PHYS 410/555 Computational Physics

Solution of Nonlinear Systems Using Newton's Method: Summary Notes
We begin by recalling Newton's method for the solution of a single nonlinear equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

in a single variable, x.
Starting from some initial guess, $x^{(0)}$, Newton's method generates iterates, $x^{(n)}$ via

$$
\begin{equation*}
x^{(n+1)}=x^{(n)}-\delta x^{(n)} \tag{2}
\end{equation*}
$$

where $\delta x^{(n)}$ satisfies

$$
\begin{equation*}
f^{\prime}\left(x^{(n)}\right) \delta x^{(n)}=r^{(n)} \equiv f\left(x^{(n)}\right) . \tag{3}
\end{equation*}
$$

Here, $f^{\prime}(x) \equiv d f / d x$, and $r^{(n)}$ is defined as the residual associated with (1), which, assuming that the iteration converges, is driven to 0 as $n \rightarrow \infty$.

Equations (2) and (3) can be combined in the more compact form:

$$
\begin{equation*}
x^{(n+1)}=x^{(n)}-\frac{f\left(x^{(n)}\right)}{f^{\prime}\left(x^{(n)}\right)} . \tag{4}
\end{equation*}
$$

When Newton's method converges, it tends to do so rapidly; we can expect the number of significant digits (accurate digits) in $x^{(n)}$ to roughly double at each iteration (quadratic convergence).

We now proceed to the case of nonlinear systems. We now wish to solve

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})=\mathbf{0} \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{x} & =\left(x_{1}, x_{2}, \ldots, x_{d}\right) \tag{6}\\
\mathbf{f} & =\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{d}(\mathbf{x})\right) \tag{7}\\
f_{i}(\mathbf{x}) & =f_{i}\left(x_{1}, x_{2}, \ldots, x_{d}\right) \tag{8}
\end{align*}
$$

Expression (5) is a non-linear system of d equations, $f_{i}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=0$, in d unknowns, $x_{1}, x_{2}, \ldots, x_{d}$.

For illustrative purposes, we consider the following specific system, where $d=2$:

$$
\begin{align*}
\sin (x y) & =\frac{1}{2} \tag{9}\\
y^{2} & =6 x+2 \tag{10}
\end{align*}
$$

As in the scalar case ($d=1$), Newton's method for systems is again iterative; we start from some initial guess, $\mathbf{x}^{(0)}$, then generate iterates:

$$
\begin{equation*}
\mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \cdots \mathbf{x}^{(n)} \rightarrow \mathbf{x}^{(n+1)} \cdots \rightarrow \mathbf{x}^{\star} \tag{11}
\end{equation*}
$$

where \mathbf{x}^{\star} is a specific solution of (5). Again, as with the scalar case, with any appoximate solution, $\mathbf{x}^{(n)}$, we associate the residual

$$
\begin{equation*}
\mathbf{r}^{(n)} \equiv \mathbf{f}\left(\mathbf{x}^{(n)}\right) \tag{12}
\end{equation*}
$$

In the d-dimensional case, the analogue of $f^{\prime}(x)$ is the Jacobian matrix, \mathbf{J}, of the first derivatives of f. J has elements $J_{i j}$ given by

$$
\begin{equation*}
J_{i j} \equiv \frac{\partial f_{i}}{\partial x_{j}} \tag{13}
\end{equation*}
$$

For the example defined above, we have $\mathbf{x}=\left(x_{1}, x_{2}\right) \equiv(x, y)$, and

$$
\left[\begin{array}{ll}
\partial f_{1} / \partial x & \partial f_{1} / \partial y \tag{14}\\
\partial f_{2} / \partial x & \partial f_{2} / \partial y
\end{array}\right]=\left[\begin{array}{cc}
y \cos (x y) & x \cos (x y \\
-6 & 2 y
\end{array}\right]
$$

We can derive the d-dimensional Newton iteration by considering a multi-dimensional Taylor series expansion. Specifically, we expand $\mathbf{f}\left(\mathbf{x}^{\star}\right)$ about the n-th interation, $\mathbf{x}^{(n)}$, as follows:

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}\left(\mathbf{x}^{\star}\right)=\mathbf{f}\left(\mathbf{x}^{(n)}\right)+\mathbf{J}\left(\mathbf{x}^{(n)}\right) \cdot\left(\mathbf{x}^{\star}-\mathbf{x}^{(n)}\right)+O\left(\left(\mathbf{x}^{\star}-\mathbf{x}^{(n)}\right)^{2}\right) \tag{15}
\end{equation*}
$$

We then drop the higher order terms, and replace the solution \mathbf{x}^{\star} with the new iterate $\mathbf{x}^{(n+1)}$, yielding:

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}\left(\mathbf{x}^{(n)}\right)+\mathbf{J}\left(\mathbf{x}^{(n)}\right) \cdot\left(\mathbf{x}^{(n+1)}-\mathbf{x}^{(n)}\right) \tag{16}
\end{equation*}
$$

Defining $\delta \mathbf{x}^{(n)}$ via

$$
\begin{equation*}
\delta \mathbf{x}^{(n)} \equiv \mathbf{x}^{(n)}-\mathbf{x}^{(n+1)} \tag{17}
\end{equation*}
$$

and rearranging (16), we have Newton's method for systems:

$$
\begin{equation*}
\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}-\delta \mathbf{x}^{(n)} \tag{18}
\end{equation*}
$$

where $\delta \mathbf{x}^{(n)}$ satisfies the linear system:

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{x}^{(n)}\right) \cdot \delta \mathbf{x}^{(n)}=\mathbf{f}\left(\mathbf{x}^{(n)}\right) \equiv \mathbf{r}^{(n)} \tag{19}
\end{equation*}
$$

Observe that (19) is a $d \times d$ linear system for the unknowns $\delta \mathbf{x}^{(n)}$. Also recall that the Jacobian matrix, $\mathbf{J}\left(\mathbf{x}^{(n)}\right)$ has elements:

$$
\begin{equation*}
\mathbf{J}_{i j}\left(\mathbf{x}^{(n)}\right)=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\mathbf{x}=\mathbf{x}^{(n)}} \tag{20}
\end{equation*}
$$

(19) can be solved using an appropriate linear solver (dgesv, dgtsv, dgbsv, ...).

Finally, the following pseudo-code describes the general structure of a typical implementation of a multi-dimensional Newton solver:

```
\(\mathbf{x}=\mathbf{x}^{(0)}\)
do while \(\|\mathbf{d x}\|>\epsilon\)
    do \(i=1, d\)
        res \((i)=f_{i}(\mathbf{x})\)
        do \(j=1, d\)
            \(\mathrm{J}(\mathrm{i}, \mathrm{j})=\partial f_{i} / \partial x_{j}(\mathbf{x})\)
        end do
    end do
    dx = solve(J \(\cdot d x=\) res \()\)
    \(\mathbf{x}=\mathbf{x}-\mathbf{d x}\)
end do
```

