PHYS 410/555 Computational Physics:

 Solution of ODEs

 Solution of ODEs
 (Reference Numerical Recipes, Chapters 16, 17)

Overview

- "Theory"
- Casting systems of ODEs in first order form (canonical form)
- Boundary / initial conditions
- Some Basic Numerical Techniques
- Euler method
- Second-order Runge-Kutta
- Using "Canned" Software
- ODEPACK routine lsoda
- Applications
- Quadrature (definite integrals)
- Initial value problems (dynamics)
- Boundary value problems

Note: There are many applications in virtually every sub-field of physics.

Casting Systems of ODEs in First Order Form

- Can always reduce systems of ODEs to set of first order DEs by introducing appropriate new (auxiliary) variables.

Example 1

$$
\begin{equation*}
y^{\prime \prime}(x)+q(x) y^{\prime}(x)=r(x) \quad{ }^{\prime} \equiv \frac{d}{d x} \tag{1}
\end{equation*}
$$

- Introduce new variable $z(x) \equiv y^{\prime}(x)$, then (1) becomes

$$
\begin{align*}
& y^{\prime}=z \tag{2}\\
& z^{\prime}=r-q z \tag{3}
\end{align*}
$$

Example 2

$$
\begin{equation*}
y^{\prime \prime \prime \prime}(x)=f(x) \tag{4}
\end{equation*}
$$

- Introduce new variables

$$
\begin{array}{r}
y_{1}(x) \equiv y^{\prime}(x) \\
y_{2}(x) \equiv y^{\prime \prime}(x) \\
y_{3}(x) \equiv y^{\prime \prime \prime}(x) \tag{7}
\end{array}
$$

then (4) becomes

$$
\begin{align*}
y^{\prime} & =y_{1} \tag{8}\\
y_{1}^{\prime} & =y_{2} \tag{9}\\
y_{2}^{\prime} & =y_{3} \tag{10}\\
y_{3}^{\prime} & =f \tag{11}
\end{align*}
$$

- Thus, the generic problem in ODEs is reduced to study of a set of N coupled, first-order DEs for the functions, $y_{i}, i=1,2, \ldots, N$

$$
\begin{equation*}
y_{i}^{\prime}(x) \equiv \frac{d y_{i}}{d x}(x)=f_{i}\left(x, y_{1}, y_{2}, \cdots, y_{N}\right) \quad i=1,2, \ldots N \tag{12}
\end{equation*}
$$

where the $f_{i}(\cdots)$ are known functions of x and y_{i}

- Equivalent forms: $\mathbf{y} \equiv\left(y_{1}, y_{2}, \cdots, y_{N}\right)$

$$
\begin{align*}
\mathbf{y}^{\prime}(x) & =\mathbf{f}(x, \mathbf{y}) \tag{13}\\
\dot{\mathbf{y}}(t) & =\mathbf{f}(t, \mathbf{y}) \tag{14}
\end{align*}
$$

Boundary / Initial Conditions

- ODE problem not completely specified by DEs themselves
- Nature of boundary conditions is crucial aspect of problem
- Generally, BCs are algebraic conditions on certain values of the y_{i} in (12) that are to be satisfied at discrete specified points.
- Generally will need N conditions for N-th order system
- BCs divide ODE problems into 2 broad classes

1) Initial Value Problems

- All the y_{i} are given at some starting (initial) value, $t_{\min }$ and we wish to find the y_{i} at some final value, $t_{\max }$, or at some set of values

$$
\begin{equation*}
t_{n}, \quad t_{\min } \leq t_{n} \leq t_{\max } \quad n=0,1,2, \cdots \tag{15}
\end{equation*}
$$

2) (Two-point) Boundary Value Problems

- BCs are specified at more than one value of x. Typically some will be specified at $x=x_{\min }$, the remainder at $x=x_{\max }$.
- Have already considered some 2-pt BVPs, and their solution via finite difference techniques

We will focus on general techniques / software for solving IVPs, and some simple BVPs.

Some Basic Numerical Techniques for IVPs

We adopt the notation of Numerical Recipes, and illustrate the methods for the case of a scalar equation. The generalization to systems is straightforward.

1) The Euler Method

- Consider two values of x, x_{n} and $x_{n+1}=x_{n}+h(h$ is often called the "step size", and is completely analogous to the mesh spacing, h, used in our previous work on FD approximations)
- Then the (forward) Euler method is given by

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \tag{16}
\end{equation*}
$$

- Note that we use this formula to "advance" solution from $x=x_{n}$ to $x=x_{n+1}=x_{n}+h$
- Can easily derive from $O(h)$ (forward) finite difference approximation

$$
\begin{gather*}
\frac{y_{n+1}-y_{n}}{h}=y_{n}^{\prime}+O(h) \tag{17}\\
y^{\prime}=f(x, y) \longrightarrow \frac{y_{n+1}-y_{n}}{h}=f\left(x_{n}, y_{n}\right) \tag{18}
\end{gather*}
$$

- Accuracy: $O\left(h^{2}\right)$ per step. For fixed final $x=x_{f}$, number of steps scales as h^{-1}, so global accuracy is $O(h)$
- OK for demonstration purposes, but should never be used in practicenot very accurate, not very stable!

2) Second-order Runge-Kutta (Mid-point Method)

- The second-order Runge-Kutta method is given by

$$
\begin{align*}
k_{1} & =h f\left(x_{n}, y_{n}\right) \tag{19}\\
k_{2} & =h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right) \tag{20}\\
y_{n+1} & =y_{n}+k_{2} \tag{21}
\end{align*}
$$

- Global accuracy: $O\left(h^{2}\right)$
- Derivation

$$
\begin{equation*}
\frac{y_{n+1}-y_{n}}{h}=f\left(x_{n+1 / 2}, y_{n+1 / 2}\right)+O\left(h^{2}\right) \tag{22}
\end{equation*}
$$

where $x_{n+1 / 2} \equiv x_{n}+h / 2, y_{n+1 / 2} \equiv y\left(x_{n+1 / 2}\right)$. (Exercise: Verify the above, and compute the actual form of the leading order error term.)

To retain $O\left(h^{2}\right)$ accuracy, need to evaluate $f\left(x_{n+1 / 2}, y_{n+1 / 2}\right)$ to $O\left(h^{2}\right)$ (i.e. can neglect $O\left(h^{2}\right)$ terms), so, in turn, need to know $y_{n+1 / 2}$ to $O\left(h^{2}\right)$; proceed via Taylor series expansion

$$
\begin{aligned}
y_{n+1 / 2} & =y_{n}+\frac{1}{2} h y_{n}^{\prime}+O\left(h^{2}\right) \\
& =y_{n}+\frac{1}{2} k_{1}+O\left(h^{2}\right) \\
\Longrightarrow y_{n+1} & =y_{n}+h f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right)
\end{aligned}
$$

as advertised.

Although it is "good for you" to understand some of the theory that underlies a modern ODE solver, the state of such solvers is very high, and, as with linear system solvers, can frequently be used as "black boxes" -with the important proviso that we always make every reasonable attempt to validate our results (convergence tests, independent residual tests, conserved quantities, etc.)

ODEPACK

- Public-domain collection of routines for solution of systems of ODEs (IVPs)
- We will focus on one routine, lsoda, which has the following header:

See source code and sample "driver" program (tlsoda.f) for full description of parameters and routine operation

- f, jac: Names of routines (subroutines) for evaluating right hand side of ODES (f), and Jacobian of system (jac). f is required, jac is optional, typically a "dummy" routine
- neq: number of equations / size of system (canonical first-order form)
- y: On input, (approximate) values of unknowns at $t=t$
($y(i), i=1$, neq);
On output, (approximate) values of unknowns at $t=t_{\text {out }}$
- t, tout: Limits of current integration interval
- itol, rtol, atol: Tolerance (error-control) parameters (see lsoda.f, tlsoda.f for details)
- itask: Set $=1$ for normal operation
- istate: Set $=1$ intially for normal operation, thereafter set $=$ 2 for normal operation (routine will automatically do this if integration on first interval is successful); check for negative value on return to detect abnormal completion
- iopt: Normally set $=0$ (no optional inputs, but, again, refer to the source code for full details)
- rwork(lrw): real*8 work array of length lrw; minimum value of 1 rw is $22+16 *$ neq
- iwork(liw): integer work array of length liw; minimum value of liw is $20+$ neq
- $j t$: Set $=2$ for normal operation—supply "dummy" Jacobian routine, lsoda will approximately compute Jacobian numerically if and when necessary

Crucial User-supplied Routine Called by lsoda

- f: Evaluates "RHS" of system of ODEs (12); must have header as follows

```
subroutine f(neq, t, y, ydot)
    implicit none
    integer neq
    real*8 t, y(neq), ydot(neq)
```

- Inputs: neq, t, ($\mathrm{y}(\mathrm{j})$, $\mathrm{j}=1$, neq)
- Output: ($\operatorname{ydot}(\mathrm{j})$, $\mathrm{j}=1$, neq)
lsoda Tolerance Parameters: itol, atol, rtol
- lsoda will control step-size, order of method and type of method so that estimated local error in y (i) is less than

$$
\begin{array}{ll}
\text { ewt }(i)=r t o l ~ & \text { rabs }(y(i))+\operatorname{atol} \\
\text { ewt }(i)=r t o l * a b s(y(i))+\operatorname{atol}(i) & \text { itol .eq. } 1 \\
\text { itol .eq. } 2
\end{array}
$$

Thus, local error tests passes if, for each component y(i), either the absolute error is less than atol (or atol(i)), or the relative error is less than rtol

Choosing Error Tolerances

- Can experiment, but rtol = atol = tol (single control parameter) often works well, particularly for y_{i} that exhibit significant dynamical range
- Some exceptions (of course); for example, consider 2-d motion in polar coordinates, (r, θ). If we use relative control, then for $\theta \gg 2 \pi$, "acceptable local error" $\delta \theta$ will increase. Better idea to try to keep $\delta \theta$ constant via "pure absolute" control (rtol $=$ 0.0 d 0)
- Solution eror will almost certainly grow with time, so for fixed final integration time, t_{f}, will need to calibrate error estimates, i.e. assume that

$$
\begin{equation*}
\left\|y_{\text {computed }}\left(t_{f}\right)-y_{\text {exact }}\left(t_{f}\right)\right\| \approx \kappa\left(t_{f}\right) \mathrm{tol} \tag{23}
\end{equation*}
$$

where $\kappa\left(t_{f}\right)$ can be determined via calibration if $y_{\text {exact }}$ is known

- However, even if $y_{\text {exact }}$ is not known (typical case!), (23) tells us that we can expect error (at fixed time) to be proportional to tol; e.g. if tol goes from $1.0 \mathrm{~d}-6$-> $1.0 \mathrm{~d}-10$, should expect solution error to be down by about 4 orders of magnitude
- Caveat emptor! ("User beware!")

Checking/validating Results From ODE Integrators

1) Monitoring Conserved Quantities

- Example: For dynamical systems with a Lagrangian (Hamiltonian), total energy, $E(t)$ is conserved: $d E / d t=0$
- Monitor variation $\delta \hat{E}(t, \epsilon)$ of computed energy $\hat{E}(t, \epsilon)$:

$$
\begin{equation*}
\delta \hat{E}(t, \epsilon)=\hat{E}(t, \epsilon)-\hat{E}\left(t_{\min }, \epsilon\right) \tag{24}
\end{equation*}
$$

where ϵ is the error tolerance for the integrator.

- Should find that this is an $O(\epsilon)$ quantity, i.e. for ϵ sufficiently small, should have

$$
\begin{equation*}
\delta \hat{E}(t, \epsilon)=\epsilon f(t)+\text { higher order terms } \tag{25}
\end{equation*}
$$

- Thus, e.g., if we take $\epsilon \rightarrow \epsilon / 10$, should see $\delta \hat{E} \rightarrow \delta \hat{E} / 10$ (approximately, so long as $\epsilon \gg \epsilon_{\text {machine }}$)

2) Independent Residual Evaluation

- Idea: Attempt to directly verify that approximate solution, \hat{u} (u previously y !) satisfies the $\operatorname{ODE}(\mathrm{s})$ through the use of an independent discretization of the ODE (i.e. a discretization distinct from that used by the ODE integrator).
- Note: In numerical analysis, a residual quantity is one that should tend to 0 in some appropriate limit
- Let

$$
\begin{equation*}
L[u(t)] \equiv L u(t)=0 \tag{26}
\end{equation*}
$$

be our ODE, where L is a differential operator, and u, in general can be a vector of functions; will assume that L is linear, but technique generalizes to non-linear case

- Let $\hat{u}(t, \epsilon)$ be the solution computed by our ODE integrator for tolerance ϵ, and consider computing \hat{u} on a regular mesh of output times

$$
\begin{equation*}
t^{h} \equiv t_{n}=t_{\min }, t_{\min }+h, t_{\min }+2 h, \cdots \tag{27}
\end{equation*}
$$

and consider, for concreteness, a second-order (in h) finite difference approximation to the ODE

$$
\begin{equation*}
L^{h} u^{h}=0 \quad L^{h}=L+O\left(h^{2}\right) \tag{28}
\end{equation*}
$$

- Note that (28) defines u^{h}, and that

$$
\begin{equation*}
u^{h}(t) \neq \hat{u}\left(t^{h}, \epsilon\right) \tag{29}
\end{equation*}
$$

- The finite difference operator L^{h} can be expanded as follows

$$
\begin{equation*}
L^{h}=L+h^{2} E_{2}+h^{4} E_{4}+\cdots \tag{30}
\end{equation*}
$$

where, as discussed previously, E_{2}, E_{4}, etc. are higher order differential operators (involve higher order derivatives than L).

- Now, we can write

$$
\begin{equation*}
\hat{u}(t, \epsilon)=u(t)+e(t, \epsilon) \tag{31}
\end{equation*}
$$

where $e(t, \epsilon)$ is the error in the solution computed using the ODE integrator

- Next, consider the action of L^{h} on $\hat{u}(t, \epsilon)$; suppressing explicit t-dependence, we have

$$
\begin{align*}
L^{h} \hat{u}(\epsilon) & =\left(L+h^{2} E_{2}+h^{4} E_{4}+\cdots\right)(u+e(\epsilon)) \tag{32}\\
& =L u+h^{2} E_{2} u+\cdots+L^{h} e(\epsilon) \tag{33}\\
& \approx h^{2} E_{2}[u]+L^{h}[e(\epsilon)] \tag{34}
\end{align*}
$$

- Now, assume that

$$
\begin{equation*}
h^{2} E_{2}[u] \gg L^{h}[e(\epsilon)] \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
L^{h} \hat{u} \approx h^{2} E_{2}[u]=O\left(h^{2}\right) \tag{36}
\end{equation*}
$$

- With a high-accuracy ODE solver such as lsoda, it is usually possible to satisfy (35), at least over some time interval $\left(t_{\min }, t_{\max }\right)$, and as long as h is not chosen too small
- Note: Key idea is to show/check correctness of implementation; e.g. checking for errors in coding of equations.

Example:

- Consider the ODE describing simple harmonic motion, (with the gross abuse of notation, ${ }^{\prime} \equiv d / d t!$):

$$
\begin{equation*}
u^{\prime \prime}(t)=-u(t) \tag{37}
\end{equation*}
$$

that we will solve on $0 \leq t \leq t_{\text {max }}$ with the initial values $u(0)$ and $u^{\prime}(0)$ given

- General solution of (37) is

$$
\begin{align*}
u(t) & =A \sin (t)+B \cos (t) \tag{38}\\
u^{\prime}(t) & =A \cos (t)-B \sin (t) \tag{39}
\end{align*}
$$

Evaluating (39) at $t=0$ yields

$$
\begin{align*}
& A=u^{\prime}(0) \tag{40}\\
& B=u(0) \tag{41}
\end{align*}
$$

So specific solution satisfying initial conditions is

$$
\begin{equation*}
u(t)=u^{\prime}(0) \sin (t)+u(0) \cos (t) \tag{42}
\end{equation*}
$$

- Cast (37) in canonical form; define

$$
\begin{align*}
& y_{1} \equiv u \tag{43}\\
& y_{2} \equiv u^{\prime} \tag{44}
\end{align*}
$$

Then (37) becomes

$$
\begin{align*}
y_{1}^{\prime} & \equiv y_{2} \tag{45}\\
y_{2}^{\prime} & \equiv-y_{1} \tag{46}
\end{align*}
$$

- RHS routine called by lsoda

```
subroutine fcn(neq,t,y,yprime)
    implicit none
    integer neq
    real*8 t, y(neq), yprime(neq)
    yprime(1) = y(2)
    yprime(2) = -y(1)
    return
end
```


Independent Residual Evaluator

- First, rewrite (37) in form (26)

$$
\begin{equation*}
u^{\prime \prime}(t)+u(t)=0 \tag{47}
\end{equation*}
$$

- Next, using e.g. lsoda, generate solution $\hat{u}\left(t^{h}, \epsilon\right)$ on a level- ℓ uniform mesh:

$$
\begin{equation*}
t_{n}^{h}=0, h, 2 h, \cdots t_{\max } \tag{48}
\end{equation*}
$$

with

$$
\begin{equation*}
h=\frac{t_{\max }}{2^{\ell}} \tag{49}
\end{equation*}
$$

- Then, apply $O\left(h^{2}\right)$ finite-difference discretization of (47) to \hat{u} to compute residual R_{n} :

$$
\begin{equation*}
R_{n} \equiv \frac{\hat{u}_{n+1}-2 \hat{u}_{n}+\hat{u}_{n-1}}{h^{2}}+\hat{u}_{n} \quad n=1,2, \cdots 2^{\ell}-1 \tag{50}
\end{equation*}
$$

- In particular, should find that RMS value $\left(\ell_{2}\right.$ norm) of R_{n} is an $O\left(h^{2}\right)$ quantity:

$$
\begin{equation*}
\left[\frac{\Sigma_{n}\left|R_{n}\right|^{2}}{2^{\ell}-1}\right]^{\frac{1}{2}} \equiv\|\mathbf{R}\|_{2}=O\left(h^{2}\right) \tag{51}
\end{equation*}
$$

See tlsoda.f, chk-tlsoda.f for implementation.

Note on Solution Sensitivity/III-conditioning

- In integrating from t to $t_{\text {out }}$, Isoda will typically evaluate RHS of ODEs at many intermediate values $t_{I}, t \leq t_{I} \leq t_{\text {out }}$ according to the details of the algorithm, and the user-specified tolerances; these t_{I} are typically "invisible" to the user
- If, as is frequently the case, one wants to tabulate the solution at many values, e.g. on a grid

$$
\begin{equation*}
t_{n} \equiv t_{\min }, t_{\min }+h, \cdots t_{\max }-h, t_{\max } \tag{52}
\end{equation*}
$$

then will generally find that, for fixed tolerance, the computed value at $t=t_{\text {max }}$, e.g., will depend on specifics of the output values of t_{n} requested

- If results are highly dependent on choice of t_{n}, this is a sign that problem is sensitive (poorly conditioned); the gravitational n-body problem is a classic example
- In such a case, will also tend to find significant dependence of results on small changes in error tolerances

BOTTOM LINE: Need to be CAREFUL in use of "black box" software!

IVP Applications

1) "Quadrature"/Definite integrals

- Suppose we wish to evaluate definite integral

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} f(x) d x \tag{53}
\end{equation*}
$$

- Consider $I(x)$ such that

$$
\begin{equation*}
\frac{d I}{d x}=f(x) \tag{54}
\end{equation*}
$$

Then, we have

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} \frac{d I}{d x} d x & =\int_{x_{1}}^{x_{2}} f(x) d x \tag{55}\\
\Longrightarrow I\left(x_{2}\right)-I\left(x_{1}\right) & =\int_{x_{1}}^{x_{2}} f(x) d x \tag{56}
\end{align*}
$$

So, with the initial condition

$$
\begin{equation*}
I\left(x_{1}\right)=0 \tag{57}
\end{equation*}
$$

we have

$$
\begin{equation*}
I\left(x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x \tag{58}
\end{equation*}
$$

Example:

- Use above technique and lsoda to compute approximate value of

$$
\begin{equation*}
I\left(x ; x_{1}, x_{2}\right)=\int_{x_{1}}^{x_{2}} e^{-x^{2}} d x \tag{59}
\end{equation*}
$$

where, for example, $I(x, 0, \infty)=\sqrt{\pi} / 2$.

- RHS routine called by lsoda

```
subroutine fcn(neq,x,y,yprime)
    implicit none
    integer neq
    real*8 x, y(neq), yprime(neq)
    yprime(1) = exp(-x**2)
    return
end
```

- Should expect local tolerance to provide better estimate of global accuracy in this case (quadrature)-why?

2) Restricted 2-body problem

- Consider point particle with mass m, interacting with another mass, M, with $M \gg m$-treat M as fixed, study dynamics of m (test particle)

- Dynamical variables: coordinates of test particle- x_{c}, y_{c}
- Equations of motion

$$
\begin{gather*}
\sum \mathbf{F}=m \mathbf{a} \tag{60}\\
m \mathbf{a}=-G \frac{M m}{\left|\mathbf{r}_{c}\right|^{2}} \hat{\mathbf{r}}_{c}=-G \frac{M m}{r_{c}{ }^{3}} \mathbf{r}_{c} \tag{61}
\end{gather*}
$$

- Divide by m, and resolve into x and y components:

$$
\begin{align*}
\ddot{x}_{c} & =-\frac{G M}{r_{c}{ }^{3}} x_{c} \tag{62}\\
\ddot{y}_{c} & =-\frac{G M}{r_{c}{ }^{3}} y_{c} \tag{63}
\end{align*}
$$

- 2 second-order ODEs $\longrightarrow 4$ first order ODEs
- Rewrite in canonical form; define

$$
\begin{align*}
& y_{1}=x_{c} \tag{64}\\
& y_{2}=y_{c} \tag{65}\\
& y_{3}=\dot{x}_{c} \tag{66}\\
& y_{4}=\dot{y}_{c} \tag{67}
\end{align*}
$$

Then we have

$$
\begin{align*}
\dot{y}_{1} & =y_{3} \tag{68}\\
\dot{y}_{2} & =y_{4} \tag{69}\\
\dot{y}_{3} & =-\frac{G M}{r_{c}{ }^{3}} y_{1} \tag{70}\\
\dot{y}_{4} & =-\frac{G M}{r_{c}{ }^{3}} y_{2} \tag{71}
\end{align*}
$$

where

$$
\begin{equation*}
r_{c}^{3}=\left(y_{1}^{2}+y_{2}^{2}\right)^{3 / 2} \tag{72}
\end{equation*}
$$

- Initial values:

$$
\begin{array}{ll}
y_{1}(0), y_{2}(0): & \text { Initial position of particle } \\
y_{3}(0), y_{4}(0): & \text { Initial velocity of particle } \tag{74}
\end{array}
$$

- Initial conditions for circular orbit: $\mathbf{v} \perp \mathbf{r}_{c}$

$$
\begin{equation*}
|\mathbf{a}|=\frac{v^{2}}{r_{c}}=\frac{G M}{r_{c}^{2}} \Longrightarrow v=\left(\frac{G M}{r_{c}}\right)^{1 / 2} \tag{75}
\end{equation*}
$$

Then, setting $G=M=1$ (choice of units)

$$
\begin{equation*}
\Longrightarrow v=r_{c}^{-1 / 2} \tag{76}
\end{equation*}
$$

- Typical circular orbit

$$
\begin{gather*}
r_{c}=1, \quad v=1 \tag{77}\\
\mathbf{r}_{c}(0)=(1.0,0.0) \quad \mathbf{v}(0)=(0.0,1.0) \tag{78}
\end{gather*}
$$

- Will get elliptical orbits by changing any of $x_{c}(0), y_{c}(0), v_{x}(0), v_{y}(0)$ (If changes too drastic, may get hyperbolic or parabolic (unbound) orbits)

"Quality assessment" (calibration)

- Make use of existence of conserved total energy, $E_{\text {tot }}$ and angular momentum (w.r.t. $(0,0)$), $J_{\text {tot }}$

$$
\begin{align*}
E_{\mathrm{tot}} & =T+V_{\mathrm{grav}}=\frac{1}{2} m v^{2}-G \frac{M m}{r_{c}} \tag{79}\\
J_{\mathrm{tot}} & =|\mathbf{r} \times m \mathbf{v}| \tag{80}
\end{align*}
$$

- Particle mass enters as arbitrary parameter (test particle limit), compute specific quantities, E, J :

$$
\begin{align*}
E & =\frac{E_{\mathrm{tot}}}{m}=\frac{1}{2} v^{2}-G \frac{M}{r_{c}} \tag{81}\\
J & =\frac{J_{\mathrm{tot}}}{m}=|\mathbf{r} \times \mathbf{v}| \tag{82}
\end{align*}
$$

Get

$$
\begin{align*}
E & =\frac{1}{2}\left(v_{x}^{2}+v_{y}^{2}\right)-\frac{G M}{\left(x_{c}^{2}+y_{c}^{2}\right)^{1 / 2}} \tag{83}\\
J & =x v_{y}-y v_{x} \tag{84}
\end{align*}
$$

- As discussed previously, should expect

$$
\begin{align*}
\Delta E(t) & \equiv E(t)-E(0) \approx \epsilon \kappa_{E}(t) \tag{85}\\
\Delta J(t) & \equiv J(t)-J(0) \approx \epsilon \kappa_{J}(t) \tag{86}
\end{align*}
$$

where ϵ is the 1 soda tolerance; e.g. if we make the tolerance 10 times more stringent, should find roughly factor of 10 improvement in energy, angular momentum conservation

- RHS routine called by lsoda
subroutine fon(neq, t,y,yprime) implicit none

C	Problem parameters (G, M) passed in via common block defined in 'fcn.inc'			
	include	'fcn.		
	integer real*8	$\begin{aligned} & \text { neq } \\ & \mathrm{t} \end{aligned}$	y (neq)	yprime(neq)
	real*8	c1		
$\mathrm{c} 1=-\mathrm{G} * \mathrm{M} /(\mathrm{y}(1) * * 2+\mathrm{y}(2) * * 2) * * 1.5 \mathrm{~d} 0$				
yprime(1) = y 3)				
yprime(2) = y 4)				
yprime(3) = c1 * y 1 (
yprime(4) = c1 * y 2)				
return				
end				

- Include file defining additional parameters

c Application specific common block for communc ication with derivative evaluating routine 'fcn'
\qquad
real*8 G, M
common / com_fcn /
\&
G ,
M

