
PHYS 410/555 Computational Physi
sThe Method of Lines for the Wave Equation
One approa
h to the numeri
al solution of time-dependent partial dif-ferential equations (PDEs) is to use a dis
retization te
hnique, su
has �nite-di�eren
ing, but only apply it expli
itly to the spatial part(s)of the PDE operator(s) under 
onsideration. Following the spatialdis
retization, one is left with a set of 
oupled ordinary di�erentialequations in t, whi
h 
an then often be solved by a \standard" ODEintegrator su
h as LSODA.
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As an example of this te
hnique, 
onsider the wave equation in onespa
e dimension (often 
alled the \1D wave equation"):�2�t2u(x; t) = 
2 �2�x2u(x; t) (1)Introdu
ing the notation that a subs
ript denotes partial di�erentia-tion, and suppressing the expli
it x and t dependen
e, (1) 
an also bewritten as
utt = 
2uxx (2)As you probably know, the wave equation des
ribes propagation ofdisturban
es, or waves, at a speed 
: waves 
an either travel to theright (velo
ity +
), or to the left (velo
ity �
). Without loss ofgenerality, we 
an always 
hoose units su
h that 
 = 1, and, for
onvenien
e, we will do so. Our wave equation then be
omes:
utt = uxx (3)

2



As with any di�erential equation, boundary 
onditions play a 
ru
ialrole in �xing a solution of (3). Here, we will solve the wave equationon the domain
0 � x � 1 t � 0 (4)and will thus have to provide boundary 
onditions at x = 0 and x = 1,as well as initial 
onditions at t = 0.For 
on
reteness, we will pres
ribe Diri
hlet boundary 
onditions:
u(0; t) = u(1; t) = 0 (5)as well as the following initial 
onditions:

u(x; 0) = u0(x) = exp 0B�� 0�x� x0� 1A21CA (6)ut(x; 0) = 0 (7)where x0 (0 < x0 < 1) and � are spe
i�ed 
onstants.
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If we think in terms of small-amplitude waves propagating on a string,then the Diri
hlet 
onditions 
orrespond to keeping the ends of thestring �xed. The interpretation of the initial 
onditions is as follows:In solving (3) we have the freedom to spe
ify the amplitude of thedisturban
e for all values of x, as well as the time-rate of 
hange ofthat amplitude, again for all values of x.We thus have two fun
tions worth of freedom in spe
ifying our initial
onditions. We set the initial amplitude to some fun
tional form givenby u0(x); here we use a \gaussian pulse" that is 
entred at x0, andthat has an overall e�e
tive width of a few � �. We also set theinitial time rate of 
hange of the amplitude to be 0 for all x.Su
h data is known as time symmetri
, sin
e it de�nes an instant in theevolution of the wave equation where there is a t! �t symmetry. Inother words, with time symmetri
 initial data, if we integrate ba
kwardin time, we will see exa
tly the same solution as a fun
tion of �t aswe see integrating forward in time.
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Sin
e the wave equation des
ribes propagating disturban
es, and giventhat the initial 
onditions are time symmetri
, a little re
e
tion might
onvin
e you that the initial 
onditions (6) and (7) must represent asuperposition of equal amplitude right-moving and left-moving pulses.Thus, we should expe
t the solution of (3), subje
t to (5), (6) and (7)to des
ribe the propagation of two equal-amplitude pulses that areinitially 
oin
ident, but that subsequently move apart re
e
t o� x = 0and x = 1 respe
tively, move together, through ea
h other, then apart,et
. et
. Indeed, this is pre
isely the behaviour we will observe in oursubsequent numeri
al solution.
As mentioned above, the method of lines, involves an expli
it dis-
retization only of the spatial part of the PDE operator. Here we willuse the familiar O(h2) �nite-di�eren
e approa
h to the treatment ofuxx � �2u=�x2.
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However, before pro
eeding to the spatial dis
retization, we �rst notethat (3) is a se
ond-order-in-time equation. In order that our approa
heventually produ
e a set of �rst order ODEs in t, we introdu
e anauxiliary variable, v(x; t),
v(x; t) � ut(x; t) � �u�t (x; t) (8)and then rewrite (3) as the system:

ut = v (9)vt = uxx (10)The boundary 
onditions be
ome
u(0; t) = u(1; t) = v(0; t) = v(1; t) = 0 (11)while the initial 
onditions are now
u(x; 0) = u0(x) = exp 0B�� 0�x� x0� 1A21CA (12)v(x; 0) = 0 (13)6



We 
an now pro
eed with the spatial dis
retization. To that end, werepla
e the 
ontinuum spatial domain 0 � x � 1 by a uniform �nitedi�eren
e mesh, xj:
xj � (j � 1)h j = 1; 2; � � �N h � (N � 1)�1 (14)and introdu
e the dis
rete unknowns, uj and vj:

uj � uj(t) � u(xj; t) (15)vj � vj(t) � v(xj; t) (16)Using the usual 
entred, O(h2) approximation for the se
ond spatialderivative,
uxx(xj) = uj+1 � 2uj + uj�1h2 +O(h2) (17)

eqs. (9) and (10) be
ome a set of 2(N � 2) 
oupled ODEs for the2(N � 2) unknowns uj(t) and vj(t), j = 2; � � �N � 1:
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dujdt = vj j = 2; � � �N � 1 (18)dvjdt = uj+1 � 2uj + uj�1h2 j = 2; � � �N � 1 (19)We 
an implement the Diri
hlet boundary 
onditions as follows: if theboundary 
onditions are satis�ed at the initial time, t = 0, then theywill be satis�ed at all future times provided that the time derivatives ofu and v vanish at the boundaries. Using this observation, we 
an nowwrite down a 
omplete set of 2N 
oupled ODEs in the 2N unknownsuj(t) and vj(t) whi
h 
an then be solved using LSODA:
du1dt = 0 (20)dujdt = vj j = 2; � � �N � 1 (21)duNdt = 0 (22)dv1dt = 0 (23)dvjdt = uj+1 � 2uj + uj�1h2 j = 2; � � �N � 1 (24)dvNdt = 0 (25)
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This solution pro
edure is implemented by the the program wave (See�phys410/ode/wave). You will follow an analogous approa
h tosolve the di�usion equation in the �nal homework.
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