{(0)}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
f^{\prime}\left(x^{(0)}\right) \delta x^{(0)}=r^{(0)} \tag{11}
\end{equation*}
$$

- Equations (9-10) immediately generalize to non-linear $f(x)$ and, in fact, are precisely Newton's method.
- For a general nonlinear function, $f(x)$, we have, graphically

- Newton's method for $f(x)=0$: Starting from some initial guess $x^{(0)}$, generate iterates $x^{(n+1)}$ via

$$
\begin{gather*}
x^{(n+1)}=x^{(n)}-\delta x^{(n)} \tag{12}\\
f^{\prime}\left(x^{(n)}\right) \delta x^{(n)}=r^{(n)} \equiv f\left(x^{(n)}\right) \tag{13}
\end{gather*}
$$

or more compactly

$$
\begin{equation*}
x^{(n+1)}=x^{(n)}-\frac{f\left(x^{(n)}\right)}{f^{\prime}\left(x^{(n)}\right)} \tag{14}
\end{equation*}
$$

- Convergence: When Newton's method converges, it does so rapidly; expect number of significant digits (accurate digits) in $x^{(n)}$ to roughly double at each iteration (quadratic convergence)
- Example: "Square Roots"

$$
\begin{equation*}
f(x)=x^{2}-a=0 \quad \longrightarrow \quad x^{\star}=\sqrt{a} \tag{15}
\end{equation*}
$$

Application of (14) yields

$$
\begin{aligned}
x^{(n+1)} & =x^{(n)}-\frac{x^{(n)^{2}}-a}{2 x^{(n)}} \\
& =\frac{2 x^{(n)^{2}}-\left(x^{(n)^{2}}-a\right)}{2 x^{(n)}} \\
& =\frac{x^{(n)^{2}}+a}{2 x^{(n)}}
\end{aligned}
$$

which we can write as

$$
\begin{equation*}
x^{(n+1)}=\frac{1}{2}\left(x^{(n)}+\frac{a}{x^{(n)}}\right) \tag{16}
\end{equation*}
$$

- Try it manually, compute $\sqrt{2}=1.41421356237$ using 12-digit arithmetic (hand calculator)

Iterate

$$
\begin{aligned}
& x^{(0)}=1.5 \\
& x^{(1)}=\frac{1}{2}(1.5+2.0 / 1.5)=1.41666666667 \\
& x^{(2)}=\frac{1}{2}(1.416 \cdots+2.0 / 1.416 \cdots)=1.41421568628 \\
& x^{(3)}=\frac{1}{2}(1.4142 \cdots+2.0 / 1.4142 \cdots)=1.41421356238
\end{aligned}
$$

Note the quadratic convergence of the method, as advertised.
Alternate Derivation of Newton's Method (Taylor series)

- Again, let x^{\star} be a root of $f(x)=0$, then

$$
\begin{equation*}
0=f\left(x^{\star}\right)=f\left(x^{(n)}\right)+\left(x^{\star}-x^{(n)}\right) f^{\prime}\left(x^{(n)}\right)+O\left(\left(x^{\star}-x^{(n)}\right)^{2}\right) \tag{17}
\end{equation*}
$$

Neglecting the higher order terms, we have

$$
\begin{equation*}
0 \approx f\left(x^{(n)}\right)+\left(x^{\star}-x^{(n)}\right) f^{\prime}\left(x^{(n)}\right) \tag{18}
\end{equation*}
$$

Now, treating the last expression as an equation, and replacing $x^{(n)}$ with the new iterate, $x^{(n+1)}$, we obtain

$$
\begin{equation*}
0=f\left(x^{(n)}\right)+\left(x^{(n+1)}-x^{(n)}\right) f^{\prime}\left(x^{(n)}\right) \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{(n+1)}=x^{(n)}-\frac{f\left(x^{(n)}\right)}{f^{\prime}\left(x^{(n)}\right)} \tag{20}
\end{equation*}
$$

as previously.

2. Newton's Method for Systems of Equations

- We now want to solve

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})=\mathbf{0} \tag{21}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \tag{22}\\
\mathbf{f}=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{d}(\mathbf{x})\right) \tag{23}
\end{gather*}
$$

- Example $(d=2)$:

$$
\begin{align*}
\sin (x y) & =\frac{1}{2} \tag{24}\\
y^{2} & =6 x+2 \tag{25}
\end{align*}
$$

In terms of our canonical notation, we have

$$
\begin{align*}
\mathbf{x} & \equiv(x, y) \tag{26}\\
\mathbf{f} & \equiv\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right) \tag{27}\\
f_{1}(\mathbf{x}) & =f_{1}(x, y)=\sin (x y)-\frac{1}{2} \tag{28}\\
f_{2}(\mathbf{x}) & =f_{2}(x, y)=y^{2}-6 x-2 \tag{29}
\end{align*}
$$

- The method is again iterative, we start with some initial guess, $\mathbf{x}^{(0)}$, then generate iterates

$$
\mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \rightarrow \mathbf{x}^{(2)} \rightarrow \cdots \rightarrow \mathbf{x}^{(n)} \rightarrow \mathbf{x}^{(n+1)} \rightarrow \cdots \rightarrow \mathbf{x}^{\star}
$$

where \mathbf{x}^{\star} is a solution of (21)

- Note: The task of determining a good initial estimate $\mathbf{x}^{(0)}$ in the d-dimensional case is even more complicated than it is for the case of a single equation-again we will assume that $\mathbf{x}^{(0)}$ is a good initial guess, and that $\mathbf{f}(\mathbf{x})$ is sufficiently well-behaved that Newton's method will provide a solution (i.e. will converge).
- As we did with the scalar (1-d) case, with any estimate, $\mathbf{x}^{(n)}$, we associate the residual vector, $\mathbf{r}^{(n)}$, defined by

$$
\begin{equation*}
\mathbf{r}^{(n)} \equiv \mathbf{f}\left(\mathbf{x}^{(n)}\right) \tag{30}
\end{equation*}
$$

- The analogue of $f^{\prime}(x)$ in this case is the Jacobian matrix, \mathbf{J}, of first derivatives. Specifically, \mathbf{J} has elements $J_{i j}$ given by

$$
\begin{equation*}
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}} \tag{31}
\end{equation*}
$$

- For our current example we have

$$
\begin{gathered}
f_{1}(x, y)=\sin (x y)-\frac{1}{2} \\
f_{2}(x, y)=y^{2}-6 x-2 \\
\mathbf{J}=\left[\begin{array}{cc}
\partial f_{1} / \partial x & \partial f_{1} / \partial y \\
\partial f_{2} / \partial x & \partial f_{2} / \partial y
\end{array}\right]=\left[\begin{array}{cc}
y \cos (x y) & x \cos (x y) \\
-6 & 2 y
\end{array}\right]
\end{gathered}
$$

- We can now derive the multi-dimensional Newton iteration, by considering a multivariate Taylor series expansion, paralleling what we did in the 1-d case:

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}\left(\mathbf{x}^{\star}\right)=\mathbf{f}\left(\mathbf{x}^{(n)}\right)+\mathbf{J}\left[\mathbf{x}^{(n)}\right] \cdot\left(\mathbf{x}^{\star}-\mathbf{x}^{(n)}\right)+O\left(\left(\mathbf{x}^{\star}-\mathbf{x}^{(n)}\right)^{2}\right) \tag{32}
\end{equation*}
$$

where the notation $\mathbf{J}\left[\mathbf{x}^{(n)}\right]$ means we evaluate the Jacobian matrix at $\mathbf{x}=\mathbf{x}^{(n)}$.
Dropping higher order terms, and replacing \mathbf{x}^{\star} with $\mathbf{x}^{(n+1)}$, we have

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}\left(\mathbf{x}^{(n)}\right)+\mathbf{J}\left[\mathbf{x}^{(n)}\right]\left(\mathbf{x}^{(n+1)}-\mathbf{x}^{(n)}\right) \tag{33}
\end{equation*}
$$

Defining $\delta \mathbf{x}^{(n)}$ via

$$
\begin{equation*}
\delta \mathbf{x}^{(n)} \equiv-\left(\mathbf{x}^{(n+1)}-\mathbf{x}^{(n)}\right) \tag{34}
\end{equation*}
$$

the d-dimensional Newton iteration is given by

$$
\begin{equation*}
\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}-\delta \mathbf{x}^{(n)} \tag{35}
\end{equation*}
$$

where the update vector, $\delta \mathbf{x}^{(n)}$, satisfies the $d \times d$ linear system

$$
\begin{equation*}
\mathbf{J}\left[\mathbf{x}^{(n)}\right] \delta \mathbf{x}^{(n)}=\mathbf{f}\left(\mathbf{x}^{(n)}\right) \tag{36}
\end{equation*}
$$

- Again note that the Jacobian matrix, $\mathbf{J}\left[\mathbf{x}^{(n)}\right]$, has elements

$$
\begin{equation*}
J_{i j}\left[\mathbf{x}^{(n)}\right]=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\mathbf{x}=\mathbf{x}^{(n)}} \tag{37}
\end{equation*}
$$

- At each step of the Newton iteration, the linear system (36) can, of course, be solved using an appropriate linear solver (e.g. general, tridiagonal, or banded).

General Structure of a Multidimensional Newton Solver

```
x: \(\quad\) Solution vector
res: Residual vector
J: Jacobian matrix
dx: Update vector
\(\mathrm{x}=\mathrm{x}^{(0)}\)
do while \(\|\mathrm{dx}\|_{2}>\epsilon\)
        do \(\mathrm{i}=1\), neq
            res \((\mathrm{i})=f_{i}(\mathrm{x})\)
            do \(j=1\), neq
                \(\mathrm{J}(\mathrm{i}, \mathrm{j})=\left[\partial f_{i} / \partial x_{j}\right](\mathbf{x})\)
            end do
        end do
        \(\mathbf{d x}=\operatorname{solve}(\mathbf{J} \mathbf{d x}=\mathbf{r e s})\)
        \(\mathrm{x}=\mathrm{x}-\mathrm{dx}\)
end do
```

- Consider the nonlinear two-point boundary value problem

$$
\begin{equation*}
u(x)_{x x}+\left(u u_{x}\right)^{2}+\sin (u)=F(x) \tag{38}
\end{equation*}
$$

which is to be solved on the interval

$$
\begin{equation*}
0 \leq x \leq 1 \tag{39}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u(0)=u(1)=0 \tag{40}
\end{equation*}
$$

- As we did for the case of the linear BVP, we will approximately solve this equation using $O\left(h^{2}\right)$ finite difference techniques. As usual we introduce a uniform finite difference mesh:

$$
\begin{equation*}
x_{j} \equiv(j-1) h \quad j=1,2, \cdots N \quad h \equiv(N-1)^{-1} \tag{41}
\end{equation*}
$$

- Then, using the standard $O\left(h^{2}\right)$ approximations to the first and second derivatives

$$
\begin{align*}
u_{x}\left(x_{j}\right) & =\frac{u_{j+1}-u_{j-1}}{2 h}+O\left(h^{2}\right) \tag{42}\\
u_{x x}\left(x_{j}\right) & =\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}+O\left(h^{2}\right) \tag{43}
\end{align*}
$$

the discretized version of $(38-40)$ is

$$
\begin{align*}
\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}+\left(u_{j}\right)^{2}\left[\frac{u_{j+1}-u_{j-1}}{2 h}\right]^{2}+\sin \left(u_{j}\right)-F_{j} & =0 ; j=2 \ldots N-1 \tag{44}\\
u_{1} & =0 \tag{45}\\
u_{N} & =0 \tag{46}
\end{align*}
$$

Note that we have cast the discrete equations in the canonical form $\mathbf{f}(\mathbf{u})=\mathbf{0}$

- In order to apply Newton's method to the algebraic equations (45-46), we must compute the Jacobian matrix elements of the system.
- We first observe that due to the "nearest-neighbor" couplings of the unknowns u_{j} via the approximations (42-43), the Jacobian matrix is tridiagonal in this case.
- For the interior grid points, $j=2 \ldots N$, corresponding to rows $2 \ldots N$ of the matrix, we have the following non-zero Jacobian elements:

$$
\begin{align*}
J_{j, j} & =-\frac{2}{h^{2}}+2 u_{j}\left[\frac{u_{j+1}-u_{j-1}}{2 h}\right]^{2}+\cos \left(u_{j}\right) \tag{47}\\
J_{j, j-1} & =\frac{1}{h^{2}}-\left(u_{j}\right)^{2} \frac{u_{j+1}-u_{j-1}}{2 h^{2}} \tag{48}\\
J_{j, j+1} & =\frac{1}{h^{2}}+\left(u_{j}\right)^{2} \frac{u_{j+1}-u_{j-1}}{2 h^{2}} \tag{49}
\end{align*}
$$

- For the boundary points, $j=1$ and $j=N$, corresponding to the first and last row, respectively, of \mathbf{J}, we have

$$
\begin{align*}
J_{1,1} & =1 \tag{50}\\
J_{1,2} & =0 \tag{51}
\end{align*}
$$

and

$$
\begin{align*}
J_{N, N} & =1 \tag{52}\\
J_{N, N-1} & =0 \tag{53}
\end{align*}
$$

- Note that these last expressions correspond to the "trivial" equations

$$
\begin{align*}
f_{1} & =u_{1}=0 \tag{54}\\
f_{N} & =u_{N}=0 \tag{55}
\end{align*}
$$

which have associated residuals

$$
\begin{align*}
r_{1}^{(n)} & =u_{1}^{(n)} \tag{56}\\
r_{N}^{(n)} & =u_{N}^{(n)} \tag{57}
\end{align*}
$$

- Observe that if we initialize $u_{1}^{(0)}=0$ and $u_{N}^{(0)}=0$, then we will automatically have $\delta u_{1}^{(n)}=\delta u_{N}^{(n)}=0$, which will yield $u_{1}^{(n)}=0$ and $u_{N}^{(n)}=0$ as desired.
- This is an example of the general procedure we have seen previously for imposing Dirichlet conditions; namely the conditions are implemented as "trivial" (linear) equations (but it is, of course, absolutely crucial to implement them properly in this fashion!)
- Testing procedure: We adopt the same technique used for the linear BVP case-we specify $u(x)$, then compute the function $F(x)$ that is required to satisfy (38); $F(x)$ is then supplied as input to the code, and we ensure that as $h \rightarrow 0$ we observe second order convergence of the computed finite difference solution $\hat{u}(x)$ to the continuum solution $u(x)$.
- Example: Taking

$$
\begin{equation*}
u(x)=\sin (4 \pi x) \equiv \sin (\omega x) \tag{58}
\end{equation*}
$$

then

$$
\begin{align*}
F(x) & =u_{x x}+\left(u u_{x}\right)^{2}+\sin (u) \tag{59}\\
& =-\omega^{2} \sin (\omega x)+\omega^{2} \sin ^{2}(\omega x) \cos ^{2}(\omega x)+\sin (\sin (\omega x))
\end{align*}
$$

- We note that due to the nonlinearity of the system, we will actually find multiple solutions, depending on how we initialize the Newton iteration; this is illustrated with the on-line code nlbvp1d.

3. Determining Good Initial Guesses: Continuation

- It is often the case that we will want to solve nonlinear equations of the form

$$
\begin{equation*}
\mathbf{N}(\mathbf{x} ; \overline{\mathbf{p}})=0 \tag{60}
\end{equation*}
$$

where we have adopted the notation $\mathbf{N}(\cdots)$ to emphasize that we are dealing with a nonlinear system. Here $\mathbf{x}=\left(x_{1}, x_{2} \ldots x_{d}\right)$ is, as previously, a vector of unknowns, with $\mathbf{x}=\mathbf{x}^{\star} a$ solution of (60).

- The quantity $\overline{\mathbf{p}}$ in (60) is another vector, of length m, which enumerates any additional parameters (generally adjustable) that enter into the problem; these could include: coupling constants, rate constants, "perturbation" amplitudes etc.
- The nonlinearity of any particular system of the form (60) may make it very difficult to compute \mathbf{x}^{\star} without a good initial estimate $\mathbf{x}^{(0)}$; in such cases, the technique of continuation often provides the means to generate such an estimate.
- Continuation: The basic idea underlying continuation is to "sneak up" on the solution by introducing an additional parameter, ϵ (the continuation parameter), so that by continuously varying ϵ from 0 to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already have a solution.
to
2. The problem of interest.

- Schematically we can sketch the following picture:

- Note that we thus consider a family of problems

$$
\begin{equation*}
\mathbf{N}_{\epsilon}(\mathbf{x} ; \overline{\mathbf{p}})=0 \tag{61}
\end{equation*}
$$

with corresponding solutions

$$
\begin{equation*}
\mathbf{x}_{\epsilon}=\mathbf{x}_{\epsilon}^{\star} \tag{62}
\end{equation*}
$$

- The efficacy of continuation generally depends on two crucial points:

1. $\mathbf{N}_{0}(\mathbf{x} ; \overline{\mathbf{p}})$ has a known or easily calculable root at \mathbf{x}_{0}^{\star}.
2. Can often choose $\Delta \epsilon$ judiciously (i.e. sufficiently small) so that

$$
\mathbf{x}_{\epsilon-\Delta \epsilon}^{\star}
$$

is a "good enough" initial estimate for

$$
\mathbf{N}_{\epsilon}(\mathbf{x} ; \overline{\mathbf{p}})=0
$$

- Again, schematically, we have

where we note that we may have to adjust (adapt) $\Delta \epsilon$ as the continuation proceeds.

Continuation: Summary and Comments

- Solve sequence of problems with $\epsilon=0, \epsilon_{2}, \epsilon_{3} \ldots 1$ using previous solution as initial estimate for each $\epsilon \neq 0$.
- Will generally have to tailor idea on a case-by-case basis.
- Can often identify ϵ with one of the p_{i} (intrinsic problem parameters) per se.
- The first problem, $\mathbf{N}_{0}(\mathbf{x}, \overline{\mathbf{p}})=0$, can frequently be chosen to be linear, and therefore "easy" to solve, modulo sensitivity/poor conditioning.
- For time-dependent problems, time evolution often provides "natural" continuation; $\epsilon \rightarrow t$, and we can use $\mathbf{x}^{\star}(t-\Delta t)$ as the initial estimate $\mathbf{x}^{(0)}(t)$.

