PHYS 410 Finite Difference Methods November 2—-7 2000
Notes on the 1-d Wave Equation

Recall that we are considering the following problem (1-d wave equation with
unit speed (¢ = 1) and fixed (Dirichlet) boundary conditions):

g (2, 1) = uge(x, 1), (1)

on the domain



Continuum Solution

Assume for a moment that we are solving (1) on an infinite spatial domain:

—o0o < x <400 t>0.

In this case, the general solution can be written as the superposition of an
arbitrary left-moving “profile” (v = —c = —1) and an arbitrary right-moving
“profile” (v = +c = +1), i.e.

uw(z,t) =lx+t)+r(x—1). (5)

The function [(x,t) = [(z +t) is constant along the “left-directed” character-
istics of the wave equation, while the function r(x,t) = r(x — t) is constant
along the “right-directed” characteristics
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Figure 1: Characteristics of the wave equation: w,, = uy. Signals (disturbances) travel along the charac-
teristics (dashed and dotted lines.)



In fact, it is often convenient to specify the initial conditions for a wave equa-
tion, such as (1), in terms of the initially left-going and initially right-going
parts of the solution. In particular, given the arbitrary profiles (functions),
[(x) and r(x), we specify

u(z,0) = l(z) + r(z), (6)
u(x,0) = I'(x) —1'(x). (7)

where " denotes ordinary differentiation (i.e. I' = dl/dx, etc.).



Generating Initial Data for The FDA

We first re-introduce the notation wherein a caret (hat) denotes a quantity
which satisfies a difference equation. Thus, 4} is the quantity which satisfies
the usual O(h?) approximation of (1):

~n+1 AT ~n—1 ATV AT N
u.  —2u. +u. w. . —2u. +1u.
J J J J+1 J J—1

JAN R N Ax? ’ (8)

while u! satisfies the differential (continuum) equation, i.e.

(utt)?:(uxx)ya j:1727°'°a'] n:0a1a2a'°"

(since the differential equation holds everywhere, it must, in particular, hold
at all “grid points” (x;,t")). We initialize (8) by specifying



We now assume that our difference solution will admit a Richardson expan-
sion (why?)

(2, t) = u(w, t) + hPes(x, t) + heg(z,t) + - | (9)

? and @]1 First recall that the problem prescription includes the initial

conditions:

U

u(z,0)=f(z), u (2,0) =g (2) .

Clearly then, we can (and might as well) specify @9- exactly:

which implies (of course) that ex(x,0) = 0. Then in order for (9) to hold, we
must have

= u(z;, At) + hex(xj, At) + O(hY),

which implies that

a(x;, At) —u(zj, At) = hies(wj, At) + O(h*).



But

ay, D) = eals, 0) + At 22 (;,0) + O( At

ot
0 0
= At Z2(2,0) + O(At2) = M =2 (27,0) + O( At?)
ot ot
Thus,
w(xj, At) —u(z;, At)=h (Aha(xj,0)> + - =0(h’),

and we see that we must specify ﬁ} to O(h®) accuracy in order for our solution
to be (globally) O(h*) accurate.



In this example (and elsewhere) we can readily initialize 4} to O(h*) accuracy
simply by Taylor-expanding to sufficiently high order, and then using the
equations of motion to eliminate higher time derivatives:

1
u(xj, At) = wu(z;,0)+ At w(z;,0) + 5 At? u(z;,0) + O( At3)

1
= wu(xj,0) + At w(z;,0) + 5 At (24,0) + O(R?).

Recalling (6-7), where we specified the initial conditions in terms of initially
left-moving and right-moving profiles, [(x) and r(z), and their derivatives,

l'(xz) and r'(z):

uw(z,0) = [(z)+r(x),

u (,0) = U'(x) =" (1) |

and noting that

g (2,0) = 1" (z) + 0" (z) ,
we have for our initialization:

n., = lj—l—rj,

j
~1 ! ! 1 2 (1 "
W, = 1+, + Al (lj—rj>—|—§At (1, +0") . (11)



Implementation Notes

In treating time-dependent PDEs using FD techniques, it is generally not
feasible (even in 1-d) to store all of the data which is generated during the
evolution—i.e., in the current case, all of the uj for n =0,1,---.

Indeed, for multi-dimensional problems (3-d calculations in particular), com-
putations are often memory-limited or memory-bound, and then it becomes
important to implement the FD algorithm using as little storage as possible,
using periodic output (usually to a file) to save the generated data from in-
termediate time-steps. A natural way to represent (store) u?_l, u” and w” !

J J
is to use a two dimensional array:
real*8 u(maxj,ntlevs)

where the constant maxj is the maximum number of spatial grid points al-
lowed, and the constant ntlevs is the number of time-levels of data stored at
any instant. Superficial investigation of the difference equation (8) suggests
that we need ntlevs = 3, but we can actually code (8) using storage for only
two levels (level n and level n + 1) since u}~" is only referenced just before
u;-“'l is computed.

The following code segment also illustrates a technique wherein we use integer
variables n, nm1 and npl as “pointers” to whichever columns of the array u
currently hold the levels n, n — 1 and n + 1 data respectively. Using this
mechanism we can effect (implement) a time-step advance—wherein the level
n data becomes level n — 1 and level n + 1 becomes level n—simply be re-
defining the scalars n, nm1 and npl. In particular, with this approach there

is no need to copy any of the grid function data to advance from ¢t = t" to
t = tn-l-l.



real*8 u(maxj,2)

int

eger n, nml, npl, nswap

= 2 ! Initialize "pointers'"---note ’n-1’ and ’n+1’
! storage is shared; only possible due to

=1 I explicit nature of FDA

Section of code which initializes wu(j,nml) and u(j,n)

goes here.

do

it = 2 , nt ! Begin time-step loop
u(l,npl) = 0.0d0
do j =2, nx -1

u(j,npl) = 2.0d0 * u(j,n) - u(j,nml) +

lamsq * (u(j+1,n) - 2.0d0 * u(j,n) + u(j-1,n))
end do
u(nx,npl) = 0.0d0
Periodic output of u(j,npl) goes here
Swap time level pointers (time step advance)
nswap = npl
npl =n
n = nswap
nml = npl
end do ! End time step loop
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Stability Analysis

One of the most frustrating—ryet fascinating—features of FD solutions of
time dependent problems, is that the discrete solutions often “blow up”—
e.g. floating-point overflows are generated at some point in the evolution.
Although “blow-ups” can sometimes be caused by legitimate (!) “bugs”—i.e.
an incorrect implementation—at other times it is simply the nature of the
FD scheme which causes problems. We are thus lead to consider the stabil-
ity of solutions of difference equations (as well as their differential-equation
progenitors).

Let us again consider our prototypical time-dependent differential equation (1),
and let us now remark that this is a linear, non-dispersive wave equation, a
consequence of which is the fact that the “size” of the waves does not change
with time:

[uz, )| ~ [lulz, 0)[}, (12)
where || - || is an suitable norm, such as the Ly norm:

lu(e, t)] = (/01 u(x,t)2dx>1/2 | (13)

We will use the property captured by (12) as our working definition of sta-
bility. In particular, if you believe (12) is true for the wave equation, then
you believe the wave equation is stable.

11



Fundamentally, if our FDA approximation converges, then we expect the
same behaviour for the difference solution (note that in this section, we drop
the carets on solutions of difference equations):

0
]~ [l (14)

Now, we construct our FD solution by iterating in time, generating

Uy Uy Uy Uy Uy
in succession, using the FD equation
n+1 n n—1 2 n n n
., =2u., —u. + A\ <u —2u. +u. )
J J J j+l J J-1

As it turns out, we are not guaranteed that (14) holds for all values of A =
At [ Ax. In fact, for certain A (all A > 1, as we shall see), we have

0
> ()]

and for those A, ||u"|| diverges from u, even (especially!) as h — 0—that is,
the difference scheme is unstable.

In fact, for many wave problems (including all linear problems), given that
a FD scheme is consistent (i.e. so that 7 — 0 as h — 0), stability is the
necessary and sufficient condition for convergence (and vice versa).

12



Heuristic Stability Analysis

Let us write a general time-dependent FDA in the form

u" = Gu", (15)

where G is some update operator (linear in our example problem), and u
is a column vector containing sufficient unknowns to write the problem in
first-order-in-time form. For example, if we introduce a new, auxiliary set of
unknowns, v?, defined by

then we can rewrite the differenced-wave-equation (8) as

n+1 n n 2 n n n
W= 20 = 4 <u 2 4 ) 16
J J ]+ J+1 J+ J=1) 7 ( )
n+1 n
v, = u. 17
; g (17)
so with
n_ n n n n n n
W= [u, 0, Uy, Uy cor Uy, 0]

(for example), (16-17) is clearly of the form (15).

13



Equation (15) provides us with a compact way of describing the solution of
the FDA. Given initial data, uo, the solution after n time-steps is

where G" is the n-th power of the matrix G. Now, assume that G has a
complete set of orthonormal eigenvectors

so that

Gek:ukek, k:1,2,---J.

14



We can then write the initial data as (spectral decomposition):
J
0 0
u =) c e,
k=1

0

where the ¢, are coefficients. Using (18), the solution at time-step n is then

Clearly, if the difference scheme is to be stable, we must have

e <1 k=1,2,---J (21)

(Note: py, will be complex in general, so || denotes complex modulus, |u| =

VATF).

15



Geometrically, then, the eigenvalues of the update matrix must lie on or
within the unit circle (see Figure 2).

Im

unit circle

Re

Figure 2: Schematic illustration of location in complex plane of eigenvalues of update matrix G. In this
case, all eigenvalues (dots) lie on or within the unit circle, indicating that the corresponding finite difference
scheme is stable.
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Von-Neumann (Fourier) Stability Analysis

Von-Neumann stability analysis is based on the ideas sketched above, but
additionally assumes that the difference equation is linear with constant
coefficients, and that the boundary conditions are periodic. We can then
use Fourier analysis, which has the same benefits in the discrete domain—
difference operators in real-space variable &+ — algebraic operations in Fourier-

space variable k—as it does in the continuum Schematically, instead of writ-
ing

u"(2) = Glu"(2)].

we consider the Fourier-domain equivalent:

a"t (k) = G[a" (k)]

where k is the wave-number (Fourier-space variable) and @ and G are the
Fourier-transforms of u and G, respectively.

17



Specifically, we define the Fourier-transformed grid function via

where & = kh, and we will have to show that é(§ )’s eigenvalues lie within or
on the unit circle for all conceivable . The appropriate range for £ is

since the shortest wavelength representable on a uniform mesh with spacing

h is A = 2h (Nyquist limit), corresponding to a maximum wave number
k= (2m)/A=+n/h.
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Let us consider the application of the Von-Neumann stability analysis to our
current model problem. We first define a (non-divided) difference operator
D? as follows:

D*u(z) = u(z + h) — 2u(z) +u(z — h).

Then, suppressing the spatial grid index, we can write the first-order form of
the difference equation (16-17) as

W= 2u" — v+ N2 D%y,
n+1 n
v = u ,
or
U nH_ 24X D% —1 u " (23)
v - 1 0 v )
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In order to perform the Fourier transform, we need to know the action of D?
in Fourier-space. Using the transform inverse to (22) we have

SO

D*u(z) = u(z + h) — 2u(z) +u(zx —h) = /+oo W2 4 e e G (k) di

o0

= [T -2 e ak) di
Now consider the quantity —4sin®(¢/2):
¢ oi6/2 _ o—ig)2\ 2
—4¢in’> = —4 ( - )
2 21

= (eig/z — e_i5/2)2 =l — 247 ,

SO
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In summary, under Fourier transformation, we have

u(z) — u(k),

D*u(z) — —4sin® gﬁ(k)

Using this result in the Fourier transform of (23), we see that we need to
compute the eigenvalues of

[ 2 —4A?sin®(¢/2) —1 ]

L . 0]

and determine the conditions under which the eigenvalues lie on or within
the unit circle. The characteristic equation (whose roots are the eigenvalues)
1s

‘ 2 —4X2sin?(£/2) —p —1
1 —

or

M2+<4/\28in2§—2>u—|—1:0.
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This equation has roots

1/2

n(é) = (1 — 2)2 sin? g) + ((1 — 2% sin? §>2 — 1)

We now need to find sufficient conditions for

u(€)] <1,

or equivalently

(@ < 1.

To this end, we note that we can write

where the quantity, Q)

Q) = 2\?sin? g,

is real and non-negative (Q > 0).

22



There are now two cases to consider:
. (1-Q)*-1<0,
2.(1-Q)*—-1>0 .

In the first case, ((1 — Q)> — 1)'/? is purely imaginary, so we have

@P=01-Q>+(1-(1-Q)})=1.

In the second case, (1 —Q)>*—1>0 — (1-Q)>>1 — Q > 2, and then
we have

1-Q—(1-Q%) -1 < -1,

so, in this case, our stability criterion will always be violated. We thus con-
clude that a necessary condition for Von-Neumann stability is

(1-Q)P—-1<0 — (1-0Q)*<1 — Q<L2.

Since Q = 2Asin?*(£/2) and sin?(£/2) < 1, we must therefore have

At

A Ax

<1,

for stability of our scheme (8).

23



This condition is often called the CFL condition—after Courant, Friedrichs
and Lewy who derived it in 1928 (the ratio A = Az / At is also frequently
called the Courant number).

In practical terms, we must limit time-discretization scale , At, to values no
larger than the space-discretization scale, Ax .

Furthermore, this type of instability has a “physical” interpretation, often
summarized by the statement the numerical domain of dependence of an
explicit difference scheme must contain the physical domain of dependence.
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