
Physics 329: Introduction to Computational Physics: Software
Availability and Usage Hints

This document will be updated throughout the course

Index

General purpose system and programming software

X Windows
Maple
Fortran 77
C
libp329f.a

Postscript viewer and plotting software

ghostview
gnuplot
sm (Supermongo)

Visualization and related software

vsxynt
scivis (jser)
sdftosv
libbhutil.a
IRIS/NAG Explorer

Scientific word-processing and related software

latex and tex
xdvi
dvips

General purpose graphics software and examples

GLUT
pp2d

X Windows: As the man page says, X is a "portable, network-transparent window system". It is the
main windowing system used in most Unix environments. You will automatically use X when you login
to one of the Phys. Dept. linux machines, or one of the Center for Relativity SGI machines. To use X on
the PCs in the PMCL follow these instructions:

login
double click on the Internet Applications icon
in the Internet Applications panel, double click on the XServer icon
an Xapplication Starter window should pop up. IGNORE OR CLOSE THIS WINDOW.
Put the cursor on eXodus in the tool bar on the bottom of the screen. Click the right mouse button
to bring up a menu and select Login using XDM
In the XDM Login window which appears, type in the name of the host to which you wish to
connect using X (einstein, linux1, etc.), then type or click CONNECT
The remote host’s login window should appear; login as usual. (You will have to put the cursor in
the login window and click with a mouse button before you can start typing in the window.) If the
login is successful, in a few seconds you should see the usual components of an X-session on the
remote machine. (These components will be superimposed on the usual Windows screen.) For
example, on einstein you should see a "toolchest" labelled Desk 1 in the upper left of the screen,
as well as an xterm window. At this point you can start additional X-applications (xmaple, more
xterms etc.) from the xterm window, or from the toolchest.
Once you have established a session on the remote host via X, you can also connect to other hosts
(using the telnet icon in Network Applications for example), set the DISPLAY environment variable
appropriately, e.g.

einstein % setenv DISPLAY pmcl-pc8.ph.utexas.edu:0.0

and start X-applications from there. Note that the Internet address of each machine should be taped
to the system’s monitor.
Don’t forget to log out of the remote X-session when you are through. For example, if logged into
einstein, choose Log out from the Desktop menu of the toolchest. A notifier asking you to
confirm the log out should appear---click Yes to log out. A less graceful way to exit is to choose
Close from the eXodus menu.

Maple: One of the two major general-purpose "symbolic manipulation" packages (also general-purpose
programming environments), and the one that we will study in this course. On the SGIs type

% xmaple

for the GUI version (in which case make sure your DISPLAY environment variable is set correctly if
running on a remote machine), or

% maple

for a terminal-based (text) session. In the latter instance you should see something like this.

% maple
 |\^/| Maple V Release 5 (University of Texas at Austin)
._|\| |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
 \ MAPLE / reserved. Maple and Maple V are registered trademarks of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.
>

If there is any sequence of Maple commands that you find yourself typing at the beginning of each
session (maple or xmaple) you can put them in a file .mapleinit in your home directory, whereafter
they will automatically be executed each time you use Maple.

Fortran 77: A general purpose programming language which is particularly well-suited to numerical
(scientific/engineering) applications. On Unix systems, such as SGI IRIX, the Fortran 77 compiler is
often called f77.

Typical usage (on the SGIs):

% f77 -n32 -g mypgm.f mysubs.f -o mypgm

See the on-line notes describing the use of Fortran and C in the Unix environment for additional
information.

C: Another general purpose programming language which is also widely-used for scientific and
engineering applications. On Unix systems the C compiler is often called cc.

Typical usage (on the SGIs):

% cc -n32 -g mypgm.c myfcns.c -o mypgm

See the on-line notes describing the use of Fortran and C in the Unix environment for additional
information.

libp329fa: Utility library for Fortran 77 programs. Available on SGIs and Crays. Sample driver for
utility routines: p329fsa.f. See source code and course notes for further information.

Typical usage:

 % f77 pgm.f -L/usr/localn32/lib -lp329 -o pgm

ghostview: Available on SGIs and Linux machines. Use for viewing Postscript documents. This is an
X-application. As with any X-application, if you are running ghostview on a remote machine, be sure
to set your DISPLAY environment variable so that your local display is used.

Typical usage (assuming a remote login to einstein from one the Physics Linux machines):

 einstein% set DISPLAY linux1.ph.utexas.edu:0
 einstein% ghostview somefile.ps

Note: Not all Postscript files will have .ps extensions, but many do by convention.

gnuplot: X-application available on SGIs and Linux machines. Use for generating X-Y (2D) and some
surface plots. Has extensive on-line documentation: type help at the gnuplot prompt for help.

Typical usage:

 einstein% gnuplot
 .
 .
 .
 Terminal type set to ’x11’
 gnuplot> help
 .
 .
 .
 gnuplot> quit

sm: Supermongo plotting package. Available on SGIs. An alternative to gnuplot which is somewhat
quirkier but generally produces more professional-looking (i.e. publication-quality) plots. See on-line
postscript documentation and on-line help (type help at the the sm command prompt) for further details.
Supermongo runs as an X-application provided the device is set to x11. Ignore the "Can’t find
entry for iris-ansi-net ..." message at start-up.

Typical usage:

 einstein% sm
 Can’t find entry for iris-ansi-net in /usr/local/lib/sm/termcap
 Hello Matt, please give me a command
 : device x11
 : help
 .
 .
 .
 : quit

vsxynt: A Fortran- and C-callable routine which was specifically designed for the output and
subsequent visualization of data generated in the solution of time-dependent problems in one spatial
dimension.

Use of this routine in Fortran is illustrated by the code vswave.f which generates a time-series of
waveforms, and, at each time step, outputs the data using vsxynt. Note that this program is essentially
identical to the gpwave.f example discussed in class, we’re just changing the "output interface".

Depending on which library is linked-to, data which is output via vsxynt will be sent to special-purpose
files, or sometimes directly to a visualization server such as scivis. I strongly recommend that you use
the following libraries when using the vsxynt interface:

 -lsvs -lrnpl -lmfhdf -ldf -ljpeg -lz -lsv -lm

I further recommend that you communicate these libraries to make using the following setenv command
which should be placed in your .cshrc:

 setenv LIBVS ’-lsvs -lrnpl -lmfhdf -ldf -ljpeg -lz -lsv -lm’

If you do this, then Makefiles such as this one will work properly.

Assuming that your executable has linked to the libraries given above, calls to vsxynt will direct data to
files with the extension .sdf. Thus, in the vswave.f example, the call

 call vsxynt(’wave’,t,x,y,nx)

will send data to

 wave.sdf

.sdf files can then be sent to scivis using the sdftosv command, as discussed in more detail below.

Important: Note that .sdf files are not ‘‘human-readable’’, so please don’t try to edit them or, worse, to
print them!

scivis (jser): A package for interactive & collaborative visualization developed at NPAC in Syracuse.
Some documentation is available from the Scivis home page and the User’s Guide, but the following
should help get you going.

PLEASE SEND ME E-MAIL IMMEDAITELY IF YOU HAGE PROBLEMS WITH THIS SOFTWARE.

Assuming that you have established an X session to einstein, you should be able to start the scivis
visualization server (also known as jser) by selecting jser from the Tools sub-menu of the toolchest in
the upper left corner of the screen.

Alternatively, you can start jser from the command-line:

 einstein% jser &

Note, that we start jser in the background so that we can continue to type commands at the shell prompt.
Note that jser is an X-application, so be sure that the DISPLAY environment variable points to your
local screen.

Whichever way you start jser, the following window should pop up on your screen in a few seconds:

Note that, with the exception of the Exit button---which shuts the server down---you will probably find
little use for the various selections on the server panel. Rather, you will primarily interact with the server
through additional windows which display data sets which are sent to the server after it is started. For
example, assume that we have previously generated an .sdf file using, for example, a Fortran program
which calls vsxynt:

 einstein% pwd
 /usr2/people/phy329/fd/new_wave

 einstein% ls
 Makefile gpwave.f vswave.f

 einstein% make vswave
 f77 -g -n32 -c vswave.f
 f77 -g -n32 -L/usr/localn32/lib vswave.o -lp329f \
 -lsvs -lrnpl -lmfhdf -ldf -ljpeg -lz -lsv -lm -o vswave
 ld32: WARNING 84: /usr/localn32/lib/libjpeg.a is not used for ...

 einstein% vswave
 usage: vswave

 einstein% vswave 101

 einstein% ls *.sdf
 wave.sdf

Then, once we have started the scivis server, we can send the data in this .sdf file to the server using the
sdftosv command:

 einstein% sdftosv wave

In a few seconds you should see a window such as the following pop-up:

Observe that the new window displays one time step (dataset) of the data at a time. Using the pull down
menus and/or keyboard accelerators, you can step through the data, zoom-in or or, play (animate) the
data, and perform many other functions, many of which are fairly self-explanatory.

Here is a guide to the annotations on the above scivis data window:

Note that the server’s main function in the context of this course, is to provide you with a useful tool to
develop and analyze programs which solve time-dependent partial differential equations (or time
dependent particle motion in 2 dimensions). In particular, you should not expect to use it to produce
‘‘quality’’ hardcopy output.

scivis (jser) keyboard-accelerators

Important Note: Due to a bug in SGI’s implementation of Java, you must first RESIZE any window that
scivis creates in order for the following keyboard accelerators to work. All accelerators are Ctrl-key
based; for example, C-a means depress the ctrl key and then the a key (without releasing the ctrl key).

Keystroke Mnemonic Function

C-q Quit Closes window

C-a Animate Starts animation

C-s Stop Stops animation

C-n Next Displays next dataset

C-p Previous Displays previous dataset

C-g Goto Goto specific dataset

sdftosv: Sends data in .sdf files to the Scivis server (also known as jser). Here is the full usage for the
command

 % sdftosv
sdftosv version: 1.0
 Copyright (c) 1997 by Robert L. Marsa
 sends .sdf files to the scivis visualization server
Usage:
 sdftosv [-i ivec]
 [-n oname]
 [-s]
 input_file [input_file [...]]

 -i ivec -- use ivec (0 based) for output control
 -n oname -- name all data sets oname
 -s -- send data sets one at a time
 useful for large or nonuniform data
 input_file is an .sdf file

Beware that there is a command sdftovs which sends an .sdf file to a different server---if you get an
error message such as

 assign_Server: Could not communicate with einstein
 assign_Server: Ensure that server is running on einstein and/or
 assign_Server: check/reset value of environment variable VSHOST.

you have typed sdftovs instead of sdftosv.

A typical invocation will be:

 % ls
 wave.sdf

 % sdftosv wave

Note that you do not have to specify the .sdf extension explicitly.

If we wanted to send only every second time step of wave.sdf to the server we could use

 % sdftosv -i ’0-*/2’ wave

In this example, the construct

 0-*/2

is an example of an index-vector (or ivec), which is just a shorthand for a regular sequence of integers:

 min-max/step ===> min, min + step, min + 2 step, ... min + n step

where n is the largest integer such that

 min + n step <= max

Index 0 refers to the first time level of data stored in the file, and an asterisk (*) can be used in place of

min and/or max to denote "first time-level" or "last time-level" respectively. When using * in an
index-vector specfication, such as in the above example, be sure to enclose the index-vector in single
quotes to inhibit the shell from interpreting * in its own special way.

libbbhutil.a: Fortran- and C-callable output utility routines written for the Binary Black Holes Grand
Challenge Project. Available on SGIs and HPCF Cray machines. Postscript ‘‘man-style’’ documentation
for the C routines is available here. Fortran routines have the same names (gft_out_bbox etc.) and can
be either called, or invoked as integer functions. For output of 2- and 3-D arrays on uniform
finite-difference meshes, the routines

 gft_out_bbox

should suffice. Here is a usage example:

 integer nx, ny
 parameter (nx = 65, ny = 33)

 real*8 gfcn(nx,ny)
 real*8 xmin, xmax, ymin, ymax,
 & time

 integer shape(2), rank
 real*8 bbox(4)
 .
 .
 .
c--
c ’bbox’ defines ’bounding box’ of coords.
c associated with the data:
c
c bbox := (xmin, xmax, ymin, ymax)
c--
 bbox(1) = xmin
 bbox(2) = xmax
 bbox(3) = ymin
 bbox(4) = ymax

 rank = 2
 shape(1) = nx
 shape(2) = ny

 do it = 1 , nt
 .
 .
 .
c--
c The first (string) arg. to ’gft_out_bbox’
c is stripped of non alphanumeric/underscore
c characters (including punctuation) if necessary,
c and then used as the ’stem’ for a filename of
c the form ’stem.sdf’. All calls to ’gft_out_bbox’
c with the same string result in output to the
c same file.
c--
 time = it * 1.0d0

 call gft_out_bbox(’gfcn’,time,shape,rank,
 & bbox,gfcn)
 end do
 .
 .
 .

The gft_ routines use a machine-independent binary format; thus data output using gft_out_bbox on a
Cray, for example, can be processed on an SGI. On the SGIs, 2- and 3-D data is best visualized using
IRIS Explorer. A locally developed module, called ReadSDF_GFT0, is available for Explorer input of
data written using the gft_ routines. Here’s an image of an Explorer map which uses this module.

IRIS Explorer: A powerful scientific visualization system available on the Center SGI machines,
including einstein. You need to be logged into einstein via the graphics console to use the software.
Complete documentation for the system is available via the Online Books selection of the pull-down
Help menu which should appear in the "Toolchest" located in the upper right corner of the screen when
you login. To use, simply type

 % explorer

Here are links to the IRIS Explorer Center and Postscript versions of the User’s Guide with graphics and
without graphics.

latex and tex: Available on SGIs. Scientific typesetting software. Converts .tex source files to .dvi
files which can then be previewed using xdvi, or converted to postscript using dvips.

Typical usage:

 % ls
 document.tex

 % latex document.tex
 This is TeX, Version 3.14159 (C version 6.1)
 (document.tex
 LaTeX2e <1996/06/01>
 Hyphenation patterns for english, german, loaded.
 .
 .
 .
 No file document.aux.
 [1] (document.aux))
 Output written on document.dvi (1 page, 696 bytes).
 Transcript written on document.log.

 % ls
 document.aux document.dvi document.log document.tex

xdvi: X-application for previewing .dvi files (output from Latex-ing or tex-ing of .tex files). You

don’t have to explicitly specify the .dvi extension.

Typical usage:

 % ls
 document.aux document.dvi document.log document.tex

 % xdvi document

dvips: Utility for converting .dvi files to postscript.

Typical usage:

 % ls
 document.aux document.dvi document.log document.tex

 % dvips document
 Got a new papersize
 This is dvips 5.58 Copyright 1986, 1994 Radical Eye Software
 ’ TeX output 1997.01.22:1442’ -> document.ps
 . [1]

 % ls
 document.aux document.dvi document.log document.ps document.tex

pp2d: OpenGL/X Graphics program for animating two dimensional particle motion. Currently available
only on Center for Relativity SGI machines, but should display on any workstation running X (and
X-terms).

Typical usage (second form is for monochrome displays):

 % nbody 2.0 0.01 < nbody_input | pp2d
 % nbody 2.0 0.01 < nbody_input | pp2d -m

Help is available via

 % pp2d -h

The source code, pp2d.c and pp2d.h, may be of interest to those of you interested in using OpenGL for
graphics programming. Makefile for pp2d.

GLUT: OpenGL Utility Toolkit Programming Interface. Facilitates construction of OpenGL programs
which manipulate windows, handle user-initiated events etc. Available PS documentation: Overview
and Specification/Programmer’s Guide.

Typical usage (not all Mesa and X libraries will be required for all applications):

 % cc -n32 -I/usr/local/include pp2d.c -L/usr/localn32/lib -lglut \
 -lMesaaux -lMesatk -lMesaGLU -lMesaGL -lXmu -lXi -lXext -lX11 \
 -lm -o pp2d

