
PHYS 410/555 Computational Physics:

Solution of ODEs

(Reference Numerical Recipes, Chapters 16, 17)

Overview

• “Theory”

– Casting systems of ODEs in first order form (canonical form)

– Boundary / initial conditions

• Some Basic Numerical Techniques

– Euler method

– Second-order Runge-Kutta

• Using “Canned” Software

– ODEPACK routine lsoda

• Applications

– Quadrature (definite integrals)

– Initial value problems (dynamics)

– Boundary value problems

1

Note: There are many applications in virtually every sub-field of

physics.

Casting Systems of ODEs in First Order Form

• Can always reduce systems of ODEs to set of first order DEs by

introducing appropriate new (auxiliary) variables.

Example 1

y′′(x) + q(x)y′(x) = r(x) ′ ≡ d

dx
(1)

• Introduce new variable z(x) ≡ y′(x), then (1) becomes

y′ = z (2)

z′ = r − qz (3)

2

Example 2

y′′′′(x) = f(x) (4)

• Introduce new variables

y1(x) ≡ y′(x) (5)

y2(x) ≡ y′′(x) (6)

y3(x) ≡ y′′′(x) (7)

then (4) becomes

y′ = y1 (8)

y′1 = y2 (9)

y′2 = y3 (10)

y′3 = f (11)

3

• Thus, the generic problem in ODEs is reduced to study of a set of

N coupled, first-order DEs for the functions, yi, i = 1, 2, . . . , N

y′i(x) ≡ dyi

dx
(x) = fi(x, y1, y2, · · · , yN) i = 1, 2, . . . N (12)

where the fi(· · ·) are known functions of x and yi

• Equivalent forms: y ≡ (y1, y2, · · · , yN)

y′(x) = f(x,y) (13)

ẏ(t) = f(t,y) (14)

4

Boundary / Initial Conditions

• ODE problem not completely specified by DEs themselves

• Nature of boundary conditions is crucial aspect of problem

• Generally, BCs are algebraic conditions on certain values of the yi

in (12) that are to be satisfied at discrete specified points.

• Generally will need N conditions for N -th order system

• BCs divide ODE problems into 2 broad classes

5

1) Initial Value Problems

• All the yi are given at some starting (initial) value, tmin and we

wish to find the yi at some final value, tmax, or at some set of

values

tn, tmin ≤ tn ≤ tmax n = 0, 1, 2, · · · (15)

2) (Two-point) Boundary Value Problems

• BCs are specified at more than one value of x. Typically some will

be specified at x = xmin, the remainder at x = xmax.

• Have already considered some 2-pt BVPs, and their solution via

finite difference techniques

We will focus on general techniques / software for solving IVPs, and

some simple BVPs.

6

Some Basic Numerical Techniques for IVPs

We adopt the notation of Numerical Recipes, and illustrate the meth-

ods for the case of a scalar equation. The generalization to systems is

straightforward.

1) The Euler Method

• Consider two values of x, xn and xn+1 = xn +h (h is often called

the “step size”, and is completely analogous to the mesh spacing,

h, used in our previous work on FD approximations)

• Then the (forward) Euler method is given by

yn+1 = yn + hf(xn, yn) (16)

• Note that we use this formula to “advance” solution from x = xn

to x = xn+1 = xn + h

• Can easily derive from O(h) (forward) finite difference approxima-

tion

yn+1 − yn

h
= y′n + O(h) (17)

y′ = f(x, y) −→ yn+1 − yn

h
= f(xn, yn) (18)

• Accuracy: O(h2) per step. For fixed final x = xf , number of

steps scales as h−1, so global accuracy is O(h)

7

• OK for demonstration purposes, but should never be used in practice—

not very accurate, not very stable!

2) Second-order Runge-Kutta (Mid-point Method)

• The second-order Runge-Kutta method is given by

k1 = hf(xn, yn) (19)

k2 = hf

xn +
1

2
h, yn +

1

2
k1

 (20)

yn+1 = yn + k2 (21)

• Global accuracy: O(h2)

• Derivation

yn+1 − yn

h
= f(xn+1/2, yn+1/2) + O(h2) (22)

where xn+1/2 ≡ xn + h/2, yn+1/2 ≡ y(xn+1/2). (Exercise: Verify

the above, and compute the actual form of the leading order error

term.)

To retain O(h2) accuracy, need to evaluate f(xn+1/2, yn+1/2) to

O(h2) (i.e. can neglect O(h2) terms), so, in turn, need to know

yn+1/2 to O(h2); proceed via Taylor series expansion

8

yn+1/2 = yn +
1

2
hy′n + O(h2)

= yn +
1

2
k1 + O(h2)

=⇒ yn+1 = yn + hf

xn +
1

2
h, yn +

1

2
k1

as advertised.

Although it is “good for you” to understand some of the theory that

underlies a modern ODE solver, the state of such solvers is very high,

and, as with linear system solvers, can frequently be used as “black

boxes”—with the important proviso that we always make every reason-

able attempt to validate our results (convergence tests, independent

residual tests, conserved quantities, etc.)

9

ODEPACK

• Public-domain collection of routines for solution of systems of

ODEs (IVPs)

• We will focus on one routine, lsoda, which has the following

header:

subroutine lsoda(f, neq, y, t, tout, itol, rtol,

& atol, itask, istate, iopt, rwork,

& lrw, iwork, liw, jac, jt)

external f, jac

integer neq, itol, itask, istate, iopt,

& lrw, liw, jt

real*8 t, tout, rtol, atol

real*8 y(neq), rwork(lrw)

integer iwork(liw)

See source code and sample “driver” program (tlsoda.f) for full

description of parameters and routine operation

10

• f, jac: Names of routines (subroutines) for evaluating right hand

side of ODES (f), and Jacobian of system (jac). f is required,

jac is optional, typically a “dummy” routine

• neq: number of equations / size of system (canonical first-order

form)

• y: On input, (approximate) values of unknowns at t = t

(y(i) , i = 1 , neq);

On output, (approximate) values of unknowns at t = tout

• t, tout: Limits of current integration interval

• itol, rtol, atol: Tolerance (error-control) parameters (see

lsoda.f, tlsoda.f for details)

• itask: Set = 1 for normal operation

• istate: Set = 1 intially for normal operation, thereafter set =

2 for normal operation (routine will automatically do this if inte-

gration on first interval is successful); check for negative value on

return to detect abnormal completion

• iopt: Normally set = 0 (no optional inputs, but, again, refer to

the source code for full details)

11

• rwork(lrw): real*8 work array of length lrw;

minimum value of lrw is 22 + 16 * neq

• iwork(liw): integer work array of length liw;

minimum value of liw is 20 + neq

• jt: Set = 2 for normal operation—supply “dummy” Jacobian

routine, lsoda will approximately compute Jacobian numerically

if and when necessary

12

Crucial User-supplied Routine Called by lsoda

• f: Evaluates ”RHS” of system of ODEs (12); must have header

as follows

subroutine f(neq, t, y, ydot)

implicit none

integer neq

real*8 t, y(neq), ydot(neq)

• Inputs: neq, t, (y(j) , j = 1 , neq)

• Output: (ydot(j) , j = 1 , neq)

13

lsoda Tolerance Parameters: itol, atol, rtol

• lsoda will control step-size, order of method and type of method

so that estimated local error in y(i) is less than

ewt(i) = rtol * abs(y(i)) + atol itol .eq. 1

ewt(i) = rtol * abs(y(i)) + atol(i) itol .eq. 2

Thus, local error tests passes if, for each component y(i), either

the absolute error is less than atol (or atol(i)), or the relative

error is less than rtol

Choosing Error Tolerances

• Can experiment, but rtol = atol = tol (single control param-

eter) often works well, particularly for yi that exhibit significant

dynamical range

• Some exceptions (of course); for example, consider 2-d motion

in polar coordinates, (r, θ). If we use relative control, then for

θ ≫ 2π, “acceptable local error” δθ will increase. Better idea

to try to keep δθ constant via “pure absolute” control (rtol =

0.0d0)

14

• Solution eror will almost certainly grow with time, so for fixed

final integration time, tf , will need to calibrate error estimates,

i.e. assume that

‖ycomputed(tf) − yexact(tf)‖ ≈ κ(tf)tol (23)

where κ(tf) can be determined via calibration if yexact is known

• However, even if yexact is not known (typical case!), (23) tells us

that we can expect error (at fixed time) to be proportional to

tol; e.g. if tol goes from 1.0d-6 -> 1.0d-10, should expect

solution error to be down by about 4 orders of magnitude

• Caveat emptor! (“User beware!”)

15

Checking/validating Results From ODE Integrators

1) Monitoring Conserved Quantities

• Example: For dynamical systems with a Lagrangian (Hamiltonian),

total energy, E(t) is conserved: dE/dt = 0

• Monitor variation δÊ(t, ǫ) of computed energy Ê(t, ǫ):

δÊ(t, ǫ) = Ê(t, ǫ) − Ê(tmin, ǫ) (24)

where ǫ is the error tolerance for the integrator.

• Should find that this is an O(ǫ) quantity, i.e. for ǫ sufficiently

small, should have

δÊ(t, ǫ) = ǫf(t) + higher order terms (25)

• Thus, e.g., if we take ǫ → ǫ/10, should see δÊ → δÊ/10 (ap-

proximately, so long as ǫ ≫ ǫmachine)

16

2) Independent Residual Evaluation

• Idea: Attempt to directly verify that approximate solution, û (u

previously y!) satisfies the ODE(s) through the use of an indepen-

dent discretization of the ODE (i.e. a discretization distinct from

that used by the ODE integrator).

• Note: In numerical analysis, a residual quantity is one that should

tend to 0 in some appropriate limit

• Let

L [u(t)] ≡ Lu(t) = 0 (26)

be our ODE, where L is a differential operator, and u, in general

can be a vector of functions; will assume that L is linear, but

technique generalizes to non-linear case

17

• Let û(t, ǫ) be the solution computed by our ODE integrator for

tolerance ǫ, and consider computing û on a regular mesh of output

times

th ≡ tn = tmin, tmin + h, tmin + 2h, · · · (27)

and consider, for concreteness, a second-order (in h) finite differ-

ence approximation to the ODE

Lhuh = 0 Lh = L + O(h2) (28)

• Note that (28) defines uh, and that

uh(t) 6= û
(

th, ǫ
)

(29)

• The finite difference operator Lh can be expanded as follows

Lh = L + h2E2 + h4E4 + · · · (30)

where, as discussed previously, E2, E4, etc. are higher order dif-

ferential operators (involve higher order derivatives than L).

• Now, we can write

û(t, ǫ) = u(t) + e(t, ǫ) (31)

where e(t, ǫ) is the error in the solution computed using the ODE

integrator

18

• Next, consider the action of Lh on û(t, ǫ); suppressing explicit

t-dependence, we have

Lhû(ǫ) =
(

L + h2E2 + h4E4 + · · ·
)

(u + e(ǫ)) (32)

= Lu + h2E2u + · · · + Lhe(ǫ) (33)

≈ h2E2 [u] + Lh [e(ǫ)] (34)

• Now, assume that

h2E2 [u] ≫ Lh [e(ǫ)] (35)

then

Lhû ≈ h2E2 [u] = O(h2) (36)

• With a high-accuracy ODE solver such as lsoda, it is usually pos-

sible to satisfy (35), at least over some time interval (tmin, tmax),

and as long as h is not chosen too small

• Note: Key idea is to show/check correctness of implementation;

e.g. checking for errors in coding of equations.

19

Example:

• Consider the ODE describing simple harmonic motion, (with the

gross abuse of notation, ′ ≡ d/dt!):

u′′(t) = −u(t) (37)

that we will solve on 0 ≤ t ≤ tmax with the initial values u(0) and

u′(0) given

• General solution of (37) is

u(t) = A sin(t) + B cos(t) (38)

u′(t) = A cos(t) − B sin(t) (39)

Evaluating (39) at t = 0 yields

A = u′(0) (40)

B = u(0) (41)

So specific solution satisfying initial conditions is

u(t) = u′(0) sin(t) + u(0) cos(t) (42)

20

• Cast (37) in canonical form; define

y1 ≡ u (43)

y2 ≡ u′ (44)

Then (37) becomes

y′1 ≡ y2 (45)

y′2 ≡ −y1 (46)

• RHS routine called by lsoda

subroutine fcn(neq,t,y,yprime)

implicit none

integer neq

real*8 t, y(neq), yprime(neq)

yprime(1) = y(2)

yprime(2) = -y(1)

return

end

21

Independent Residual Evaluator

• First, rewrite (37) in form (26)

u′′(t) + u(t) = 0 (47)

• Next, using e.g. lsoda, generate solution û(th, ǫ) on a level-ℓ

uniform mesh:

thn = 0, h, 2h, · · · tmax (48)

with

h =
tmax

2ℓ
(49)

• Then, apply O(h2) finite-difference discretization of (47) to û to

compute residual Rn:

Rn ≡ ûn+1 − 2ûn + ûn−1

h2
+ ûn n = 1, 2, · · · 2ℓ − 1 (50)

• In particular, should find that RMS value (ℓ2 norm) of Rn is an

O(h2) quantity:

∑

n |Rn|2
2ℓ − 1

1

2

≡ ‖R‖2 = O(h2) (51)

See tlsoda.f, chk-tlsoda.f for implementation.

22

Note on Solution Sensitivity/Ill-conditioning

• In integrating from t to tout, lsoda will typically evaluate RHS

of ODEs at many intermediate values tI , t ≤ tI ≤ tout according

to the details of the algorithm, and the user-specified tolerances;

these tI are typically “invisible” to the user

• If, as is frequently the case, one wants to tabulate the solution at

many values, e.g. on a grid

tn ≡ tmin, tmin + h, · · · tmax − h, tmax (52)

then will generally find that, for fixed tolerance, the computed

value at t = tmax, e.g., will depend on specifics of the output

values of tn requested

• If results are highly dependent on choice of tn, this is a sign that

problem is sensitive (poorly conditioned); the gravitational n-body

problem is a classic example

• In such a case, will also tend to find significant dependence of

results on small changes in error tolerances

BOTTOM LINE: Need to be CAREFUL in use of “black box” software!

23

IVP Applications

1) “Quadrature”/Definite integrals

• Suppose we wish to evaluate definite integral

∫ x2

x1

f(x)dx (53)

• Consider I(x) such that

dI

dx
= f(x) (54)

Then, we have

∫ x2

x1

dI

dx
dx =

∫ x2

x1

f(x)dx (55)

=⇒ I(x2) − I(x1) =
∫ x2

x1

f(x)dx (56)

So, with the initial condition

I(x1) = 0 (57)

we have

I(x2) =
∫ x2

x1

f(x)dx (58)

24

Example:

• Use above technique and lsoda to compute approximate value of

I(x; x1, x2) =
∫ x2

x1

e−x2

dx (59)

where, for example, I(x, 0,∞) =
√

π/2.

• RHS routine called by lsoda

subroutine fcn(neq,x,y,yprime)

implicit none

integer neq

real*8 x, y(neq), yprime(neq)

yprime(1) = exp(-x**2)

return

end

• Should expect local tolerance to provide better estimate of global

accuracy in this case (quadrature)—why?

25

2) Restricted 2-body problem

• Consider point particle with mass m, interacting with another

mass, M , with M ≫ m—treat M as fixed, study dynamics of m

(test particle)

(0,0)

rc

m

M

(x , y)c c

• Dynamical variables: coordinates of test particle— xc, yc

• Equations of motion

∑

F = m a (60)

m a = −G
Mm

|rc|2
r̂c = −G

Mm

rc
3

rc (61)

• Divide by m, and resolve into x and y components:

ẍc = −GM

rc
3

xc (62)

ÿc = −GM

rc
3

yc (63)

26

• 2 second-order ODEs −→ 4 first order ODEs

• Rewrite in canonical form; define

y1 = xc (64)

y2 = yc (65)

y3 = ẋc (66)

y4 = ẏc (67)

Then we have

ẏ1 = y3 (68)

ẏ2 = y4 (69)

ẏ3 = −GM

rc
3

y1 (70)

ẏ4 = −GM

rc
3

y2 (71)

where

rc
3 =

(

y1
2 + y2

2
)3/2

(72)

• Initial values:

y1(0), y2(0) : Initial position of particle (73)

y3(0), y4(0) : Initial velocity of particle (74)

27

• Initial conditions for circular orbit: v ⊥ rc

|a| =
v2

rc
=

GM

rc
2

=⇒ v =

GM

rc

1/2

(75)

Then, setting G = M = 1 (choice of units)

=⇒ v = rc
−1/2 (76)

• Typical circular orbit

rc = 1, v = 1 (77)

rc(0) = (1.0, 0.0) v(0) = (0.0, 1.0) (78)

• Will get elliptical orbits by changing any of xc(0), yc(0), vx(0), vy(0)

(If changes too drastic, may get hyperbolic or parabolic (unbound)

orbits)

28

“Quality assessment” (calibration)

• Make use of existence of conserved total energy, Etot and angular

momentum (w.r.t. (0, 0)), Jtot

Etot = T + Vgrav =
1

2
mv2 − G

Mm

rc
(79)

Jtot = |r × mv| (80)

• Particle mass enters as arbitrary parameter (test particle limit),

compute specific quantities, E, J :

E =
Etot

m
=

1

2
v2 − G

M

rc
(81)

J =
Jtot

m
= |r × v| (82)

Get

E =
1

2

(

vx
2 + vy

2
)

− GM

(xc
2 + yc

2)1/2
(83)

J = xvy − yvx (84)

29

• As discussed previously, should expect

∆E(t) ≡ E(t) − E(0) ≈ ǫ κE(t) (85)

∆J(t) ≡ J(t) − J(0) ≈ ǫ κJ(t) (86)

where ǫ is the lsoda tolerance; e.g. if we make the tolerance 10

times more stringent, should find roughly factor of 10 improvement

in energy, angular momentum conservation

30

• RHS routine called by lsoda

subroutine fcn(neq,t,y,yprime)

implicit none

c--

c Problem parameters (G, M) passed in via common

c block defined in ’fcn.inc’

c--

include ’fcn.inc’

integer neq

real*8 t, y(neq), yprime(neq)

real*8 c1

c1 = -G * M / (y(1)**2 + y(2)**2)**1.5d0

yprime(1) = y(3)

yprime(2) = y(4)

yprime(3) = c1 * y(1)

yprime(4) = c1 * y(2)

return

end

31

• Include file defining additional parameters

c--

c Application specific common block for commun-

c ication with derivative evaluating routine ’fcn’

c--

real*8 G, M

common / com_fcn /

& G, M

32

