
PHYS 410 Finite Di�erence Methods November 2{7 2000Notes on the 1-d Wave Equation
Recall that we are considering the following problem (1-d wave equation withunit speed (c2 = 1) and �xed (Dirichlet) boundary conditions):

utt(x; t) = uxx(x; t) ; (1)
on the domain

0 � x � 1 t � 0 ;
with initial and boundary conditions:

u(x; 0) = f(x); (2)ut(x; 0) = g(x); (3)u(0; t) = u(1; t) = 0 : (4)
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Continuum Solution
Assume for a moment that we are solving (1) on an in�nite spatial domain:

�1 < x < +1 t > 0 :
In this case, the general solution can be written as the superposition of anarbitrary left-moving \pro�le" (v = �c = �1) and an arbitrary right-moving\pro�le" (v = +c = +1), i.e.

u(x; t) = l(x+ t) + r(x� t) : (5)
The function l(x; t) = l(x+ t) is constant along the \left-directed" character-istics of the wave equation, while the function r(x; t) = r(x� t) is constantalong the \right-directed" characteristics
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: "left−directed" characteristics,      x + t  =  constant

: "right−directed" characteristics,    x − t  =  constant

xFigure 1: Characteristics of the wave equation: uxx = utt. Signals (disturbances) travel along the charac-teristics (dashed and dotted lines.)
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In fact, it is often convenient to specify the initial conditions for a wave equa-tion, such as (1), in terms of the initially left-going and initially right-goingparts of the solution. In particular, given the arbitrary pro�les (functions),l(x) and r(x), we specify
u(x; 0) = l(x) + r(x) ; (6)ut(x; 0) = l0(x)� r0(x) : (7)

where 0 denotes ordinary di�erentiation (i.e. l0 � dl=dx, etc.).
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Generating Initial Data for The FDA
We �rst re-introduce the notation wherein a caret (hat) denotes a quantitywhich satis�es a di�erence equation. Thus, ûnj is the quantity which satis�esthe usual O(h2) approximation of (1):

ûn+1j � 2ûnj + ûn�1j4t 2 = ûnj+1 � 2ûnj + ûnj�14x 2 ; (8)
while unj satis�es the di�erential (continuum) equation, i.e.

(utt) nj = (uxx) nj ; j = 1; 2; � � � ; J n = 0; 1; 2; � � � :
(since the di�erential equation holds everywhere, it must, in particular, holdat all \grid points" (xj; tn)). We initialize (8) by specifying

û0j ; û1j ; j = 1; 2; � � � ; J
freely, but in a manner consistent with the boundary conditions

û01 = û0J = û11 = û1J = 0:5



We now assume that our di�erence solution will admit a Richardson expan-sion (why?)
û(x; t) = u(x; t) + h2e2(x; t) + h4e4(x; t) + � � � ; (9)

û0j and û1j . First recall that the problem prescription includes the initialconditions: u (x; 0) = f (x) ; ut (x; 0) = g (x) :
Clearly then, we can (and might as well) specify û0j exactly:û0j = fj ;which implies (of course) that e2(x; 0) = 0. Then in order for (9) to hold, wemust have

û1j � û(xj; 4t )= u(xj; 4t ) + h2e2(xj; 4t ) +O(h4) ;
which implies thatû(xj; 4t )� u(xj; 4t ) = h2e2(xj; 4t ) +O(h4) :6



But
e2(xj; 4t ) = e2(xj; 0) + 4t @e2@t (xj; 0) + O(4t 2)= 4t @e2@t (xj; 0) + O(4t 2) = �h@e2@t (xj; 0) + O(4t 2)

Thus,
û(xj; 4t )� u(xj; 4t ) = h2  �h@e2@t (xj; 0)! + � � � = O(h3) ;

and we see that we must specify û1j to O(h3) accuracy in order for our solutionto be (globally) O(h2) accurate.
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In this example (and elsewhere) we can readily initialize û1j to O(h3) accuracysimply by Taylor-expanding to su�ciently high order, and then using theequations of motion to eliminate higher time derivatives:
u(xj; 4t ) = u(xj; 0) + 4t ut(xj; 0) + 124t 2 utt(xj; 0) + O(4t 3)= u(xj; 0) + 4t ut(xj; 0) + 124t 2 uxx(xj; 0) + O(h3) :

Recalling (6-7), where we speci�ed the initial conditions in terms of initiallyleft-moving and right-moving pro�les, l(x) and r(x), and their derivatives,l0(x) and r0(x):
u (x; 0) = l (x) + r (x) ;ut (x; 0) = l0 (x)� r0 (x) ;

and noting that utt (x; 0) = l00 (x) + r00 (x) ;
we have for our initialization:

û0j = lj + rj ; (10)û1j = lj + rj + 4t �l0j � r0j�+ 124t 2 �l00j + r00j� : (11)8



Implementation NotesIn treating time-dependent PDEs using FD techniques, it is generally notfeasible (even in 1-d) to store all of the data which is generated during theevolution|i.e., in the current case, all of the unj for n = 0; 1; � � �.Indeed, for multi-dimensional problems (3-d calculations in particular), com-putations are often memory-limited or memory-bound, and then it becomesimportant to implement the FD algorithm using as little storage as possible,using periodic output (usually to a �le) to save the generated data from in-termediate time-steps. A natural way to represent (store) un�1j , unj and un+1jis to use a two dimensional array:
real*8 u(maxj,ntlevs)

where the constant maxj is the maximum number of spatial grid points al-lowed, and the constant ntlevs is the number of time-levels of data stored atany instant. Super�cial investigation of the di�erence equation (8) suggeststhat we need ntlevs = 3, but we can actually code (8) using storage for onlytwo levels (level n and level n + 1) since un�1j is only referenced just beforeun+1j is computed.The following code segment also illustrates a technique wherein we use integervariables n, nm1 and np1 as \pointers" to whichever columns of the array ucurrently hold the levels n, n � 1 and n + 1 data respectively. Using thismechanism we can e�ect (implement) a time-step advance|wherein the leveln data becomes level n � 1 and level n + 1 becomes level n|simply be re-de�ning the scalars n, nm1 and np1. In particular, with this approach thereis no need to copy any of the grid function data to advance from t = tn tot = tn+1.
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real*8 u(maxj,2)integer n, nm1, np1, nswapn = 2 ! Initialize "pointers"---note 'n-1' and 'n+1'nm1 = 1 ! storage is shared; only possible due tonp1 = 1 ! explicit nature of FDAc Section of code which initializes u(j,nm1) and u(j,n)c goes here.do it = 2 , nt ! Begin time-step loopu(1,np1) = 0.0d0do j = 2 , nx - 1u(j,np1) = 2.0d0 * u(j,n) - u(j,nm1) +& lamsq * (u(j+1,n) - 2.0d0 * u(j,n) + u(j-1,n))end dou(nx,np1) = 0.0d0c Periodic output of u(j,np1) goes herec Swap time level pointers (time step advance)nswap = np1np1 = nn = nswapnm1 = np1end do ! End time step loop
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Stability AnalysisOne of the most frustrating|yet fascinating|features of FD solutions oftime dependent problems, is that the discrete solutions often \blow up"|e.g. 
oating-point over
ows are generated at some point in the evolution.Although \blow-ups" can sometimes be caused by legitimate (!) \bugs"|i.e.an incorrect implementation|at other times it is simply the nature of theFD scheme which causes problems. We are thus lead to consider the stabil-ity of solutions of di�erence equations (as well as their di�erential-equationprogenitors).Let us again consider our prototypical time-dependent di�erential equation (1),and let us now remark that this is a linear, non-dispersive wave equation, aconsequence of which is the fact that the \size" of the waves does not changewith time: ku(x; t)k � ku(x; 0)k ; (12)where k � k is an suitable norm, such as the L2 norm:ku(x; t)k �  Z 10 u(x; t)2 dx!1=2 : (13)We will use the property captured by (12) as our working de�nition of sta-bility. In particular, if you believe (12) is true for the wave equation, thenyou believe the wave equation is stable.
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Fundamentally, if our FDA approximation converges, then we expect thesame behaviour for the di�erence solution (note that in this section, we dropthe carets on solutions of di�erence equations):kunj k � ku0jk : (14)Now, we construct our FD solution by iterating in time, generatingu0j ; u1j ; u2j ; u3j ; u4j ; � � �in succession, using the FD equationun+1j = 2unj � un�1j + �2 �unj+1 � 2unj + unj�1� :
As it turns out, we are not guaranteed that (14) holds for all values of � �4t =4x . In fact, for certain � (all � > 1, as we shall see), we havekunj k � ku0jk ;and for those �, kunk diverges from u, even (especially!) as h ! 0|that is,the di�erence scheme is unstable.In fact, for many wave problems (including all linear problems), given thata FD scheme is consistent (i.e. so that �̂ ! 0 as h ! 0), stability is thenecessary and su�cient condition for convergence (and vice versa).12



Heuristic Stability Analysis
Let us write a general time-dependent FDA in the formun+1 = G[un] ; (15)where G is some update operator (linear in our example problem), and uis a column vector containing su�cient unknowns to write the problem in�rst-order-in-time form. For example, if we introduce a new, auxiliary set ofunknowns, vnj , de�ned by vnj = un�1j ;
then we can rewrite the di�erenced-wave-equation (8) as

un+1j = 2unj � vnj + �2 �unj+1 � 2unj + unj�1� ; (16)vn+1j = unj ; (17)
so with un = [un1 ; vn1 ; un2 ; vn2 ; � � � unJ ; vnJ ] ;(for example), (16-17) is clearly of the form (15).13



Equation (15) provides us with a compact way of describing the solution ofthe FDA. Given initial data, u0, the solution after n time-steps is
un = Gnu0 ; (18)

where Gn is the n-th power of the matrix G. Now, assume that G has acomplete set of orthonormal eigenvectorsek; k = 1; 2; � � � J ;
and corresponding eigenvalues�k; k = 1; 2; � � � J ;
so that Gek = �k ek; k = 1; 2; � � � J :
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We can then write the initial data as (spectral decomposition):u0 = JXk=1 c0k ek ;where the c0k are coe�cients. Using (18), the solution at time-step n is then
un = Gn 0@ JXk=1 c0k ek1A (19)= JXk=1 c0k (�k)n ek : (20)

Clearly, if the di�erence scheme is to be stable, we must havej�kj � 1 k = 1; 2; � � � J (21)(Note: �k will be complex in general, so j�j denotes complex modulus, j�j �p��?).
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Geometrically, then, the eigenvalues of the update matrix must lie on orwithin the unit circle (see Figure 2).
Im

Re

unit circle

Figure 2: Schematic illustration of location in complex plane of eigenvalues of update matrix G. In thiscase, all eigenvalues (dots) lie on or within the unit circle, indicating that the corresponding �nite di�erencescheme is stable.
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Von-Neumann (Fourier) Stability AnalysisVon-Neumann stability analysis is based on the ideas sketched above, butadditionally assumes that the di�erence equation is linear with constantcoe�cients, and that the boundary conditions are periodic. We can thenuse Fourier analysis, which has the same bene�ts in the discrete domain|di�erence operators in real-space variable x �! algebraic operations in Fourier-space variable k|as it does in the continuum Schematically, instead of writ-ing
un+1(x) = G[un(x)] ;

we consider the Fourier-domain equivalent:
~un+1(k) = ~G[~un(k)] ;

where k is the wave-number (Fourier-space variable) and ~u and ~G are theFourier-transforms of u and G, respectively.

17



Speci�cally, we de�ne the Fourier-transformed grid function via
~un(k) = 1p2� Z +1�1 e�ikx un(x) dx : (22)

For a general di�erence scheme, we will �nd that
~un+1(k) = ~G(�) ~un(k) ;

where � � kh, and we will have to show that ~G(�)'s eigenvalues lie within oron the unit circle for all conceivable �. The appropriate range for � is
�� � � � � ;

since the shortest wavelength representable on a uniform mesh with spacingh is � = 2h (Nyquist limit), corresponding to a maximum wave numberk = (2�)=� = ��=h.
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Let us consider the application of the Von-Neumann stability analysis to ourcurrent model problem. We �rst de�ne a (non-divided) di�erence operatorD2 as follows:
D2 u(x) = u(x+ h)� 2u(x) + u(x� h) :

Then, suppressing the spatial grid index, we can write the �rst-order form ofthe di�erence equation (16-17) as
un+1 = 2un � vn + �2D2 un ;vn+1 = un ;

or 24 uv 35n+1 = 24 2 + �2D2 �11 0 35 24 uv 35n : (23)
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In order to perform the Fourier transform, we need to know the action of D2in Fourier-space. Using the transform inverse to (22) we haveu(x) = 1p2� Z +1�1 eikx ~u(k) dk ;
so
D2 u(x) = u(x+ h)� 2u(x) + u(x� h) = Z +1�1 �eikh � 2 + e�ikh� eikx ~u(k) dk= Z +1�1 �ei� � 2 + e�i�� eikx ~u(k) dk :
Now consider the quantity �4 sin2(�=2):

�4 sin2 �2 = �40@ei�=2 � e�i�=22i 1A2= �ei�=2 � e�i�=2�2 = ei� � 2 + e�i� ;
so D2 u(x) = 1p2� Z +1�1  �4 sin2 �2! eikx ~u(k) dk :
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In summary, under Fourier transformation, we have
u(x) �! ~u(k) ;D2u(x) �! �4 sin2 �2~u(k) :Using this result in the Fourier transform of (23), we see that we need tocompute the eigenvalues of24 2� 4�2 sin2(�=2) �11 0 35 ;

and determine the conditions under which the eigenvalues lie on or withinthe unit circle. The characteristic equation (whose roots are the eigenvalues)is ����� 2� 4�2 sin2(�=2)� � �11 �� ; ����� = 0
or �2 +  4�2 sin2 �2 � 2!�+ 1 = 0 :
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This equation has roots�(�) =  1� 2�2 sin2 �2!� 0@ 1� 2�2 sin2 �2!2 � 11A1=2 :
We now need to �nd su�cient conditions forj�(�)j � 1;
or equivalently j�(�)j2 � 1:
To this end, we note that we can write�(�) = (1�Q) � ((1�Q)2 � 1)1=2 ;
where the quantity, Q Q � 2�2 sin2 �2 ;is real and non-negative (Q � 0).
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There are now two cases to consider:1. (1�Q)2 � 1 � 0 ,2. (1�Q)2 � 1 > 0 .In the �rst case, ((1�Q)2 � 1)1=2 is purely imaginary, so we havej�(�)j2 = (1�Q)2 + (1� (1�Q)2) = 1 :
In the second case, (1�Q)2� 1 > 0 �! (1�Q)2 > 1 �! Q > 2, and thenwe have 1�Q� ((1�Q2)� 1)1=2 < �1 ;
so, in this case, our stability criterion will always be violated. We thus con-clude that a necessary condition for Von-Neumann stability is(1�Q)2 � 1 � 0 �! (1�Q)2 � 1 �! Q � 2 :
Since Q � 2� sin2(�=2) and sin2(�=2) � 1, we must therefore have� � 4t4x � 1 ;
for stability of our scheme (8).
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This condition is often called the CFL condition|after Courant, Friedrichsand Lewy who derived it in 1928 (the ratio � = 4x =4t is also frequentlycalled the Courant number).In practical terms, we must limit time-discretization scale , 4t , to values nolarger than the space-discretization scale, 4x .Furthermore, this type of instability has a \physical" interpretation, oftensummarized by the statement the numerical domain of dependence of anexplicit di�erence scheme must contain the physical domain of dependence.
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