PHYS 410 Finite Difference Methods October 19 2000
Expected Behaviour of Finite-Difference Approximations
(Convergence and Accuracy)

We have already seen that the basic “control parameter” of a typical FDA
(finite-difference approximation) is the mesh-spacing, h. Fundamentally, for
sensibly constructed FDA’s, we expect the error in the approximation to go
to 0 as h goes to 0.

Notation and Definitions

Let

Lu=]f (1)

denote a general differential system. For simplicity and concreteness, you
can think of u = wu(z) as a single function of one variable, but the fol-
lowing discussion also applies to cases in multiple independent variables
(u(x,t),u(x,y,t), - - etc.), as well as multiple dependent variables (v = u =

[u17u27 ot 7un])

In (1), L is some differential operator (L = d?/dz?® in the BVP example
we've studied previously), and f is some specified function. We will generi-
cally denote an FDA of (1) by

La=f (2)

where « is the discrete solution, f is the specified function evaluated on the
finite-difference mesh, and L is the finite-difference approximation to L.



Truncation Error: The truncation error, 7, of an FDA is defined by

F=Lu—f (3)
where u satisfies the continuum system (1). We note that the form of
the truncation error can always be computed (typically using Taylor se-

ries expansions) from the finite difference approximation and the differential
equations—we will see an example shortly.

Order of a Finite-Difference Approximation: Assuming that the FDA
is characterized by a single discretization scale, h, we say that the FDA is
p-th order accurate or simply p-th order if

. :
}IL%T = O(h?) for some integer p (4)

Solution Error: The solution error, é, associated with an FDA is defined by

E=u—1u (5)

Relation Between Truncation Error and Solution Error

Is is common to tacitly assume that

7 = O(h?) implies e = O(h?)

This assumption is often warranted but it is extremely instructive to consider
why it is warranted and to investigate in some detail the nature of the solution
error, €, for a simple yet representative example.



Example

Consider one of the simplest possible differential systems:

Lu(a:)z(%—l) w(z)=0 on 0<z<1 with u(0)=1

Clearly, the unique solution of this DE is

u(z) = e”.

We introduce a uniform finite-difference mesh, z;,
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n—1

rj=jh, j7=0,1,---n—-1 where h =
and consider the following difference operators:
Aﬁuj =t <uj+1 — uj.)
. 1
ity =5 (0 + )
Now consider Taylor series expansions of u, and Uiy about

" Eu(xﬂ%)zu(% (xj+xj+1>> =



We have
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Mo, = 10 o) =0 0w

v 1 I
piu, 3 <uj+1 + uj> =u+ §h2u" + O(h*) (10)

Thus, we can identify the difference operators, AT and p%, with (formal)
power series (in h) of differential operators:

ar = Lo L@ oo (11)
T de 24 dad

To= 1+1h2d—2+0(h4) (12)
Pe = 8 dx?



We now write down our FDA of (6):

(%—1) ) =0 — (AL = pf)u;=0 (13)

(ie. L =A% — pf). Explicitly, we have

il g gt j=0.1,---n—2  with up=u(0)=1 (14)

Let us first consider the truncation error associated with (13,14):
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- [ —-1) u 21 -2 -7 1= 4y 2
(dx ) wth (24dx3 8dx2> i+ O(h) = O(R)

where we have used the original differential equation (6) in the form



Thus, since 7 = O(h?), our FDA is second order. Note, however, that we had
to be careful about choosing the x value about which we performed our Tay-
lor series expansions—in general we must choose the expansion point which
gives the highest-order truncation error or, intuitively, the point about which
the scheme is naturally “centred”.

The FDA (14) is sufficiently simple (and linear) that we can solve it explicitly:
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Thus we have
uj=p ug = p’ (15)

where p’ denotes the j-th power of p and we have used the initial condition
up = 1. Now, we can write p’ as follows:

P =exp(jlnp) = exp (j (ln (1 + g) —In (1 — g))) .



Then, using the Taylor series expansion

1 1
In(l1+ ) =2 — -2* + —2° + O(z*)

2 3
we have
h h 1
m(l+=)—-In{1—=)=h+—R>+0(°
n<—|—2> n( 2) + =+ O)
so that

: . | . . h?
o) = exp (jh + (7h) Eh2 + O(h4)> = exp (jh)exp (jhﬁ + O(h4))
h2

= €% (1 + 5t O(h‘*))
T 1 2 T 4

= eJ-I—Eh z;e + O(h")

Thus, the solution error, € is given by
1
E=u—1= —Eh%ex + O(h*) = O(h?) (16)

Note in particular, the form of the solution error; to leading order it is

where es(z) is a function (5ze”) with smoothness (i.e. magnitude of deriva-

tives) comparable to the continuum solution, u(z) = e”.



There is another way to derive (16) which clearly illustrates the fundamental
lesson concerning the errors in finite difference approximations.

Let us assume that v and @ are related by the asymptotic (h — 0) expansion,

G=u+h*es+h*es+ - (17)

which we call a Richardson expansion (after L.F. Richardson, who studied
such matters in the early part of this century).

We start with the FDA
Li=0 — (A= %) a=0
and replace both L and 4 by their “continuum expansions” (11,12,17):

d 1 d® 1d
S | 2l - - 4 2 4\ _
(dx +h (deg 8dx2)+0(h))(u+h e+ O(h')) =0

We now demand that this equation vanish, order by order, in h. For the O(1)
and O(h?) cases we have

O(1) : <—CZC — 1) u=0 — u=e" (consistency of FDA)
d 1d> 1 d
2) . — -1 =|——5———
o) (dx > © (8dx2 24dx3) !



Thus, we see that the error function, e, itself satisfies a differential equation
which is very similar in form to the original DE. Moreover, given that we
know u(z) = e, we can solve this DE for e;. Specifically, we have

d 1 1
<— — 1) eg=—e" — ey=-—uwe" (18)
and since our original assumption (17) was
1
@=u+hes+O(h*) =u+ Eh%gex + O(h%)

we get
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as previously.



Comments

Even in cases where we don’t know the continuum solution (this clearly in-
cludes most of the interesting instances where we are likely to apply finite-
difference techniques), it is still very useful to think of difference operators
and difference solutions in terms of asymptotic expansions in powers of the
mesh spacing, h:

L = L+h*Ly+h*Ly+ O(h°)

0 = u—l—h262—|—h4e4+0(h6)

so that
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actually represents an (infinite) hierarchy of differential systems

In other words, in FDA’s of continuum systems, the error is not “random”—

rather, in principle, it is no less computable than the fundamental solution
itself.

10



