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1 Basic Finite Difference Techniques for Time Dependent PDEs

There are several good reference texts for the material in Section 1. Among my personal favorites are [1]-[4].

1.1 Preliminaries

We can divide time-dependent PDEs into two broad classes:

1. Initial-value Problems (Cauchy Problems), spatial domain has no boundaries (either infinite or
“closed”—e.g. “periodic boundary conditions”

2. Initial-Boundary-Value Problems, spatial domain finite, need to specify boundary conditions

Note: Even if physical problem is really of Type 1, finite computational resources −→ finite spatial domain
−→ approximate as Type 2; will hereafter loosely refer to either type as an IVP.

Working Definition: Initial Value Problem

• State of physical system arbitrarily (usually) specified at some initial time t = t0.

• Solution exists for t ≥ t0; uniquely determined by equations of motion (EOM) and boundary conditions
(BCs).

Issues in Finite Difference (FD) Approximation of IVPs

• Discretization (Derivation of FDA’s)

• Solution of algebraic systems resulting from discretization

• Consistency

• Accuracy

• Stability

• Converegence

• Dispersion / Dissipation

• Treatment of Non-linearities

• Computational cost—expect O(N) work (N ≡ number of “grid points” (discrete events at which
approximate solution is computed)
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1.2 Types of IVPs (by example)

In the following three examples, u is always a function of one space and one time variable, i.e. u ≡ u(x, t).
Such a problem is often referred to as “1-d” by numericists, the time dimension being implicit in this
nomenclature. I will also use the subscript notation for partial differentiation, e.g. ut ≡ ∂tu.

1.2.1 Wave and “Wave-Like” (“Hyperbolic”): The 1-d Wave Equation

utt = c2uxx c ∈ R, (1)

u(x, 0) = u0(x)

ut(x, 0) = v0(x)

1.2.2 Diffusion (“Parabolic”): The 1-d Diffusion Equation

ut = σuxx σ ∈ R, σ > 0. (2)

u(x, 0) = u0(x)

1.2.3 Schrödinger: The 1-d Schrödinger Equation

iψt = − h̄

2m
ψxx + V (x, t)ψ ψ ∈ C (3)

ψ(x, 0) = ψ0(x)

Note: Although ψ(x, t) is complex in this case, we can rewrite (3) as a system of 2 coupled scalar, real-valued
equations.

1.3 Some Basic Concepts, Definitions and Techniques

We will be considering the finite-difference approximation (FDA) of PDEs, and as such, will generally be
interested in the continuum limit, where the mesh spacing, or grid spacing, usually denoted h, tends to 0.
Because any specific calculation must necessarily be performed at some specific, finite value of h, we will also
be (extremely!) interested in the way that our discrete solution varies as a function of h. In fact, we will
always view h as the basic “control” parameter of a typical FDA. Fundamentally, for sensibly constructed
FDAs, we expect the error in the approximation to go to 0, as h goes to 0.

Let
Lu = f (4)

denote a general differential system. For simplicity and concreteness, you can think of u = u(x, t) as a single
function of one space variable and time, but the discussion in this section applies to cases in more independent
variables (u(x, y, t), u(x, y, z, t) · · · etc.), as well as multiple dependent variables (u = u = [u1, u2, · · · , un]).
In (4), L is some differential operator (such as ∂tt − ∂xx) in our wave equation example), u is the unknown,
and f is some specified function (frequently called a source function) of the independent variables.

Here and in section 1.9 it will be convenient to adopt a notation where a superscript h on a symbol indicates
that it is discrete, or associated with the FDA, rather than the continuum. (Note, however, that for simplicity
of presentation, we will not adopt this notation in much of the development below). With this notation, we
will generically denote an FDA of (4) by

Lhuh = fh (5)

where uh is the discrete solution, fh is the specified function evaluated on the finite-difference mesh, and Lh

is the finite-difference approximation of L.
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1.3.1 Residual

Note that another way of writing our FDA is

Lhuh − fh = 0 (6)

It is often useful to view FDAs in this form for the following reason. First, we have a canonical view of
what it means to solve the FDA—“drive the left-hand side to 0”. Furthermore, for iterative approaches to
the solution of the FDA (which are common, since it may be too expensive to solve the algebraic equations
directly), we are naturally lead to the concept of a residual. The residual is simply the level of “non-
satisfaction” of our FDA (and, indeed, of any algebraic expression). Specifically, if ũh is some approximation
to the true solution of the FDA, uh, then the residual, rh, associated with ũh is just

rh ≡ Lhũh − fh (7)

This leads to the view of a convergent, iterative process as being one which “drives the residual to 0”.

1.3.2 Truncation Error

The truncation error, τh, of an FDA is defined by

τh ≡ Lhu− fh (8)

where u satisfies the continuum PDE (4). We note that the form of the truncation error can always be com-
puted (typically using Taylor series) from the finite difference approximation and the differential equations.

1.3.3 Convergence

Assuming that our FDA is characterized by a single discretization scale, h, we say that the approximation
converges iff

uh → u as h→ 0. (9)

Operationally (i.e. in practice), convergence is clearly our chief concern as numerical analysts, particularly
if there is reason to suspect that the solutions of our PDEs are good models for real phenomena. We note
that this is believed to be the case for many interesting problems in general relativistic astrophysics—the
two black hole problem being an excellent example.

1.3.4 Consistency

Assuming that the FDA with truncation error τh is characterized by a single discretization scale, h, we say
that the FDA is consistent if

τh → 0 as h→ 0. (10)

Consistency is obviously a necessary condition for convergence.

1.3.5 Order of an FDA

Assuming that the FDA is characterized by a single discretization scale, h, we say that the FDA is p-th order
accurate or simply p-th order if

lim
h→0

τh = O(hp) for some integer p (11)

1.3.6 Solution Error

The solution error, eh, associated with an FDA is defined by

eh ≡ u− uh (12)
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1.3.7 Relation Between Truncation Error and Solution Error

Is is common to tacitly assume that

τh = O(hp) −→ eh = O(hp)

This assumption is often warranted, but it is extremely instructive to consider why it is warranted and to
investigate (following Richardson 1910 (!) [5]) in some detail the nature of the solution error. We will return
to this issue in more detail in section 1.9.

1.3.8 Deriving Finite Difference Formulae

The essence of finite-difference approximation of a PDE is the replacement of the continuum by a discrete
lattice of grid points, and the replacement of derivatives/differential operators by finite-difference expressions.
These finite-difference expressions (finite-difference quotients) approximate the derivatives of functions at grid
points, using the grid values themselves. All of the operators and expressions we need can easily be worked
out using Taylor series techniques. For example, let us consider the task of approximating the first derivative
ux(x) of a function u(x), given a discrete set of values uj ≡ u(jh) as shown in Figure 1. As it turns out,

∆x

j − 1 j j + 1

x  = x   +  j ∆x  = x   +  j h 
j 0 0

Figure 1: A one-dimensional, uniform finite difference mesh. Note that the spacing, △x = h, between
adjacent mesh points is constant. In the text we tacitly assume that the origin, x0, of our coordinate system
is x0 = 0.

given the three values u(xj − h), u(xj) and u(xj + h), which we will denote uj−1, uj , and uj+1 respectively,
we can compute an O(h2) approximation to ux(xj) ≡ (ux)j as follows. Taylor expanding, we have

uj−1 = uj − h(ux)j +
1

2
h2(uxx)j −

1

6
h3(uxxx)j +

1

24
h4(uxxxx)j +O(h5)

uj = uj

uj+1 = uj + h(ux)j +
1

2
h2(uxx)j +

1

6
h3(uxxx)j +

1

24
h4(uxxxx)j +O(h5)

We now seek a linear combination of uj−1, uj , and uj+1 which yields (ux)j to O(h2) accuracy, i.e. we seek
c−, c0 and c+ such that

c− uj−1 + c0 uj + c+ uj+1 = (ux)j +O(h2)

This results in a system of three linear equations for uj−1, uj, and uj+1:

c− + c0 + c+ = 0

−hc− + hc+ = 1

1

2
h2c− +

1

2
h2c+ = 0

which has the solution

c− = − 1

2h
c0 = 0

c+ = +
1

2h

Thus our O(h2) finite difference approximation for the first derivative is

u(x+ h) − u(x− h)

2h
= ux(x) +O(h2) (13)
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Note that it may not be obvious to you a priori, that the truncation error of this approximation is O(h2),
since a naive consideration of the number of terms in the Taylor series expansion which can be eliminated
using 2 values (namely u(x+h) and u(x−h)) suggests that the error might be O(h). The fact that the O(h)
term “drops out” is a consequence of the symmetry, or centering of the stencil, and is a common theme in
such FDAs (which, naturally enough, are called centred difference approximations).

Using the same technique, we can easily generate the O(h2) expression for the second derivative, which uses
the same difference stencil as the above approximation for the first derivative.

u(x+ h) − 2u(x) + u(x− h)

h2
= uxx(x) +O(h2) (14)

Exercise: Compute the precise form of the O(h2) terms in expressions (13) and (14).

1.4 Sample Discretizations / FDAs

1.4.1 1-d Wave equation with fixed (Dirichlet) boundary conditions

utt = uxx (c = 1) 0 ≤ x ≤ 1; t ≥ 0 (15)

u(x, 0) = u0(x)

ut(x, 0) = v0(x)

u(0, t) = u(1, t) = 0

n

n + 1

n − 1

j − 1 j j + 1

∆x

∆t

t

x

Figure 2: Portion of uniform finite-difference mesh (grid) for 1-d time-dependent problem. Note that the
spacings in both the spatial and temporal directions are constant

We now introduce a discrete domain (uniform grid) (xj , t
n)—part of which is shown in Figure 2.

t
n ≡ n△t , n = 0, 1, 2, · · ·
x

j
≡ (j − 1) △x , j = 1, 2, · · · J

u
n

j
≡ u(n△t , (j − 1)△x )

△x = (J − 1)−1

△t = λ△x λ ≡ “Courant number”
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Note: When solving wave equations using FDAs, we will typically keep λ constant when we vary △x .
Thus, our FDA will always be characterized by a single discretization scale, h.

△x ≡ h

△t ≡ λh

(Also note the Fortran-style indexing of the spatial grid index (j = 1, 2, · · ·) and the C-style indexing of
the temporal one (n = 0, 1, · · ·). This is a particular convention which I, as a predominantly Fortran

programmer, find convenient.)

n

n + 1

n − 1

j − 1 j j + 1

Figure 3: Stencil (molecule/star) for “standard” O(h2) approximation of (15).

FDA: “standard O(h2)”

Discretized Interior equation:

(△t )−2
(

u
n+1

j
− 2u

n

j
+ u

n−1

j

)

= (utt)
n

j
+

1

12
△t 2 (utttt)

n

j
+O(△t 4)

= (utt)
n

j
+ O(h2)

(△x )
−2
(

u
n

j+1
− 2u

n

j
+ u

n

j−1

)

= (uxx)
n

j
+

1

12
△x 2 (uxxxx)

n

j
+O(△x 4)

= (uxx)
n

j
+O(h2)

Putting these two together, we get the O(h2) approximation

u
n+1

j
− 2u

n

j
+ u

n−1

j

△t 2
=
u

n

j+1
− 2u

n

j
+ u

n

j−1

△x 2
j = 2, 3, · · · , J − 1 (16)

Note that a scheme such as (16) is often called a three level scheme since it couples three “time levels” of
data (i.e. unknowns at three distinct, disrete times tn−1, tn, tn+1.

Discretized Boundary conditions:

u
n+1

1
= u

n+1

J
= 0

Discretized Initial conditions:
We need to specify two “time levels” of data (effectively u(x, 0) and ut(x, 0)), i.e. we must specify

u
0

j
, j = 1, 2, · · · , J

u
1

j
, j = 1, 2, · · · , J

ensuring that the initial values are compatible with the boundary conditions.
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Note that we can solve (16) explicitly for u
n+1

j
:

u
n+1

j
= 2u

n

j
− u

n−1

j
+ λ2

(

u
n

j+1
− 2u

n

j
+ u

n−1

j

)

(17)

Also note that (17) is actually a linear system for the unknowns un+1
j , j = 1, 2, · · · , J ; in combination with

the discrete boundary conditions we can write

A un+1 = b (18)

where A is a diagonal J × J matrix and un+1 and b are vectors of length J . Such a difference scheme for
an IVP is called an explicit scheme.

1.4.2 1-d Diffusion equation with Dirichlet boundary conditions

ut = uxx (σ = 1) 0 ≤ x ≤ 1; t ≥ 0 (19)

u(x, 0) = u0(x)

u(0, t) = u(1, t) = 0

We will use same discrete domain (grid) as for the 1-d wave equation.

FDA: Crank-Nicholson
This scheme illustrates a useful “rule of thumb”: Keep the difference scheme “centred”

• centred in time, centred in space

• minimizes truncation error for given h

• tends to minimize instabilities

n

n + 1

j − 1 j j + 1

centre−point of scheme:  x = x    ,   t = t 
j

  n + 1/2

Figure 4: Stencil (molecule/star) for O(h2) Crank-Nicholson approximation of (19).

Discretization of time derivative:

△t−1
(

u
n+1

j
− u

n

j

)

= (ut)
n+ 1

2

j
+

1

24
△t 2 (uttt)

n+ 1
2

j
+O(△t 4) (20)

= (ut)
n+ 1

2

j
+O(△t 2)

O(h2) second-derivative operator:

Dxx u
n

j
≡ △x−2

(

u
n

j+1
− 2u

n

j
+ u

n

j+1

)

(21)

Dxx = ∂xx +
1

12
△x 2 ∂xxxx +O(△x 4) (22)
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(Forward) Time-averaging operator, µ
t
:

µ
t
u

n

j
≡ 1

2

(

u
n+1

j
+ u

n−1

j

)

= u
n+ 1

2

j
+

1

8
△t 2 (utt)

n+ 1
2

j
+O(△t 4) (23)

µ
t

=

[

I +
1

8
△t 2 ∂tt +O(△t 4)

]

t=tn+1/2

(24)

where I is the identity operator. Assuming that △t = O(△x ) = O(h), is is easy to show (exercise) that

µ
t

[

Dxx u
n

j

]

= (uxx)
n+ 1

2

j
+O(h2)

Putting the above results together, we are lead to the (O(h2)) Crank-Nicholson approximation of (19):

u
n+1

j
− u

n

j

△t = µ
t

[

Dxx u
n

j

]

(25)

Written out in full, this is

u
n+1

j
− u

n

j

△t =
1

2





u
n+1

j+1
− 2u

n+1

j
+ u

n+1

j−1

△x 2
+
u

n

j+1
− 2u

n

j
+ u

n

j−1

△x 2



 j = 2, 3, · · · , J − 1 (26)

We can rewrite (26) in the form

a+ u
n+1

j+1
+ a0 u

n+1

j
+ a− u

n+1

j−1
= bj j = 2, 3, · · · , J − 1 (27)

where

a+ ≡ −1

2
△x−2

a0 ≡ △t−1 + △x−2

a− ≡ −1

2
△x−2

bj ≡
(

△t−1 − △x−2
)

u
n

j
+

1

2
△x−2

(

u
n

j+1
+ u

n

j−1

)

which, along with the BCs (un+1
1 = un+1

J = 0), is again a linear system of the form

A un+1 = b

for the “unknown vector” un+1. This time, however, the matrix A, is not diagonal, and the scheme is called
implicit—i.e. the scheme couples unknowns at the advanced time level, t = tn+1.

Note that A is a tridiagonal matrix: all elements Aij for which j 6= i + 1, i or i − 1 vanish. The solution
of tridiagonal systems can be performed very efficiently using special purpose routines (such as DGTSV in
LAPACK [6]): specifically, the operation count for solution of (26) is O(J).

Also note that we can immediately write down the analogous scheme for the Schrödinger equation (3):

i
ψ

n+1

j
− ψ

n

j

△t = − h̄

2m
µ

t

[

Dxx ψ
n

j

]

+ V (xj)µt
ψ

n

j
(28)

In this case we get a complex tridiagonal system, which can also be solved in O(J) time, using, for example,
the LAPACK routine ZGTSV.
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1.5 The 1-D Wave Equation in More Detail

Recall our “standard” O(h2) discretization:

u
n+1

j
= 2u

n

j
− u

n−1

j
+ λ2

(

u
n

j+1
− 2u

n

j
+ u

n

j−1

)

, j = 2, 3, · · · , J − 1

u
n+1

1
= u

n+1

J
= 0

As we have discussed, to initialize the scheme, we need to specify u0
j and u1

j , which is equivalent (in the limit
h→ 0) to specifying u(x, 0) and ut(x, 0).

Before proceeding to a discussion of a “proper initialization”, let us briefly digress and consider the continuum
case, and, for the sake of presentation, assume that we are considering a true IVP on an unbounded domain;
i.e. we wish to solve

utt = uxx −∞ < x <∞ , t ≥ 0 (29)

As is well known, the general solution of (29) is the superposition of an arbitrary left-moving profile (v =
−c = −1), and an arbitrary right-moving profile (v = +c = +1); i.e.

u(x, t) = ℓ(x+ t) + r(x − t) (30)

where (see Figure 5)

ℓ : constant along “left-directed” characteristics

r : constant along “right-directed” characteristics

t

: "left−directed" characteristics,      x + t  =  constant  ,   l(x + t) = constant

: "right−directed" characteristics,    x − t  =  constant  ,  r(x − t)  = constant

x

Figure 5: Characteristics of the wave equation: uxx = utt. Signals (disturbances) travel along the charac-
teristics (dashed and dotted lines.)

This observation provides us with an alternative way of specifying initial values, which is often quite conve-
nient in practice. Rather than specifying u(x, 0) and ut(x, 0) directly, we can specify initial left-moving and
right-moving parts of the solution, ℓ(x) and r(x). Specifically, we set

u(x, 0) = ℓ(x) + r(x) (31)

ut(x, 0) = ℓ′(x) − r′(x) ≡ dℓ

dx
(x) − dr

dx
(x) (32)

Returning now to the solution of the finite-differenced version of the wave equation, it is clear that given
the initial data (31–32), we can trivially initialize u0

j with exact values, but that we can only approximately

10



initialize u1
j . The question then arises: How accurately must we initialize the advanced values so as to ensure

second order (O(h2)) accuracy of the difference scheme?

A brief, heuristic answer to this question (which can be more rigorously justified) is as follows. We have
△x = O(h), △t = O(h) and the FDA is O(h2). Since the scheme is O(h2), we expect that

uexact(x, t) − uFD(x, t) = O(h2)

for arbitrary, fixed, FINITE t. However, the number of time steps required to integrate to time t is
O(△t−1) = O(h−1). Thus, the per-time-step error must be O(h2)/O(h−1) = O(h3), and, therefore, we
require

(uFD)
1

j
= (uexact)

1

j
+O(h3)

We can readily accomplish this using (1) Taylor series and (2) the equation of motion to rewrite higher time
derivatives in terms of spatial derivatives:

u
1

j
= u

0

j
+ △t (ut)

0

j
+

1

2
△t 2 (utt)

0

j
+O(△t 3) (33)

= u
0

j
+ △t (ut) +

1

2
△t 2 (uxx)

0

j
+O(△t 3) (34)

which, using results from above, can be written as

u
1

j
= (ℓ+ r)

j
+ △t (ℓ′ − r′)

j
+

1

2
△t 2 (ℓ′′ + r′′)

j
(35)

1.6 Stability Analysis

One of the most frustrating—yet fascinating—features of FD solutions of time dependent problems, is that
the discrete solutions often “blow up”—e.g. floating-point overflows are generated at some point in the
evolution. Although “blow-ups” can sometimes be caused by legitimate (!) “bugs”—i.e. an incorrect
implementation—at other times it is simply the nature of the FD scheme which causes problems. We are
thus lead to consider the stability of solutions of difference equations (as well as their differential-equation
progenitors).

Let us again consider the 1-d wave equation (15) and let us now remark that this is a linear, non-dispersive
wave equation, a consequence of which is the fact that the “size” of the solution does not change with time:

‖u(x, t)‖ ∼ ‖u(x, 0)‖ , (36)

where ‖ · ‖ is an suitable norm, such as the L2 norm:

‖u(x, t)‖ ≡
(∫ 1

0

u(x, t)2 dx

)1/2

. (37)

We will use the property captured by (36) as our working definition of stability. In particular, if you
believe (36) is true for the wave equation, then you believe the wave equation is stable.

Fundamentally, if our FDA approximation converges, then we expect the same behaviour for the difference
solution:

‖un

j
‖ ∼ ‖u0

j
‖ . (38)

Now, we construct our FD solution by iterating in time, generating

u
0

j
, u

1

j
, u

2

j
, u

3

j
, u

4

j
, · · ·

in succession, using the FD equation

u
n+1

j
= 2u

n

j
− u

n−1

j
+ λ2

(

u
n

j+1
− 2u

n

j
+ u

n

j−1

)

.
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As it turns out, we are not guaranteed that (38) holds for all values of λ ≡ △t /△x . In fact, for certain λ
(all λ > 1, as we shall see), we have

‖un

j
‖ ≫ ‖u0

j
‖ ,

and for those λ, ‖un‖ diverges from u, even (especially!) as h→ 0—that is, the difference scheme is unstable.

In fact, for many wave problems (including all linear problems), given that a FD scheme is consistent (i.e.
so that τ̂ → 0 as h→ 0), stability is the necessary and sufficient condition for convergence (Lax’s theorem).

1.6.1 Heuristic Stability Analysis

Let us write a general time-dependent FDA in the form

u
n+1

= G[u
n
] , (39)

where G is some update operator (linear in our example problem), and u is a column vector containing
sufficient unknowns to write the problem in first-order-in-time form. For example, if we introduce a new,
auxiliary set of unknowns, v

n

j
, defined by

v
n

j
= u

n−1

j
,

then we can rewrite the differenced-wave-equation (16) as

u
n+1

j
= 2u

n

j
− v

n

j
+ λ2

(

u
n

j+1
− 2u

n

j
+ u

n

j−1

)

, (40)

v
n+1

j
= u

n

j
, (41)

so with
u

n
= [u

n

1
, v

n

1
, u

n

2
, v

n

2
, · · · un

J
, v

n

J
] ,

(for example), (40-41) is clearly of the form (39). Equation (39) provides us with a compact way of describing

the solution of the FDA. Given initial data, u
0
, the solution after n time-steps is

u
n

= G
n
u

0
, (42)

where G
n

is the n-th power of the matrix G. Now, assume that G has a complete set of orthonormal
eigenvectors

ek, k = 1, 2, · · · J ,
and corresponding eigenvalues

µk, k = 1, 2, · · · J ,
so that

Gek = µk ek, k = 1, 2, · · · J .
We can then write the initial data as (spectral decomposition):

u
0

=

J
∑

k=1

c
0

k
ek ,

where the c
0

k
are coefficients. Using (42), the solution at time-step n is then

u
n

= G
n

(

J
∑

k=1

c
0

k
ek

)

(43)

=
J
∑

k=1

c
0

k
(µk)n ek . (44)

Clearly, if the difference scheme is to be stable, we must have

|µk| ≤ 1 k = 1, 2, · · · J (45)

(Note: µk will be complex in general, so |µ| denotes the complex modulus, |µ| ≡ √
µµ⋆).

Geometrically, then, the eigenvalues of the update matrix must lie on or within the unit circle (see Figure 6).

12



Im

Re

unit circle

Figure 6: Schematic illustration of location in complex plane of eigenvalues of update matrix G. In this
case, all eigenvalues (dots) lie on or within the unit circle, indicating that the corresponding finite difference
scheme is stable.

1.6.2 Von-Neumann (Fourier) Stability Analysis

Von-Neumann stability analysis is based on the ideas sketched above, but additionally assumes that the
difference equation is linear with constant coefficients, and that the boundary conditions are periodic. We
can then use Fourier analysis, which has the same benefits in the discrete domain—difference operators
in real-space variable x −→ algebraic operations in Fourier-space variable k—as it does in the continuum
Schematically, instead of writing

u
n+1

(x) = G[u
n
(x)] ,

we consider the Fourier-domain equivalent:

ũ
n+1

(k) = G̃[ũ
n
(k)] ,

where k is the wave-number (Fourier-space variable) and ũ and G̃ are the Fourier-transforms of u and G,
respectively. Specifically, we define the Fourier-transformed grid function via

ũ
n
(k) =

1√
2π

∫ +∞

−∞

e−ikx u
n
(x) dx . (46)

For a general difference scheme, we will find that

ũ
n+1

(k) = G̃(ξ) ũ
n
(k) ,

where ξ ≡ kh, and we will have to show that G̃(ξ)’s eigenvalues lie within or on the unit circle for all
conceivable ξ. The appropriate range for ξ is

−π ≤ ξ ≤ π ,

since the shortest wavelength representable on a uniform mesh with spacing h is λ = 2h (Nyquist limit),
corresponding to a maximum wave number k = (2π)/λ = ±π/h.
Let us consider the application of the Von-Neumann stability analysis to our current model problem. We
first define a (non-divided) difference operator D2 as follows:

D2 u(x) = u(x+ h) − 2u(x) + u(x− h) .

13



Then, suppressing the spatial grid index, we can write the first-order form of the difference equation (40-41)
as

u
n+1

= 2u
n − v

n
+ λ2D2 u

n
,

v
n+1

= u
n
,

or
[

u
v

]n+1

=

[

2 + λ2D2 −1
1 0

] [

u
v

]n

. (47)

In order to perform the Fourier transform, we need to know the action of D2 in Fourier-space. Using the
transform inverse to (46) we have

u(x) =
1√
2π

∫ +∞

−∞

eikx ũ(k) dk ,

so

D2 u(x) = u(x+ h) − 2u(x) + u(x− h) =

∫ +∞

−∞

(

eikh − 2 + e−ikh
)

eikx ũ(k) dk

=

∫ +∞

−∞

(

eiξ − 2 + e−iξ
)

eikx ũ(k) dk .

Now consider the quantity −4 sin2(ξ/2):

−4 sin2 ξ

2
= −4

(

eiξ/2 − e−iξ/2

2i

)2

=
(

eiξ/2 − e−iξ/2
)2

= eiξ − 2 + e−iξ ,

so

D2 u(x) =
1√
2π

∫ +∞

−∞

(

−4 sin2 ξ

2

)

eikx ũ(k) dk .

In summary, under Fourier transformation, we have

u(x) −→ ũ(k) ,

D2u(x) −→ −4 sin2 ξ

2
ũ(k) .

Using this result in the Fourier transform of (47), we see that we need to compute the eigenvalues of

[

2 − 4λ2 sin2(ξ/2) −1
1 0

]

,

and determine the conditions under which the eigenvalues lie on or within the unit circle. The characteristic
equation (whose roots are the eigenvalues) is

∣

∣

∣

∣

∣

2 − 4λ2 sin2(ξ/2) − µ −1
1 −µ ,

∣

∣

∣

∣

∣

= 0

or

µ2 +

(

4λ2 sin2 ξ

2
− 2

)

µ+ 1 = 0 .

This equation has roots

µ(ξ) =

(

1 − 2λ2 sin2 ξ

2

)

±
((

1 − 2λ2 sin2 ξ

2

)

− 1

)1/2

.
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We now need to find sufficient conditions for

|µ(ξ)| ≤ 1,

or equivalently
|µ(ξ)|2 ≤ 1.

To this end, we note that we can write

µ(ξ) = (1 −Q) ± ((1 −Q)2 − 1)1/2 ,

where the quantity, Q

Q ≡ 2λ sin2 ξ

2
,

is real and non-negative (Q ≥ 0). There are now two cases to consider:

1. (1 −Q)2 − 1 ≤ 0 ,

2. (1 −Q)2 − 1 > 0 .

In the first case, ((1 −Q)2 − 1)1/2 is purely imaginary, so we have

|µ(ξ)|2 = (1 −Q)2 + (1 − (1 −Q)2) = 1 .

In the second case, (1 −Q)2 − 1 > 0 −→ (1 −Q)2 > 1 −→ Q > 2, and then we have

1 −Q− ((1 −Q2) − 1)1/2 < −1 ,

so, in this case, our stability criterion will always be violated. We thus conclude that a necessary condition
for Von-Neumann stability is

(1 −Q)2 − 1 ≤ 0 −→ (1 −Q)2 ≤ 1 −→ Q ≤ 2 .

Since Q ≡ 2λ sin2(ξ/2) and sin2(ξ/2) ≤ 1, we must therefore have

λ ≡ △t
△x ≤ 1 ,

for stability of our scheme (16). This condition is often called the CFL condition—after Courant, Friedrichs
and Lewy who derived it in 1928 (the ratio λ = △x /△t is also frequently called the Courant num-
ber). In practical terms, we must limit the time-discretization scale , △t , to values no larger than the
space-discretization scale, △x . Furthermore, this type of instability has a “physical” interpretation, often
summarized by the statement the numerical domain of dependence of an explicit difference scheme must
contain the physical domain of dependence.

1.7 Dispersion and Dissipation

Let us now consider an even simpler model “wave equation” than (1), the so-called advection, or color
equation:

ut = a ux (a > 0) −∞ < x <∞ , t ≥ 0 (48)

u(x, 0) = u0(x)

which has the exact solution
u(x, t) = u0(x+ at) (49)

Equation (48) is another example of a non-disspative, non-dispersive partial differential equation.

To remind ourselves what “non-dispersive” means, let us note that (48) admits “normal mode” solutions:

u(x, t) ∼ eik(x+at) ≡ ei(kx+ωt)
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where ω ≡ ka; in general, of course, ω ≡ ω(k) is known as the dispersion relation, and

dω

dk
≡ speed of propagation of mode with wave number k

In the current case, we have
dω

dk
= a = constant

which means that all modes propagate at the same speed, which is precisely what is meant by “non-
dispersive”. Further, if we consider resolving the general initial profile, u0(x), into “normal-mode” (Fourier)
components, we find that the magnitudes of the components are preserved in time, i.e. equation (48) is also
non-dissipative.

Ostensibly, we would like our finite-difference solutions to have the same properties—i.e. to be dissipationless
and dispersionless, but, in general, this will not be (completely) possible. We will return to the issue of
dissipation and dispersion in FDAs of wave problems below.

1.8 The Leap-Frog Scheme

First note that (48) is a good prototype for the general hyperbolic system:

ut = Aux (50)

where u(x,t) is the n-component solution vector:

u(x, t) = [u1(x, t), u2(x, t), · · · un(x, t)] (51)

and the n× n matrix A has distinct real eigenvalues

λ1, λ2, · · · λn

so that, for example, there exists a similarity transformation S such that

SAS−1 = diag(λ1, λ2, · · · λn)

The leap-frog scheme is a commonly used finite-difference approximation for hyperbolic systems. In the
context of our simple scalar (n = 1) advection problem (48):

ut = a ux

an appropriate stencil is shown in Figure 7. Applying the usual O(h2) approximations to ∂x and ∂t, our
leap-frog (LF) scheme is

u
n+1

j
− u

n−1

j

2△t = a
u

n

j+1
− u

n

j−1

2△x (52)

or explicitly

u
n+1

j
= u

n−1

j
+ aλ

(

u
n

j+1
− u

n

j−1

)

(53)

where

λ ≡ △t
△x

is the Courant number as previously.

Exercise: Perform a von Neumann stability analysis of (52) thus showing that aλ ≤ 1 (which, you should
note, is just the CFL condition) is necessary for stability.

Observe that the LF scheme (52) is a three-level scheme. As in our treatment of the wave equation, utt = uxx

using the “standard scheme”, we need to specify

u
0

j
, u

1

j
j = 1, 2, · · ·J
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n

n + 1

n − 1

j − 1 j j + 1

Figure 7: Stencil (molecule/star) for leap-frog scheme as applied to (48). Note that the central grid point
has been filled in this figure to emphasize that the corresponding unknown, un

j , does not appear in the local
discrete equation at that grid point (hence the term “leap-frog”)

to “get the scheme going”—that is, we need to specify two numbers per spatial grid point. This should
be contrasted to the continuum where we need to specify only one number per xj , namely u0(xj). Again,
the initialization of the u0

j is trivial, given the (continuum) initial data u0(x), and, again, we need u1
j to

O(△t 3) = O(h3) accuracy for O(h2) global accuracy. Two possible approaches are as follows.

Taylor Series: The development here is parallel to that for the wave equation. We have

u
1

j
= u

0

j
+ △t (ut)

0

j
+

1

2
△t 2 (utt)

0

j
+O(△t 2)

also, from the equation of motion ut = aux, we get

utt = (ut)t = (aux)t = a (ut)x = a2uxx.

so we have our desired initialization formula:

u
1

j
= u

0

j
+ △t (u′0)

0

j
+

1

2
△t 2

(

a2u′′0
) 0

j
+O(△t 3) (54)

Self-Consistent Iterative Approach: The idea here is to initialize the u1
j from the u0

j and a version of the
discrete equations of motion which introduces a “ficticious” half-time-level—see Figure 8.

1/2

1

0

j − 1 j j + 1

Figure 8: Stencil for initialization of leap-frog scheme for to (48). Note the introduction of the “fictitious”
half-time level t = t1/2 (squares).

Applying the leap-frog scheme on the stencil in the Figure, we have

u
1

j
− u

0

j

△t = a
u

1
2

j+1
− u

1
2

j−1

2△x

or, explicitly solving for u1
j :

u
1

j
= u

0

j
+

1

2
λ
(

u
1
2

j+1
− u

1
2

j−1

)
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It is a straightforward exercise to show that in order to retain O(h2) accuracy of the difference scheme,

we need “fictitious-time” values, u
1/2
j which are accurate to O(h2) (i.e. we can neglect terms which are of

O(h2)). In particular, if we define u
1/2
j , via

u
1
2

j
=
u

1

j
+ u

0

j

2

which amounts to defining the half-time values via linear interpolation in the advanced and retarded un-
knowns, we will retain second-order accuracy.

We are thus led to the following initialization algorithm which is perhaps best expressed in pseudo-code
(note, all loops over j are implicit:)

u[0,j] := u_0(x_j)

u[1,j] := u_0(x_j)

DO

usave[j] := u[1,j]

u[1/2,j] := (u[1,j] + u[0,j]) / 2

u[1,j] := u[0,j] + (lambda / 2) * (u[1/2,j+1] - u[1/2,j-1])

UNTIL norm(usave[j] - u[1,j]) < epsilon

1.9 Error Analysis and Convergence Tests

As a side remark, we note that the discussion in this section applies to essentially any continuum problem
which is solved using FDAs on a uniform mesh structure. In particular, the discussion applies to the
treatment of ODEs and elliptic problems, where, in fact, convergence is often easier to achieve due to the
fact that the FDAs are typically intrinsically stable (i.e. we have an easier time constructing stable FDAs for
these types of problems). We also note that departures from non-uniformity in the mesh do not, in general,
complete destroy the picture, but, rather, tend to distort it in ways which are beyond the scope of these
notes. In any case, my colleagues have been known to paraphrase my whole approach to this subject as

Convergence!, Convergence!, Convergence!

1.9.1 Sample Analysis: The Advection Equation

We again consider the solution of the advection equation, but this time we impose periodic boundary con-
ditions on our spatial domain, which we take to be 0 ≤ x ≤ 1 with x = 0 and x = 1 identified (i.e. we solve
the wave equation on S1 × R):

ut = a ux (a > 0) 0 ≤ x ≤ 1, t ≥ 0 (55)

u(x, 0) = u0(x)

Note that the initial conditions u0(x) must be compatible with periodicity, i.e. we must specify periodic
initial data.

Again, given the initial data, u0(x), we can immediately write down the full solution

u(x, t) = u0(x+ a t mod 1) (56)

where mod is the usual modulus function which “wraps” x + a t, t > 0 onto the unit interval. As we shall
see, because of the simplicity and solubility of this problem, one can perform a rather complete closed-form
(“analytic”) treatment of the convergence of simple FDAs of (55). The point of the exercise, however, is
not to advocate parallel closed-form treatments for more complicated problems. Rather, the key idea to be
extracted from the following is that, in principle (always), and in practice (almost always, i.e. I’ve never
seen a case where it didn’t work, but then there’s a lot of computations I haven’t seen):
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The error, eh, of an FDA is no less computable than the solution, uh itself.

This has widespread ramifications, one of which is that there’s really no excuse for publishing solutions of
FDAs without error bars, or their equivalents!

Proceeding with our sample error analysis of the leap-frog scheme applied to the advection equation, we first
introduce some difference operators for the usual O(h2) centred approximations of ∂x and ∂t:

Dx u
n

j
≡

u
n

j+1
− u

n

j−1

2△x (57)

Dt u
n

j
≡

u
n+1

j
− u

n−1

j

2△t (58)

We again take
△x ≡ h △t ≡ λ △x = λh

and will hold λ fixed as h varies, so that, as usual, our FDA is characterized by the single scale parameter,
h.

The idea behind our error analysis is that we want to view the solution of the FDA as a continuum problem,
and hence we will express both the difference operators and the FDA solution as asymptotic series (in h) of
differential operators, and continuum functions, respectively. We have the following expansions for Dx and
Dt:

Dx = ∂x +
1

6
h2 ∂xxx +O(h4) (59)

Dt = ∂t +
1

6
λ2h2 ∂ttt +O(h4) (60)

Now, in terms of the general, abstract formulation of (1.3), we have:

Lu− f = 0 ⇐⇒ (∂t − a ∂x)u = 0 (61)

Lhuh − fh = 0 ⇐⇒ (Dt − aDx)uh = 0 (62)

Lhu− fh ≡ τh ⇐⇒ (Dt − aDx)u ≡ τh =
1

6
h2
(

λ2∂ttt − a ∂xxx

)

u+O(h4) = O(h2) (63)

The Richardson ansatz: The key to our analysis is L.F. Richardson’s old observation (ansatz) [5], that
the solution, uh, of any FDA which (1) uses a uniform mesh structure with scale parameter h, and (2) is
completely centred, should have the following expansion in the limit h→ 0:

uh(x, t) = u(x, t) + h2e2(x, t) + h4e4(x, t) + · · · (64)

Here u is the continuum solution, while e2, e4, · · · are (continuum) error functions which do not depend on
h. In a very real sense (64), is the key expression from which all error analysis of FDAs derives. We note
that in the case that the FDA is not completely centred, we will have to modify the ansatz. In particular,
for first order schemes (which are more common in numerical relativity and relativistic astrophysics than
one might expect!), we will have

uh(x, t) = u(x, t) + he1(x, t) + h2ex(x, t) + h3e3(x, t) + · · · (65)

Note that the Richardson ansatz (64) is completely compatible with the assertion discussed in (1.3.7), namely
that

τh = O(h2) −→ eh ≡ u− uh = O(h2) (66)

However, the Richardson form (64) contains much more information than “second-order truncation error
should imply second-order solution error”, telling us the precise form of the h dependence of uh.
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Given the Richardson expansion, we can now proceed with our error analysis. We start from the FDA,
Lhuh − fh = 0, and replace both Lh and uh with continuum expansions:

Lhuh = 0 −→ (Dt − aDx)
(

u+ h2e2 + · · ·
)

= 0

−→
(

∂t +
1

6
λ2h2∂ttt − a ∂x − 1

6
ah2 ∂xxx + · · ·

)

(

u+ h2e2 + · · ·
)

= 0 (67)

We now demand that terms in (67) vanish order-by-order in h. At O(1) (zeroth-order), we have

(∂t − a ∂x)u = 0 (68)

which is simply a statement of the consistency of the difference approximation. More interestingly, at O(h2)
(second-order), we find

(∂t − a ∂x) e2 =
1

6

(

a∂xxx − λ2∂ttt

)

u (69)

which, assuming that we view u as a “known” function, is simply a PDE for the leading order error function,
e2. Moreover, the PDE governing e2 is of precisely the same nature as the original PDE (48).

In fact, we can solve (69) for e2. Given the “natural” initial conditions

e2(x, 0) = 0

(i.e. we initialize the FDA with the exact solution so that uh = u at t = 0), and defining q(x + at):

q(x + at) ≡ 1

6
a
(

1 − λ2a2
)

∂xxxu(x, t)

we have
e2(x, t) = t q(x+ at mod 1) (70)

We note that, as is typical for leap-frog, we have linear growth of the finite difference error with time (to
leading order in h). We also note that we can obviously push this analysis to higher order in h—what results,
then, is an entire hierarchy of differential equations for u and the error functions e2, e4, e6, · · ·. Indeed, it is
useful to keep this view in mind:

When one solves an FDA of a PDE, one is not solving some system which is “simplified” relative
to the PDE, rather, one is solving a much richer system consisting of an (infinite) hierarchy of
PDEs, one for each function appearing in the Richardson expansion (64).

In the general case, of course, we will not be able to solve the PDE governing u, let alone that governing
e2—otherwise we wouldn’t be considering the FDA in the first place! But it is precisely in this instance
where the true power of Richardson’s observation is evident. The key observation is that starting from (64),
and computing FD solutions using the same initial data, but with differing values of h, we can learn a great
deal about the error in our FD approximations. The whole game of investigating the manner in which a
particular FDA converges or doesn’t (i.e. looking at what happens as one varies h) is known as convergence
testing. It is important to realize that there are no hard and fast rules for convergence testing; rather, one
tends to tailor the tests to the specifics of the problem at hand, and, being largely an empirical approach,
one gains experience and intuition as one works through more and more problems. That said, I emphasize
again that the Richardson expansion, in some form or other, always underlies convergence analysis of FDAs.

A simple example of a convergence test, and the one I use most often in practice is the following. We compute
three distinct FD solutions uh, u2h, u4h at resolutions h, 2h and 4h respectively, but using the same initial
data (as naturally expressed on the 3 distinct FD meshes). We also assume that the finite difference meshes
“line up”, i.e. that the 4h grid points are a subset of the 2h points which are a subset of the h points, so
that, in particular, the 4h points constitute a common set of events (xj , t

n) at which specific grid function
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values can be directly (i.e. no interpolation required) and meaningfully compared to one another. From the
Richardson ansatz (64), we expect:

uh = u+ h2e2 + h4e4 + · · ·
u2h = u+ (2h)2e2 + (2h)4e4 + · · ·
u4h = u+ (4h)2e2 + (4h)4e4 + · · ·

We then compute a quantity Q(t), which I will call a convergence factor, as follows:

Q(t) ≡ ‖u4h − u2h‖x

‖u2h − uh‖x
(71)

where ‖ · ‖x is any suitable discrete spatial norm, such as the ℓ2 norm, ‖ · ‖2:

‖uh‖2 =



J−1
J
∑

j=1

(

uh
j

)2





1/2

(72)

and, for concreteness, the subtractions in (71) can be taken to involve the sets of mesh points which are
common between u4h and u2h, and between u2h and uh. It is a simple exercise to show that, if our finite
difference scheme is converging, then we should find:

lim
h→0

Q(t) = 4. (73)

In practice, one can use additional levels of discretization, 8h, 16h, etc. to extend this test to look for “trends”
in Q(t) and, in short, to convince oneself (and, with luck, others), that the FDA really is converging.
Moreover, once convergence of an FDA has been established, then a point-wise subtraction of any two
solutions computed at different resolutions, will immediately provide an estimate of the level of error in
both. For example, if we have uh and u2h, then, again by the Richardson ansatz we have

u2h − uh =
((

u+ (2h)2e2 + · · ·
)

−
(

u+ h2e2 + · · ·
))

= 3h2e2 +O(h4) ∼ 3eh ∼ 3

4
e2h (74)

Richardson extrapolation: Richardson’s observation (64) also provides the basis for all the techniques of
Richardson extrapolation, where solutions computed at different resolutions are linearly combined so as to
eliminate leading order error terms, and hence provide more accurate solutions. As an example, given uh

and u2h which satisfy (64), we can take the linear combination, ūh:

ūh ≡ 4uh − u2h

3
(75)

which, by (64), is easily seen to be O(h4), i.e. fourth-order accurate!

ūh ≡ 4uh − u2h

3
=

4
(

u+ h2e2 + h4e4 + · · ·
)

−
(

u+ 4h2e2 + 16h4e4 + · · ·
)

3

= −4h4e4 +O(h6) = O(h4) (76)

When it works, Richardson extrapolation has an almost magical quality about it, but one generally has to
start with fairly accurate (on the order of a few %) solutions in order to see the dramatic improvement in
accuracy suggested by (76). Partly because it is still a struggle to achieve that sort of accuracy (i.e. a few
%) for any computation in many areas of numerical relativity/astrophysics, techniques based on Richardson
extrapolation have not had a major impact in this context.

Independent Residual Evaluation A question which often arises in discussions of convergence testing is the
following:

“OK, you’ve established that uh is converging as h→ 0, but how do you know you’re converging
to u, the solution of the continuum problem?”
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Here, the notion of an independent residual evaluation is very useful. The idea is as follows: we have our
continuum PDE

Lu− f = 0 (77)

and our FDA
Lhuh − fh = 0 (78)

We have demonstrated that uh is apparently converging by, for example, computing the convergence fac-
tor (71) and verifying that it tends to 4 as h tends to 0. However, we do not know if we have derived and/or
implemented our discrete operator Lh correctly. Note that implicit in the “implementation” is the fact that,
particularly for multi-dimensional and/or implicit and/or multi-component FDAs, considerable “work” (i.e.
analysis and coding) may be involved in setting up and solving the algebraic equations for uh. As a check
that we are converging to u, we consider a distinct (i.e. independent) discretization of the PDE:

L̃hũh − fh = 0 (79)

The only thing we need from this FDA for the purposes of the independent residual test is the new FD
operator L̃h. As with Lh, we can expand L̃h in powers of the mesh spacing:

L̃h = L+ h2E2 + h4E4 + · · · (80)

where E2, E4, · · · are higher order (involve higher order derivatives than L) differential operators. We then
simply apply the new operator L̃h to our FDA uh and investigate what happens as h→ 0. If uh is converging
to the continuum solution, u, we will have

uh = u+ h2e2 +O(h4) (81)

and we will compute

L̃huh =
(

L+ h2E2 +O(h4)
) (

u+ h2e2 +O(h4)
)

= Lu+ h2(E2 u+ L e2) = O(h2) (82)

i.e., L̃huh will be a residual-like quantity which converges quadratically as h → 0. Conversely, if we have
goofed in our derivation and/or implementation of Lhuh = fh = 0, but we still see convergence; i.e. we
have, for example, u2h − uh → 0 as h→ 0, then we must have something like

uh = u+ e0 + he1 + h2e2 + · · · (83)

where the crucial fact is that the error must have an O(1) component, e0. In this case, we will compute

L̃huh =
(

L+ h2E2 +O(h4)
) (

u+ e0 + he1 + h2e2 +O(h4)
)

= Lu+Le0 +hLe1 +O(h2) = Le0 +O(h) (84)

and, unless we are extraordinarily lucky, and L e0 vanishes, we will not observe the expected convergence,
rather, we will see L̃huh − fh tending to a finite (O(1)) value—a sure sign that something is wrong.

There is of course, the problem that we might have slipped up in our implementation of the “independent
residual evaluator”, L̃h, in which case the results from our test will be ambigous at best! However, a key
point here is that because L̃h is only used a posteriori on a computed solution (we never use it to compute
ũh, for example) it is a relatively easy matter to ensure that L̃h has been implemented in an error-free fashion
(perhaps using symbolic manipulation facilities). Furthermore, many of the restrictions commonly placed
on the “real” discretization (such as stability and the ease of solution of the resulting algebraic equations)
do not apply to L̃h.

Finally, we note that although we have assumed in the above that L, Lh and L̃h are linear, the technique of
independent residual evaluation works equally well for non-linear problems.
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1.10 Dispersion and Dissipation in FDAs

We again consider the advection model problem, ut = a ux, but now discretize only in space (semi-
discretization) using the usual O(h2) centred difference approximation:

ut = aDx u ≡ a
u

j+1
− u

j−1

2△x (85)

We now look for normal-mode solutions to (85) of the form

u = eik (x+a′ t)

where the “discrete phase speed”, a′, is to be determined. Substitution of this ansatz in (85) yields

ika′u =
a (2i sin(k△x ))

2△x u

or, solving for the discrete phase speed, a′

a′ = a
sin(k△x )

k△x = a
sin ξ

ξ

where we have defined the dimensionless wave number, ξ:

ξ ≡ k△x

In the low frequency limit, ξ → 0, we have the expected result:

a′ = a
sin ξ

ξ
→ a

so that low frequency components propagate with the correct phase speed, a. However, in the high frequency
limit, ξ → π, we have

a′ = a
sin ξ

ξ
→ 0 !!

i.e. the highest frequency components of the solution don’t propagate at all! This is typical of FDAs of wave
equations, particularly for relatively low-order schemes. The propagation of high frequency components of
the difference solution is essentially completely wrong. Arguably then, there can be little harm in attenuating
(dissipating) these components, and, in fact, since high frequency components are potentially troublesome
(particularly vis a vis non-linearities and the treatment of boundaries), it is often advantageous to use a
dissipative difference scheme.

Some FDAs are naturally dissipative (the Lax-Wendroff scheme, for example), while others, such as leap-
frog, are not. In the case of a leap-frog-based scheme, the idea is to add dissipative terms to the method,
but in such a way as to retain O(h2) accuracy of the scheme. Consider, for example, the leap-frog scheme
as applied to the advection model problem:

u
n+1

j
= u

n−1

j
+ aλ

(

u
n

j+1
− u

n

j−1

)

We add dissipation to the scheme by modifying it as follows:

u
n+1

j
= u

n−1

j
+ aλ

(

u
n

j+1
− u

n

j−1

)

− ǫ

16

(

u
n−1

j+2
− 4u

n−1

j+1
+ 6u

n−1

j
− 4u

n−1

j−1
+ u

n−1

j−2

)

(86)

where ǫ is an adjustable, non-negative parameter. Note that

u
n−1

j+2
− 4u

n−1

j+1
+ 6u

n−1

j
− 4u

n−1

j−1
+ u

n−1

j−2
= △x 4(uxxxx)

n−1

j
+O(h6)

= △x 4(uxxxx)
n

j
+O(h5) = O(h4)
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so that the term which is added, does not change the leading order truncation error, which in the form we
have written the equation, is O(△t 3) = O(h3) (local/one-step truncation error).

A Von Neumann analysis of the modified scheme shows that, in addtion to the CFL condition λ ≤ 1, we
must have ǫ < 1 for stability, and, further, that the per-step amplification factor for a mode with wave
number ξ is, to leading order

1 − ǫ sin4 ξ

2

Thus the addition of the dissipation term is analagous to the use of an explicit “high frequency filter”
(low-pass filter), which has a fairly sharp rollover as ξ → π.

We note that an advantage to the use of explicit dissipation techniques (versus, for example, the use of an
intrinsically dissipative scheme) is that the amount of dissipation can be controlled by tuning the dissipation
parameter.

2 Introduction to Finite Differerence Solution of Time-Independent

(Elliptic) Problems

2.1 Outline

• Overview

• Typical Setup of an Elliptic Problem

• Model Problem

• Discretization of Model Problem

• Traditional Solution of Discrete Equations

– Direct Methods

– Relaxation Methods (Jacobi, Gauss-Seidel, SOR)

– Convergence of Relaxation Methods

– Relaxation as Smoother (Prelude to Multi-Grid)

• The Multi-grid Method

– Motivation

– Multi-level Algorithms

– Multi-grid for Linear Problems (LCS Scheme)

– Computational Cost of Multi-Grid

– Multi-grid for Non-Linear Problems (FAS Scheme)

2.2 Overview

In addition to time-dependent PDEs primarily of hyperbolic type, time-independent, or elliptic PDEs also
play an important role in numerical relativity. Specifically, elliptic PDEs in general must be solved in
order to determine initial data for the Einstein equations which are consistent with the constraint equations
(the Hamiltonian and momentum constraint). At the continuum level, the Bianchi identities guarantee
that initial data which is consistent with the constraints will remain so under subsequent evolution via the
Einstein field equations. Computationally, however, so called free-evolution schemes, in which the constraints
are solved only at the initial time, will in general not preserve discrete versions of the constraints under
evolution. Historically, the non-preservation of the constraints has often been associated with instability
(non-convergence) of the overall numerical scheme, and researchers have thus often used so called constrained
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schemes, in which the discretized constraint equations are re-solved periodically during an evolution—most
often at every time step.

In addition, in many instances, coordinate choices, such as the well known maximal slicing condition will
lead to additional elliptic equations that need to be solved at every time step during an evolution.

A key property of elliptic equations is their global nature. In contrast to hyperbolic equations, there are
generally no characteristics in the solution of such equations, and thus no “marching” techniques by which
a solution can be constructed step by step, with each step yielding a solution on a d − 1 dimensional sub-
manifold for a d dimensional solution. Rather, given data on some d − 1 dimensional boundary of some
d dimensional domain, the solution must be determined throughout the domain in “one go”, and, further,
change in any of the boundary data generally changes the solution everywhere in the domain.

Largely due to this global property, “traditional” methods for solving discrete (finite-differenced) versions
of elliptic equations were sub-optimal in the sense that the algorithms were slower (sometimes considerably
slower) than O(N), where N is the total number of grid points in the discretization. This lead to a view
that still persists in the numerical relativity community that the treatment of elliptics was necessarily slow
(computer resource intensive), and that therefore, the solution of elliptic PDEs was to be avoided if at all
possible.
One of the key points of what follows below is to emphasize that with “non-traditional” methods, this view
is largely unfounded. In particular, the multi-grid method, due to Achi Brandt and others, provides the
basis for the O(N) solution of general elliptic systems, and should be part of the arsenal of techniques of
any practicing numerical relativist.

2.3 Typical Setup of an Elliptic Problem

For our purposes, an “elliptic equation” will be taken to be synonymous with “boundary-value problem”
(BVP), and although elliptic problems in three dimensions, d = 3, have been routinely solved in numerical
relativity and other fields for many years now, the following development will focus (for convenience) on 2D
model equations. Figure 9 schematically illustrates the basic setup of a typical two-dimensional boundary

δΩ

Ω
Lu = f

Bu = g

x

y

Figure 9: Typical setup of a two-dimensional boundary value problem. The solution domain is Ω with
boundary ∂Ω. Appropriate boundary conditions, Bu = g, must be applied everywhere on the boundary
in order to uniquely determine the solution, u ≡ u(x, y), throughout the solution domain, subject to the
interior elliptic equation, Lu = g

value problem. Here, we seek a solution u(x, y) that satisfies

Lu(x, y) = f(x, y) on Ω (87)

where L is an elliptic differential operator, and f(x, y) is some specified “source” or “forcing” function, and

Bu(x, y) = g(x, y) on ∂Ω (88)

where B is another operator that encodes the boundary conditions, and g(x, y) is another source function.

In general, there are three types of boundary conditions:
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1. Dirichlet conditions, in which the value of u on ∂Ω is specified.

2. Neumann conditions, in which the value of the normal derivative ∂u/∂n on ∂Ω is given.

3. Mixed or Robin conditions, in which some linear combination α(x, y)u + β(x, y)∂u/∂n is specified.

2.4 Model Problem

A convenient model problem for the following discussion is the Poisson equation on the unit square with
(homogeneous) Dirichlet boundary conditions. That is, we consider

∇u(x, y) ≡ uxx + uyy = f(x, y) (89)

on the domain,
Ω : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 (90)

subject to the boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 . (91)

2.5 Discretization of Model Problem

In order to discretize our model problem using finite difference methods, we adopt the same basic approach
that we applied to time-dependent problems. In this case, this first entails replacing the continuum domain,
Ω, with a discrete set of grid points constituting the discrete domain, Ωh. Again, for simplicity, as well
as to extremize truncation error accuracy for a given width of finite difference stencil, we adopt a uniform
discretization, with a single, constant mesh spacing, h, in each of the coordinate directions. This results in
a finite difference grid, Ωh, having n grid points in each direction, with h = 1/(n − 1). The total number
of points in the discretization is thus thus N = n2. Figure 10 illustrates the discrete domain for the case
h = 1/4, n = 5. Note that the finite difference mesh points are defined by

{(xi, yj) ≡ ((i− 1)h, (j − 1)h) , i, j = 1, 2, · · ·n} (92)

(0,0)

(1,1)

(i,j)

h

h

Figure 10: Discrete domain for the model problem for the case h = 1/4, n = 5. Solid circles denote discrete
interior points, while the open squares are the discrete boundary points. A typical interior grid point having
coordinates, ((i− 1)h, (j − 1)h) is labelled (i, j)

Having set up the finite difference mesh, we now proceed to the discretization of the model problem, replacing
the continuum system (89) with a discrete version

Lhuh = fh (93)

Bhuh = gh (94)
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Here uh is the discrete solution, with individual values denoted ui,j , L
h and Bh are discrete versions of the

differential operators L and B, and fh and gh are the values of the source function restricted to the finite
difference mesh (i.e. evaluated at the the discrete mesh values).

In order to discretize the Laplacian operator, we need finite difference approximations to the second-order
derivatives uxx and uyy. Here we use the standard second-order, centred approximations:

uxx =
ui+1,j − 2ui,j + ui−1,j

h2
+O(h2) (95)

uyy =
ui,j+1 − 2ui,j + ui,j−1

h2
+O(h2) (96)

Substitution of the above in (89) yields the desired discretization of the Poisson equation:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
= fi,j 2 ≤ i, j ≤ n− 1 (97)

Note that (97) may be applied at all interior points (see Figure 10). The Dirichlet boundary conditions (91)
provide (trivial) equations for the boundary values on the discrete domain:

u1,j = un,j = ui,1 = ui,n 1 ≤ i, j ≤ n (98)

(Observe that the four “corner” values, u(1, 1), u(1, n), u(n, 1) and u(n, n) actually completely decouple for
the rest of the scheme, but, algorithmically, it may prove useful to retain them.)

We note that the discretization of (89-91) using (97-98) generally results in a large sparse linear system of
equations. Specifically, consider some enumeration of the unknowns ui,j in terms of a single index K:

ui,j −→ uK (99)

so that we can view the discrete grid function as a single vector u. One specific example is provided by a so
called lexicographic ordering such as

K ≡ (j − 1)n+ i (100)

so that the various index pairs appearing in (97) map as follows

(i, j) −→ K (101)

(i+ 1, j) −→ K + 1 (102)

(i− 1, j) −→ K − 1 (103)

(i, j + 1) −→ K + n (104)

(i, j − 1) −→ K − n (105)

(106)

Then (97) becomes
uK+1 + uK−1 + uK+n + uK−n − 4uK

h2
= fK (107)

When supplemented with the appropriately remapped discrete boundary conditions (98), we see that we
must solve a linear system

Lu = f (108)

where L is an n2 ×n2 sparse, banded matrix, with bandwidth 2n+1, and u and f are n-component vectors.

Standard results from linear analysis tell us that the computational cost to directly solve a linear system of
size N and bandwidth w using LU decomposition (Gaussian elimination) is O(w2N). Thus, at least naively,
the cost to directly solve our discrete boundary value problem (108) is O(N2). This is, of course, very bad
news, and, although the cost can be reduced somewhat through clever reordering of the equations in the
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linear system, direct methods are thus seldom used in the solution of boundary value problems in more than
one dimension.

Consequently, iterative methods, such as relaxation, and more recently, multi-grid, have come to dominate
the solution of linear systems arising from the discretization of elliptic PDEs, and we will thus focus on
these. (Another class of iterative method that will not be discussed here, but which has found use in numer-
ical relativity, is the Krylov subspace method—GMRES (generalized minimum residual) and BiCGSTAB
(stabilized biconjugate gradient) are specific members of this class).

2.6 Relaxation Methods

Relaxation methods are among the oldest and best known techniques for the iterative solution of large sparse
linear systems, such as those arising from the discretization of elliptic PDEs. As with almost any technique,
relaxation has both advantages and disadvantages. On the positive side, the method is generally very easy
(almost trivial!) to code, it works for many discrete BVPs, and it is extremely storage efficient. On the other
hand, relaxation methods are characterized by slow convergence, with the time for solution per grid point
tending to increase as the mesh spacing, h, tends to 0. This disadvantage is severe enough that relaxation
should almost never be used in practice, except if one can get away with relatively small meshes, or if one
really is only interested in just a few solutions.

This then leads to the question: Why study such methods at all? In the context of these notes, the answer is
that relaxation forms the core of arguably the best method for the solution of discretized elliptic equations—
the multi-grid method.

2.6.1 Jacobi and Gauss-Seidel Relaxation

The key idea underlying relaxation techniques is quite intuitive. We associate a single equation and a
corresponding single unknown, ui,j, with each mesh point in Ωh. We then repeatedly “sweep” through the
mesh, visiting each mesh point in some prescribed order. Each time a point is visited, we adjust the value
of the unknown at that grid point so that the corresponding equation is (“instantaneously”) satisifed.

To give a concrete illustration of this process, we adopt a “residual based” approach to locally satisfying the
discrete equations. We also proceed in a manner that generalizes immediately to the solution of non-linear
elliptic PDEs, which, naturally, lead to systems of non-linear algebraic equations upon discretization. In
addition, for the sake of presentation, we will temporarily ignore the treatment of boundary conditions,
bearing in mind that if those conditions are differential in nature (i.e. Neumann / Dirichlet), then their
discretizations will have to be relaxed as well.

As just mentioned, we will adopt a “residual-based” approach to the problem of locally satisfying equations
via relaxation. To that end we consider our general form of a discretized BVP

Lhuh = fh (109)

and recast this in the canonical form
Fh
[

uh
]

= 0 . (110)

We call this form “canonical” since we have 0 on the right hand side of the equation. Clearly any system
of the form (109) can be trivially rewritten in the form (110). We also stress that the quantity uh which
appears above is the exact solution of the difference equations.

In solving the system (110) iteratively, we will generally only compute the exact discrete solution, uh, in
the limit of infinite iteration. We thus introduce the quantity ũh, to denote the “current” or “working”
approximation to uh, so that labelling the iteration number by n (not to be confused with the number of
grid points per edge of the finite difference grid), and assuming that our iterative technique does converge,
we have

lim
n→∞

ũh = uh (111)
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Associated with the current approximation, ũh is the residual, r̃h, defined by

r̃h ≡ Lhũh − fh (112)

or in terms of the canonical form (110),
r̃h ≡ Fh

[

ũh
]

. (113)

When referring to a specific component (grid value) of the residual, r̃h
i,j , we can without danger of confusion,

drop the h superscript, and write

r̃i,j =
[

Lhũh − fh
]

i,j
≡
[

Fh
[

uh
]]

i,j
(114)

For the specific case of our model problem we have

r̃i,j = h−2 (ũi+1,j + ũi−1,j + ũi,j+1 + ũi,j−1 − 4ũi,j) − fi,j (115)

The task of the relaxation method is to adjust the value of ũi,j so that the corresponding residual is “in-
stantaneously” zeroed. To do this, it is useful to appeal to Newton’s method for the solution of a single
non-linear equation in a single unknown. In the current case, because the difference equation is linear in
ũi,j, we can solve the equation with a single Newton step. Again, however, we can also apply relaxation to
non-linear difference equations, in which case we would generally only zero the residual in the limit of an
infinite number of Newton steps.

We thus write the relaxation in terms of an update, δũ
(n)
i,j of the unknown

ũ
(n)
i,j −→ ũ

(n+1)
i,j = ũ

(n)
i,j + δũ

(n)
i,j (116)

where, again, (n) labels the iteration number. Appealing to Newton’s method, we have

ũ
(n+1)
i,j = ũ

(n)
i,j − r̃i,j

[

∂Fh
i,j

∂ui,j

∣

∣

∣

ui,j=ũ
(n)
i,j

]−1

(117)

= ũ
(n)
i,j − r̃i,j

−4h−2
(118)

= ũ
(n)
i,j +

1

4
h2r̃i,j (119)

The precise computation of the residual requires some clarification. We are considering an iterative method
which ultimately takes an entire vector of unknowns u(n) to an new estimate u(n+1), but which works on a
component by component basis. In the computation of the individual residuals, we could either choose only
“old” values; i.e. values from iteration n, or, wherever available, we could use “new” values from iteration
n+ 1, with the rest from iteration n.

The first approach is known as Jacobi relaxation, and for our current set of difference equations would mean
the residual would be computed as

r̃i,j = h−2
(

ũ
(n)
i+1,j + ũ

(n)
i−1,j + ũ

(n)
i,j+1 + ũ

(n)
i,j−1 − 4ũ

(n)
i,j

)

− fi,j (120)

The second approach is known as Gauss-Seidel relaxation, and, assuming a lexicographic ordering of un-
knowns, i = 1, 2, · · ·n, j = 1, 2, · · ·n, with the i index varying most rapidly, our residual is computed via

r̃i,j = h−2
(

ũ
(n)
i+1,j + ũ

(n+1)
i−1,j + ũ

(n)
i,j+1 + ũ

(n+1)
i,j−1 − 4ũ

(n)
i,j

)

− fi,j (121)

We now make a few observations and comments about these two relaxation methods. First, tacit in the
description of the above methods is the fact that at each iteration we “visit” each and every unknown
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exactly once and modify its value so that the local equation is instantaneously satisfied. Thus, a complete
pass through the mesh of unknowns (i.e. a complete iteration) is often known as a relaxation sweep.

For the Jacobi method, the order in which we visit unknowns is clearly irrelevant to what values are obtained
at the end of each iteration, and hence Jacobi relaxation is often known as simultaneous relaxation. The
structure of the iteration is advantageous from the point of view of parallelization, but storage is required
for both the new and old values of ũi,j .

For Gauss-Seidel (GS), on the other hand, one only needs storage for the current estimate of ũi,j , and the
sweeping order does impact the details of the solution process. Thus, lexicographic ordering does not lend
itself to parallelization, whereas for difference equations such as those for our model problem, which have
nearest-neigbour couplings, so called red-black ordering can be parallelized, and turns out to have other
advantages. Red-black ordering can be understood by appealing to the red and black squares on a chess
board, and is composed of two subiterations (which can be performed in arbitrary order)

1. Visit and modify all “red” points, i.e. all (i, j) such that mod(i+ 1, 2) = 0

2. Visit and modify all “black” points, i.e. all (i, j) such that mod(i+ 1, 2) = 1

Within each sub-iteration the order in which individiual red or black values is modified is irrelevant, as is
the case for Jacobi.

2.6.2 Convergence of Relaxation Methods

A key issue (if not the key issue) with any iterative technique is whether or not the iteration will converge.
For methods such as Gauss-Seidel, this was an issue that was examined comprehensively in the 1960’s and
1970’s, and it is beyond the scope of these notes to delve into any level of detail concerning this matter.

As a very rough rule-of-thumb, GS will converge if the linear system being solved is diagonally dominant.
That is, casting our (linear) difference equations

Lhuh = fh (122)

in the matrix form
Au = b (123)

where A is an N × N matrix (N being the total number of unknowns), and u and b are N -component
vectors, the matrix A is said to be diagonally dominant if

|aij | ≤
N
∑

j=1,j 6=i

|aij | , i = 1, 2, · · ·N (124)

with strict inequality holding for at least on value of i.

Another practical issue that arises with any iterative method is how to monitor convergence. With relaxation
methods, there are two natural quantities (scalars) that one can compute in this regard: the residual norm
‖r̃h‖ and the solution update norm ‖ũ(n+1) − ũ(n)‖, both of which tend to 0 in the limit of infinite iteration,
should the method be convergent. In practice, monitoring the residual norm is straightforward and often
sufficient. One should note that with Gauss-Seidel, the norm of the true residual r̃h (i.e. the N -component
vector) is constantly changing, and that is therefore useful to define the concept of the running residual,
which is the collection of individual residuals computed during any single relaxation sweep.

Let us consider the issue of convergence in a little more detail. For a general iterative process leading to a
solution vector u, and starting from some initial estimate (guess) of the solution, u(0), we have

u(0) → u(1) → · · · → u(n) → u(n+1) → · · · → u (125)

Similarly, for the residual vector, we have

r(0) → r(1) → · · · → r(n) → r(n+1) → · · · → 0 (126)
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and, finally, for the solution error, e(n) ≡ u − u(n), we have

e(0) → e(1) → · · · → e(n) → e(n+1) → · · · → 0 (127)

For linear relaxation (and the basic idea generalizes to the non-linear case) we can view the transformation of
the error, e(n), at each iteration in terms of a linear matrix (operator), G, known as the error amplification
matrix. We then have

e(n+1) = Ge(n) = G2e(n−1) = · · · = Gne(0) (128)

Asymptotically then, the convergence of the iteration is determined by the spectral radius, ρ(G), of the error
amplification matrix, G, where ρ(G) is given by

ρ(G) ≡ max
i

|λi(G)| (129)

and the λi are the eigenvalues of G. That is, in general we have

lim
n→∞

‖e(n+1)‖
‖en‖ = ρ(G) (130)

and we can then define the asymptotic convergence rate, R, via

R ≡ log10

(

ρ−1
)

(131)

A useful interpretation of R is that its reciprocal, R−1 yields the number of iterations necessary to asym-
potically decrease ‖e(n+1)‖ by an order of magnitude.

We can now consider the computational cost of solving (general) discrete BVPs using relaxation. Here “cost”
is to be roughly identified with CPU time, and we approach the issue from the point of view of complexity
analysis; i.e. we are interested in how the cost scales with the key numerical parameters in the problem. In
thise instance we will assume that there is one key parameter, which is the total number of grid points, N , in
our discrete domain, Ωh. For concreteness, and to simplify the analysis, we make the following assumptions

1. The domain Ω is d-dimensional (d = 1, 2, 3 being most common)

2. There are n grid points per edge of the (uniform) discrete domain, Ωh

The total number of grid points, N , is thus given by

N = nd (132)

We will further define the computational cost or computational work, W ≡ W (N) to be the work required
to reduce the error, ‖e‖ in the computed solution, by an order of magnitude. Ideally, perhaps, one would
like to be able to compute the work needed to reduce the error to some specified level, but for the purposes
of comparison of methods, and from the point of view of complexity analysis, this definition will suffice. We
observe that, clearly, the best case situation is that W (N) = O(N).

Turning now to the case of Gauss-Seidel relaxation, we state without proof that for our model problem (and
for many other elliptic systems in d = 1, 2, 3), we have

ρ (GGS) = 1 −O(h2) (133)

This in turn implies that the relaxation work, WGS, required to reduce the solution error by an order of
magnitude is given by

WGS = O
(

h−2 sweeps
)

= O
(

n2 sweeps
)

(134)

Now, each relaxation sweep costs O(nd) = O(N), so we have

WGS = O
(

n2N
)

= O
(

N2/dN
)

= O
(

N (d+2)/d
)

(135)

Tabulating the values for d = 1, 2 and 3 we find
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d WGS

1 O(N3)
2 O(N2)

3 O(N5/3)

Although the scaling improves as the dimensionality, d, increases, O(N2) and O(N5/3) for the cases d = 2
and d = 3 are pretty bad, and, again, it is for this reason that Gauss-Seidel is rarely used in practice,
particularly for large problems (large values of n, small values of h).

2.6.3 Successive Over Relaxation (SOR)

Historically, researchers studying Gauss-Seidel relaxation found that the convergence of the method could
often be substantially improved by systematically “over correcting” the solution, relative to what the usual
GS computation would dictate. Algorithmically, the change from GS to SOR is very simple, and is given by
the following formula:

ũ
(n+1)
i,j = ω û

(n+1)
i,j + (1 − ω) ũ

(n)
i,j (136)

Here, ω is the so-called overrelaxation parameter, typically chosen in the range 1 ≤ ω < 2, and û
(n+1)
i,j is the

value computed from the normal Gauss-Seidel iteration. Note that when ω = 1, we recover the GS iteration
itself, and that for large enough ω, e.g. ω ≥ 2, the iteration will tend to become unstable.

Under ideal conditions, the use of SOR reduces the number of relaxation sweeps required to drop the error
norm by an order of magnitude to O(n). That is, we have

WSOR = O (nN) = O
(

N1/dN
)

= O
(

N (d+1)/d
)

(137)

Again tabulating the values for d = 1, 2 and 3 we find

d WSOR

1 O(N2)

2 O(N3/2)

3 O(N4/3)

We thus note that optimal SOR is not entirely unreasonable for at least moderately-sized d = 3 problems.

The issue, of course, is how to choose ω = ωOPT in order to get optimal performance. Except for those cases
where ρGS ≡ ρ(GGS) can be computed explicitly, ωOPT will generally need to be determined empirically on
a case-by-case and resolution-by-resolution basis. If ρGS is known, then one has

ωOPT =
2

1 +
√

1 − ρGS
(138)

2.6.4 Relaxation as Smoother (Prelude to Multi-Grid)

As seen in the previous section, the slow convergence rate of relaxation methods such as Gauss-Seidel means
that they do not provide a very good way of solving discretized elliptic problem. We now consider an even
simper model problem than previously to illustrate what relaxation does tend to do well, which in turn will
elucidate why relaxation is so essential to the multi-grid method.

Let us thus consider a one dimensional (d = 1) “ellliptic” model problem, specifically an ordinary differential
equation that is to be solved as a two-point boundary value problem. The equation to be solved is

Lu(x) ≡ d2u

d2x
= f(x) (139)

where f(x) is specified source function. We solve (139) on a domain, Ω, given by

Ω : 0 ≤ x ≤ 1 (140)
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subject to the (homogeneous) boundary conditions

u(0) = u(1) = 0 (141)

To discretize this problem, we introduce a uniform mesh, Ωh

Ωh = {(i− 1)h, i = 1, 2, · · ·n} (142)

where n = h−1 + 1 and h, as usual, is the mesh spacing. We now discretize (139) to O(h2) using the usual
centred difference approximation for the second derivative, yielding

ui+1 − 2ui + ui−1

h2
= fi , i = 2, 3, · · ·n− 1 (143)

The above equations, combined with the boundary conditions

u1 = un = 0 (144)

constitute a set of n linear equations in the n unknowns, ui, i = 1, 2, · · ·n. For the analysis it proves useful
to eliminate u1 and un from the discretization (which is possible since their values are known), so that in
terms of our generic form

Lhuh = fh (145)

uh and fh are to be viewed as n− 2-component vectors, while Lh is an (n− 2) × (n− 2) matrix.

We now consider a specific relaxation method, known as damped Jacobi, which is chosen for ease of analysis,
but, in terms of the lessons that we wish to glean from the analysis, is quite representative of other relaxation
techniques, including Gauss-Seidel. Using vector notation, the damped Jacobi iteration is given by

ũ(n+1) = ũ(n) − ωD−1r̃(n) (146)

where ũ is the approximate solution of the difference equations, r̃ is the residual vector, ω is an (underre-
laxation) parameter, and D is the main diagonal of Lh. For the case under consideration we have

D = −2h−21 (147)

Note that when ω = 1, this is just the usual Jacobi relaxation method discussed previously.

We now examine the effect of (146) on the residual vector, r̃. We have

r̃(n+1) ≡ Lhũ(n+1) − fh (148)

= Lh
(

ũ(n) − ωD−1r̃(n)
)

− fh (149)

=
(

1− ωLhD−1
)

r̃(n) (150)

≡ GRr̃(n) (151)

where, in analogy to the previously considered error amplification matrix, the residual amplification matrix,
GR, is given by

GR ≡ 1− ωLhD−1 (152)

Clearly we have the following relation for the residual at the n-th iteration, r̃(n), in terms of the initial
residual, r̃(0):

r̃(n) = (G)
n
R r̃(0) (153)

Now, it transpires that the (n − 2) × (n − 2) matrix, GR, has a complete set of orthogonal eigenvectors,
φm , m = 1, 2, · · ·n − 2 with corresponding eigenvalues µm. Thus, in particular, we can expand the initial
residual, r̃(0), in terms of the φm:

r̃(0) =
n−2
∑

m=1

cmφm (154)
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where the cm are coefficients. This immediately yields the following expansion for the residual at the n-th
iteration:

r̃(n) =

n−2
∑

m=1

cm (µm)
n
φm . (155)

Thus, after n sweeps, the m-th “Fourier” component of the initial residual vector, r̃(0) is reduced by a factor
of (µm)n.

Again, for illustrative purposes, we now consider the specific value of the underrelaxation parameter, ω = 1/2.
Then it is left to the reader to verify that the eigenvectors, φm are given by

φm = [ sin (πmh) , sin (2πmh) , · · · , sin ((n− 2)πmh) ]
T
, m = 1, 2, · · · , n− 2 (156)

while the corresponding eigenvalues, µm are

µm = cos2
(

1

2
πmh

)

, m = 1, 2, · · · , n− 2 (157)

We note that each of the eigenvectors, φm, has an associated “wavelength”, λm, which can be identified by
the relation

sin (πmx) = sin (2πx/λm) . (158)

Thus we have

λm =
2

m
(159)

so as m increases (and λm decreases), the “frequency” of φm increases, and, from (157), the eigenvalues,
µm, decrease in magnitude.

As discussed above, the asymptotic convergence rate of the relaxation scheme is determined by the largest
of the µm, which is µ1

µ1 = cos2
(

1

2
πh

)

= 1 − 1

4
π2h2 + · · · = 1 − O(h2) . (160)

This is the same basic result previously quoted for the Gauss-Seidel iteration and implies that O(n2) sweeps
are required to reduce the norm of the residual by an order of magnitude.

We thus see that the asymptotic convergence rate of this relaxation scheme is dominated by the (slow)
convergence of smooth (low frequency, long wavelength) components of the residual, r̃(n), or, equivalently,
the solution error, ẽ(n). Again, this comment applies to many other relaxation schemes applied to typical
elliptic problems, including Gauss-Seidel.

It is now highly instructive to consider what happens to high frequency components of the residual (or
solution error) as the damped Jacobi iteration is applied. In particular, we consider those components of r̃h

which cannot be represented on a coarser grid, Ω2h. As can be seen from Figure 11, we are thus concerned
with the eigenvectors, φm, such that

λm ≤ 4h −→ mh ≥ 1

2
(161)

In this case, we have

µm = cos2
(

1

2
πmh

)

≤ cos2
(π

4

)

≤ 1

2
(162)

Thus, all components of the residual (or solution error) that cannot be represented on Ω2h get supressed
by a factor of at least 1/2 per sweep. Furthermore, the rate at which these high-frequency components are
liquidated is independent of the mesh spacing, h.

To summarize, relaxation tends to be a dismal solver of systems Lhuh = fh, arising from FDAs of elliptic
PDEs. However, it tends to be a very good smoother of such systems, which, as we will see is crucial for the
efficacy of the multi-grid method.
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λ = 4h

Ω

Ω

h

2h

Figure 11: Illustration of the definition of “high frequency” components of the residual or solution error, on
a fine grid, Ωh, relative to a coarse grid, Ω2h. As illustrated in the figure, any wave with λ < 4h cannot be
represented on the coarse grid (i.e. the Nyquist limit of the coarse grid is 4h.)

2.7 The Multi-grid Method

2.7.1 Motivation and Introduction

Consider again our model problem
u(x, y)xx + uyy = f(x, y) (163)

solved on the unit square subject to homogeneous boundary conditions. We again discretize the system using
the standard 5-point O(h2) FDA on a uniform n × n grid with mesh spacing h, resulting in the algebraic
system Lhuh = fh. We also assume that we will apply an iterative solution technique, so that we will start
with some initial estimate ũ(0), then iterate until ‖r̃(n)‖ ≤ ǫ.

Several questions concerning the solution of the discrete problem then arise:

1. How do we choose n (equivalently, h)?

2. How do we choose ǫ?

3. How do we choose ũ(0)?

4. How fast can we “solve” Lhuh = fh?

We will now provide at least partial answers to all of these questions.

1) Choosing n (equivalently h)

Ideally, we would choose the mesh spacing h such that the error in the discrete solution, ‖ũ − u‖, satisfies
‖ũ− u‖ < ǫu, where ǫu is some user-prescribed error tolerance.

Now, from our discussions of FDAs applied to time-dependent problems, we already know how to estimate
the solution error for essentially any finite difference solution. For concreteness, we assume that our FDA
has been constructed from centred, O(h2) difference approximations. We then appeal to Richardson, and
note that, for solutions computed on grids with mesh spacings h and 2h, we expect

uh ∼ u+ h2e2 + h4e4 + · · · (164)

u2h ∼ u+ 4h2e2 + 16h4e4 + · · · (165)

so that, to leading order in h, the error in the solution, uh − u, is given by

e ∼ u2h − uh

3h2
(166)
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That is, the basic strategy is to perform convergence tests—comparing the finite difference solutions at
different resolutions, and increasing (or decreasing!) h until the level of error is deemed satisfactory.

2) Choosing ǫ (ǫr)

Consider the following 3 expressions:

Lhuh − fh = 0 (167)

Lhũh − fh = r̃h (168)

Lhu− fh = τh (169)

where uh is the (exact) solution of the finite difference equations, ũh is the approximate solution of the FDA
at any stage of the iteration, and u is the (exact) solution of the continuum problem, Lu−f = 0. Now, (167)
is simply our FDA written in a canonical form, (168) defines the residual, while (169) defines the truncation
error.
Comparing (168) and (169), we see that is natural to stop an iterative process for the solution of (167) when

‖r̃h‖ ∼ ‖τh‖ (170)

This leaves us with the problem of estimating the size of the truncation error (not to be confused with the
solution error!), and we will see below how estimates of τh arise naturally within the context of multi-grid
algorithms.

3) Choosing ũ(0)

The key idea here is to use the solution of a coarse-grid problem as an initial estimate for the fine-grid
problem. That is, assume that we have determined that we wish to compute a solution at resolution h; i.e.
that we wish to solve

Lhuh = fh (171)

Then we first pose and solve (perhaps approximately) the corresponding problem (i.e. same domain, bound-
ary conditions and source function, f) on a mesh with spacing 2h. That is, we solve

L2hu2h = f2h (172)

and then set the initial estimate, (uh)(0) via

(

uh
)(0)

= Īh
2h u

2h (173)

where Īh
2h is known as a prolongation operator and transfers a coarse-grid function to a fine-grid. Typi-

cally, Īh
2h (which is a discrete representation of an identity operator) will perform d-dimensional polynomial

interpolation of the coarse-grid unknown, u2h, to a suitable order in the mesh spacing, h.

The chief advantage of this approach is that the solution of the coarse-grid problem should be inexpensive
to solve relative to the fine-grid problem; in particular, the cost of solving on the coarse-grid should be no
more than 2−d of the cost of soving the fine-grid equations.

Furthermore, we can apply this basic approach recursively, initializing u2h with the prolonged solution of a
problem on a grid with spacing 4h, which itself can be initialized via the solution of a problem with spacing
8h etc.

We are thus lead to consider a general multi-level technique for the treatment of discretized elliptic PDEs,
in which the solution of a fine-grid problem is preceded by the solution of a series of coarse-grid problems.
We label each distinct mesh spacing with an integer ℓ

ℓ = 1, 2, · · · ℓmax (174)

where ℓ = 1 corresponds to the coarsest mesh spacing h1, while ℓ = ℓmax labels the finest mesh spacing
hℓmax . Operationally, it almost always most convenient (and usually most efficient) to use mesh spacings,
hℓ, that satisfy

hℓ+1 =
1

2
hℓ (175)
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which then implies
nℓ+1 ∼ 2dnℓ . (176)

In what follows, we will always assume that our multi-level algorithms use a hierarchy of meshes that are
related by 2 : 1 refinement factors. It will also be convenient to use ℓ itself to denote the resolution associated
with a particular finite difference approximation, or a transfer operator. That is we define uℓ via

uℓ = uhℓ (177)

and could then rewrite (173) as
uℓ+1 = Īℓ+1

ℓ uℓ (178)

Having made these caveats and definitions, we can now write down pseudo-code for our general multi-level
technique:

for ℓ = 1 , ℓmax

if ℓ = 1 then
uℓ := 0

else
uℓ := Īℓ

ℓ−1u
ℓ−1

end if
solve iteratively(uℓ)

end for

Note that we (arbitrarily) use 0 for the initial estimate of the coarsest-grid problem (ℓ = 0). Presumably, the
solution of this problem is so cheap relative to the finest-grid problem (ℓ = ℓmax), that this specific choice is
essentially irrelevant.

This is a very simple and intuitive algorithm, and when novices hear the term multi-grid, they sometimes
think that this sort of approach is all that is involved. However, we shall shortly see that the grid hierarchy
that appears in a multi-grid algorithm is also used for an entirely different, and even more essential purpose!

4) How fast can we solve Lhuh = fh?

The answer to this question is short and sweet. A properly constructed multi-grid algorithm can generally
solve a discretized elliptic equation in O(N) operations! This is, of course, computationally optimal, and is
the principal reason that multi-grid methods have become such an important tool for numerical analysts—
numerical relativists included.

Although the workings of a multi-grid algorithm are relatively complex, particularly when compared to a
relaxation technique, the basic idea behind the operation of the algorithm can be stated rather succinctly.
As emphasized above, although relaxation is usually quite a bad technique for solving discretized elliptic
systems, it is generally a very good technique for smoothing such systems. Multi-grid combines this fact
with the use of a hierarchy of meshes—using the coarse meshes in the hierarchy to effectively and cheaply
annihilate smooth components of the residual and error. These are precisely the components on the fine
mesh which relaxation is slow to converge.

2.7.2 Multi-grid for Linear Problems (LCS Scheme)

We will first discuss a multi-grid algorithm for linear problems—the so called Linear Correction Scheme or
LCS. For the most part, the development will apply to essentially any elliptic system, but for specificity, the
reader may find it useful to think in terms of the two dimensional model problem discussed above.

Before proceeding to a description of the LCS algorithm, we note that multi-grid algorithms generally involve
the solutions of sets of equations of the form

Lℓuℓ = sℓ (179)
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where the “right-hand-side” or “source” function, sℓ, may not necessarily coincide with the source function
f ℓmax that appears in the specification of the fine-grid problem

Lℓmaxuℓmax = f ℓmax (180)

We also note that in all of the discussion that follows, we will essentially ignore the role of (discretized)
boundary conditions in the operation of multi-grid techniques. However, the reader should be aware that,
especially for non-Dirichlet conditions, the treatment of boundary conditions in the context of multi-grid is
non-trivial. Fortunately, most of the general references for multi-grid supplied in the bibliography address
this issue in considerable detail.

We begin our discussion of the LCS scheme assuming that our grid hierarchy has precisely two grids: a fine
grid with mesh spacing h, on which we wish to solve the problem at hand

Lhuh = fh , (181)

and a coarse grid with mesh spacing 2h which will serve as the “accelerator” of the fine grid solution process.
As usual, we denote by ũh the current approximation to the exact solution, uh, of the system (181). Given
some initial estimate of ũh, we start by applying relaxation to (181), and for concreteness (as well as the
fact that it is commonly used in practice), we will assume that we are using Gauss-Seidel relaxation with
red-black ordering (RBGS). Then, after a few sweeps (perhaps as few as 1 or 2!), we will find that the
residual, r̃h

r̃h := Lhũh − fh (182)

as well as the error
ẽh := uh − ũh (183)

will be smooth on the scale of the mesh.

At this point, we now think of the task of completing the solution of (181), or, equivalently, of driving the
residual, r̃h, to 0, in terms of computing a correction, vh, such that

uh = ũh + vh (184)

Clearly, due to the linearity of Lh, the correction satisfies

Lhvh = −r̃h (185)

Now, by assumption, the residual, r̃h is smooth and, therefore so must be the sought correction, vh (this
reasonably assumes that L and Lh are “well-behaved”).

The first key observation underlying the LCS is that this smoothness in the residual and correction means
that we can sensibly pose a coarse-grid version of (185). That is, we now consider the coarse grid problem

L2hv2h = −I2h
h r̃h ≡ s2h , (186)

where L2h is the coarse-grid difference operator (which employs the same FDA as Lh) and I2h
h is a fine-grid-

to-coarse-grid transfer operator known as a restriction operator (we will discuss details of this operator later
on).

We now assume that we have in some fashion computed an (approximate) solution, ṽ2h, of (186). We then
update ũh via

ũh := ũh + Ih
2hṽ

2h (187)

where Ih
2h is a coarse-to-fine transfer operator, i.e. a prolongation operator, which is not necessarily the same

as the prolongation operator Īh
2h discussed previously. Again, however, Ih

2h will typically involve polynomial
interpolation, and the interpolation of the computed correction, ṽ2h, to the fine grid will generically introduce
new high-frequency components in both the residual and the solution error. However, these high-frequency
components can be effectively annihilated with a few more relaxation sweeps, at which point, all components
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of the residual will have been substantially reduced. The sequence of posing (186), solving it, then updating
the fine grid unknown using (187) is known as a coarse-grid correction (CGC).

The next key observation is that we can apply the smooth/CGC/smooth process to solve the coarse grid
problem (186) itself, and then keep recursing, solving problems with mesh spacings, 4h, 8h, etc. until on the
coarsest level, we have a problem which is so small (perhaps 3 × 3 unknowns, including boundary values!)
that it is computationally trivial to solve the problem (not just smooth it) using relaxation. The solution
of the coarse grid problem is then followed by a succession of coarse-to-fine transfers of the various coarse
grid corrections that have been computed, with post-CGC relaxation sweeps applied after each restriction
operation to ensure that high-frequency components (re)-introduced by the restriction are effectively liqui-
dated. The entire process of working from the finest to coarsest grid then back to the finest grid is known

Apply p relaxation sweeps

Apply q relaxation sweeps

Solve coarsest grid problem

Pose coarse grid problem

Transfer correction

Coarsest level

Finest level

V−cycle

Figure 12: Schematic representation of a LCS multi-grid V -cycle, for the case of 4-level mesh hierarchy.
(Since the figure has the coarsest level on top, one might more properly refer to it as an “inverted V -cycle”.)
Open and filled circles represent pre- and post-CGC relaxation sweeps, respectively while the open square
denotes the solution of the coarse-grid problem. Intergrid transfers are represented by the two different types
of arrows.

as a multi-grid V -cycle and is schematically illustrated in Figure 12. An important question that arises is:
How many relaxation sweeps should be applied before and after each coarse-grid correction? The answer
to this generally depends on the specifics of the problem, but in many situations one can parametrize the
number of sweeps, with parameters p and q:

p ≡ number of pre-CGC sweeps (188)

q ≡ number of post-CGC sweeps (189)

and then set p and q to specific values. This results in what is known as a fixed V -cycle algorithm, and
pseudo-code for this method will be presented shortly.

Turning now to the question of convergence of the multi-grid process, experience shows that, assuming the
initial estimate of ũh was good (as should be the case if we are using a multi-level strategy), then we will
find that

‖r̃h‖ ∼ ‖τh‖ (190)

after a single V -cycle, and our fine grid problem will be effectively solved.

Should we wish for some reason to reduce the norm of the residual further, then we can apply additional
V -cycles. Indeed, we can associate a residual amplification matrix, GV , with the entire V -cycle process. For
a well-constructed LCS scheme we will typically find

ρ (GV ) ≤ 0.1 (191)

and thus we can reasonably expect the residual norm to decrease by an order of magnitude or more per
V -cycle. Another crucial point is that, in stark contrast to the case of relaxation, the spectral radius of the
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V -cycle, ρ(GV ) is independent of the mesh spacing h. This fact is essential to the computational optimality
of the multi-grid process. Finally, we observe that in the case of multiple V -cycles, there is no need to
perform pre-CGC smoothing sweeps on the finest level for any but the first of the V -cycles.

We now present a pseudo-code version of a fixed V -cycle multi-grid algorithm, using two pseudo-procedures:
one which implements the V -cycle per se, and the other which uses a multi-level approach to “drive” the
V -cycle procedure. We will then discuss some details of appropriate coarse-to-fine and fine-to-coarse transfer
operators for the specific case where red-black Gauss-Seidel is used as a smoother, and the problem being
treated is similar to (or identical to) our model problem.

procedure lcs vcycle ( ℓ, cycle, p, q )
Cycle from fine to coarse levels
do m = ℓ , 2 , −1

if cycle = 1 or m 6= ℓ then
Apply pre-CGC smoothing sweeps
do p times
um := relax rb (um, sm, hm )

end do
Set up coarse grid problem
um−1 := 0
sm−1 := −Im−1

m (Lmum − sm)
end if

end do
Solve coarsest-level problem
u1 := relax rb (u1, s1, h1 ) until ‖r̃1‖ ≤ ǫ1
Cycle from coarse to fine levels
do m = 2 , ℓ , +1

Apply coarse-grid correction
um := um + Im

m−1u
m−1

Apply post-CGC smoothing sweeps
do q times
um := relax rb (um, sm, hm )

end do
end do

end procedure

Note that in the above pseudo-code we have introduced an additional parameter, ǫ1, which is the convergence
criterion for the coarsest-grid problem, which is to be solved (rather than simply smoothed) by relaxation.
Again, because the cost of relaxation on the coarsest grid is typically so small compared to the work expended
on fine grids, ǫ1 can typically be set quite conservatively (i.e. several orders of magnitude below the typical
level of truncation error on such a grid) with no significant loss in overall performance of the algorithm.

procedure lcs mg ( ℓmax, ncycle, p, q )
do ℓ = 1 , ℓmax , +1

if ℓ = 1 then
On coarsest level, arbitrarily initialize solution to 0
u1 := 0

else
Initialize solution via prolongation from coarse grid solution
uℓ := Īℓ

ℓ−1u
ℓ−1

end if
Initialize source function
sℓ := f ℓ

Perform ncycle V -cycles
do cycle = 1 , ncycle
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lcs vcycle ( ℓ, cycle, p, q )
end do

end do
end procedure

Thus far we have not discussed the nature of the grid-to-grid transfer operators (i.e. the prolongation and
restriction operators) in any detail. The proper construction of Īℓ

ℓ+1, I
ℓ
ℓ+1, and Iℓ+1

ℓ is an extremely important
aspect of any multi-grid algorithm, and again, it is beyond the scope of these lectures to treat this topic in any
depth. We note, however, that the multi-grid technique (i.e. the V -cycle) induces non-trivial interactions
between these operators and the relaxation (smoothing) scheme, so that for example, prolongation and
restriction operators that work well with red-black Gauss-Seidel relaxation do not necessarily work well
when lexicographic Gauss-Seidel is used.

Here we will describe specific implementations for these operators that work well for problems such as our
model equation—as well as similar systems in two and three dimensions—in conjunction with red-black
Gauss-Seidel smoothing.

(i,j)

(I,J)

Figure 13: Schematic representation of the stencil used for the operation of half-weighted restriction. Small
filled and large open circles represent fine and coarse grid locations respectively, and the task of the restriction
operator is to define all of the coarse grid values from the fine grid unknowns. The dotted line indicates the
5-pt stencil that is used in the half-weighted stencil; see the text for full details.

We begin with the restriction operator, Iℓ−1
ℓ (I2h

h ), which is used in the LCS to transfer the right-hand-side
of the equation for the correction from the fine to the coarse grid. Experience (which can be backed up with
rigorous analysis) has shown that half-weighted restriction works well in this case. To define this operator, we
appeal to Figure 13, which depicts a portion of a both the fine grid (small filled circles) and coarse grid (large
open circles), overlaid on one another. Indices (i, j) and (I, J) label the fine and coarse grids respectively,
and the task of the restriction operator is to define all of the coarse grid values from the fine grid quantities.
Let as assume, as shown in the picture, that the specific indices (i, j) and (I, J) correspond to the same
physical location. Then the following formula defines half-weighted restriction in two dimensions:

uℓ
I,J =

1

2
uℓ−1

i,j +
1

8

(

uℓ−1
i−1,j + uℓ−1

i+1,j + uℓ−1
i,j+1 + uℓ−1

i,j−1

)

(192)

The term “half-weighting” comes from the fact that the fine-grid unknown, uℓ−1
i,j , located at the same

physical location as the target coarse-grid unknown, uℓ
I,J has a weight of 1/2 in the transfer equation (192).

(Note that the sum of all of the “weights” associated with the fine grid unknowns is 1, as befits a discrete
representation of an identity operator). The half-weighted restriction operator may be analogously defined
in 1 and 3 dimensions, where the factor of 1/8 is replaced by 1/4 and 1/12, respectively, and the sum is over
the central fine-grid unknown, and its 2 and 6 nearest neighbors respectively.

We note in passing that the “obvious” restriction formula

uℓ
I,J = uℓ−1

i,j (193)

which is known as injection fails miserably when used with red-black Gauss-Seidel relaxation, although it
tends to work well when lexicographically-ordered GS is employed as the smoother.
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j

J

j−1 j+1

J+1

Figure 14: Illustration of coarse and fine meshes in one dimension for the purpose of linear interpolation
(prolongation), of coarse grid values to the fine grid. Refer to the text for details.

Turning now to the prolongation operator, Iℓ
ℓ−1 (Ih

2h), which the LCS uses to transfer the coarse grid
correction back to the fine grid, we note that we have already mentioned that such operators typically
employ polynomial interpolation of some sort. Again, in the context of the algorithm pseudo-coded above,
and as applied to our model problem and related, bilinear interpolation is found to work well. Before
proceeding to the details of bilinear interpolation, we consider the analogous problem in one dimension,
namely linear interpolation from a mesh Ωh to Ω2h. Figure 14 illustrates a portion of both the coarse-grid
(large open circles) with grid index, J , and the fine-grid, with grid index, j. The fine-grid values uℓ

j−1 and

uℓ
j+1 are trivially interpolated as “copies” of the corresponding coarse-grid unknowns

uℓ
j−1 = uℓ−1

J (194)

uℓ
j+1 = uℓ−1

J+1 (195)

and, intuitively, the other half of the fine-grid quantities can be linearly interpolated by “averaging” the
neighboring values: that is, assuming that uℓ

j−1 and uℓ
j+1 have been defined as above, then uℓ

j is given by

uℓ
j =

1

2

(

uℓ
j−1 + uℓ

j+1

)

(196)

We can establish this result more formally by considering Taylor series expansions in the mesh spacing, h,
about the grid point, x = xj . We have

uj+1 = uj + hu′j +
1

2
h2u′′j +O(h2) (197)

uj−1 = uj − hu′j +
1

2
h2u′′j +O(h2) (198)

so that

1

2
(uj+1 + uj−1) = uj +

1

2
h2u′′j +O(h4) (199)

= uj +O(h2) (200)

Thus the averaging formula does yield an O(h2) approximation to the values that actually need to be
interpolated (rather than simply “copied”) and this is precisely what is meant by linear interpolation in this
context. Moreover, we note that (196) is the unique formula for linear interpolation of uℓ

j from its nearest

neighbors uℓ
j−1 and uℓ

j+1.
We now return to the two dimensional case and refer to Figure 15, which again shows a portion of both
the coarse grid (large open circles) and fine grid (small circles). We see that there are generally three
types of values that must be defined on the fine grid via interpolation process: values which may be copied
from the coarse grid, values that can be determined via one-dimensional linear interpolation in either the x
or y direction, and, finally, values that genuinely require two-dimensional interpolation. Such points have
precisely 4 nearest neighbors in the coarse grid, but, as can again be verified via Taylor series (as well
as elementary geometry—how many distinct, non-colinear points are needed to define a plane?), only 3 of
these are required to produce a linear interpolant. Thus, in the two dimensional case (as well as in higher
dimensions) there is no unique formula for linear interpolation from Ω2h to Ωh. Figure 16 schematically
illustrates two of the possible formulae that we have at our disposal and it is easy to convince oneself that
there are actually an infinite number of possible formulae.
One would hope that the precise details of the interpolation—i.e. which specific formula is used—would not
matter, and indeed, experience shows that this is the case. To summarize then, we are free to implement the
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Figure 15: Illustration of a portion of a coarse mesh (large open circles) and a fine mesh (small circles),
in two dimensions, and in the context of bi-linear interpolation. There are three distinct types of fine grid
points: (1) those whose values are copies of coarse grid unknowns (small open circles), (2) those whose values
may be computed via one-dimensional interpolation in either the x or y direction (dark filled circles), and
(3) those whose values require genuine two-dimensional interpolation (light filled circles).

Figure 16: Schematic illustration of two of the infinite number of ways of computing the “central” fine grid
value (light filled circle) from the coarse grid using bi-linear interpolation.

interpolation operator more or less as we please, and Figure 17 illustrates an approach with is particularly
convenient to implement, and which extends to more dimensions, as well as to higher order interpolation.
The last transfer operator that we must consider is the prolongation operator, Ĩℓ

ℓ−1 which is used in the
multi-level solution process to initialize a fine-grid unknown from the solution of a coarse grid problem.
Again, there has been considerable research on this subject over the years, and, in particular, an old rule of
thumb due to Brandt would ostensibly suggest that we use bi-cubic interpolation, in the coarse grid mesh, so
that the leading order error term would be O(h4). However, empirically one finds that bi-linear interpolation
actually provides better overall performance (again, in the context of our model problem being smoothed
with red-black Gauss-Seidel, and with the other transfer operators defined as above), so that in the current
case, we have

Ĩℓ
ℓ−1 ≡ Iℓ

ℓ−1 (201)

2.7.3 Computational Cost of Multi-Grid

We now consider the computational cost of a V -cycle-based multi-grid algorithm, again illustrated for the
case of a two dimensional problem. We first define the following quantities

wℓ ≡ work required to perform one level ℓ relaxation sweep (202)
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Figure 17: Schematic illustration of a particularly convenient strategy for implementing 2:1 bi-linear inter-
polation, which generalizes to higher dimensions as well as higher order interpolation.

Wℓ ≡ work required to solve the level ℓ problem (203)

p ≡ number of pre-CGC sweeps (204)

q ≡ number of post-CGC sweeps (205)

σ ≡ number of CGCs needed per solve (206)

Then we have

Wℓ ∼ (p+ σq)wℓ + σWℓ−1 (207)

= (p+ σq) + σ ((p+ σq)wℓ−1 + σWℓ−2) (208)

But (again, in two dimensions)

wℓ−1 ∼ 1

4
wℓ (209)

so

Wℓ ∼ (p+ σq)wℓ

(

1 +
1

4
σ +

1

16
σ2 + · · · +

(σ

4

)ℓ−2
)

+ σℓ−1W1 (210)

where W1 is the work required to solve the coarsest-grid problem L1u1 = s1. Now, so long as the number of
CGCs, σ, required to solve any fine grid problem, satisfies σ < 4, then we have

1 +
1

4
σ +

1

16
σ2 + · · · +

(σ

4

)ℓ−2

<
(

1 − σ

4

)−1

(211)

and thus

Wℓ ≤ wℓ

(

p+ σq

1 − σ/4

)

+ σℓ−1W1 (212)

But, the work, wℓ, required to perform a level-ℓ relaxation sweep is proportional to the number of grid points,
Nℓ, in the level-ℓ mesh:

wℓ ∼ cNℓ (213)

where c is some constant, and by our assumption that σ < 4, we have

σℓ−1 < 4ℓ−1 ∼ Nℓ−1

N1
(214)

where N1 is the number of points on the coarsest grid (another constant). Putting these results together we
have

Wℓ ≤ Nℓ

(

c (p+ σq)

1 − σ/4
+
W1

N1

)

= O(Nℓ) (215)

Thus, as previously claimed, multi-grid can solve the N algebraic equations resulting from the discretiza-
tion of elliptic PDEs in O(N) time. Heuristically, this result can be understood from the following basic
observations
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1. The cost of a multi-grid algorithm is dominated by the cost of relaxation work on the finest grid;
because of the geometrically decreasing number of grid points on coarse grids, the cost of the CGCs is
largely negligible (and increasingly so for higher dimensional problems)

2. The role of fine grid relaxation is simply to smooth the fine grid problem, not to solve it

3. A properly choosen smoother (relaxation technique) is h-independent and costs O(N)

4. Thus, the work per fine grid point expended for the entire multi-grid solution is also h-independent
and O(N)

2.7.4 Multi-grid for Non-Linear Problems (FAS Scheme)

We now turn our attention to the application of the multi-grid scheme to non-linear problems, using the
so-called Full Approximation Storage Scheme. Let us first quickly re-cap the Linear Correction Scheme.
There, we wished to solve

Lhuh − fh = 0 , (216)

and, at any stage of the iterative solution scheme, with the current approximation to uh being denoted by
ũh, attention focused on the residual, r̃h defined by

Lhũh − fh = r̃h (217)

Assuming that r̃h was smooth, we sought a correction, vh satisfying

uh = ũh + vh , (218)

and computed an approximation to that correction by posing and solving the coarse-grid problem

L2hu2h = −I2h
h r̃h , (219)

and then updating the fine grid unknown using

ũh := ũh + Ih
2hv

2h . (220)

However, in order to derive this scheme, we had to take advantage of the linearity of Lh by using

Lh
(

ũh + vh
)

= Lhũh + Lhvh (221)

Clearly, then, the LCS will not work if Lh is non-linear. However, suppose that given a non-linear problem
(i.e. a non-linear Lh), that we can still smooth the residual, r̃h, using a few (non-linear) relaxation sweeps.
Then, we can again view the solution of the discrete system in terms of computing a smooth correction, vh,
such that

Lh
(

ũh + vh
)

= fh (222)

In particular, consider the following expression obtained by subtracting the ostensibly smooth quantity,
Lhũh, from both sides of the above equation (each of which is also smooth, by assumption):

Lh
(

ũh + vh
)

− Lhũh = fh − Lhũh = −r̃h (223)

Provided r̃h is smooth, then we can sensibly pose a coarse grid version of (223), namely

L2hu2h − L2hI2h
h ũh = −I2h

h r̃h (224)

where I2h
h is a suitably constructed restriction operator. We can rewrite (224) as an equation for the coarse

grid unknown, u2h:
L2hu2h = L2hI2h

h ũh − I2h
h r̃h (225)

Note that, here, u2h is the coarse-grid representation of ũh + vh; that is, on the coarse grid, we manipulate a
“full approximation” to the desired solution, uh, rather than the correction, vh, itself, hence the terminology
“Full Approximation Storage”.
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Now, as was the case with the LCS, we proceed to solve the coarse-grid problem (225). Having done so, we
then update the fine grid unknown using

ũh := ũh + Ih
2h

(

u2h − I2h
h ũh

)

(226)

where Ih
2h is an appropriate prolongation operator, which again, typically performs some sort of polynomial

interpolation in the coarse grid.

We observe that the fine grid update formula (226) is not equivalent to the more obvious

ũh := Ih
2hu

2h , (227)

since, in general
Ih
2hI

2h
h 6= 1 (228)

(rank deficiency). The former expression is to be preferred since, quoting/paraphrsasing Brandt, it “retains
(useful) high frequency information contained in ũh prior to the coarse grid correction. As with the LCS,
the interpolation of the coarse-grid correction will tend to introduce new high frequency components in the
fine-grid residual and error. However, these can again be effectively annihilated provided that a non-linear
relaxation process with good smoothing properties is in hand.

Equations (225) and (226) are the basic equations for the FAS Coarse Grid Correction, and although we
could proceed to a pseudo-code description of a typical FAS algorithm at this point, it is instructive to
consider an alternate derivation of (225) that reveals another way of viewing that FAS multi-grid algorithm.

Recall once more our basic trio of equations for the continuum solution, u, the corresponding discrete solution,
uh, and the associated truncation error, τh, respectively:

Lu = f (229)

Lhuh = fh (230)

τh ≡ Lhu− fh (231)

Observe that we can re-write (231) as
Lhu = f + τh (232)

so that, as a moment’s reflection makes clear, the truncation error is the quantity that we need to add to
the right hand side of (230), so that the solution of the corresponding discrete equations actually coincide
with the values of the continuum solution evaluated on the mesh.

In general, of course, we cannot compute τh exactly. But suppose we had an approximation, τ̃h of τ , that
we had calculated in some fashion. Then, by solving

Lhuh
⋆ = fh + τ̃h (233)

we would get an improved approximation, uh
⋆ , relative to uh.

Now, equation (231) can also be rewritten as

τh = Lhu− Lhuh (234)

We now re-introduce the coarse (2h) mesh and consider by analogy to (234) a quantity τ2h
h defined by

τ2h
h ≡ L2hI2h

h uh − I2h
h Lhuh (235)

We call τ2h
h the relative (local) truncation error, defined on the coarse grid (mesh spacing 2h) relative to the

fine grid (mesh spacing h). The appropriateness of this nomenclature becomes clear when we re-write (235)
as

L2hI2h
h uh = I2h

h Lhuh + τ2h
h (236)
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Identifying I2h
h uh with a coarse-grid unknown u2h, and using Lhuh = fh, this last result becomes

L2hu2h = f2h + τ2h
h (237)

so, in direct analogy to the interpretation of τh made above, we can think of τ2h
h as the correction to the

source (or “forcing”) terms of the coarse grid equations that makes the solution of those coarse grid equations
coincide with the solution of the fine grid equations.

Again, in general we cannot compute τ2h
h exactly. However, given some approximate solution, ũh, of the fine

grid equations, we can define an approximation, τ̃2h
h , to it using the following formula

τ̃2h
h = L2hI2h

h ũh − I2h
h Lhũh (238)

Substituting the right hand side of (238) for τ2h
h in (236), we find

L2hu2h = f2h + τ̃2h
h = f2h + L2hI2h

h ũh − I2h
h Lhũh (239)

= L2hI2h
h ũh − I2h

(

Lhũh − fh
)

(240)

= L2hI2h
h ũh − I2hr̃h (241)

This last expression is precisely the first of our two basic equations for the FAS coarse-grid correction process,
equation (225).

In view of the above development, and as emphasized by Brandt, we are thus lead to the following dual
views of the multi-grid process:

1. Coarse grids are used to accelerate the convergence of low-frequency components of fine grid residuals
(and solution errors)

2. Fine grids are used to compute correction terms to coarse grid equations (through modification of the
source/forcing terms), yielding fine-grid accuracy on the coarse grids

Equations (237) and (238) (with t̃au
2h
h replacing τ2h

h in (237) are equivalent to (225), and it is this form that
I typically use when implementing an FAS multi-grid algorithm.

One significant rationale for this approach is that it provides an easy route to the estimation of the true
truncation error in the difference scheme. As discussed above, the norm of the truncation error, ‖τh‖ provides
a natural stopping criterion for the overall iteration; that is, it is natural to stop the iterative solution of the
difference equations when

‖r̃h‖ ∼ ‖τh‖ (242)

One can show that for the case that τh is O(h2), then

τh ∼ 1

3
τ2h
h ∼ τ̃2h

h (243)

Thus, by computing and monitoring the relative truncation error, τ̃2h
h , we can quite easily decide when it is

time to terminate the multi-grid process.

Finally, in this context, we note that the computation of τ̃2h
h , together with relations such as (243), provide

the basis for so-called tau-extrapolation in which one attempts to increase the accuracy of a discrete solution,
uh, by solving

Lhuh = fh + τ̃h (244)

Before proceeding to a pseudo-code version of an FAS V -cycle we need to discuss the topic of smoothing of
residuals via non-linear relaxation. Fortunately, for many “typical” non-linear problems (posed in cartesian
coordinates, and having smoothly varying, well-scaled coefficients), 1-step-Newton red-black Gauss-Seidel is
a good smoother.

We illustrate this technique using the following non-linear elliptic equation:

∇u(x, y) + σu2 = f(x, y) (245)
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where σ is a constant, f(x, y) is a specified function, and we eschew discussion of the domain and boundary
conditions since they are not relevant to the description of the relaxation technique. We discretize (245) in
the usual fashion, and write the resulting non-linear equations in the canonical form:

F [ui,j] = 0 . (246)

Specifically, we have

F [ui,j ] ≡
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
+ σui,j − fi,j = 0 (247)

We note that by defining our equations in this canonical form, the application of F to the instantaneous
approximation, ũh of the difference equations is simply the residual, r̃h

r̃h ≡ F
[

ũh
]

(248)

The Newton Gauss-Seidel iteration can then be defined via

ũi,j := ũi,j − F [ũi,j ]

(

∂F [ui,j ]

∂ui,j

)−1
∣

∣

∣

∣

∣

ui,j = ũi,j

(249)

In the current example we have
∂F [ui,j ]

∂ui,j
= −4h−2 + 2σui,j (250)

Because the role of the relaxation is again to smooth the discrete system of equations, rather than to solve
it (except on the coarsest level), one generally takes only a single Newton step per visit of a grid point; i.e.
one does not attempt to instantaneously solve the local equation as is the case for linear relaxation.

Again, for many “well behaved” non-linear elliptic systems, many other details of the FAS algorithm, in-
cluding the basic structure of the V -cycle, as well as appropriate choices for the prolongation and restriction
operators carry over from the LCS. We thus conclude this section with a pseudo code version of an FAS
V -cycle; the pseudo-code for the corresponding driver routine (i.e. fas mg) is essentially identical to that for
lcs mg

procedure fas vcycle ( ℓ, cycle, p, q )
Cycle from fine to coarse levels
do m = ℓ , 2 , −1

if cycle = 1 or m 6= ℓ then
Apply pre-CGC smoothing sweeps
do p times
um := relax rb (um, sm, hm )

end do
Set up coarse grid problem
τm−1
m := Lm−1Im−1

m um − Im−1
m Lmum

sm−1 := τm−1
m + Im−1

m sm

um−1 := Im−1
m um

end if
end do
Solve coarsest-level problem
u1 := relax rb (u1, s1, h1 ) until ‖r̃1‖ ≤ ǫ1
Cycle from coarse to fine levels
do m = 2 , ℓ , +1

Apply coarse-grid correction
um := um + Im

m−1

(

um−1 − Im−1
m um

)

Apply post-CGC smoothing sweeps
do q times
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um := relax rb (um, sm, hm )
end do

end do
end procedure
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