PHYS 410/555 Computational Physics: Solution of Non Linear Equations
(a.k.a. Root Finding) (Reference Numerical Recipes, 9.0, 9.1, 9.4)

e We will consider two cases

L. f(z)=0 “l-dimensional”
2. f(x)=0 “d-dimensional”
X = (11,79, .., 24
f=[fi(x1,20,...,24), ..., fal®1, T2, ..., 24)]

1. Solving Nonlinear Equations in One Variable

e We have briefly discussed bisection (binary search), will consider one other technique:
Newton’s method (Newton-Raphson method).

Preliminaries

e We want to find one or more roots of

flz)=0 (1)

We first note that any nonlinear equation in one unknown can be cast in this canonical
form.

e Definition: Given a canonical equation, f(z) = 0, the residual of the equation for a
given x-value is simply the function f evaluated at that value.

e [terative technique: Assume f(x) = 0 has a root at = x*; then consider sequence of
estimates (iterates) of z*, 2(™

x(o) — x(l) N x(Q) e x(n) — x(n"'l) T G i
e Associated with the (™) are the corresponding residuals

T(O) N ’I“(l) N 7“(2) e r(") N r(”+1) e 0

I I I I I I
f@) f@®) f@®) f(@™) fa) fla)

‘Locating a root = Driving the residual to 0‘

e Convergence: When we use an iterative technique, we have to decide when to stop the
iteration. For root finding case, it is natural to stop when

62| = [z — 2| < ¢ (2)
where € is a prescribed convergence criterion.

e A better idea is to use a “relativized” dz

62|
|z +D] = € (3)

but we should “switch over” to “absolute” form (2) if |#(®*V| becomes “too small”
(examples in on-line code).

e Motivation: Small numbers often arise from “unstable processes” (numerically sensi-
tive), e.g. f(x + h) — f(z) as h — 0, or from “zero crossings” in periodic solutions
etc.—in such cases may not be possible and/or sensible to achieve stringent relative
convergence criterion

Newton’s method

e Requires “good” initial guess, (*); “good” depends on specific nonlinear equation being
solved

e Refer to Numerical Recipes for more discussion; we will assume that we have a good
2 and will discuss one general technique for determining good initial estimate later.

e First consider a rather circuitous way of solving the “trivial” equation
ax=0b — f(x)=ar—-b0=0 (4)

Clearly, f(z) = 0 has the root

b
v=2 (5)
e Consider, instead, starting with some initial guess, z(®), with residual
r® = f(2) = az©® —p (6)
Then we can compute an improved estimate, z("), which is actually the solution, z*,
via
L0 0 50 (0) — (0 f,é];)) _ L0 _ ;l((i((?))) (7)

“Proof”:

e Graphically, we have

6 4 slope = a = df/dx(x®) = Rise / Run

ax—-b
1P| SR e 1

x @ = x* XO

Run=x0@- x@®

e Summary

LU 0 5.0 (9)
where 020 satisfies
F(@@)5z@ = f(2(0) (10)
or
f’(x(o))5x(0) — 0 (11)

e Equations (9-10) immediately generalize to non-linear f(z) and, in fact, are precisely
Newton’s method.

e For a general nonlinear function, f(z), we have, graphically

f(x)
fx©) = r ©
f(x(l)) =r®
f(x@) = @

1

e Newton’s method for f(zx) = 0: Starting from some initial guess z(*), generate iterates
(n+1) 3
x via

gD = () _ g™ (12)
F(@™)sz™ = ¢ = f((M) (13)
or more compactly
o) _ g _ S (14)
f'(am)

e Convergence: When Newton’s method converges, it does so rapidly; expect number of
significant digits (accurate digits) in (™ to roughly double at each iteration (quadratic
convergence)

e Erample: “Square Roots”

Application of (14) yields

Loty — gm T @
2(n)
22 (M? _ (:c(")2 - a)
- 22(7)
B 2™ 4 g
N 2(n)
which we can write as
1 a
(n+1) — = (L) L ¢
e = 3 (+ + 55) (16)
e Try it manually, compute /2 = 1.414 2135 6237 using 12-digit arithmetic (hand cal-
culator)
[terate Sig. Figs
2 =15 1
M =1(1.5+2.0/1.5) = 1.416 6666 6667 3
@ =1(1.416---42.0/1.416---) = 1.414 2156 8628 6
r® =1(1.4142---+2.0/1.4142---) = 1.414 2135 6238 11

Note the quadratic convergence of the method, as advertised.
Alternate Derivation of Newton’s Method (Taylor series)

e Again, let 2* be a root of f(x) =0, then

0= f(a*) = f@™) + (&* =) f'(a™) + O((2* — 2!)?) (17)

Neglecting the higher order terms, we have

0~ f(2™) + (a* — ™) f'(2®) (18)

Now, treating the last expression as an equation, and replacing (™ with the new

iterate, (™1, we obtain
0= f(z™) + (2" —2™) f'(2™) (19)
or
(n)
(n+1) _ .(n) _ f(z™)
T =z () (20)

as previously.

2. Newton’s Method for Systems of Equations

e We now want to solve

f(x)=0 (21)
where
X = (T1,T9,...,%q) (22)
f=(/i(x), f2(x),..., fu(x)) (23)
e Example (d=2):
sin(zy) = % (24)
y> = 6z +2 (25)

In terms of our canonical notation, we have

x = (2,9) (26)
f = (fix), a(x) 1 (27)
hx) = filz,y) =sin(zy) - 5 (28)
fa(x) = folz,y) =y* -6z -2 (29)

The method is again iterative, we start with some initial guess, x(*), then generate
iterates

*

€) Ly 5@))
where x* is a solution of (21)

Note: The task of determining a good initial estimate x(® in the d-dimensional case
is even more complicated than it is for the case of a single equation—again we will
assume that x(© is a good initial guess, and that f(x) is sufficiently well-behaved that
Newton’s method will provide a solution (i.e. will converge).

As we did with the scalar (1-d) case, with any estimate, x(™) | we associate the residual
vector, r™ | defined by

r = f(x™) (30)

The analogue of f’(x) in this case is the Jacobian matriz, J, of first derivatives. Specif-
ically, J has elements .J;; given by

_Of;
N 8x]~

Jij (31)

For our current example we have

fil,y) = sinlay) — 3

folz,y) = y*—6x—2

| 0f/0x Of:/0y —6 2y

We can now derive the multi-dimensional Newton iteration, by considering a multi-
variate Taylor series expansion, paralleling what we did in the 1-d case:

J— Of1/0x 0fi/0y] _ l ycos(ry) xcos(zy)

0 = f(x*) = £f(x™) + I[xM] - (x* —x™) + O((x* — x™)?) (32)
where the notation J[x(™] means we evaluate the Jacobian matrix at x = x(™.

n+1)

Dropping higher order terms, and replacing x* with x(, we have

0= f(x(")) + J[x(")](x("+1) — X(")) (33)

Defining x™ via

ox™ = —(x(mHD — x() (34)

the d-dimensional Newton iteration is given by

x(") = x(™) _ 5x(m (35)

where the update vector, 0x(™, satisfies the d x d linear system

I[x™]6x™ = £(x™) (36)

e Again note that the Jacobian matrix, J[x(")], has elements

Ty = 9 (37)

Ox; x=x(n)

e At each step of the Newton iteration, the linear system (36) can, of course, be solved
using an appropriate linear solver (e.g. general, tridiagonal, or banded).

General Structure of a Multidimensional Newton Solver

X: Solution vector
res: Residual vector
J: Jacobian matrix
dx: Update vector
X = X(O)

do while ||dx|[2 > €
do i =1, neq
res(i) = fi(x)
do j =1, neq
J(i,3) =[0fi/0x;](x)
end do
end do
dx = solve(J dx = res)
X = X - dx
end do

Finite Difference Example: Non-Linear BVP
e Consider the nonlinear two-point boundary value problem
U(7) gz + (urty)? + sin(u) = F(z) (38)
which is to be solved on the interval
0<z<1 (39)
with the boundary conditions
u(0) =u(l) =0 (40)

e As we did for the case of the linear BVP, we will approximately solve this equation using
O(h?) finite difference techniques. As usual we introduce a uniform finite difference
mesh:

rij=(G-1)h j=12,---N h=(N-1)" (41)

e Then, using the standard O(h?) approximations to the first and second derivatives

wp(ry) = L O() (42)
o — Qs
() = LI L O (43)

the discretized version of (38-40) is

2
Ujpr — 2uj + ujq Ujp1 — Uj—1

- (y)? [] Fsin(u) — F, = 0; j=2...N—1 (44)
w = 0 (45)

Note that we have cast the discrete equations in the canonical form f(u) = 0

e In order to apply Newton’s method to the algebraic equations (45-46), we must compute
the Jacobian matrix elements of the system.

e We first observe that due to the “nearest-neighbor” couplings of the unknowns u; via
the approximations (42-43), the Jacobian matrix is tridiagonal in this case.

e For the interior grid points, j = 2... N, corresponding to rows 2... N of the matrix,
we have the following non-zero Jacobian elements:

2 Ujyr1 — Uj—1 2
Jj i = _ﬁ+2u7 o+t el 57 J } + cos(u;) (47)
1 Uit1 — Uj—1
Jijo1 = ﬁ_(“f)QHQTJ (48)
1 Uitr1 — Uj—1
Jj i1 = ﬁ+(uj)2_]+ thj (49)

e For the boundary points, j = 1 and j = N, corresponding to the first and last row,
respectively, of J, we have

Jl,l — 1 (50)

Jia = 0 (51)
and

IJyy = 1 (52)

Tyy-1 = 0 (53)

e Note that these last expressions correspond to the “trivial” equations

fi = wi=0 (54)
fN = UNZO (55)

which have associated residuals

= (56
o=y (57)
e Observe that if we initialize u§°) = 0 and u§3) = 0, then we will automatically have

sul™ = su = 0, which will yield u{™ = 0 and u) = 0 as desired.

e This is an example of the general procedure we have seen previously for imposing
Dirichlet conditions; namely the conditions are implemented as “trivial” (linear) equa-
tions (but it is, of course, absolutely crucial to implement them properly in this fashion!)

e Testing procedure: We adopt the same technique used for the linear BVP case—we
specify u(x), then compute the function F'(x) that is required to satisfy (38); F(z) is
then supplied as input to the code, and we ensure that as h — 0 we observe second
order convergence of the computed finite difference solution @(z) to the continuum
solution u(z).

10

e Frample: Taking
u(z) = sin(4rz) = sin(wr) (58)

then

F(z) = g+ (uug)® + sin(u) (59)

—w? sin(wz) + w? sin?(wz) cos?(wr) + sin(sin(wr))

e We note that due to the nonlinearity of the system, we will actually find multiple
solutions, depending on how we initialize the Newton iteration; this is illustrated with
the on-line code nlbvpid.

3. Determining Good Initial Guesses: Continuation

e It is often the case that we will want to solve nonlinear equations of the form

N(x;p) =0 (60)

where we have adopted the notation N(---) to emphasize that we are dealing with a
nonlinear system. Here x = (x1,25...24) is, as previously, a vector of unknowns, with
X = X* a solution of (60).

e The quantity p in (60) is another vector, of length m, which enumerates any additional
parameters (generally adjustable) that enter into the problem; these could include:
coupling constants, rate constants, “perturbation” amplitudes etc.

e The nonlinearity of any particular system of the form (60) may make it very difficult
to compute x* without a good initial estimate x(¥); in such cases, the technique of
continuation often provides the means to generate such an estimate.

e Continuation: The basic idea underlying continuation is to “sneak up” on the solution
by introducing an additional parameter, e (the continuation parameter), so that by
continuously varying e from 0 to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already have a solution.
to

2. The problem of interest.

11

e Schematically we can sketch the following picture:

"Solution space”

e Note that we thus consider a family of problems
N(x;p) =0

with corresponding solutions

*

Xe = X,

e The efficacy of continuation generally depends on two crucial points:

1. No(x;p) has a known or easily calculable root at x}.

2. Can often choose Ae judiciously (i.e. sufficiently small) so that

*
Xe Ae

is a “good enough” initial estimate for

N(x;p) =0

12

(61)

(62)

e Again, schematically, we have

where we note that we may have to adjust (adapt) Ae as the continuation proceeds.
Continuation: Summary and Comments

e Solve sequence of problems with ¢ = 0,€5,€3...1 using previous solution as initial
estimate for each € # 0.

e Will generally have to tailor idea on a case-by-case basis.
e Can often identify € with one of the p; (intrinsic problem parameters) per se.

e The first problem, Ny(x, p) = 0, can frequently be chosen to be linear, and therefore
“easy” to solve, modulo sensitivity /poor conditioning.

e For time-dependent problems, time evolution often provides “natural” continuation;
¢ — t, and we can use x*(t — At) as the initial estimate x(® (¢).

13

