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Abstract

In this thesis we investigate the interaction of cosmic strings and
branes with black holes. First, the scattering of a straight, infinitely
long cosmic string by a rotating black hole is considered. We assume
that a string is moving with velocity v and that initially the string
is parallel to the axis of rotation of the black hole. We demonstrate
that as a result of scattering, the string is displaced in the direction
perpendicular to the velocity by an amount x(v,b), where b is the
impact parameter. The late-time solution is represented by a kink
and anti-kink, propagating in opposite directions with the speed of
light, leaving behind them the string in a new “phase”. We present
the results of the numerical study of the string scattering and their
comparison with the weak field approximation, valid where the im-
pact parameter is large, b/M > 1, and also with the scattering by
a non-rotating black hole which was studied in earlier works. Next
we study critical scattering and capture of a cosmic string — we
demonstrate that there exists a critical value of the impact parame-
ter b.(v) which separates scattering from the capture regime. Using
numerical simulations we obtain the critical impact parameter curve
for different values of the rotation parameter a. We show that for

the prograde motion of the string this curve lies below the curve for



the retrograde motion. Moreover, for ultrarelativistic strings moving
in the prograde direction and nearly extremal black holes the critical
impact parameter curve is found to be a multiply valued function of
v. We obtain real-time profiles of the scattered strings in the regime
close to the critical. We also study the relativistic and ultrarela-
tivistic regime, especially such effects as coil formation and wrapping
effect. Finally, we analyse the interaction of an n-dimensional topo-
logical defect (n-brane) described by the Nambu-Goto action with
a higher-dimensional Schwarzschild black hole moving in the bulk
spacetime. We derive the general form of the perturbation equa-
tions for an n-brane in the weak field approximation and solve them
analytically in the most interesting cases. We specially analyze ap-
plications to brane world models. We calculate the induced geometry
on the brane generated by a moving black hole. From the point of
view of a brane observer, this geometry can be obtained by solv-
ing (n + 1)-dimensional Einstein’s equations with a non-vanishing
right hand side. We calculate the effective stress-energy tensor cor-
responding to this ‘shadow-matter’. We explicitly show that there
exist regions on the brane where a brane observer sees an apparent
violation of energy conditions. We also study the deflection of light

propagating in the region of influence of this ‘shadow matter’.
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Chapter 1

Introduction

The thesis consists of two related parts. In the first part we study different
aspects of interactions of cosmic strings with rotating black holes. In the second
part we study an interaction of a brane with higher-dimensional black hole in
the framework of recently proposed models of gravity in a spacetime with large
extra dimensions. In both cases we use similar methods that allow us to discover
interesting new physical effects.

The study of cosmic strings and other topological defects and their motion
in an external gravitational field is an interesting problem. Cosmic strings are
topologically stable one-dimensional objects which are predicted by unified the-
ories. Cosmic strings (as well as other topological defects) may appear during
a phase transition in the early universe. A detailed discussion of cosmic strings
and other topological defects can be found in the book by Shellard and Vilenkin
[1]. Cosmic strings are naturally predicted by many realistic models of particle
physics. The formation of cosmic strings helps to successfully exit the inflation-
ary era in a number of the inflation models motivated by particle physics [2, 3].
The formation of cosmic strings is also predicted in most classes of superstring

compactification involving the spontaneous breaking of a pseudo-anomalous U(1)
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gauge symmetry ( see e.g. [4] and references therein). Recent measurements of
the Cosmic Microwave Background (CMB) anisotropy and especially the posi-
tion of the acoustic peaks exclude some of the earlier proposed scenarios where
the cosmic strings are the main origin of CMB fluctuations. On the other hand,
recent analysis shows that a mixture of inflation and topological defects is con-
sistent with current CMB data [5-9].

Recent astrophysical observations give strong evidence of the existence stellar
mass and supermassive black holes (see, e.g., [10,11] and [12] for a review). There
is also growing evidence, although much weaker, for the existence of intermediate-
size black holes (see, e.g., [13] for a review). In this thesis we study the interaction
of cosmic strings and other topological defects with a black hole.

A black hole interacting with a cosmic string is a quite rare example of inter-
action of two relativistic non-local gravitating systems which allows rather com-
plete analysis. This makes this system interesting from pure theoretical point of
view. From more ”pragmatic” viewpoint, this system might be a strong source
of gravitational waves. But in order to be able to study this effect one needs
first to obtain information on the motion of the string in the black hole back-
ground. The situation here is very similar to the case of gravitational radiation
from bodies falling into a black hole.

This thesis is based on the publications [14-16]. It is organized as follows.

Chapter 1 provides an introduction to the subjects studied in this thesis
and fixes the notation used later on.

In chapter 2 we give a general introduction to the physics of topological
defects focusing in more details on cosmic strings. We also review the present
status of cosmic strings in cosmology.

In chapters 3,4 and 5 we study in detail the interaction of cosmic strings

with black holes. We focus mainly on effects connected with the rotation of the
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black hole. The scattering and capture of a cosmic string by a non-rotating black
hole was previously studied both numerically and analytically [17-22].

In our setup of the problem we use the thin string approximation and neglect
its gravitational back reaction. This approximations are expected to be very
good for the following reasons. If 7 is a characteristic energy scale of a phase
transition responsible for a string formation then the thickness of a string is
p ~ n~ ! while its dimensionless mass per unit length parameter p* = Gu/c* ~ n?.
For example, for GUT strings pgur ~ 107%cm and p}p &~ 1075 and for the
electroweak phase transitions pgw &~ 107 cem and phy, ~ 10734, Since p* < 1
one can neglect (at least in the lowest order approximation) effects connected
with gravitational wave radiation during the scattering of the string by a black
hole.

In our setup we also assume that the size of the string is much larger then
the Schwarzschild gravitational radius rs = 2GM/c? of a black hole and its total
mass is much smaller than the black hole mass. The latter condition together
with p* < 1 means that we can consider a string as a test object. In order to
specify the scattering problem we consider the simplest setup, with the string
initially far away from the black hole, so that the string has the form of a straight
line. We assume that the string is initially moving with velocity v towards the
black hole and is lying in the plane parallel to the rotation axis of the black
hole. This plane is located at a distance b with respect to the parallel “plane”
passing through the rotation axis. In analogy with particle scattering we call b
the impact parameter.

Chapter 3 provides a general framework which is common for the consequent
two chapters. For b > rg the string moves in the region where the gravitational
potential GM/r is always small, and one can use a weak field approximation

where the string equation of motion can be solved analytically [19, 20, 22]. The
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weak field approximation is reviewed in the last section of chapter 3. We include
analysis of Lense-Thirring scattering, i.e., scattering due to the linear angular
momentum term in Kerr metric.

String scattering can be described in qualitative terms. In the reference frame
of the string the gravitational field of the black hole is time dependent and it
excites the string’s transversal degrees of freedom. This effect occurs mainly when
the central part! of the string passes close to the black hole. Since information
is propagating along the string with the velocity of light, there always exist two
distant regions, ‘right’ and ‘left’, which have not yet felt this excitation. These
asymptotic regions of the string continue their motion in the initial plane (‘old
phase’). After scattering, when string is moving again far from the black hole,
its central part moves in a plane which is parallel to the initial plane but is
shifted towards the black hole by a distance x (‘new phase’). There exist two
symmetric kink-like regions separating the ‘new’ phase from the ‘old’ one. These
kinks move out of the central region with the velocity of light and preserve their
form. Besides the amplitude &, the kinks are characterized by a width w which
depends on the impact parameter and the initial velocity of the string. Figure 1.1
schematically illustrates this behavior?.

In chapter 4 we analyze the scattering of a cosmic string by a rotating black
hole in the strong field regime. Our focus is to obtain the quantities £ and
w, and to study how black hole rotation modifies the earlier results for a non-
rotating black hole presented in [19]. We present the results for string spacetime
evolution, real profiles of a string at different external observer times 7', as well
as asymptotic scattering data.

When a cosmic string, in its motion, passes close to a black hole it can be

'We call center of the string the center of the symmetry Z — —Z.
2The figure is taken from [21]. In the picture the quantity we call & is labeled as Ao,. The

rotational axis of the black hole is parallel to the straight string.
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Figure 1.1: A straight cosmic string scattered by a black hole.

out

captured. In chapter 5 we study this phenomenon. For a given velocity v there
exists a critical value of the impact parameter, b.(v), which separates capture
and scattering regimes.

Using numerical simulations we obtain the critical impact parameter curve
b.(v) for different values of the rotation parameter a. We show that for prograde
motion of the string this curve lies below the curve for the retrograde motion?.
Moreover, for ultrarelativistic strings moving in the prograde direction in a space-
time of nearly extremal black holes the critical impact parameter curve is found
to be a multiply valued function of v.

As we shall show, scattering of strings with impact parameters slightly greater
than b. has a number of interesting features. We call this regime critical scat-

tering. We obtain real time profiles of scattered strings in the regime close to

3See section 3.2.2 for explanation of terms prograde and retrograde.
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the critical. We also study critical scattering and capture in the relativistic and
ultrarelativistic regimes and especially such relativistic effects as coil formation
and wrapping effect.

In chapter 6 the methods developed for the string scattering problem are
generalized to the case when a topological defect (brane) has more than one
spatial dimension and is moving in a higher-dimensional bulk spacetime with a
black hole. This problem is technically very similar to the cosmic string scat-
tering. On the other hand it has interesting applications to the so-called brane
world models.

It was proposed recently that the whole universe could just be a three-
dimensional domain wall (brane) embedded in a higher dimensional space with
large or infinite extra dimensions. In these models, all the standard model par-
ticles are localized on the brane while gravity can propagate everywhere. In
particular, black holes being gravitational solitons can propagate in a higher
dimensional bulk space. One possible mechanism for the particle localization
was proposed in [23], where it was shown that fermion interaction with a scalar
domain wall (in five dimensions) can lead to localizations of chiral fermions.

In our approach we generalize the weak field approximation scheme developed
for cosmic strings to a case where both a brane and a bulk space in which
the brane is moving may have an arbitrary number of dimensions. We use the
Nambu-Goto action to describe the motion of the higher-dimensional brane. We
study the motion of such (n+1)-dimensional object in a background of (n+k+1)-
dimensional Schwarzschild black hole.

We will keep our analysis as general as possible, however we will devote special
attention to the so-called brane world model in which the brane has three spatial
dimensions while the number of bulk dimensions is arbitrary.

Finally, in chapter 7 we summarize the results and suggest potential direc-



CHAPTER 1. INTRODUCTION 7

tions for future research.

Throughout the thesis we use units in which ¢ = 7 = Gx = 1 and the
metric sign convention of Misner, Thorne, and Wheeler [24] (—1,1,1,1) or its
higher-dimensional equivalent.

In general, capital Latin letters (A, B, .. .) are reserved for indices of quantities
related to bulk space, whereas Greek indices (u,v,...) are used for quantities

restricted to the n-brane. The following list provides some examples:

XA(zH) parametric description of an n-brane
or cosmic string
JAB metric of the bulk space
I'5c, Tarc Christoffel symbols for the bulk metrics

o induced metric on a brane or string



Chapter 2

Physics of Topological Defects

The first part of this chapter reviews the basic theory of topological defects,
focusing mainly on cosmic strings. We then introduce the Nambu-Goto effective
action which is the leading approximation governing the dynamics of topological
defects. Finally, we review the present status of the role of cosmic strings in

cosmology.

2.1 General Theory

Quantum field theories generally possess two kind of symmetries: spacetime and
internal. The former are associated with the symmetries of the four-dimensional
spacetime manifold, and are described by the Poincaré group. The latter can
be considered as those relating fields to each other. They are characterized by a
compact Lie group.

The most important internal symmetries are local (gauge) symmetries, i.e.,
those that depend on spacetime location. All gauge theories require spin 1 fields
in order to cancel the extra derivative terms arising due to the local character of

the transformation. However, in order for this to work, the spin 1 fields must be
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massless. This is in disagreement with observation — the mediators of the weak
interaction W+, W, Z° are massive.

The solution to this problem is the Higgs mechanism. It introduces masses
to the gauge fields by spontaneously breaking the symmetry of the vacuum. A
necessary ingredient is a spin 0 Higgs field, which at certain critical temperature
acquires a non-vanishing vacuum expectation value (VEV) !. The theory is then
invariant only under the subgroup of G which leaves the vacuum unchanged. We
say that G is broken into H (G — H).

The new ground state of the theory is a uniform non-zero field ®(z) = ®,.
There are, however, other conceivable (more energetic) configurations containing
regions where the Higgs field vanishes. These highly energetic regions form the
core of the topological effects. Whether such configurations are stable or not
depends on the topology of the vacuum manifold.

The type of defect we get for a particular case depends on the internal di-
mension n and the spatial dimension. In three-dimensional space there are four

different possibilities

e n = 1. Domain Walls. The symmetry is discrete. Space is divided into

regions in different phases separated by walls of false vacuum.
e n = 2. Strings. Linear defects characterized by their mass per unit length.

e n = 3. Monopoles. Massive point-like defects. The field points radially

outward from the defect.

e n = 4. Textures. These defects are not well localized in space. They do
not possess a core of false vacuum and their energy originates from the field

gradients.

!The coupling constants in the effective Lagrangian are temperature dependent.
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To be more concrete, let us consider a gauge theory with a scalar field ®
acted upon by a gauge symmetry group G, with hermitian generators 7, such

that

[TaaTb] = 2.fabc,-r’c . (211)

The question is whether strings-like defects can form, i.e., whether there is a
stable axisymmetric static solution of the field equations with finite energy per
unit length?. This means that we assume the field configuration to be indepen-
dent of X0 X3  with A% = A% =0.

The energy density has the form

1
£ = /dQX <ZFZ§~F;§ + | Dy®|* + V((I))) : (2.1.2)

where Fji = 0;A} — 0;A} — ef“bCAg-’Ag and Dy = 0y + ieAy, with Ay = AT, (we
also absorbed a factor of v/47 into the field strengths). The potential is generally
a quartic function of ®, and we can always set V' = 0 at its minimum.
Let M be the vacuum manifold and &, a point on it. Gauge invariance asserts
that
g®y = @, geG,d eM. (2.1.3)

Let H be the subgroup?® which leaves ®, invariant, i.e., h®; = ®,.
Then to each element ® of M we can assign an equivalence class [g] € G/H
such that
b =gd, . (2.1.4)

Each two elements ¢', g" € [g] “differ” only by some element h € H,i.e., ¢' = ¢g"h.

The opposite is also true — each equivalence class corresponds to one point of

2 As it will be explained in the next section these types of strings belong to a class of so-called

local strings.
31t is trivial to check that H is indeed a group.
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M. This establishes an isomorphism from M to G/H which we denote by writing
M=G/H . (2.1.5)

In order to have a finite energy solution of (2.1.2), we demand that each term
of the integrand must approach zero sufficiently fast as p — oo (we use standard
polar coordinates (p, ¢) in the X' X2-plane). From V (p, ¢) = 0 it follows that
the scalar field at infinity ®,(¢) € M and hence

Do) = g(0)2(0) = g(0)Po, Do € M, g(p) €G . (2.1.6)

Vanishing of FiZF}% implies that Ay at infinity must be just a gauge transformed
vacuum

Ax(@) — “0g(0)g7 () a5 oo (2.1.7)

Finally, from the condition Dy® =3 0 we have

O Poo () — kg’ (0)9 (9)Pos () = 0 . (2.1.8)

Substituting (2.1.6) into (2.1.8) we get

(Okg()) ®o = (Org'(¥)) ¢ (¢)g(0)®o , (2.1.9)

which is clearly satisfied if ¢'(¢) = g(p). It is convenient to set g(0) = e (the
identity element).

We also demand that @, (27) = ®(0), which implies g(27) € H. P (p)
then defines a closed loop in M, or, equivalently, [g(¢)] defines a closed loop in
G/H.

If all loops in M are smoothly contractable to a point (®g), then the vortex so-
lution is not stable, and dynamically “decays” into the true vacuum. If, however,

there are non-contractable loops in M, ® cannot reach the ground state without
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going through a state with infinite energy. In other words, there is an infinite
energy “barrier” which stabilizes the vortex solution on topological grounds.

In mathematics, non-contractable loops at a point ® € M are classified by
the elements of the fundamental group (also known as the first homotopy group
m(®, M)). If M is a connected manifold, 7 is independent of the point ®. Thus
71 (M) contains information about the global structure of the manifold.

We say that two loops are homotopic if they can be smoothly transformed
into each other. Homotopic loops form equivalence classes with a group structure
(identity is the class of loops contractable to a point, inverse element is the class
of loops traversed in reverse direction, and the product is defined by traveling
the two loops in succession).

If 71 (M) is trivial, i.e., contains only the identity, we say that M is sim-
ply connected. Otherwise it is multiply connected. Since Lie groups are also
manifolds, the homotopy theory is also applicable to them.

There is a useful theorem which says that if the gauge group G is simply con-
nected, then m (M) = my(H), where mo(H) “counts” the number of disconnected

pieces of H (this theorem can be generalized for higher homotopy groups).

2.2 Cosmic Strings

In this section we take a closer look at the two most basic classes of strings —
global and local strings. We will see that global strings have infinite energy per
unit length and thus are not very realistic. Local strings, on the other hand,
have finite energy per unit length and are very well localized in space. In the
following chapters we will always consider local strings as our model.

Global and local strings are not by far the only permitted type of strings.
There is a whole “ZOO” of theories with a string solution. The most studied

are semilocal strings (only a subgroup of the global symmetry is gauged) and
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superconducting bosonic and fermionic strings (carrying the appropriate current

in their cores).

2.2.1 Global strings

Global strings arise from theories invariant under global transformations. The

simplest such theory is described by Lagrangian density

1 1
L=—-0,9"0%®-V(®), V= 5A(|<1>|2 — 5772)2 : (2.2.10)

where ® is a complex scalar field. This theory is clearly invariant under global
U(1) transformations ® — e“*®.

The Euler-Lagrange equation of motion for the field is

[V2+A\(|®* — %ﬁ)]@ =0. (2.2.11)

The ground state is given by

By = L exp(iag), o €R (2.2.12)

V2
therefore the vacuum manifold is topologically equivalent to a circle S'. The

first homotopy group 7 (S?) is non-trivial

m(SH =17. (2.2.13)

Each homotopy class is labeled by an integer number n called the winding
number. It counts how many times the loop “wraps” around the circle S*.
It is convenient to work in cylindrical coordinates (p, ¢, z) in which our ansatz

for the solution has the form

® ©e™e,  E=myp, (2.2.14)

_
V2
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where m; is the mass of the massive particle in the broken vacuum

m? = \n? . (2.2.15)
The equation of motion (2.2.11) then takes the form

f”+1f'—"—2 —1(f2—1)f=0, (2.2.16)
3 S
which is a non-linear second order ordinary differential equation. The equation
can be solved numerically (e.g., using relaxation method), with the boundary
conditions f(0) = 0, f(oc0) = 1. For practical purposes it is convenient to change
coordinates to deal only with finite interval.
A Taylor series expansion shows that for large &, f ~ 1 — n?/£?. Because

of the slow n?/£? decay, the energy per unit length is infinite. This is a direct

consequence of the presence of the massless Goldstone boson.

2.2.2 Local strings

Let us now investigate what happens if the Lagrangian is invariant under a local
gauge symmetry. In the simplest case the gauge group is the Abelian U(1).
The Lagrangian density is then given by

1
L=—|D,®f - ZFABFAB - V(®), (2.2.17)

where Dg = 0p +ieAp and Fop = 0cAp — OpAc. Under the action of U(1) the

fields transform according to
d—e . AB — AB — —8BA(.T) . (2218)
e
The equations of motion for the fields are

[D? + A(|®]> - %772)]<D =0, (2.2.19)
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OpF"? +ie (©*D"® — D'®*®) =0 . (2.2.20)

We, again, switch to cylindrical coordinates, and choose the radial gauge

A, = 0. The ansatz now has the form
n n n
@ = % (p)e (P’ A(p = g U,(p) . (22.21)

After the substitution into the equations of motion (2.2.19)-(2.2.20) ,we ob-

tain two non-linear second order differential equations

fl m2 TL2

4 73(‘102 —1) - ?f(CLQ -1)=0, (2.2.22)
S %’ —m2fa—1)=0. (2.2.23)

They can be solved only numerically, but it is possible to obtain their asymptotic

behavior (see, e.g., [1])

; {fof'", {%52 (H?J\{El g2 ag € 5 0;
~ a~
1 — f167? exp(—/BE), 1 — a6V exp(—€), as & — oo.
(2.2.24)

Here, £ = myp and 3 = \/e? = (m,/m,)% If B > 4, £ /2 exp(—+/BE) is replaced
by £ exp(—2¢).

Since now the vector boson is massive, the energy is much better localized,

with the energy per unit length given by

p= /5(p)p dpdp = m’e() - (2.2.25)

The function €(f) must be obtained numerically. For the critical coupling § =1
it is possible to show that €(1) = 1.
The magnetic flux through the string is given by

/? ds = 7 A= %—" . (2.2.26)
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The vortices are stable for any n if § < 1, and split into n vortices each
carrying a unit flux 27 /e for 5 > 1. This can be understood from the fact that
there are two competing forces acting on the vortices. The repulsive force is due
to the repulsion of magnetic flux lines. The range of this force is controlled by
the Compton wavelength A\, ~ 1/m, of the vector boson. The attractive force
is due to the tendency to minimize the area of the vanishing scalar field, and its
range is controlled by the Compton wavelength A; ~ 1/m,. The winner is the

one with longer range. Since 8 = A\2/)\2, the results make sense.

2.3 Domain Walls

Domain walls arise from models in which a discrete symmetry is broken. In
general, they form when the vacuum manifold M has two or more disconnected
pieces. This is classified by the homotopy group my(M), which counts the dis-
connected parts of M. The simplest such model is described by Lagrangian
density

L= —%8,4@8‘4(1) - %)\(@2 -n°)?, (2.3.27)

where @ is a real scalar field. The discrete symmetry is Zs, i.e., ® — —®. The
vacuum manifold consists of two points, ® = +n.

Suppose that our solution is such that ® — —n as z - —oo and ® — 7 as
z — 0o. We assume that the solution is antisymmetric in the z coordinate and
thus ® = 0 at z = 0. This means that a plain wall of false vacuum is created in

the X'Y-plane. It is easy to check that the exact solution has the form

®(Z) = ntanh (%) , (2.3.28)

where 6 = A "'/27)71 is the thickness of the domain wall. The surface density o

can be estimated as o ~ & py. The density of the false vacuum py ~ An* and
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thus ¢ ~ A\'/27%. The exact density can be calculated from the stress-energy

tensor

TAB = 8Aq> 8B<I> — gABL y (2329)

where g4p is the Minkowski metric. The result is

Z\14
TAg =M [cosh (5)] diag(1,1,1,0) . (2.3.30)
The exact energy per surface area is then given by

o0 4
o :/ T%dZ = §A1/2n3 : (2.3.31)

2.4 The Nambu-Goto Effective Action

So far we considered only static configurations of topological defects. In order to
study their dynamics, we need some sort of effective action which would allow us
to derive the equations of motion. Of course, the action for the fields is known,
and thus we can, in principle, calculate everything we need. But such treatment
is neither practical nor necessary?.

It is legitimate in planetary astronomy to treat Earth as a point-like particle.
It happens when the other scales entering the problem are much larger than
the Earth size. In a similar way it is legitimate to consider n-brane® as an n-
dimensional object when the radius of the (extrinsic) curvature of the brane R
is much larger then its characteristic thickness d, and the geometry of spacetime
itself varies on much larger length scales then 0. In this approximation the

motion of the brane in the (n+ k + 1)-dimensional spacetime is described by the

4 Although sometimes this approach is used in order to answer more subtle questions, e.g.,
what happens when strings intercommute etc.. One then needs to perform numerical lattice

field theory simulations.
5Here the term n-brane denotes a generic n-dimensional topological defect.
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Nambu-Goto effective action

S[X4 = a/d"“x V=, (2.4.32)

where ¢ is the tension of the brane.

Let us show now how one can derive the effective action from the field action

Sp = / A" X /g L, (2.4.33)

where £ is the number of extra dimensions and L is the Lagrangian of the un-
derlying field theory. For our purposes we do not need to know its form exactly.
If R > § the solution for a moving and distorted brane can be obtained by
“gluing” together static solutions (analogous to those described for local strings
in subsection 2.2.2) and integrating out the transverse degrees of freedom. To
do this, we use the construction described in [1].

We parameterize the worldsheet of the brane (defined by the zeros of the
Higgs field) by # (u = 0,...,n), with 2° being timelike and the remaining z'-s
spacelike. At each point of the brane we erect a k-plane perpendicular to the

tangent vectors to the worldsheet, X ,ﬁ. This plane is spanned by & orthonormal

spacelike vectors n (a =1,...,k). Thus we have
gapmy X5 =0, (2.4.34)
9ABNGTE = Oap - (2.4.35)

By defining k£ new coordinates p® corresponding to nZ we can reparameterize

any point near the worldsheet
XA(E) = (XA(), pnl (a)) . (2.4.36)

Note that the new coordinates {4 = (z#, p®) are single valued only if the point

X4 is closer to the brane than its curvature radius R.
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The participating fields are defined by the static solution of a straight brane
in flat spacetime. We identify the coordinates p® with the extra & dimensions.
In order to write the action (2.4.33) in the new coordinates £, we need to

evaluate the Jacobian

ez (3F) = oo {o () (%)} - v=mwr, s

where the matrix M has the form
~ 0X40x5B

The higher order “curvature” terms arise from the derivatives of n2 with respect

M, = diag(Yuw, dap) + O(p/R) . (2.4.38)

to o

To the lowest order then we have det M = det . Since the fields are (to the
lowest order) independent of z* we can perform the partial d*p integration of the
action. This yields the brane energy density factor o in front of the Nambu-Goto

effective action
S[xXA = a/d"“:c V= (2.4.39)
It is also possible to work with a slightly different but equivalent form of the
action. The idea is to introduce an additional auxiliary field on the worldsheet
— a so-called internal metric h,,. The resulting Polyakov action has the form
[25]
Sp[X*, hy] = —p / d" e N —hh"y,, . (2.4.40)

2.5 Dynamics of Topological Defects

To obtain the equations of motion for an n-brane in a fixed background spacetime,
we use the standard procedure of varying the action (2.4.32) with respect to the
fields X 4. The variation yields

5S[XA]
JXA

_ A vTA B,C __
— OXA 4T e X228 = 0. (2.5.41)



CHAPTER 2. PHYSICS OF TOPOLOGICAL DEFECTS 20

The box operator O has the form
1
-

and T4 ¢ are the standard Christoffel symbols associated with the background

O

O (V=17"0,) | (2.5.42)

ﬁ

metric.
For the string the induced two-dimensional metric ,, is conformal to the flat

metric 7,,, so it is always (at least locally) possible to write it in the form

Vo = eZw(T,U)mw . (2.5.43)

Here, 7 = 2% and o = z!. In this gauge /—y7y** = n**, and the equations of
motion reduce to a simpler form. After multiplying (2.5.41) by /—7 we obtain
0XBox¢ N 0XBoxc

or ot do do |

OX4 + T 50 {— (2.5.44)

In the above the box operator is the flat two-dimensional wave operator O =

—0% + 02. The constraint equations (2.5.43) have the form

0X"oxX"
Yo =9AB 5 5 = 0, (2.5.45)

A B A B
OXA0XE 9X49X ) 0 (25.46)

or Oor * 0o Oo
The system of equations (2.5.44) is semi-linear. For n > 1 such simple choice of

Yoo + Y11 = 9AB (

gauge is impossible so that in general case the equations of motion for branes are
non-linear. We discuss the gauge fixing for branes in the weak field approximation

in section 6.4.

2.6 Cosmic Strings in Cosmology

Although topological defects have never been observed so far, they may have
played important role in cosmology, especially in the process of structure forma-
tion. Studies show that domain walls and monopoles are in contradiction with

cosmological models not considering inflation.
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If domain walls existed in our universe they would soon dominate the energy
density of the universe. For example a wall of size H,' (H, is the Hubble
constant) would have a mass Myan ~ 0 Hy 2 ~ 105A1/2(n/100GeV)? grams which
is about, 10'°A!/2(/100GeV)? times more than is observed in the present Hubble
volume. Furthermore, domain walls would cause large temperature fluctuations
in CMB 6T/T ~ GoHy ' ~ 10°°X1/2(n/100GeV)?.

It is not difficult to estimate the mass density and flux of monopoles created
at the GUT scale (see, e.g., [26]). The lower bound can be set by assuming
the presence of one monopole per Hubble volume at the time of creation. The
estimated values are much higher then the observational upper bounds (see e.g.
[27]). This inconsistency is in fact rather serious since there exists a proof by
t’Hooft and Polyakov that monopoles will exist in most spontaneously broken
non-Abelian theories.

The monopole problem can be avoided by introducing the concept of inflation
[28,29]. Inflation is considered to be the initial phase of the evolution of our
universe during which the scale factor changes by many orders of magnitude
while the energy density and pressure change slowly.

Inflation also helps to solve a variety of other problems present in the standard
cosmological model. For example, the inflated quantum fluctuations of the scalar
field could constitute the initial inhomogeneities needed for galaxy formation.

A competing theory of structure formation assigns the leading role for inho-
mogeneity creation to cosmic strings. Cosmic strings are the only topological
defects compatible with observations. A naive estimate shows that the energy
density of a static string network scales as ps ~ a(t)™2 , where a(t) is the scale
factor present in the Friedman-Fermi-Walker (FRW) model of expanding uni-

verse®. This scaling would be disastrous since cosmic strings would dominate the

6Since the string tension equals to the string energy per unit length, the energy density of

a string in expanding universe stays constant. Therefore the energy of a static string network
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energy density of the universe similarly to the domain walls case.

Fortunately, it was shown that it does not occur and there is a mechanism
which changes the scaling behavior so that the result is compatible with observa-
tions. In particular, it has been shown that when two strings cross, they “change
partners”, i.e., intercommute. This mechanism leads to loop formation. Loops
are closed string segments which typically oscillate and later decay by emitting
gravitational radiation. Loop decay is responsible for a a(t)™* string scaling, i.e.,
the string density maintains a constant ratio to the matter density in a radiation
dominated universe. It is generally believed that the evolution of string networks
converges to a so-called scaling solution. This means that the network properties,
when normalized to the Hubble radius, remain (statistically) unchanged.

Numerical simulations also show that during dynamical evolution strings de-
velop fine structure (wiggles) superimposed on the straight string. This effec-
tively changes the string’s stress-energy tensor and consequently the spacetime
around the string. Wiggly strings therefore affect differently the surrounding
matter and thus models taking into account the wiggliness predict a slightly
different matter density fluctuations than models using “ordinary” strings [5].

Matter density fluctuations in the early universe are responsible for the tem-
perature fluctuations in CMB. Much work has been done to calculate the effect
of cosmic strings on the CMB. The calculations are complicated and approxi-
mations must be made in order to render the calculations tractable. Moreover,
the string model is not unique and various parameters are introduced to allow
for different models. Since measurements of CMB fluctuations are one of the
most promising experimental tools for understanding the initial conditions for
structure formation, we briefly review the fundamentals of the CMB radiation.

As we go backward in time the universe becomes hotter and denser. When

enclosed in a comoving volume V increases linearly whereas the physical volume ~ a(t)3.

Therefore ps ~ a(t)~2. Analogous arguments for domain walls give pw ~ a(t) 1.
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the universe was about thousand times smaller than today, its temperature was
high enough to ionize atoms (mostly hydrogen and some helium). The universe
then consisted of an ionized plasma of protons, electrons and photons. Due to
Thomson scattering of photons by electrons the mean free photon path was short,
and the photons were in thermal equilibrium with the surrounding matter. As
the universe expands photons become less energetic and at about 7' ~ 4000K
they can no longer ionize the hydrogen atoms. At that point (also called recom-
bination) photons decoupled from matter and continued their journey virtually
undisturbed by matter. The recombination epoch completed very rapidly. The
CMB we observe today originated at the surface of last scattering — a sphere
with radius ~ 10! light years. Because the universe is expanding the tempera-
ture of the CMB radiation dropped to the today’s value of 2.728 K + 0.004.

The fluctuations of the CMB mirror the conditions of the universe at the
recombination epoch when the universe was about 300,000 years old. Due to
initial inhomogeneities the baryon-photon fluid underwent oscillations. Gravity
served as the driving force and photons provided the restoring force. It can
be shown ([30-32]) that each Fourier mode k£ obeys the harmonic-oscillator-like
equation

k2
[meﬂAT];], + gATk == —Fk 5 (2647)

where meg is the effective mass of the fluid, Fj is the driving force due to fluc-
tuations in gravitational potential and primes denote derivatives with respect to
the conformal time n = [ dt/a(t). The main contribution to the temperature
fluctuation in CMB is due to the difference in gravitational redshift of photons
climbing from different gravitational potentials 7(Sachs-Wolfe effect).

What is in practice measured is the correlation function of the temperature

"There are many other (secondary) effects which affect the photons during the recombina-

tion and on their long way to our detectors.
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fluctuations between points in the sky separated by a certain angular distance
6. Since the surface of last scattering is a sphere it is natural to expand the

correlation function into spherical harmonics

<%(n)%(n')>n_n_mw = D (Om ) Vi (0) Yy (1) (2.6.48)

7 !’
LU m,m

Since we assume that the initial disturbances are statistically isotropic
(alma;m,> = 6ll’5mm’cl . (2649)

After substituting (2.6.49) into (2.6.48) and using the identity

l
2L+ 1
3 Vi @) = 2 R w) (2.6.50)
7
m=—1
we get
AT, AT, 1
<7(n)7(n )> T > (21 +1)e, Py (cos ) (2.6.51)

!
where P;-s are the Legendre polynomials.

Figure 2.1 shows data combined from different experiments together with
three theoretical curves. The picture and description is taken from [9]. The upper
dot-dashed line represents the prediction of a ACDM model, with cosmological
parameters set as ng = 1, Qx = 0.7, O, = 0.3, Q, = 0.05 and h = 0.6 in
agreement with all other data but CMB’s. The lower dashed line is a typical
string spectrum. Both of these are seen not to fit the new BOOMERanG [33],
MAXIMA [34] and DASI [35] data (circles, triangles and diamonds respectively)
and are normalized at the COBE scale (crosses). Combining both curves with
the extra-parameter o produces the solid curve, with a x? per degree of freedom
slightly above unity. The string contribution turns out to be some 18% of the
total. With the former BOOMERanG data which produced a much lower second
peak, the string content was raised to 38% of the total.
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Figure 2.1: 4(¢+ 1)cg/27 versus £ for three different models.

We see that the spectrum consists of a strong acoustic peak centered around
[ = 250 and few secondary peaks slowly decaying as we approach smaller angular
scales (large [-s). At those scales the finite time of recombination smears out the
effect caused by density fluctuations.

As illustrated by figure 2.1, it is clear that pure topological defects with-
out inflation are incompatible with the observational data. However, it is also
clear that superposition of cosmic strings and inflation does not contradict the

observations either. The superposition is calculated simply as
a=oacq+(1-a)g , (2.6.52)

where the superscripts indicate either inflation or strings.

Future, more precise measurements can clarify the situation, since strings and
inflation leave different signatures in the CMB. In particular, theory predicts a
non-Gaussian component in the power spectrum induced by strings. At present
there is no consensus whether the actual data contain this component.

Besides the temperature anisotropy, we also expect anisotropy in the photon
polarizations. Measurements of these anisotropies can help us to identify impor-

tant parameters in cosmological models since it happens that the temperature
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anisotropy is sensitive to a combination of parameters and thus it is impossible
to deduce the value of each individual parameter even from a very precise mea-
surements. Since polarization anisotropy is sensitive to different combinations of
the parameters it can split this parameter “degeneracy”.

To conclude this section about the recent state of cosmic strings we cite the
summary of [9]: “In conclusion, we have found that a mixture of inflation and
topological defects can perfectly well accommodate the current CMB data, with

standard values of the cosmological parameters”.
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Chapter 3

Cosmic Strings in Kerr

Geometry

In this chapter we present a solution for the string motion in the weak field
approximation and discuss the setup for scattering and capture of infinitely long
straight cosmic string in the Kerr spacetime. We introduce the basic terminology

and explain how we execute the numerical experiments.

3.1 Kerr Geometry

Our aim is to study string motion in the Kerr spacetime. The Kerr metric in

Boyer-Lindquist coordinates (¢, 7,6, ¢) has the form

2Mr pM Asin? 6 4aMr sin® 6
2 _ (1 2, &2 2 2
ds® = —(1 > )dt —l—Adr + 3do” + > do — 5 dtde , (3.1.1)
Y =r’+a’cos’0 , (3.1.2)
A=r?—2Mr+ad*, (3.1.3)

A= (r*+a®)?* - d’Asin?0 , (3.1.4)
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where M is the mass of the black hole, and J = aM is its angular momentum
(0<a< M).

In order to be able to deal with the case where part of the string crosses
the event horizon for the numerical simulation we also adopt the so-called Kerr

(in-going) coordinates (9,7, 6, (ﬁ)

2M 4aMr sin? ~ -
ds” = —(1 — =5-)dv” + 2dvdr - %Slnodﬁdqb — asin® fdrdd
Asin? -
+2d02+%d¢2, (3.1.5)
with
M? r—M —+M? — qg?
D=t+r+Mln + In +M, (3.16
|4M2‘ M?—a?> |r—M+VM?—a? ( )
- — M-V -
$=¢+ ——e——In|" vl (3.1.7)
2VM?2 —a?2 |\r—M+VM?—a?

The metric (3.1.1) has the asymptotic form
2M daM
ds® = —dt*+dr*+r*(df>+sin edqsz)+7(dt?+dr2)—“T sin’ Odtd¢ . (3.1.8)

Let us introduce new “quasi-Cartesian” coordinates

T=t, (3.1.9)
X = Rsinfcos ¢ , (3.1.10)
Y = Rsinfsin¢ , (3.1.11)
Z = Rcos# (3.1.12)
where
r=R+M. (3.1.13)

One can easily check that the metric (3.1.8) in the quasi-Cartesian coordinates
(3.1.9)—(3.1.12) has the asymptotic form
2M

2M 4]
ds® = —(1 — 7)d:r? +(1+ f) (dX? +dY? +dZ?) — E(XdY —YdX)dT
(3.1.14)
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where R? = X2+ Y2+ 72 and M and J = aM are the mass and angular
momentum of the black hole, respectively.

It should be emphasized that without the shift (3.1.13) of the radial coor-
dinate one does not recover (3.1.14). The reason for this is easy to understand
if one considers the same problem for the Schwarzschild geometry. The asymp-
totic limit of (3.1.14) with J = 0 can be found in the isotropic coordinates with
r = R(1 + M/2R)? in which the spatial part of the metric is conformal to the
flat metric. Asymptotically, it is sufficient to use (3.1.13) which is the leading
part of r at large R.

In what follows we shall use these quasi-Cartesian coordinates for representing
the position and the form of the string in the Kerr spacetime even if we are not
working in the weak field regime. It should be emphasized that since the space in
the Kerr geometry is not flat, plots constructed in these coordinates do not give
a “real picture”. This is a special case of a general problem of the visualization

of physics in a four-dimensional curved spacetime.

3.2 Cosmic String Scattering

3.2.1 Weak field approximation to the scattering of a

string moving in a Kerr spacetime

In the absence of the external gravitational field gap = nap, where n4p is the flat
spacetime metric. In Cartesian coordinates (T, X,Y, 7), nap = diag(—1,1,1,1)

and ' o = 0, and it is easy to verify that
X4 = X! (r,0) = (rcosh B, 7sinh B + X, b, 0), (3.2.15)

Vv = N = diag(—1,1), (3.2.16)
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satisfy equations (2.5.44)—(2.5.46). This solution describes a straight string ori-
ented along the Z-axis which moves in the X-direction with constant velocity
v = tanh 3. Initially, at 7o = 0, the string is found at X“(0,0) = (0, Xy, b, 0).
Later when we use this solution as initial data for a string scattering by a black
hole, b will play the role of impact parameter. For definiteness we choose b > 0
and X, < 0, so that 8 > 0.

Let us consider how this solution is modified when the straight string is

moving in a weak gravitational field. We assume

9AB =1NAB *+ 4B, (3.2.17)
XA(2H) = X (a") + xA(2H), (3.2.18)

where ¢4p is the metric perturbation and x* is the string perturbation. By

making the perturbation of the equation of motion one gets
OxA = f4, (3.2.19)

where

FA= A" = =T pe(X) X2, X, n™ . (3.2.20)

We use Cartesian coordinates for the background metric so that ['4 ¢ is simply
the Christoffel symbol for g4p.
The linearized constraint equations (2.5.45)—(2.5.46) are

05" ox” N o 0Xy N 0X 0XF
B or 0do B or do a5 or do
0X{ 0xB  0X 0xP OX{ oXE  oxfoxE
=0. (3.2.22
QHAB( or or * 0o Oo 4B\ "or “or * 0o 0o 0. (3222)

As in the exact non-linear case, if these linearized constraints are satisfied at

0, (3.2.21)

the initial moment of time 7 they are also valid for any 7 for a solution x4 of

the dynamical equations (3.2.19).



CHAPTER 3. COSMIC STRINGS IN KERR GEOMETRY 31

The linearized equations can be used to study string motion in the case
where it is far away from the black hole. In this case the gravitational field
can be approximated by the metric (3.1.14) . In fact the asymptotic form of
the metric is valid for any arbitrary stationary localized distribution of matter,
provided that the observer is located far from it. In agreement with (3.1.14) the

gravitational field perturbation can be presented as

qas = qis + i, (3.2.23)

where the Newtonian and Lense-Thirring parts are

M 4]
I = 29048 , =7 Oin = I 84 €mycos X . (3.2.24)
Here €apcp is the antisymmetric symbol. The Lense-Thirring part ¢4% of the
metric [24, 36] is produced by the rotation of the source of the gravitational field

and it is responsible for frame dragging.

Newtonian scattering

In the linear approximation we can study the action of each of the parts of
the metric perturbations independently. For the Newtonian part one has the

following expression for the force fx

fx =2sinhBcosh By (3.2.25)
fx=0, (3.2.26)

fi = —2sinh?® B oo, (3.2.27)
[y =—2cosh’ B3, (3.2.28)

and the constraint equations read

X?T — cosh 5)(?0 + sinh ﬁx}g =0, (3.2.29)
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x>, — cosh 8’ + sinh Bx}, = —2¢pcosh® 3 . (3.2.30)

The result f' = 0 means that in the first order approximation the string lies
in the Y Z-plane at any fixed time 7 = const. The dynamical equations (3.2.19)
can be easily integrated by using the retarded Green’s function (see, e.g., [19]).

The solutions read
/M = In(F.F) + %cosh Bsgn(ss) In(Gy) + sen(s_) n(G_)]

(s+ + /s —|—p2> (s_ + /82 + ,02)

+cosh B 1n e , (3.2.31)
X'/M=0, (3.2.32)
X°’/M = —sinh B(H, + H_) , (3.2.33)
; P,
X°/M = cosh f1n 7 ) (3.2.34)
where
b*> + (Xo + 7sinh B)(Xy + s+ sinh 3)
H. —
+ = arctan [ bRsinh 3
Xo(X inh b?
— arctan ol 0 +sxsinh f) + , (3.2.35)
bsinh 8+/p? + 52
R cosh 8 + 7 cosh? B + Xy sinh § — s4
+ = - , (3.2.36)
cosh B+/p* + s% + Xgsinh 3 — s
/22
Gy = VP Es =[5 (3.2.37)

IRV

R’ = (Xo+7sinhB)? +b*+0%, p*=XZ+0b*, su=7+0. (3.2.38)
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We focus now our attention on the behavior of x? which describes the string
deflection in the plane orthogonal to its motion. It is easy to show that the
asymptotic value of x*(7 — oo, o) is the same for any fixed o. We denote it —x.

The following expression is valid for k

1

—_ dX dZ f? 2.
" T 9sinh g /H 7 (3-2.39)

where IIj is the two-dimensional worldsheet swept by the undisturbed string in
its motion in the background spacetime. This integral can be easily calculated
since

/ dX dZ oy = 2 M (3.2.40)
IIo

is the flux of the Newtonian field strength through the plane II;. Thus we have
Kk =2mM sinh 3. (3.2.41)

At any late moment of time 7 the central part of the string is a straight line
moving in the plane Y = b — k, while its far distant parts move in the original
plane Y = b. These different “phases” are connected by kinks propagating in the
direction from the center with the velocity of light. (For details, see [21]). We call
k the displacement parameter. Figure 3.1 shows the Y-direction displacement for

the Newtonian scattering as a function of 7 and o.

Lense-Thirring scattering

In the presence of rotation the Lense-Thirring force acting on the string in the

linearized approximation is

b(Xo + 7sinh f)
RS ’

frr = 6Jsinh® 8 (3.2.42)

fir=0, (3.2.43)

1 302

fir = 2J sinh B cosh B (ﬁ — ﬁ> , (3.2.44)
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Figure 3.1: Y —profile for Newtonian scattering

(3.2.45)

bo
ﬁ:

6.J sinh 3 cosh 8
V/(Xo + 7sinh 8)2 4 b2 + 02. Note that as before, f* = 0.

3
LT —

f

where R

The constraint equations now take the form

(3.2.46)

1 _
70—_0’

+ sinh By

0
N

— cosh By

3
T

X

b

(3.2.47)

—2J sinh B cosh 3

1
T

+ sinh By

0
,T

— cosh By

3
N

X

@ -

The dynamical equations can be solved analytically. For the initial conditions

(3.2.48)

_0’

0=

xX°|-

(3.2.49)

b

|T:0

2
~ or

=0

xX’|-

(3.2.50)

|T:0 - 07

ox®
or

0

x|

the solution is

+HR

(Xo + 7sinh B) sinh § — o
(

_|_

(Xo + 7sinh B) sinh B+ o

(

Jbsinh g

X =
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A-)p- A(4+)P+

x' =0, (3.2.52)

(Xy + 7sinh 8)% + o sinh (X + 7 sinh 3) + b?
A(++)R

x> = —J sinh 8 cosh 3 (

(Xo + 7sinh 8)% — o sinh (X, + 7sinh 8) + b?
AR
+XO sinh B(1 + o) + X2 +°
AP+
Xosinh (1 — o) + X2 + bz)
+ ;
A=)p-

+

(3.2.53)

(Xo+ 7sinh B)sinhf— o0 (X + 7sinh §)sinh 5+ o

x> = Jbsinh B cosh 3 (

AunR AR
_ Xosinh 8 — (1 +0) n Xosinh 8 — (7 — o)
Ar4)p+ Aoyp- ’
(3.2.54)
Ai: = (Xo £ (17 £ o) sinh 8)? + b cosh® 3, (3.2.55)
pi =\ X3+ + (T % 0)2. (3.2.56)

From these relations it is possible to see that the displacement parameter
k = lim, ;4 X?(7,0 = 0) vanishes for this solution. The reason is the following.

Using (3.2.44) it is easy to present f7, as

0 (o
2 _ .
fir = 2J sinh B cosh ﬂ—aa (—3) . (3.2.57)

The asymptotic displacement is given by (3.2.39). The integral over Z or, equiv-
alently, the integral over o of (3.2.57) , which is a total derivative over o, reduces

to boundary terms o/R? at o = £o0, which vanish.
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Figure 3.2: Y —profile for Lense-Thirring scattering

Figure 3.2 shows the Y-direction displacement as a function of 7 and o for
the weak field scattering. It should be emphasized that the scale of structures for
Lense-Thirring scattering is much smaller than that for Newtonian scattering.
This can be easily seen if we compare the Newtonian force fy ~ M/R? with the

Lense-Thirring force frr ~ J/R?

J;f—NT N MLR < Mib (3.2.58)
For the scattering by a rotating black hole J = aM, where |a|/M < 1 is the
rotation parameter. Hence

J;f—NT <7 (3.2.59)
which is small for the weak field scattering. For this reason, in the weak field
regime the string profiles for the prograde or retrograde scattering by rotating
black hole do not greatly differ from the profiles for the scattering by a non-
rotating black hole of the same mass. As we shall see in the next section the

situation is different for strong-field scattering: the displacement parameter is
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significantly different for prograde and retrograde scattering, and for critical
scattering the profiles of the kinks contain visible structure produced by effects

connected with the rotation of the black hole.

3.2.2 Scattering of particles by a Kerr black hole

Cosmic string scattering is similar in spirit to a test particle scattering. To study
scattering of test particles, we send particles with various velocities and impact
parameters towards a black hole, and then look at the outcome. In particular, we
are interested whether the particle escapes to infinity or whether it is captured
by the black hole. The impact parameter below which the particle is captured,
and above which it escapes to infinity, is called the critical impact parameter.
It is a function of the initial velocity, and in case of rotating black hole, of the
angular momentum J as well.

If the test particle moves in the equatorial plane, it is possible to obtain
explicit expressions for the critical impact parameter for non-relativistic and
ultrarelativistic velocities [37].

For non-relativistic velocities

be/M =

SN )

(1 + m) , (3.2.60)

and for ultrarelativistic velocities
1
be/M = (8 cos® [g (m — arccos(a/M))} + a/M) . (3.2.61)

The sign of the rotation parameter a is positive for prograde scattering (i.e.,
both the particle and the black hole have the same sign of their angular momen-
tum) and negative for retrograde scattering (i.e., the particle and black hole have
opposite angular momenta).

The graph of the critical impact parameter b.(v) vs. the initial velocity v

far from the black hole (theoretically in infinity) is called the critical impact
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parameter curve. For a rotating black hole the critical impact parameter is a
function of its angular momentum J = aM.
For test particles the capture curve decreases monotonically with increasing v,

but for strings it has more complicated structure, as it will be shown in chapter 5.

3.2.3 Initial and boundary conditions

In an ideal situation, we would study scattering by initially placing our infinitely
straight long string at spatial infinity, where the spacetime is flat and the string
can be described in simple terms. In a numerical scheme, however, the string
cannot be infinitely long and we must start the simulation at a finite distance
from the black hole. We discuss here the initial and boundary conditions used
for the simulations.

In studying the scattering of a straight string, we consider the special case
where the string is initially parallel to the axis of rotation of the black hole. We
use Cartesian coordinates in the asymptotic region so that X-axis coincides with
the direction of motion and the Z-axis is parallel to the string (see Fig. 3.3).

We consider a string segment of length L at a time 7y and an initial distance
Xy from the black hole. In order to keep accuracy high and yet prevent the
calculation time from being inordinately large, we do not evolve the straight
string numerically from this initial position. Instead, we use the weak field
approximation to describe the string configuration at a later time 7, where the
distance X is closer to the black hole, | X,| < | X,| 1.

Given a sufficiently long string segment, the boundary points move at a great

distance from the black hole, so that their evolution can be described by the weak

Tn our simulations we put Xo = —10°M and X, = —500M. The length L of the string
segment depends on the velocity of the string, simulation time as well as the type of boundary

conditions
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Figure 3.3: Initial setup for prograde and retrograde string motion. The part of

the string depicted by the dashed line lies below the XY -plane.

field approximation until information about the interaction with the black hole
reaches the boundary. We denote this time as 7,. Starting from this moment we
solve the dynamical equations in the region |o| < L—(7—7,) (see figure 3.4). The
larger is the initial string length L the longer one can go in 7 in the simulation. We
choose L to be large enough to provide the required accuracy in the determining
the final scattering data.

Since the boundary conditions found from the weak field regime calculations
are not exact there will be a disturbance created by this effect. In some cases,
when it is important to exclude these disturbances, we used a modified scheme of
calculations in which no boundary conditions are used from the very beginning
of the simulation. The price for this is that one needs to take a longer initial size

of L which in turn increases the computational time.
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Figure 3.4: Scheme of time domains for scattering problem

3.2.4 Solving dynamical equations and constraints

Using the initial conditions at 7, and boundary conditions we solve numerically
the dynamical equations (2.5.44). Since the equations are of second order, we
use the weak field approximation to get initial data at 7, and 75, + A7 in order to
completely specify the initial value problem. The time step A7 must be chosen
to be smaller or equal to the smallest spatial grid distance do (this is the so-called

Courant-Friedrichs-Lewy condition). In practice we choose it to be

A
Ar=-—"2 = AgVI—12, (3.2.62)
cosh g3

where 3 is the rapidity parameter, i.e., v = tanh /. The numerical scheme
uses second-order finite differences and evolves the string configuration using an

implicit scheme. Because of the symmetry ¢ — —o it is sufficient to evolve only
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half of the string worldsheet, ¢ < 0, and use a reflecting boundary condition
at the string midpoint. We used the constraint equations (2.5.45) and (2.5.46)
for an independent check of the accuracy of the calculations. The time step AT
must be chosen to be smaller or equal to the smallest spatial grid distance do.
For the numerical simulations we use non-uniform adaptive grid. We use two
different adaptive techniques — one type for scattering and another for critical
scattering and capture. More details on the numerical scheme can be found in

appendix A.
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Chapter 4

Scattering of Cosmic String by a
Rotating Black Hole: Strong
Field Regime

In this chapter we discuss the cosmic string scattering in the strong field regime.
In the first section we describe the general features of scattered string profiles,
and discuss the properties of string profiles obtained from numerical simulations.

Next we discuss the late time scattering data. In particular, we investigate
how the black hole rotation influences the string’s displacement in the Y-direction
k. We show that these dependencies can be quantified by simple empiric formulas
obtained by data fits. Finally, we study how the width of the kinks depend on
the parameters of the string, i.e., the impact parameter b and initial velocity v.

We show that formula obtained from weak field approximation fits the data well.
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Wesak field b=80M scattering (a/M=0) Strong field b=6M scattering (a/M=0)

Figure 4.1: Displacement in Y-direction as a function of (7, o) for given velocity

v/c=0.762 in the weak (a) and strong (b-d) field regime.

4.1 String Profiles for Strong Field Scattering

4.1.1 General picture

Figure 4.1 demonstrates general features of straight string scattering, here for a
string with velocity v = 0.762 (8 = 1). The four panels show the displacement in
the Y —direction as a function of internal coordinates (7, o) for weak and strong
field scattering.

Figure 4.1 (a) shows the scattering for an impact parameter b = 80 M. The
value of the displacement parameter at the largest 7 shown is kK = 7.23M. This

value as well as the form of the kinks are in a very good agreement with the weak
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Figure 4.2: “Real-time profiles” of the string and their X Z— and Y Z— projection
for the strong field scattering by the Schwarzschild black hole.

field scattering results. Plots for prograde and retrograde scattering at b = 80 M
are virtually indistinguishable from Fig. 4.1 (a).

Figures 4.1 (b—d) show the scattering for b = 6 M. Qualitatively these plots
are similar to weak field scattering. The main differences are the following: (1)
The value of the displacement parameter x = 11.03M for the non-rotating black
hole is significantly larger then x = 7.23 for b = 80 M. (2) Effects of rotation
are more pronounced. The displacement k for retrograde scattering is essentially
larger than & for the prograde scattering. (3) The string profile after scattering is

more sharp, the width of the kinks is visibly smaller that for weak field scattering.
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Figure 4.3: “Real-time profiles” of the string and their X Z— and Y Z— projection
for the strong field retrograde scattering by the extremal Kerr black hole.
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Figure 4.4: “Real-time profiles” of the string and their X Z— and Y Z— projection
for the strong field prograde scattering by the extremal Kerr black hole.
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4.1.2 “Real-time profiles” of the string for strong field

scattering

It should be emphasized that figure 4.1 gives an accurate impression of the dis-
placement effect, but it gives a distorted view of the real form of the string. The
reason is evident. The grid imposed on the worldsheet is determined by the choice
of (7,0) coordinates which are fixed by the gauge conditions (2.5.45)—(2.5.46).
But a 7 = const section differs from a time 7" = const section in the laboratory
slice of spacetime. The position of the string at given time 7" can be found by us-
ing the solution {T'(7,0), X(7,0),Y(r,0),Z(7,0)} to obtain functions X (7T, o),
Y(T,0) and Z(T,0). For fixed T these functions determine a position of the
string line in three-space’.

Figures 4.2, 4.3 and 4.4 show a sequence of “real-time” profiles for strong-field
string scattering at five different coordinate times 7. We ordered them so that
the larger number labeling the string corresponds to later time. In figure 4.2 the
black hole is non-rotating. Figures 4.3 and 4.4 show the “real-time” profiles for
retrograde and prograde scattering for a maximally rotating black hole, respec-
tively. Again we can see that due to frame dragging, the distortion of the string

is more pronounced for retrograde scattering.

4.2 Late Time Scattering Data

4.2.1 Displacement parameter

Figures 4.5-4.7 show the dependence of the displacement parameter x on the
impact parameter b for different velocities v. For a given value of b the curve for

a/M = —1 always lies higher than the curves for more positive values of a/M.

L The procedure of finding the real time string profiles is described in section A.5.
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Plot of k¥ vs. impact parameter b for v/c=0.762

b/M

Figure 4.5: Displacement parameter x as a function of the impact parameter b

for different velocities v/c = 0.762.

This is true for all values of velocity v, but this difference is more pronounced at
large velocities.

The relative location of the curves for given v and b and different a can
be explained by frame dragging. Namely, a string in the retrograde motion is
effectively slowed down when it passes near the black hole and hence it spends
more time near it. As the result its displacement is greater than the displacement
for the prograde motion with the same impact parameter. Let us make an
order-of-magnitude estimation of this effect. For this purpose we use the metric
(3.1.14). We focus our attention on the Lense-Thirring term and neglect for a
moment the Newtonian part. Consider first a point particle moving in this metric
with the velocity v and impact parameter b. In the absence of rotation it moves

with constant velocity so that (X = vT,Y = b, Z = 0) and the proper time 7 is

o=V1—v2T. (4.2.1)
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Plot of k vs. impact parameter b for v/c=0.964
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Figure 4.6: Displacement parameter x as a function of the impact parameter b

for v/c = 0.964.

Plot of k¥ vs. impact parameter b for v/c=0.995
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Figure 4.7: Displacement parameter x as a function of the impact parameter b

for v/c = 0.995.
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In the presence of rotation one has

4Jbv

dr? = (1 —v*)dT? - 75 dT?, (4.2.2)
where
R =0 +v°T". (4.2.3)
For large b and 79 — 0o one can write
T =1+ AT, (4.2.4)
where
2Jb o dT 4]

VT2 |, (2 +02T2)3 Wik

This quantity A7 characterizes the additional time delay for the motion in the
Lense-Thirring field. The characteristic time of motion in the vicinity of a black

hole is T ~ b/v. Thus we have

A 4
T A (4.2.6)

Tint b2y/1—1v2

One can expect that a similar delay takes place for a string motion. As a result

of being longer close to the black hole the string has a larger displacement by
the value Ak such that

% AT _4Ma

~Y
K Tint b2

sinh 3 . (4.2.7)

Qualitatively this relation explains dependence of x on a and (3 presented in
figures 4.5-4.7.

More generally, if we look at & = a/M in the metric as a parameter, we can
use perturbation theory to calculate the effect of rotation. The solution X4 can

be expanded in powers of «

0
X=x"4+ax'+a2 X4 +..., (4.2.8)
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where )%A(T, o) is the solution for the non-rotating case and /’if'A(T, o) are the
perturbation corrections.

Numerical calculations show that the first two terms in the perturbation
series give very good approximation to the solution as long as we are not close
to critical scattering. As a consequence

k=0b— lim X*(1,0) = ko — k1o — Koa® | (4.2.9)
T—00

where kg is the Y-displacement for the non-rotating black hole, and k1, ko are
defined simply as
1,2

Ki1o = lim X*(r,0) . (4.2.10)

T—>00

In the above ‘1;\5‘2 2 denote the Y-coordinate corrections. The equations of motion
for .1}1’2 4 are linear and the solution for Ec? 4 can be obtained in one run together
with .}%A (more details can be found in section A.4).

In order to determine the coefficients in equation (4.2.9) we need to extrapo-
late the relevant data obtained during the simulation to infinity. One possibility
is to numerically advance the solution very far from the black hole and simply
take the value at the end of the simulation as our estimate. The problem with
this approach is that to advance very far by maintaining high accuracy of the so-
lution is a very lengthy process, feasible only for larger impact parameters (since
the grid can be sparser).

Our approach was to advance to a moderate distance (Xpax ~ 8000M) keep-
ing high accuracy of the solution (judged by the constraint equations). Then we

fit the calculated data by the function
K’(Oa 7—) =K+ k(T - Tshift)’y ) (4211)

where k, k, Ty, v are the parameters to be fitted. We take our first data point at

X = 1000M. To see how consistent this procedure is and to estimate the errors
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we perform three fits with different set of data points. The first set uses all the
data points, the second one uses only the first half, and the third one uses only
the last half of the data points. For this particular problem the disturbances
from the boundary have an adverse effect to the fit, therefore we use the null
boundary approach.

Our experience shows that the fitting procedure for £ works much better for
larger velocities and larger impact parameters. For the velocities v/c = 0.762,
0.964, 0.995 the estimated values of x from all three fits are consistent and differ
by no more than 3% 2. This fact gives us reasonable confidence that the plotted
values of k indeed represent the true values.

Unfortunately, the situation is not so good for slower velocities. For example
for the case v/c = 0.462 the slope of the fitted function (0, 7) is almost constant
during the later phases of the simulation, and fits using different sets of data
points yield inconsistent (and improbable) values of k. We expect the behavior
of k(0,7) to change but we did not see it in our data even after driving the
simulation four times further then for the other velocities (Xpnax & 32,000M).
Again, this behavior is more pronounced for smaller impact parameters b.

To obtain the values for xk; and ko we use the same method as for k. We did
not encounter any difficulties in estimating the values of k; and Ky for any of the
four velocities. The trend here is the opposite of the one for x — the fits work
best for smaller velocities and smaller impact parameters. The fits with different
set of data points are typically less than 1% appart.

Figures 4.8 and 4.9 show the results in a log-log plot. Figure 4.10 shows
the plot of x1/k, which is proportional to Ax/k. The straight lines shown are
obtained from least square fit. Note that the plots for the velocities v/c = 0.964
and v/c = 0.995 lie on top of each other.

2For b > 12M the results from the three fits differ by less than 1%.
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Plot of log,q(«,/M) vs. log,y(b/M)
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Figure 4.8: Plot of k; for different velocities v and impact parameters b. The

straight lines represent a linear fit.

In the interval shown x; and k9 can be reasonably approximated by a func-

tions of the form

1 A1,2
I€1,2 ~ Al,g(’l}) <5) . (4212)

Similarly for ,/k,
K1 1

M~ A3 (v) <5>A3 . (4.2.13)

K

The values for A; 23 and A; 23 obtained from a linear fit are shown in table 4.1.
By comparing (4.2.13) with (4.2.7) one can conclude that the numerical value
A3 = 2.23 is close to the value 2, which is what is given by the relation (4.2.7).
Note that the last data point on the plot for k5 is a bit out of a straight line.
We are not sure if this is a genuine feature or simply inaccurate data points (e.g.,

due to round-off errors)®. We did not include this data point into calculation of

3The discrepancies are larger than those which could result from the extrapolation proce-
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Figure 4.9: Plot of ko for different velocities v and impact parameters b. The

straight lines represent a linear fit.

the values in table 4.1.

Table 4.1: Values of fitted parameters from equation (4.2.12) and (4.2.13)

v/e| 0462 | 0.762 | 0.964 | 0.995
A | 223 | 666 | 231.0 | 6316
A | 231 | 236 | 2.36 2.35
A, | —83.9| —381.4| —1487.9 | —3717.0
Xo | 377 | 389 | 3.87 3.83
Ay | - 542 | 6.21 6.17
s | — 2.23 | 2.23 2.23

dure.
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Plot of log,q(k,/k) vs. log,(b/M)
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Figure 4.10: Plot of k;/k for different velocities v and impact parameters b. The

straight lines represent a linear fit.

4.2.2 Form of the kinks

Figure 4.11 shows details of the transition from the “old phase” to the “new
phase” for two different impact parameters. We see that the width of the kinks
differs significantly. In general the width also depends on the velocity v/c. The
dependence of the kink width on velocity and the impact parameter can be

estimated by using the weak field approximation as

be
~— . 4.2.14
W (12.14)

We operationally define the width of the kink to be the width of the peak of
dY/do at 1/20-th of its height. Figure 4.12 shows comparison of the kink widths

obtained from simulation with a function
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b
Wanalyt = 7.14?0 . (4.2.15)

The numerical constant was obtained by a fit. The match with the data is
surprisingly good.
We also noticed that the dependency of the width of the kink on the rotation

parameter a is rather small. In general
wa/M:l < wa/M:O < wa,/M:—l . (42.16)

For the parameters shown on figure 4.12 the rotation made a difference in kink

width from 3M to 7M for the extremal black holes.
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Profile of the kink for b=80M,v/c=0.762,a/M=0
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Figure 4.11: Profiles of the kinks for different impact parameters
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Figure 4.12: Comparison of kink widths for v/c = 0.462,0.762,0.964, 0.995 and
impact parameters b/M = 9,12,15,18, 25,40 obtained from simulation (circles)
and the analytic approximation (4.2.15). The data shown are taken for a/M = 0.



o8

Chapter 5

Critical Scattering and Capture

In this chapter we discuss critical scattering and capture of cosmic strings by a
rotating black hole.

In the first section we discuss the critical impact parameter curves obtained
from numerical simulations. We present an analytical formula obtained from
linear fits approximating the critical impact parameter curves for different values
of black hole angular momentum and initial velocity v. We also discuss the
peculiar shape of critical impact parameter curves for relativistic strings moving
in nearly extremal Kerr spacetime.

In the next section we focus on the critical scattering of cosmic strings. Criti-
cal scattering is characterized by impact parameters close to the critical value b,.
Real-time profiles and late time scattering data of such strings exhibit distinctive
features not present for non-critically scattered strings.

In the last section we analyze the conditions for coil formation. Formation of
coils is a relativistic effect and as will be seen from the data it is also influenced

by the black hole rotation.
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5.1 String Capture and Critical Impact Param-
eter

Two outcomes are possible for the string evolution—scattering and capture. Cap-
ture occurs when a part of the string enters the event horizon of the black hole

located at

r=M+VM> —a. (5.1.1)

Since the Kerr in-going coordinates are regular at the event horizon we can trace
the string evolution both in the black hole exterior and interior. For our study of
the string capture we stop our calculations as soon as part of the string crosses
the horizon. The value of b.(v) is determined as follows. For each fixed velocity v
and angular momentum a we start the search with two values of b—one for which
the string is captured and one for which it escapes. Then we use bisection method
to bracket the critical impact parameter'. The results of these calculations are
shown in figure 5.1. The error bars are smaller than the data markers so they
are not shown.

This plot contains the critical impact parameter curves for 9 different values
of the rotation parameter a from a = —M to a = M. The signs are chosen
so that a negative value of a corresponds to a retrograde motion of the string
and positive value to a prograde one. The lower the value of a the higher is the
position of the critical impact parameter curves in the (v, b.)-plane. This feature
is easily explained by the dragging into rotation effect. Indeed, for the retrograde
motion the dragging effect slows down the string’s motion. The string spends
more time in the strong attractive field of the black hole and hence it can be

captured easier. In order to escape the capture the string must be moving with

! This algorithm must be used with caution when the critical impact parameter curve con-

tains multiple branches.
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Critical impact parameter curves for various angular momenta
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Figure 5.1: Critical impact parameter b, as a function of the string’s initial
velocity v. The solid line represents Page’s approximation for Schwarzschild

black hole (formula (5.1.2) ).

larger impact parameter. Thus the critical impact parameter is larger then that
for a non-rotating black hole. For the prograde motion the effect is opposite.
Numerical calculations were done for v/c > 0.12. For smaller velocity the
impact parameter becomes large and computational time grows. On the other
hand, for large impact parameters the main part of the time evolution of the
string occurs in the weak field region. One can use this to estimate the criti-
cal impact parameter for low velocity motion [19,20]. Combining low velocity

dependence with the result for the ultrarelativistic scattering of particles Page
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proposed the following approximation for the critical impact parameter [20]

be/M = (\/%— \/§> - % (1 —wv)+3V3. (5.1.2)

This function is shown in figure 5.1 as a solid line. One can see that it gives quite
good approximation for a non-rotating black hole. For rotating black holes this
line gives good approximation for small v since for large impact parameters the
rotation plays less important role.

We obtain the generalization of the Page approximation (5.1.2) to the case
of a rotating black hole. Notice that in the ultrarelativistic limit v/c — oo
the critical impact parameter for the string coincides with the critical impact
parameter for photons?. The critical impact parameter for particles in the
the ultrarelativistic limit is given by (3.2.61) . The value of ¥?** for a/M =
0,+0.25,40.5,+0.75, =1 is shown by stars on figure 5.1 on the vertical line at
v/c = 1. These points are very close to those belonging to an ultrarelativistic
string. The only exception is a region of a/M close to 1.

Page’s approximation for critical impact parameter curves can be generalized
to the case of a rotating black hole. We can write the corresponding ansatz in

the form

bl M = (& — \/g) — (bo+bra+bya®) (1 —v)+b" /M.  (5.1.3)

The best fit for numerically calculated critical impact parameter curves gives the

following values of the fitting parameters b;
by = 4.40, by = —1.55, by = —0.53. (5.1.4)

We see that the fitted value of by agrees well with the Page’s value 64/15 =~ 4.27.
Figure 5.2 shows the result of the fitting for values of a/M = 0, £0.25, £0.5,

2The only exception is a case of prograde scattering by a nearly extreme black hole. The
complicated structure of the critical impact parameter curve for this case is connected with

the features of the critical scattering which we discuss later.
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Critical impact parameter curves with fitted approximations
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Figure 5.2: Critical impact parameter b, and its fitted approximation b/% as
functions of the string’s initial velocity v for different values of the rotation

parameter a/M.

+0.75, —1. (We exclude a/M = 1 because of the peculiar behavior of the
critical impact parameter curve for this case.) It is easy to see that continuous
curves representing b/ given by (5.1.3)—(5.1.4) are in a good agreement with the
numerical data shown by shaped points.

Let us discuss an additional new feature in the critical impact curves which
occurs for highly relativistic prograde scattering by rapidly rotating black holes.
The plot for a/M = 1.0 presented in figure 5.1 shows that in this regime b.(v)
becomes a multiply valued function of v. We studied numerically this regime.

Figure 5.3 shows the corresponding region in more details. It contains plots of
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Details of the critical impact parameter curves for a/M=0.9 and o/M=1.0
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Figure 5.3: Critical impact parameter curve for a prograde scattering of a rela-

tivistic cosmic string by a rapidly rotating black hole.

b.(v) near v/c = 1 for two values of the rotation parameter—a/M = 0.9 and
a/M = 1.0. Besides the main branch curve (marked by ‘+’ for a/M = 0.9 and
by ‘o’ for a/M = 1.0) there also exists an additional branch (marked by ‘x’
for a/M = 0.9 and by ‘x’ for a/M = 1.0). We performed calculations up to
v/c =0.9995 which corresponds to the gamma-factor v ~ 30. For greater values
of v our program does not allow us to obtain the solution with the required
accuracy.

For given velocity v and the impact parameter lying just below the main

branch the string is captured. But if the value of impact parameter lies inside
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the closed loop, the string is again able to escape to infinity. We call this peculiar
behavior of critical strings the escape phenomenon. At first glance this behavior
looks quite strange. We discuss the mechanism which makes these types of

motion possible in the next section.

5.2 Critical Scattering

5.2.1 Real-time string profiles

As we saw in the previous section the critical impact parameter curve is more
complicated in the ultrarelativistic regime for a rapidly rotating black hole. This
can be better understood from the way the string is scattered in the critical
regime. Figures 5.4-5.6 illustrate this. Each of the figures contains a set of
snapshots made at some moment of coordinate time 7. We call such a snapshot
a real-time profile. The time is given in units of GM/c3. T = 0 corresponds to
the moment when the parts of the string located far from the black hole (where
the spacetime is practically flat) pass the X = 0 plane. The black hole event
horizon is depicted as a black spot. It should be noted that the scales along
different axes are different. That is the reason why instead of a sphere the spot
representing the black hole event horizon looks like an ellipsoid.

There are two basic modes how a string can escape. In the "standard” mode
the string passes the black hole with its the center partially wrapped around it
(figure 5.4, (a)—(b)). As the rest of the string escapes the central part unwraps
and the string escapes to infinity (figure 5.4, (c)—(d)). As we lower the impact
parameter the central part wraps more around the black hole and ultimately it
does not have enough time to unwrap and it gets captured. However, if we lower
the impact parameter under a certain value the string can escape again. Now the

mechanism is different. In this ”alternative” mode the string wraps around the
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0

(c) T/M=41.31 (d) T/M=60.51

Figure 5.4: Real-time profiles of the cosmic string: v/c = 0.995, a/M = 1 and
b/M = 2.9.

black hole as in the ”standard” mode (figure 5.5, (a)—(b)) but this time, instead
of unwrapping, the black hole slips through the open coil (figure 5.5, (c)—(d)).
For even smaller values of the impact parameter this mechanism breaks down
eventually and the string is captured again. Although it is possible that there
exist other ”islands of escape” below the lowest branch of the critical impact
parameter curve we did not observe it in our simulations.

To have a better picture of the two different escape modes we created three
MAPLE animations, each corresponding to one of the figures 5.4-5.6. These can
be found at the URL http://www.phys.ualberta.ca/~ frolov/CSBH. Note that the
animations show only the central part of the string. In the animations the rate
of time is “slowed down” when the string is close to the black hole in order to
make the details of the string behavior more clear. For this reason it seems that

the string starts moving more rapidly when all its parts leave the proximity of
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Figure 5.5: Real-time profiles of the cosmic string: v/c = 0.995, a/M = 1 and
b/M = 2.55.

the black hole.

Interesting features of the string structure are connected with wrapping effect,
that is, when the central part of the string rotates around the black hole at the
angle greater than 27. Such wrapping type of motion is characteristic for the
motion of the ultrarelativistic particles in the regime close to capture. The
tension of the string makes this effect less profound. One can expect that for
highly ultrarelativistic motion it occurs even for a non-rotating black hole. We do
not see this effect in our simulations since we can not perform sufficiently accurate
calculations for ultrarelativistic velocities with the rapidity factor beyond § =
4.0. The dragging effect connected with the rotation of the black hole makes this
effect more profound. Figure 5.6 shows real time profiles for the string which

“wraps” around the black hole. It is interesting that during this process sharp
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Figure 5.6: Real-time profiles of the cosmic string: v/c = 0.995, a/M = 1 and

b/M = 2.4125.

spikes are formed in the string profiles®.

3These spikes are not infinitely sharp however, so the appropriate derivatives are well de-

fined.
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5.2.2 Late time scattering data

For critical scattering the central part of the string spends some time in the
vicinity of the black hole while the further located parts of the string keep moving
forward. After the central part of the string leaves the black hole vicinity the
string as a whole is moving away from the black hole with the central part
excitations propagating along the string. The combination of these effects results
in quite a rich structure of the late time string profiles. Figures 5.7-5.10 illustrate

this.

7320 7340 73§>l§lM 7380 7400

7400
7380 o

7360
XIM

(a) (b)

™M 01 zm 04

—600 7 —600

—800 1 —800 1
—20 -15 -10 -5 0 7320 7340 7360 7380 7400
YiM XIM

(c) (d)
Figure 5.7: Late time profiles of the cosmic string: v/c = 0.995, a/M = 1 and
b/M =29, T/M = 7446.47.

Each of these figures consists of four plots. They demonstrate the form of the
string some time after it passes close to the black hole. The black hole left behind
the string is not shown. We show only that part of the string near the center
which contains interesting details. The strings depicted on the figures 5.7-5.9

differ only by their initial impact parameter b. They are scattered by an extremal
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Figure 5.8: Late time profiles of the cosmic string: v/c = 0.995, a/M = 1 and
b/M = 2.55, T/M = 7448.56.

black hole in the prograde direction. For comparison figure 5.10 shows the late
time profiles of a critically scattered string by a Schwarzschild black hole. Plots
(a) show the real-time three-dimensional space profile of the string, while plots
(b), (c), and (d) show two-dimensional projections onto the planes XY, Y Z, and
X7, respectively. One can easily observe that at this relatively late time when
the interaction with the black hole becomes weak the part of the string close
to the center looks practically as a segment of a straight line. This property is
also characteristic for a generic (non-critical) string scattering. In section 4.2 we
demonstrated that for this case, as a result of scattering, the central part of the
string ‘shifts’ into the Y-direction and a new ‘phase’ is formed. This new phase
is that region of the string which is moving in the plane parallel to the initial
one, but is displaced by some value AY in the Y-direction. The length of the

string segment in the new phase grows with the velocity of light, the transition
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Figure 5.9: Late time profiles of the cosmic string: v/c = 0.995, a/M = 1 and
b/M = 2.4125, T/M = 4991.53.

layers being kink-like profiles. Similar picture is valid also in the critical regime,
as one can see by comparing plots (c) at figures 5.7-5.10. An important new
feature is the possibility that the points with maximum shift in Y-direction may
be located not at the center of the string, but slightly aside. Figure 5.7 (c) shows
that there are two such points located symmetrically with respect to the center.

The X Z-profiles (plots (d) at figures 5.7-5.10) are also quite regular and
resemble similar profiles for a non-critical scattering. On the contrary, the XY -
profiles (plots (b) at figures 5.7-5.10) are rich of details. The spikes in the string
shape are most profound in this projection. All these details are connected with
a simple fact that the central part of the string spends considerable time moving
near the black hole, while the other parts of the string are moving away practically
with the velocity of light. The profiles are sharper for the strings scattered by a

rotating black holes. One can expect that by fine tuning the impact parameter
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Figure 5.10: Late time profiles of the cosmic string: v/c = 0.995, a/M = 0 and
b/M =517, T/M = 5209.56.

one might be able to obtain string configurations which remain ‘glued’ to the
vicinity of the black hole for arbitrary long time. But one can also expect that
such solutions are very unstable, so that a tiny change of the impact parameter
either results in the capture of the string or in its earlier escape. This situation
is similar to the one discussed in [38], where it was demonstrated that axially
symmetric motion of a circular string in the gravitational field of Schwarzschild
black hole is chaotic. One can make a conjecture that the critical scattering of

the cosmic string is also chaotic.

5.3 Coil Formation

There exists a special regime of the string scattering when after passing nearby

a black hole the string forms a coil. A coil arises when the function Z(7,0)
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looses its property to be a monotonous function of ¢ at fixed 75. In this case
there exist two different values oy and —og for which the value of Z is zero,
Z(19,00) = Z(19, —00) = 0. Since all other coordinates are symmetric functions
of o, the point (g, £0y) is in fact a point of the string self intersection. A coil
exists for some finite time interval from 7; till 7;. At the end points of this
interval 0,7 |,—o = 0.

It should be emphasized that, because of the interconnection effect, for most
of the string models any self-crossing of the string results in the formation of
a loop. After this, the loop moves independently from the remaining part of
the string. In our simulations we did not include this effect. For this reason,
such details as a coil size and structure may not represent the real properties of
the string after its self-intersection. On the other hand, before the intersection
occurs the numerical simulation describes the correct picture. That is why we
focus our attention on the form of the coil formation curve. This is a curve (or
surface) in the space of parameters which separates the region without coils from
the region with coils. The structure of the coil formation curve does not depend
on the details of the loop formation process.

Figure 5.11 shows the regions of coil formation for different values of the
rotation parameter a. This region lies below the coil formation curves shown in
the pictures. From below this region is restricted by the critical impact parameter
curve. For a point lying exactly on the coil formation curve one has 7; = 74 = 7.
It means that 0,7|,—o has a local minimum at this point as a function of 7 and
hence

05 Z|(e—0,0=r) = 0r05Z(6—0,r=r.) = 0. (5.3.5)

The plots presented in figure 5.11 demonstrate that the formation of coils
occurs when a string moves with relativistic velocity. For the prograde motion

the coil formation starts at v/c ~ 0.6 (see figure 5.11, (c¢) and (d)). For the
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retrograde motion the corresponding velocity is higher and reaches v/c ~ 0.8 for
the extremally rotating black hole (see figure 5.11 (e) and (f)).

It is instructive to compare these results with the condition of the coil for-
mation in the weak field approximation. To simplify the analysis we work with
the weak field solution (3.2.31)—(3.2.38) in the limit Xy — —oo. To calculate the
limit it is convenient to choose Xy = (7 — 7) sinh 8 and, while keeping 7 finite,
to send 7 — 0o0. The physical interpretation of the new time-like parameter 7 is
quite simple—at 7 = 0 the string crosses the X = 0 plane?.

Omitting the terms vanishing in this limit we obtain

A_B_
Z =0+ M cosh S1n (A+B+) , (5.3.6)

2 ~(x inh?
Y =b — M sinh 8 |arctan b"+7(7 + 0)sinh” §
bsinh 84/72sinh? 8 + b2 + o2

b? + 7(7 — o) sinh® B
+ arctan =
bsinh 8+/72sinh? 8 + b2 + o2
(T + o)sinh g
+ arctan (W
(T — o) sinh g
+ arctan ( beosh , (5.3.7)
X =7sinh 3, (5.3.8)
_ B_B, )
T =7coshf+ MIn 4A + 2M In(7 cosh” B) (5.3.9)
—Ay
with
Ay = b® cosh? B + (7 & 0)?sinh? 3, (5.3.10)

4In the weak field approximation the motion of the string in the X-direction is not altered,

ie.,, X = Xo + 7sinh 8. Thus 7|x=¢ = —Xo/ sinh .
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B, = cosh 84/72sinh? B + b2 + 02 + Fsinh®* B+ 0. (5.3.11)

The divergent term 2M In(7 cosh? B) in the expression for T arises because the
gravitational field at infinity does not go to zero rapidly enough.

It is easy to check that Z is an antisymmetric function of o, so that for
example Z ,,|,—0 = 0. To obtain the condition of the coil formation one needs

first to calculate the derivatives Z, and Z,z, and then solve the equations

2o

I

o=0=0, (5.3.12)

Zo#le=0 =0, (5.3.13)

in order to determine 7, and b as functions of rapidity 5. By calculating the

derivatives we obtain

1 27 sinh?
Za|a:0:1—2Mcoshﬁ( 5+ —— 27'sm P 5 ),
’ pcosh B+ 7sinh® B 72sinh” B + b% cosh® 5
(5.3.14)
7 cosh
Z o+lozo = 2M cosh Bsinh? 3 < reoshftp .
(pcosh B + 7sinh® 5)2%p
2 cosh? B — 72 sinh? ﬁ))
(72 sinh® B + b2 cosh® 8)2 )
(5.3.15)
where
p=1/Fsinh? B + 12 (5.3.16)

We use MAPLE to make all the above computations and to solve equations

(5.3.12)—(5.3.13). The solution is
b=2M cosh 3, Ty = 2M cosh (3. (5.3.17)

The relation b = 2M cosh 8 determines a coil formation curve. This result
coincides with the one obtained earlier in [21] as a condition for coil formation

for the ultrarelativistic (8 — oo) motion of the string.
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For comparison, we show the coil formation curves for a non-rotating black
hole in figure 5.11 (a) as calculated by using the weak field approximation. The
corresponding curve lies below the exact one. One can conclude that the strong

field effects help the coil formation process.
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Figure 5.11: Coil formation regions for prograde and retrograde scattering of the

string.
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Chapter 6

Interaction of a Brane with a

Moving Bulk Black Hole

String scattering and capture by black holes is a special case of a general problem
of motion of different topological defects and branes in the gravitational field of
a black hole. Recently, there was a great deal of discussion about brane world
models with large extra spatial dimensions.

Mini black holes propagating in the bulk space and interacting with the brane
representing our universe can play the role of probes testing extra dimensions.
For this reason it is interesting to discuss various aspects of the black-hole-brane
system. The methods developed in previous chapters can be adopted to this
problem.

Black holes in the bulk space may exist as a result of the early stage evolution
of the universe, e.g., as a result of the recoil during the quantum evaporation of
primordial black holes created on the brane [39,40]. The final state of such
evaporating mini black holes is not known. Similarly to the early studied case
of evaporation of the mini black holes in the four-dimensional theory with the

Planck scale quantum gravity, two different final states are possible. Either a
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stable remnant of mass of the order of M, (see below) is formed or the evaporation
is complete. We assume that bulk black holes are either those stable remnants
or black hole with mass M > M,, so that they are relatively long living.

The first section of chapter 6 explains the motivation for introducing extra
dimensions into the physical picture of our world. To make the consideration
more concrete we use the so called ADD model [41] (see next section for ex-
planation) in which the gravitational field of the brane is neglected and extra
dimensions are flat. An important generic feature of this model is that the fun-
damental quantum gravity mass scale M, may be very low (of order TeV) and
the size of the extra spatial dimensions may be much larger than the Planck
length (~ 10 3*cm).

In the most interesting version of the ADD model there exist two extra spatial
dimensions with the size L of the order of 0.1 mm, which is still allowed by
the experiments testing the Newton law at small distances. The gravitational
radius Ry of a black hole of mass M in the spacetime with k extra dimensions
is defined by the relation G4+ M ~ RE!, where GUHH = 1/MF™ is the
(4 + k)-dimensional Newton coupling constant. The minimal mass of the black
hole is determined by the condition that its gravitational radius coincides with
its Compton length ~ 1/M. The mass of such an elementary black hole is M,.
For M, ~ TeV one has R, ~ 10~cm. When M > M, the higher-dimensional
mini black holes can be described by the classical solutions of vacuum Einstein’s
equations. We assume that the size of a black hole Ry is much smaller than the
characteristic size of extra dimensions, L, and neglect the effects of the black
hole deformation connected with this size.

In sections 6.2-6.5 we develop an unified approach to the weak field approxi-
mation for a generic n-brane moving in a background of an (n+k+1)-dimensional

Schwarzschild black hole. We investigate in more detail the case of n = 3 and
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k = 2 which corresponds to the most interesting ADD model. Note that the case
n =1 and k = 2 corresponds to a string moving in the background of a standard
Schwarzschild black hole. In the remainder of the chapter we discuss the effects
of the presence of the bulk black hole on the physics of the three-brane.

In what follows we will interchangeably use the picture of a brane moving
in a fixed background spacetime as well as the notion of a moving black hole

passing an initially stationary brane.

6.1 Brane Worlds and Large Extra Dimensions

In the present particle physics paradigm there exist two different fundamental
energy scales — the electroweak energy scale mgw ~ 10® GeV and the Planck
energy scale Mp; = 1/v/Gx ~ 10'® GeV. It is generally believed that at the
Planck energy all the interactions will be unified. One of the challenges is to
explain the huge gap between these two energy scales. This is known as the
hierarchy problem.

The existence of the electroweak energy scale is well established and experi-
mentally verified up to the distances ~ mg\l,v. The existence of the Planck scale,
on the other hand, is taken much more on faith. The validity of the Newton’s
law has been to date verified only up to distances ~ 0.1 mm.

In 1998 Arkani-Hamed, Dimopoulos and Dvali [41] proposed a scenario in
which the fundamental energy scale M, is much smaller than the Planckian one
and it is of order of TeV. This scenario requires the existence of large extra spatial

dimensions of size R such that
R <0.1mm. (6.1.1)

Another assumption of the ADD approach is that all the Standard Model (SM)

particles and fields are confined to a three-dimensional brane representing our
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universe. Only gravity can freely propagate into the extra dimensions. The

characteristic thickness of the brane d in the extra dimensions must not exceed

~1
Mgy -

For r < R the gravitational potential has the (n + 4)-dimensional form

1 mime
~ e
M;H_? rn+l

V(r) , (r<R). (6.1.2)

When the masses are far apart (r > R) the gravitational flux lines do not have
the space to spread into the extra dimensions and the potential has the standard

1/r dependence
1 m{Mo
T MR

V(r) , (r>R) (6.1.3)

and thus
M3, = M"2R" (6.1.4)

From the requirement M, ~ TeV we obtain the condition for the size of the extra
dimension

30_1

R~ 10" ' cm . (6.1.5)

For n = 1 R is comparable to the size of our solar system, so it is excluded
by testing the Newton’s law. For n = 2 the size is just at the 1 mm scale so it is
not excluded by experiments. For greater n the size is smaller than the present
experimental bound.

One of the appeals of the ADD proposal is that it can, in principle, be tested
in the near future. This is because the fundamental quantum gravity scale is
about 1 TeV and that will be accessible by the Large Hadron Collider (LHC).

If the energy of the collision Fe. 2 mrw, created gravitons can escape into
the extra dimensions which would violate the energy and momentum conserva-
tion on the brane. Note, however, that charge will still be conserved. The reason
why charged particles can not escape to the bulk is that photons are localized

on the brane and therefore the notion of charge has no meaning in the bulk.
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Another type of experiment that could support the existence of extra dimen-
sions is a direct measurement of deviations from Newton’s law (see, e.g., [42] for
a review). More dramatic effects are connected with the possibility of mini black
hole creation in the colliders and cosmic rays (see, e.g., [43] for a review). Indeed,
some estimates predict a production of one black hole per second in the LHC
[44, 45]. Black holes, being gravitational solitons, can leave the brane (e.g., as a
result of a recoil effect due to their Hawking evaporation [39,40]) and propagate
in the bulk space. Their motion is modified by the interaction with the brane.
Black holes can also induce gravitational effects on the brane. In this chapter we

study some of these effects.

6.2 Higher-dimensional Non-rotating Black
Holes

The metric of a static multi-dimensional black hole in (K +1)-dimensional space-

time is

9 K-2
dS? = —FdT? + % + R*dQ%_,, F=1- (%) , (6.2.6)

where K is the number of spatial dimensions, R, is the gravitational radius and
dQ2% _, is the line element on a unit (K — 1)-dimensional sphere. For K = 3
this is the usual four-dimensional Schwarzschild metric. We shall use the metric

(6.2.6) in the isotropic coordinates

dS® = —FdT? + A [do® + 0% dQ%_,] , (6.2.7)
where
dR R
Ino= [ ———, A==, 6.2.8
/ R\/F(R) o ( )
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In the weak field approximation when Ry/R < 1 one gets

K—2 K—2
Ry Ry

R~ A~ 6.2.9
ot 2(K —2)ok-3" * 2(K —2)ok-2"7 ( )
and the metric takes the following asymptotic form
dS? = gapdX*dX?B (6.2.10)
gap = 1+ U)nap + (K — 1)U 6%6% = nag + ¥ hag, (6.2.11)
where
0 £0 Ry ~*

It should be emphasized that the metric (6.2.10)—(6.2.12) describes gravitational
field of any compact static distribution of matter * since we are considering only

the leading terms. It is a perturbation over the background flat metric

dSs = —dT? + dL%, (6.2.13)

where
dL3 = (dX)? + (dY™)? = do® + 0? dQ%_, (6.2.14)
o = (X")? + (Y™)?. (6.2.15)

We denote by X%, i = 1,...,n the ‘standard’ n Cartesian coordinates, and by
Y™ m=n+1,...,n+k = K the Cartesian coordinates in ‘extra-dimensions’.
This splitting will be meaningful and convenient later when we consider an n-

dimensional brane in the spacetime of the (K + 1)-dimensional black hole.

1See for example non-topological solitons in brane world models in [46].
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6.3 A Moving Flat Brane in a Spacetime with
a Fixed Point

Our goal is to study the equations of motion of a brane in the gravitational field
of a black hole. We keep the number of brane spatial dimensions, n, and the
number of extra dimensions, k, arbitrary.

In the lowest order, when the gravitational field of the black hole is neglected,
9AB = Nap, where nap is the (n+ k + 1)-dimensional Minkowski metric. We also
assume that the brane is flat. It is convenient to introduce an orthonormal
ennuple, N g,

gas NANE =ngp (6.3.16)
so that its first n + 1 vectors, Nlﬁ;1 (t=0,...,n), are tangent to the brane, while
the other k vectors, N4 (m = n+1,...,n + k), are orthogonal to the brane.
worldline I' representing a position of uniformly moving black hole is described
by the equation

X{ = (B +UPT) NS (6.3.17)
Here T is the proper time parameter along the world line, U is the (n + k +1)-
velocity, nABUAUB =—1,and X = x(’?N‘g are the coordinates of the black hole
position at T = 0.

Consider first the case of one extra dimension. There are two possibilities.

(1) The black hole crosses the brane. In this case we use the ambiguity
T — T+const to put 7" = 0 at the moment when the black hole meets the brane.
Using the Poincare group P(n+ 1) of coordinate transformations preserving the

position of the brane in the bulk space one can always put
x? =0, UB = cosh 655 + sinh 565;1 ) (6.3.18)

That is a projection of the point representing the black hole onto the brane

surface is located at the origin of the brane coordinates, at = =2t =0.
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The black hole crosses the brane at the moment z° = 0 of the brane time, and is
moving orthogonally to the brane surface. S is a rapidity parameter related to
the velocity v as v = tanh 3.

(2) The black hole never crosses the brane. This is a special case when the
velocity of the black hole relative to the brane vanishes. In this case by using

transformations from P(n + 1) one can put

=0, m@t=p, UP=¢5, (6.3.19)

where b is the distance between the black hole and the brane.

Similarly, in the case with two or more extra dimensions two cases are possi-
ble.

(1) The black hole crosses the brane. We choose T so this happens at the
moment 7" = 0. It means that zJ' = 0. Using the Poincare group P(n + 1) of
coordinate transformations preserving the position of the brane in the bulk space
we put % = 0 and U# = cosh ,B(SGB. We use the group of rotations O(k) which

preserve the position of the brane to put U B — sinh B(Sfjrl. Thus we have
ac(l? =0, U? = cosh ﬁ&? + sinh 557?;1- (6.3.20)

(2) The black hole never crosses the brane. There exists a minimal distance,
b, between the black hole and the brane, which we call the impact parameter. As
earlier we can put x5 = 0. We also can choose the N 7‘?%2 to be directed from the
brane to the position of the black hole when it is at the minimal distance from
the brane. There still exists a group O(k — 1) of rotations which preserves the
position of the brane and the direction of N ,?;2- We use this freedom to choose
the vector N rfh to coincide with the direction of the black hole velocity. For this

choice we have

28 =668, UP = cosh 6P + sinh 5%, . (6.3.21)
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It is easy to see that the expression (6.3.21) is in fact the most general one.
The relations (6.3.18)—(6.3.20) for the other cases can be obtained from (6.3.21)
by either taking the limit 8 = 0 or putting b = 0.

The gravitational potential U entering the expression (6.2.11) for the grav-
itational field of the black hole depends on the interval ¢ between the position
of the black hole and a point in a spacetime, calculated along the surface of
constant coordinate time T,. Let us calculate o for a point on the brane. Denote
by VB a vector

VE = sinh 867 + cosh 857, . (6.3.22)

This vector is orthogonal to U B and hence it is tangent to T.=const plane. The

0

brane time z” corresponding to a given 7" can be found from the equations

TU? + AV = 2068 . (6.3.23)
This equation for B=n +1 gives
A= —tanh 8T, (6.3.24)
while for B =0 it gives
T =coshBz’, A=—sinhBa. (6.3.25)
Using this results we easily find that
o? = p® 4+ b* 4 sinh? 3 (:1:6)2 ) (6.3.26)

where p? = x%x;. From this expression for o it follows that the induced metric
on the brane will be ‘spherically symmetric’, that is, it possesses the group O(n)
of symmetry.

Let X4 be Cartesian coordinates in the reference frame where the black hole

is at rest. Then the components of the ennuple N ‘g in this frame are

Ng' = cosh 363" + sinh 367, , NA =64

7 10

(6.3.27)
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N4 =sinh B8 +coshB62,,,  NA=64, m>n+1.  (63.28)

n+ m>?

In the reference frame of the black hole the brane equation is

X =a2" N} +bN%

n+2 -

(6.3.29)

6.4 Brane Perturbation Equations of Motion.
Gauge Fixing

Consider a brane X“4(z%) moving in the spacetime with a metric gap(X¢). The
induced metric on the brane (which we assume can be described by the Nambu-
Goto action) is

Vi = 9aB(X°) X5 X7 . (6.4.30)

The brane equation of motion is
(V=" X35) , + VAV T XF X5 = 0. (6.4.31)

When the brane is far from the black hole g4p has the form (6.2.10)-(6.2.12).
In the absence of gravity the unperturbed brane is described by the equation

(6.3.29). We write the solution for a perturbed brane in the form
X4 = X5+ x™(x) Njy + (Mx) Nj (6.4.32)

Let us show first that by changing the coordinates on the brane one can put
(% = 0. Indeed, a change of Cartesian coordinates on the brane z# — z# + £#(x)
generates in (6.4.32) an extra term () N;'. That is why, by using the diffeo-

invariance of the brane equations and choosing £€* = —(# one can always take?

X4 =X+ x™(2) Ni (6.4.33)

2This gauge is different from the conformal gauge we used for studying cosmic strings. As it
was already mentioned the conformal gauge, which considerably simplifies many calculations,

can not be adopted to higher dimensions, n > 1.
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In this gauge x™(z”) are the ‘physical’ degrees of freedom of the brane. In a
general case they describe both types of the brane perturbations, free waves and
brane deformations induced by an external force. We focus our attention on the
perturbations induced by the brane motion in the weak gravitational field. We
restrict ourselves by considering only first order effects.

Using the relation

A _ ArA m ATA
X4 =Ni + X5 NG s (6.4.34)
and keeping only the first order terms we obtain

Yao = Mo + U hpo,  hpo = hap Ni NP =5 + (K — 1) cosh® 86365 . (6.4.35)

We also have

1
V==1+ 3 [n+1— (K —1)cosh® 3] ¥, (6.4.36)
7’1‘9 = 77’1’9 - h‘w, i = 77[“3‘77’9’3 hdﬂm (6.4.37)

In the chosen coordinate system, the Christoffel symbols I'4 ¢ are first order

quantities

1
FABC = 7’]AD FDBC; FDBC = 5 (\I/,B hCD + \If,c hBD — \IJ,D th) . (6438)

By multiplying (6.4.31) by N4 we obtain the following equations

o0+ g = £ (6.4.39)
1 1 o

fam = §\Pm h+§(K—1) sinh(28) W Smtt . h=nMhgy = n+1—(K—1) cosh’® 3.

(6.4.40)

Here W ; = N'W 4, ¥ 5 = N, 4, and the (n+1)-dimensional flat ‘box’-operator
is defined as

D(n+1) = 77[“)8[‘6,9 . (6441)

It is easy to check that the other equations obtained by multiplication of (6.4.31)
by Nja are trivially satisfied.
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To calculate f;; we note that the function ¥ which enters this expression

depends on o2, i.e. ¥(0?), so that

Ty=0 0’20, U ="0%, (6.4.42)
where s
w=0o T (6.4.43)
o? = p? + sinh® B2 + 2. (6.4.44)
We denoted ¢ = 20, p? = .Tg.’Eg. We also have
‘7,26 = 2tsinh? 3, O?n_AH = 2tsinh 3 cosh 3, 02;2 =2b. (6.4.45)

The other terms o2 1, With p > 2 vanish.

The induced metric on the unperturbed brane in the spherical coordinates is
dsy = nupdalds” = —dt* + dp® + p> dQZ_,. (6.4.46)

Because of the symmetry of the problem, the ‘force’ terms f,; on the right hand
side of (6.4.39) are functions of ¢ and p. Thus the induced perturbations of the

brane are ‘spherically symmetric’ and can be written in the form

By substituting this expression into (6.4.39) one obtains
n—1)(n—3
~t+ 0= U0 b 1) = Fton), (6.4.48)
where
= (6.4.49)

From this equation we see that that the cases of a string (n = 1) and a three-
brane (n = 3) are particularly easy to study. Solutions for the general case are

discussed in the appendix B.
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6.5 Solutions of the Brane Perturbation Equa-

tions

6.5.1 Generators of solutions

In the chosen coordinate system and imposed gauge, the ‘force’ f; which enters
the right hand side of (6.4.39) has only two non-vanishing components, f_ = f, 1,
and f = f,1,. Since we consider only solutions which are induced by the ‘force’
acting on the brane, we shall also have only two non-trivial functions, x— = x,,;,
and x; = X,;, which describe the brane excitations. We write the equations
(6.4.39) as

Oty k) — p(nk) (6.5.50)

We included an upper index (n, k) to make clear the dependence of the functions
on the number of spatial dimensions, n, of the brane, and on the number of extra

dimensions, k. Simple calculations give

FiR) — AR k) (6.5.51)
where
fok) _ ¢ ik _ 1
o= ontk’ T gntk? (6.5.52)
. 1 : :
Ak — —ZRg““ >[2—k+ (n+k —1)sinh® 8] sinh(28) , (6.5.53)
n 1 -
AP = —ZREHF [n41 = (n+ k= 1) cosh® 8] b. (6.5.54)
If we write
(k) _ p(nhk) gk (6.5.55)
then

Q1) k) — Flmk) (6.5.56)



CHAPTER 6. INTERACTION OF BRANES WITH BLACK HOLES 90

Let us note now that

Fnk42) _ 2 0 s
S 6.5.57
f:i: n+k a(bQ)f:t ’ ( )
and therefore
n 2 0 @
gkt — 2 (k) (6.5.58)

n+k 0(b2) "
This relation shows that one can generate solutions for an arbitrary k& > 2 if the
solutions for £ = 1,2 are known. It should be noted that for £ = 1 there is only
one transverse excitation of the brane, so that a solution XT’I) does not have a

direct physical meaning. Only its derivatives corresponding to higher values of

k are physical. We call the functions X:I: ) and X genemtmg solutions.

6.5.2 Generating solutions for n = 3 brane

As an important example we consider now a special case when the brane has
three spatial dimensions. This case is interesting for brane world models. The

generating solutions for this case can be written as follows (see appendix B)

7 = ‘ﬁm/ i AFOOO) -90), (6559

where

A= (L=t = (pF0)). (6.5.60)
In order to make notations more compact we omitted index n = 3 in the super-
script.

Since the fik) are even functions of p the integral over the two ‘mirror’ regions
can be rewritten as an integral over one region characterized only by the ()
without the restriction of p being greater than zero (see figure 6.1).

After calculating the integrals we obtain

~(1) _ 1 " S(l) — s 6.5.61
W= s [t+n sl —@-ns] (6.5.61)
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t (t,p)

N %
\\'\\ positive sign @ negative sign
Z)

A

Figure 6.1: It is equivalent to integrate over the two regions on the left as it is

to integrate over the one region on the right.

7 =50 _ 50 (6.5.62)
where
.
a1 tsinh®BFp ™
= t _— — 6.5.63
Sy IR [arc an ( . +o ( )
and
R% = (t % p)*sinh® B + b? cosh® 3 . (6.5.64)
We also have
1
= —— [t +p) 5P~ (t - p) $?] 6.5.65
X coshzﬁ( p) S —(—=p) S, (6.5.65)
P =5® 5@ (6.5.66)
where
1 inh”
s = 5 tsinh S ¥ p +coshp | . (6.5.67)
6pRL \ \/p? + t2sinh? B + b2

Let us illustrate the motion of the brane in the case n = 3, and £k = 2. The

parametric equations for the brane in isotropic coordinates are
X° = tcosh B — 2R} sinh* 8 cosh B¢@ (6.5.68)

. X =22, X: =23, (6.5.69)

X* = tsinh 8 — 2R sinh® B cosh® B ¢ |, (6.5.70)
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X =b+2b RS sinh? B2 . (6.5.71)

Figures 6.2 and 6.3 show plots of x. for a particular choice of parameters. Both
plots depict a disturbance of the brane developed around “time” ¢ = 0 which
travels at a speed of light outward from the point of the brane closest to the

black hole.
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Figure 6.2: Plot of x_ for 6 =1, Ry =1,b=10, k = 2.

6.5.3 Energy loss

As a result of the black hole action, the brane transforms from its initial state
without excitations to a new excited state. The energy gained by the brane
in this process is equal to the loss of the kinetic energy of the black hole. We
calculate now this energy loss.

In the limit £ — oo, u =t — p = const, the brane excitation amplitudes x4



CHAPTER 6. INTERACTION OF BRANES WITH BLACK HOLES

I
o
o
o
w
e b b b P by |

Figure 6.3: Plot of x4y for 6 =1, Ry =1,b=10, k = 2.

take the following form

P (u
X+ = :t( ) ;
P
2 U
®_ = = R3sinh?® ,
3°° inh” u2sinh? B + b2 cosh? B
2 1
®, = —Z R3bcosh Bsinh? :
* 370 P P u?sinh? 3 + b2 cosh® 3

Figure 6.4 shows the typical shape of the functions ®. around u = 0.

93

(6.5.72)
(6.5.73)

(6.5.74)

In the asymptotic regime, when the gravitational field of the black hole can

be neglected, the induced metric (6.4.30) is

=
3
Il
=
=
A
+
=
ESN
=
S)
™

The linearized Nambu-Goto action is

I:U/\/—’de$210+12,

(6.5.75)

(6.5.76)
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Figure 6.4: Asymptotic shape of the fields ®_ and @,.

where o is the tension of the brane, I is a constant and

I = —%0 > /(me)z. (6.5.77)

In our case the asymptotic excitations are described by two massless scalar fields

with the Lagrangian density

1
,Ci = —50 8MX:|:8“X:|: . (6578)

The energy flux &1 calculated at the future null infinity is
£y =dmo / du (92 ,)%. (6.5.79)

Simple calculations give
_ 47?0 sinh® B RS
~ 9cosh®s B3
Thus the total energy lost by the black hole and gained by the brane is
872 ¢ sinh® f RS
9cosh3 8 b3

Since extra dimensions are compactified, the black hole will be passing near

E =&, (6.5.80)

AE =€ +&, = (6.5.81)

the brane again and again. Because of the friction force connected with the
energy loss, the black hole will slow down until it finally be at rest with respect

to the brane.
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6.6 ‘Shadow Matter’ Effect

We discuss now effects connected with the action of the black hole moving in the
bulk on particles and fields localized on the brane. These effects arise because
the bulk black hole modifies the metric on the brane.

The metric induced on a three-brane by a black hole moving in the 3 + &-

dimensional bulk space is
ds® = — [1+ [1 — (k + 2) cosh® B] U] dt? + (1 + ) [dp® + p*d3] .  (6.6.82)

Particles and light on the brane are moving along geodesics in this metric. If an
observer on the brane does not know about the existence of extra dimension and
uses the standard four-dimensional Einstein’s equations he would arrive to the
conclusion that there exists some distribution of matter on the brane responsible
for this gravitational field. Since this matter is not connected with any usual
four-dimensional physical fields and particles we call it a ‘shadow matter’. We
discuss now the properties of this matter.

The Einstein tensor Gy = Rpp — 1/27,, R for the metric (6.6.82) takes the

form (in spherical coordinates (¢, p, 6, ¢))

ng—kl )
2 2 2
Gy = s [3t*sinh® B — p*k + 3b°] | (6.6.83)
Rk+1
G = 02+5 [kt*sinh?® B + (p* + b*)((3 + k) cosh® B — 3)] , (6.6.84)

tpRET (3 + k) sinh? B
Goi = ———— 153 : (6.6.85)

Gy Rg™'p?

Gy = =
27 gin%0 20k+5

[k[2¢*sinh? § + p*(2 — (3 + k) cosh® 5)]
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+20*((3 4 k) cosh® B — 3)] . (6.6.86)

Figure 6.5 shows plots of the various non-zero components of the Einstein
tensor G, which is proportional to the stress-energy tensor 7),, measured by
observers living on the brane. The thick line on figure 6.5a marks the border
between the positive and negative energy density.

In the simplest case when the bulk black hole is not moving (5 = 0) these
expressions simplify and non-vanishing components of the Einstein tensor are (at
t=0) RkH1

Goo = —p5 [Pk +30°] (6.6.87)

R§"!

1= Jk+5

Gy = G‘f’ = Rg+;p2k
sin“ 6 2031k

G

k(p® +b*), (6.6.88)

[—0°(k+1) 4 20°] . (6.6.89)

Suppose a brane observer uses the Einstein’s equations to describe the gravi-
tational field on the brane. In this case he would come to a conclusion that there

exists some form of matter for which

1

Tio = 5z Gio (6.6.90)

where G is a 4-dimensional Newtonian coupling constant. For a static black

hole this spherically symmetric distribution of matter is of the form

Ty = diag(—&,pps Po1, Do) - (6.6.91)

Since the total number of spatial dimensions is greater than three, i.e. k£ > 0,
the energy density ¢ is positive at the center and changes its sign and becomes
negative at p > p, = by/3/k. The radial pressure p, is always positive, while the

transverse pressures pg; and p,, being positive at the center become negative at

p>by/2/(k+1).
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Let us estimate the total positive mass my of the ‘shadow matter’ inside the

sphere of the radius py. To define this mass one can use the relation
m(r) = 4w /r drr?® T - (6.6.92)
0
The radius coordinate r is related to the isotropic coordinate as
(1+7)p* =12, (6.6.93)

Since we are considering only first order terms we can write

i 1 P 2 _ 1 R() ,03
mo) = sgw || 400G =g (669

In particular, we have

Ry (Ro\”
=) = o) 5y () (6.6.99)
where
_3\/3 klc/Q

o) = =5~ Gy (6.6.96)

It is convenient to rewrite (6.6.95) as

my = a(k) m. (%‘:)HI (%)k. (6.6.97)

Here R, = 1/M, is the gravitational radius of the fundamental mini black hole,
and m, = R,/G®. For M, ~ TeV one has m, ~ 10"g! This is 100000 tons
of “shadow matter” concentrated in the region of the size TeV~!. However, this
feature is visible only for a test particle whose wavelength is of order TeV~!.
The mass m,, is surrounded by the negative mass distribution €. For infi-
nite size of extra dimensions, at far distances it exactly cancels the mass my,
so that the total mass as measured at infinity vanishes. It happens because
the induced gravitational field potential decays at infinity as is required by the
(3 + k)-dimensional Newton’s law (i.e. ~ GUTR M /r1+#) while the standard
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3-dimensional Newtonian gravitational potential of mass M at far distance is
GWM/r. For a finite size L of extra dimensions this cancellation is not com-
plete. The gravitational field of the bulk mass M as measured by the brane
observer at r > L is ~ GUtRIM/(LFr) = GWM/r. In other words, the bulk
masses at r > L contribute to the gravitational field on the brane similarly to

the matter on the brane.
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Figure 6.5: Plots of the components of the Einstein tensor of the induced geom-

etry on the brane. The parameters are Ry =1, 5 =1,b=10, k =2
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One can easily check that for p > p, the ‘shadow matter’ distribution violates
the weak energy condition 3: € > 0 and ¢ +p; > 0, (i = 1,2, 3). This violation
is apparent only for an observer located on the brane. The complete system
(brane + bulk) does not violate any of the energy conditions. The violation
of the weak energy condition in particular implies that an n-dimensional pencil
of initially parallel null rays propagating on the brane and passing through the
region with p > p, will be defocused, that is the n-dimensional area of its cross-
section will increase. If on the other hand one consider the (n + k)-dimensional
pencil of initially parallel null rays propagating in the bulk, the area of its (n+k)-
dimensional cross-section will decrease. There is no contradiction between these
two results, since the Weyl tensor of the bulk gravitational field does not vanish.
As a result a shear is generated, and the expansion of the beam in the direction of

the brane is compensated by the contraction of the beam in the bulk dimensions.

6.7 Deflection of Light

The ‘shadow-matter’ can affect the propagation of test particles and light on the
brane. We consider now the deflection of a light ray passing in the region of
influence of the ‘shadow-matter’. For simplicity we assume that the bulk black
hole velocity vanishes. Again, we assume the brane to be three-dimensional.

Since the propagation of light is invariant under conformal transformation of
the metric, we divide the metric (6.6.82) by (1 + ¥) and keep the leading order
terms

d8® = —[1 — (k+2) U] dt* + dp® + p* dQ2, (6.7.98)

where
Ryt
U= . 6.7.99
(k + 1)[p2 + p2]*+D/2 (67:99)

3In fact the dominant and strong energy conditions are also violated.
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To simplify the notation further we rewrite (6.7.98) as

A2 2 2 2 2
with
k+1
2
_ % (6.7.101)

From here we follow the standard procedure. We assume motion in the

equatorial plane # = 7/2. The 4-momentum of the photon is defined as

dzt
b= — 6.7.102
where the affine parameter A is defined through the equation
dp
Fr=—". 6.7.103
= ( )
Let us define the conserved quantities
L=p,, (6.7.104)
E=—p . (6.7.105)
We can now write (up to the first order in ¥)
A A
t_ —
T (1 T p2]"°+”/2> " (1 i ﬂ"”””) s
o_Po _ L
p? = i (6.7.107)
dp
Fr=— 6.7.108
=0. (6.7.109)

From the defining equation for a motion of light p*p, = 0 we get

dp A 1 1
o = L (1 g p2](k+1)/2> B (6.7.110)
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where the impact parameter by of the photon is defined as

L
bo=% - (6.7.111)
The desired equation for % is
d 1 2
d—¢ e Zﬁ = j: g :I: v s
14 o A u(k—1)
o (o) & =3\ (1= i)
(6.7.112)
where
A
D=2 (6.7.113)
bg
and
1
uw=-. (6.7.114)
P
Switching to the variable u
do F1
= i (6.7.115)
S
b5 (1+b2u2) 5
Next we perform a substitution
Duk—1)
y=uyflm . (6.7.116)
(14 b%u?) =

Note that this substitution makes sense only for £ > 1. Then up to the first

order in ¥ we obtain

dd) % Dyk—l(k _ y2b2) 1
o= a =1+ sppmemn)/ 7Y (6.7.117)

du

(up to the first order v = y). The solution is obtained by integrating (6.7.117)

A¢ = 2/”0 9 4y n (6.7.118)
0
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After performing the integral in MAPLE and some simplification we obtain

somnoig b (1 53] () )

(6.7.119)
where H is a generalized hypergeometric function defined as
oo TP  Llnitk)

Hln, oo, mgl(2) = 0 =gl % . (6.7.120)

k=0 zlrmZ

For our particular values we can write

k11 1— (k+1)z
H [5, 5;_5} O o (6.7.121)

and thus (after restoring the constants) we get

T(5)  k(k+2)  boRETT (k+2)T(1+E
ATCHE) (7 + B)EDR ~ (B R)-R (k+ I(ED)
7.

Aj = boRg v/

In particular, for the case of one and two extra dimensions one has

b() 8 b()

2) _ 3
[CEEE Ag?) = SR e (6.7.123)

3
A¢(1) = Z’]TRS

For comparison, the standard (3 + 1)-dimensional case (k =0, b = 0) is

Ag = Zb—RO . (6.7.124)
0

The different functional dependence of the deflection angle on the impact pa-
rameter of light by gives us opportunity to distinguish between the real matter

on the brane and the bulk ‘shadow matter’ as a cause of deflection.
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Chapter 7

Conclusions and Discussions

7.1 Summary of Findings

In this thesis we discussed two problems involving interaction of extended objects
with black holes: we studied the dynamics of cosmic strings in Kerr spacetimes
in both weak and strong field regimes and the interaction of an n-dimensional
brane with a higher-dimensional Schwarzschild black hole.

First, we analyzed the problem of scattering of a cosmic strings by a
rotating black hole. We examined a wide range of velocities and the whole
spectrum of angular momenta of the black hole. We used numerical simulations
to obtain the results. We found that using non-uniform grid which adapts itself
to the string configuration was very beneficial and in fact necessary for running
long simulations in order to obtain late time scattering data.

We demonstrated that qualitatively many general features of the weak field
scattering are present in scattering of the cosmic string in the strong field regime.
Displacement of the string in the Y-direction always has the form of a transition
of the string from the initial phase (initial plane) to the final phase (final plane

which is parallel to the initial one and displaced in the direction to the black hole
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by distance k). The boundary between these phases is a kink moving with the
velocity of light away from the center. An important difference between weak
and strong field scattering is in the dependence of x on the impact parameter b
and velocity v. In general, k for strong field scattering is much greater that its
value calculated by the weak field approximation. It is also always greater for
retrograde scattering than for a prograde scattering. The explanation of this is
quite simple. The retrograde string spends more time in the vicinity of the black
hole than a prograde one. This effect is a result of the dragging of the string into
rotation by the black hole.

Next we studied capture and critical scattering of a cosmic string by a
rotating black hole. For this purpose we developed an advanced adaptive mesh
refinement algorithm which automatically changes the computational grid based
on the solution error estimate. These types of algorithms play an important role
in other areas of computational physics, e.g., numerical relativity.

For capture and critical scattering of the string the effects connected with
the rotation of the black hole are very profound. Partially, it is related to the
fact that the dragging into rotation effect increases the velocity of the central
part of the string (as seen by an external observer) for prograde scattering and
decreases it for the retrograde scattering. Because it is easier to catch a slower
moving object, the critical impact parameter b, is greater for retrograde motion
than for the prograde one. We calculated the critical impact parameter as a
function of velocity of the string for black holes with different angular momenta.
These plots have interesting features for v and a/M close to 1. In this regime
the central part of the string can spend a considerable amount of time moving
in the black hole vicinity before it gets captured or escapes. This makes such a
regime of critical scattering highly complicated. Since the system is non-linear,

and there are two qualitatively different final states (capture and scattering) one
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can expect elements of chaotic behavior in this case. Such a chaotic behavior
occurs for example in the axisymmetric case when a circular loop of a cosmic
string moves in the Schwarzschild black hole metric [38].

One can also make the following observation. The internal geometry on the
worldsheet of the string is described by a time dependent two-dimensional metric.
When the string crosses the event horizon of the bulk black hole, a region on the
string surface is formed where it is impossible to communicate with the parts of
the string which are outside the bulk black hole event horizon. In other words, a
two-dimensional black hole is created. The degrees of freedom living on the string
surface, e.g. transverse string perturbations, propagate in this two-dimensional
spacetime with a 2-D black hole in it [47,48]. From this ‘2D point of view’ the
scattering of the string with the critical impact parameter is an event at the
threshold of the 2D black hole formation. One can make a conjecture that a
formation of a 2D stringy hole obeys the scaling laws similar to the universal
scaling laws numerically discovered by Choptuik [49] in the general theory of
relativity. Similar effects for a world domain interacting with a black hole was
discussed in [50, 51].

Finally, we studied the interaction of an n-dimensional brane with a
higher-dimensional Schwarzschild black hole.

The n = 1 case corresponds to a cosmic string, n = 2 to a domain wall,
while n = 3 can be interpreted as the observable universe in the context of brane
world models. We derived the general form of the perturbation equations for an
n-brane in the background of a (n + k)-dimensional black hole in the weak field
approximation.

For odd number of spatial brane dimensions by using convenient mathemati-
cal transformations we derived the closed form solution of the D’Alambert equa-

tion with a spherically symmetric source (see appendix B). We applied this
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result to the most interesting case of a three-brane in a spacetime with extra
dimensions where we obtained a general solution.

We calculated the induced geometry on the brane generated by a moving
black hole. As considered by a brane observer this geometry can be obtained
by solving (n + 1)-dimensional Einstein’s equations with a non-vanishing right
hand side. We calculated the effective stress-energy tensor corresponding to this
‘shadow-matter’. We showed that there exist regions where a brane observer sees
an apparent violation of energy conditions. The ‘shadow-matter’ also affects the
propagation of test particles and light on the brane. We demonstrated this
by deriving results for deflection of light propagating in the induced spacetime
metric on the brane. As expected, results are quite different from the (3 + 1)-
dimensional results. It would be interesting to study eventual observational tests
which would indicate that the ‘shadow-matter’ and thus the extra dimensions
influence the physics of our (3 + 1)-dimensional world.

One of the possible interesting application of the ‘shadow matter’ effect might
be the following. If there exists a diluted non-relativistic gas of stable elemen-
tary mini black holes in the extra dimensions, its gravitational action on the
brane would be similar to the “observable” dark matter, provided the (3 + k)-

dimensional density of this gas is ny where

Here €pys is the mass density of the dark matter. For epy ~ 107*°g/cm?® one
has
ng ~ 107572k [em3tF (7.1.2)

Since the average distance between the bulk black holes, n,zl/ (3+k)

, is much larger
than the black hole radius R,, with a very high accuracy one can consider such

gas to be very diluted and neglect the gravitational interaction between the
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black holes. A distinguishing property of this model is that there are no physical

particles on the brane responsible for the dark matter.

7.2 Future Research

The numerical solver we used for the simulations proved to be capable of evolving
cosmic strings in variety of situations including critical scattering. However, in
the present state the solver is not capable to evolve a captured string for any
reasonable amount of time. The problem is that the part of the string inside the
event, horizon quickly plunges into the singularity and the simulation necessarily
crashes. Since the part of the string inside the horizon can not affect the part of
the string outside, we can, in principle, ignore the part of the string inside. This
effectively introduces an artificial boundary at the horizon which must be dealt
with appropriately. We have experimented a bit with some prescriptions but the
results were not satisfactory. Unfortunately time constraints did not allow us to
pursue this topic further.

Similar situations are encountered in numerical relativity. The methods de-
veloped to deal with them are commonly called singularity excision techniques.
We believe that some of the prescriptions used there might help to find the
solution to the problem.

Another possible project is to use numerical methods to simulate scattering of
n-branes by the higher dimensional black holes in the strong field regime. Because
of the spherical symmetry this is effectively a (1 + 1)-dimensional problem. We
feel that the numerical solver used for string simulation should be able to perform

the simulations without major modifications.
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Appendix A

Details of the Numerical Scheme

In this appendix we describe the details of the numerical scheme used in our
simulations of the cosmic string scattering and capture. As already mentioned
in subsection 3.2.4 we exploit the symmetry of our problem and simulate only one
half of the string corresponding to the non-positive values of the Z coordinate.
At each parametric time 7 the string segment is parametrized by an internal
coordinate 0 € [—0pax,0]. In what follows we will call the part of the string
around the o = 0 (corresponding to the center of symmetry) the “center” of
the string and we refer to the end of the string corresponding to —op.¢ as the

“leftmost” part.

A.1 Coordinate Choice

For numerical simulations we use two types of coordinates. For non-critical
scattering we use the Kerr ingoing coordinates (3.1.5) . These coordinates behave
well everywhere but have one significant flaw near the Z-axis (§ = 0). The
problem is caused by the cot # terms present in the expressions for the Christoffel

symbols. Since for non-critical scattering the string does not come too close to
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the Z-axis those coordinates can be safely used. During the critical scattering or
capture simulations, however, the string often crosses the Z-axis so we must use a
modified coordinate system. For this purpose we “cartesianized” the coordinate
system (3.1.5) , i.e., we transformed the spatial coordinates (r, 8, @) into (X,Y, Z)

by standard formulas

X =rsinfcos ¢, (A.1.1)
Y =rsinfsin g, (A.1.2)
Z =rcosf . (A.1.3)

A.2 Discretization of the Equations of Motion

The equations of motion for a cosmic string in the conformal gauge have the

form (2.5.44)

92xX4  p92x4
o972 + Oo?

B C B C
+PABC(XA){ OXPOXC 9XP X }

— 5 + oy (A.2.4)

It is a system of four semi-linear hyperbolic differential equations of second order.
We solved the equations numerically by using the finite difference method.

The idea behind the finite difference method is to replace the continuous
computational domain by a discrete lattice of grid of points (in our case two-
dimensional). Each grid point has coordinates (7;, o;) and therefore it is uniquely
identified by a pair of integer numbers (7, 7). We demand that the equations of
motion are satisfied at each grid point. The dependent field variables X4 (7, o)
are replaced by X#(7;,0;), and the derivatives are replaced by finite difference
expressions based on Taylor series expansion. Our expressions for the spatial and
temporal first and second derivatives use the field values of the two neighboring

points in the appropriate direction. For example, the finite difference expressions
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for the temporal derivatives are

ox4 1 AT; AT
( ) { (XA, — X)) + = (X7 - Xﬁl,j)} ;

or ) T AT+ A | AT v A

(A.2.5)
A A A A

@ _ ) Xi+1,j - Xi,j - Xivj - Xi*l’j ) (A.2.6)

or? )i; AT+ AT ATit AT

Here

XA = XA(r0,) (A.2.7)
Am=1 -1 (A.2.8)

If the distance to the two neighboring points is equal the formulas (A.2.5) —
(A.2.6) reduce to the well known second order centered expressions. For the

spatial derivatives the formulas read

A A
OXA\  _ X — X (A.2.9)
do i 2h ’
A A A
60'2 g — hQ ) L.

where h is the lattice spacing.

Figure A.1 shows three different grid points together with all its neighbors
used to calculate all the derivatives. Notice the two points at the border of the
zones with different grid spacing. We show different stencils for calculating the
derivatives. We can calculate the spatial derivatives for the point (5,5) using
not the direct right neighbor (5,6) but the neighbor having the same distance
from the grid point — (5,7). In this way we can always use the simplified
formulas (A.2.9)—(A.2.10) for the spatial derivatives.

Suppose we know X7, and X7

i1, for all j-s. After substituting the appropri-

ate expressions into equations of motion we obtain a system of coupled quadratic
equations for the unknown value X (7,11, 0;) for each j. These we solve numer-

ically using the Newton-Raphson method for non-linear systems of equations
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Figure A.1: An example of a (non-uniform) grid. It highlights three grid points
(marked by a cross) together with all the points needed for the calculation of the

derivatives (marked by full circles).

(see e.g.[52]). Repeating the whole procedure again and again we advance the
solution into the future.

Since the equations for different j-s are independent this procedure is well
suited for parallelization. It was implemented using the OpenMP application
program interface. This is a natural choice since the algorithm is medium grained
and thus not suited for the more general Message Passing Interface (MPI).

Note that we run into a problem at the first grid point since it does not
have a left neighbor needed to calculate the spatial derivatives. Therefore we
either prescribe certain boundary conditions or lose one grid point each time
step. We experimented with both approaches and we chose the latter for the
actual calculations. It requires a longer string segment but it does not suffer
from artifacts related to the only approximate boundary conditions.

The constraint equations also play an important role in the numerical simula-

tions. Although we do not need them to solve the equations of motion we can use
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them as an indicator of the accuracy of the solution. In principle, the constraints
should be satisfied at all times for all the grid points. However, since our initial
conditions are not exact and due to a solution error necessarily introduced by
any numerical procedure the constrains tend to be less and less satisfied as we
advance the solution further. We monitor the constrains at every time step and
when they exceed certain threshold we restart the solution with parameters that

should reduce the solution error (e.g., we use denser grid).

A.3 Structure of the Numerical Grid

In our experimentation with the numerics we found that a uniform grid (or mesh)
is not suitable for simulations of scattering with small impact parameters and
relativistic velocities, especially for prograde scattering by a black hole with large
angular momentum. The reason for this is that during the scattering the string
develops regions with high (extrinsic) curvature (e.g., at the kinks) where the
finite difference formulas might be not accurate. Also the string can numeri-
cally “stretch”, i.e., the physical distance between two neighboring points can
significantly increase.

Typically, these regions constitute only small fraction of the simulated o-
domain and the rest of the string is relatively “straight”. One solution to this
problem would be to increase the number of grid points thus decreasing the
grid spacing. This is, however, not feasible from practical point of view — the
calculation would take an incredible amount of time. Another solution is to make
the grid denser only at the place where it is needed, i.e., to use a non-uniform
mesh.

One important feature of the solution is that the critical regions are moving.
This means that the mesh must be appropriately adjusted as the simulation

advances. The procedure is called adaptive mesh refinement.
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A.3.1 Mesh refinement for non-critical scattering

In our simulations we used two different adaptive techniques. First is a technique
used for simulating non-critical scattering when we know the qualitative features
of the solution, i.e., a kink propagating with the speed of light away from the
center of the string. Figure A.2 schematically shows the structure of the grid.

END OF SIMULATION
]

*——o

*——o—9o

*—o  —o o
*—o —0o—0 —o
*——o —0o —0o —o 9o
*— —0— 0 —0o—0 —9°
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T
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(0 o=0

Figure A.2: Structure of the numerical grid

At the beginning of the simulation the dense zone is located at the center of
the string where the kink is going to be created after the scattering at X = 0.
The width of the dense zone is taken to be approximately twice the width of the
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kink. As demonstrated in subsection 4.2.2 we can estimate the width of the kink
by

w R~ 7% . (A.3.11)

The density of the dense zone also depends on the width of the kink—in our
simulation the ratio of the dense to the “normal” zone density ranged from 4 to
32. After the scattering we periodically monitor the position of the kink within
the dense zone. As soon at it reaches a prescribed distance from the end of the
dense zone we shift the dense zone toward the end of the string. Note that there
is another (shorter) dense zone at the edge of the string. The purpose or this
second dense zone is to prevent “cutting” off the string too quickly (every time
step we lose one grid point).

Changing the grid structure involves a creation of new grid points. This
means that we have to assign appropriate values of X“ to the newly created grid
points. To do that we use cubic spline interpolation using all the points of the
(old) grid. Because of the symmetry 0 — —o we know that either the first or the
second derivatives with respect to o identically vanish at o = 0. At the leftmost
end of the string we choose the “natural” spline condition, i.e., we choose the

second derivatives for all X4 to vanish there.

A.3.2 Mesh refinement for capture and critical scattering

Critical scattering possess a great challenge for numerical simulation. As can
be seen from figure 5.6 for certain input parameters the shape of the string can
be quite complicated and the computational grid must reflect this fact. Since in
this case we do not have any prior knowledge of the solution the mesh refinement
algorithm must be able to adjust the grid automatically according to some well
defined criteria.

Our treatment is in spirit similar to the Berger and Oliger algorithm [53].
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We estimate the solution error at regular intervals and then adjust the grid
accordingly. It may happen that at the “checkpoint” we find the error to be
larger than a certain tolerance level. No remeshing at this point can reduce that
error since the error is already there. What we need to do is to return back
to the previous checkpoint and use a denser grid at places which can influence
the part of the grid with the intolerable solution error. This situation certainly
occurs when the string passes the black hole. Suppose that the n-th checkpoint
was before the scattering occurred. At this stage our grid is relatively sparse and
the error check passes without any need of remeshing. However, the (n + 1)-th
checkpoint occurs after the scattering when the string is distorted and stretched
in the region around the center. Obviously, the estimated solution error will be
very large so we restart the calculation from the position at the n-th checkpoint.
This time however, we adjust the part of the mesh causally connected to the
large error region. In a sense the first string pass served as a probe trying to find
out what lies ahead. It may happen that even after the adjustment the solution
will not pass the (n+1)-th checkpoint and the procedure will have to be repeated
several times until the conditions for successful checkpoint are met.

As important as making the grid denser at regions with high solution error
is the opposite process — the rarefication of the grid. This happens after a
successful checkpoint at regions with the estimated solution error lower than the
tolerance. In practice we introduce a limit to the process so that the distance

between two adjacent grid points can not become too large.

A.3.3 Practical implementation of adaptive mesh refine-

ment

In order to implement the adaptive mesh refinement as described in the previ-

ous subsection we have to be able to estimate the solution error. Suppose our
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numerical method is second order accurate. This (roughly speaking) means that
an exact solution u(7,0) can be written in terms of an approximate solution
u”(1,0) obtained from the discretized form of the equations on mesh with the

grid spacing h as
ul(r,0) = u(r,0) + hey(r,0) + O(h?) . (A.3.12)

This is known as the Richardson ansatz. On coarser grid with a double spacing

2h we have
uw?(1,0) = u(r,0) + (2h)%es(1,0) + O(h*) . (A.3.13)
Therefore we can estimate the solution error e? = u — u” at a particular grid
point as
e ~u —ul (A.3.14)

Once the error estimate at every (second) grid point is calculated we compare
it with a prescribed tolerance level € and decide whether the grid should be made
denser or sparser around that point. In practice we divide the whole grid in the
o-direction into equal zones. At the beginning of the simulation the grid is
uniform and each zone contains equal number of grid points (a power of 2). A
zone is the smallest “chunk” of the grid we can remesh. The grid within each
zone remains uniform during the whole simulation. In our approach we always
increase or decrease the density of grid points by factor of 2 so that the number
of grid points always remains a power of 2. Since our method is second order
accurate when we double the number of grid points we expect the solution error
to decrease by a factor of 4.

Suppose the error estimate at the ¢-th grid point is e;. In order to achieve
the prescribed accuracy the grid around the i-th grid point should be 2™ times

denser (or sparser for n; < 0), where n; is defined via

e%: G)n . (A.3.15)
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Therefore
loge; — loge
= — . A3.1
n logd (A.3.16)
Since we require n; to be an integer we choose!
loge; —1
i = foor (1B 084 1) (A317)

Let us now summarize the adaptive mesh refinement algorithm. It is repeated

at every checkpoint. A checkpoint is invoked after we cut the last [ number of

| = int (% ) (A.3.18)

This guarantees that a signal can travel at most one zone between two consecutive

zones, where?

checkpoints. Here is the algorithm:

1. Calculate the solution error estimate for every second grid point using

(A.3.14) and the related n;-s using (A.3.17) .

maXx

2. Calculate the maximal n;®* and the suggested number of points N} for

each zone as

max

Nj = 2" N (A.3.19)

where N2' is the present number of grid points in the k-th zone.

3. If all the solution errors are within the tolerance we can continue the cal-

culation after setting

NPeY = N (A.3.20)

4. If in some zone the solution error estimate exceeds the tolerance ¢ we must
restart the calculation from a previous checkpoint. The number of grid

points in each zone Ng®¥ at the restart point is chosen by the formula

NP = max(N}_4, N3, N, y) (A.3.21)

! The function floor is defined as the greatest integer less than or equal to a number.
2The function int truncates a number to the next nearest integer towards zero.



APPENDIX A. DETAILS OF THE NUMERICAL SCHEME 118
This reflects the fact that signal can propagate at most across one zone.

Every time we change the mesh structure we adjust the leftmost [ zones so
they have the same density as the most dense zone. This assures that we do not
lose grid points too quickly. Of course, the time step is also adjusted according

to the most dense zone.

A.4 Calculating x; and k9

In subsection 4.2.1 we explained that the the dependence of the displacement
parameter k on the rotation parameter « = a/M can be well approximated by
the quadratic formula (4.2.9) . In order to calculate the x; and k2 we must obtain
the first and second order corrections 21(”4(7', o) and )2(A(7', o) to the solution for
the non-rotating black hole Q(é'A(T, o).

We start with the equations of motion (2.5.44)

0xXBoxc oxBoxc
OXA +T45c 4 — = A.4.22
- BC{ or 8T+80 80} 0 ( )

and then substitute the expansions

A_%a La, 224

XP=x"4+a X" +a" X", (A.4.23)
A 04 LA 224

I'“pe =T pc+al'"pc +a" T B (A.4.24)

into the equation (A.4.22) . After grouping together terms with the same power

of o we get three set of equations

0, o dXBIXC 9 xBOXC
ox4+14 — =0 A.4.25
A"+ T 8o or oOr + do Oo ’ ( )

0 0 0 0
1 1 oxBoxc oxfoxc
O yA A .
AT+ 1 se or Ot + Jdo Oo
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0 1 0 1
0 oxBoxc oxtoxc
214 — = A42
el se or Or + 0o Oo 0, ( 6)
0 0 0 0
2, 2 oxPoxc oxfoxc
SR FABC or  or * 0o 0o
0 1 0 1
Lo pa _8X36XC+8X38XC
BC or 0T do Oo
ota | oaxmoxc axvoxe
BC or Or Jo Oo
1 1 1 1
0, oxPox® oxPoxc
- = A42
T se or Or + doc Oo 0, 7

The equation (A.4.25) is just the equation of motion for a string moving
in a Schwarzschild spacetime. Note that the remaining two equations (A.4.26)
and (A.4.27) are linear in ;llf'A and .}%'A, respectively.

In practical implementation we solve the equations in the order they were
written. First we advance the solution for )%A one step. After that we are able

0
to calculate all the derivatives of X4 entering the equations (A.4.26) . After a

A
i+1,5

discretization we are left with four linear equations for the four unknown ){’
at each grid point j. We solve them using the LU decomposition method (see e.g.
[52]). Similarly, after substituting the derivatives of /%A and /’% 4 into (A.4.27)
we obtain a system of linear equations for /\Q{Q‘EHJ-.

The initial conditions for /’%A are chosen as always using the weak field ap-
proximation. We set the initial two time levels for /’lf 4 and /%A to be zero. This

is reasonable since at far distances the angular momentum plays almost no role.
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A.5 Obtaining the Real-time Profiles

Throughout the thesis we show various pictures of string profiles. Typically, we
present the string configurations taken at a constant coordinate time 7'. In this
section we discuss how we obtain the string configurations.

In the conformal gauge the worldsheet time-like parameter 7 does not coincide
with 7. Therefore we can not simply take a “snapshot” of the string at certain
value of the parameter 7 but we must “gather” the grid points with constant 7’
over many time steps. Moreover, the structure of the mesh is changing and the
calculation can be restarted so the whole procedure is not completely trivial.

The strategy is as follows. The gathering begins when certain prescribed
conditions are met. At that point we find the grid point with the minimum
coordinate time Ty at time level 1. We use arrays AS(1 : Npax), AX(1 :
3,1 : Nyax) to store the string configuration® The value of the o parameter is
stored in AS, and the X, Y, Z coordinates corresponding to that particular o
are stored in AX. A pointer P always points to the last filled position in the
arrays. In the consequent time steps we compare the time coordinates 7} and
T, corresponding to the time levels 1 and 2, respectively, with Ty,.. If for some
grid point Ty < Tive < T} we store the values of o and the coordinates XY ,Z
(after linear interpolation). Figure A.3 schematically shows the situation.

The gathering procedure ends when the coordinate time 7" at all the grid
points is greater than 7Tg,.,.. However, we can not save the string configuration
until we pass the next checkpoint since the calculation can be restarted. In gen-
eral, when we successfully pass a checkpoint we validate all the points gathered
thus far. This is done simply by saving the position of the last gathered point
in a variable PVAL, i.e., PVAL = P. If, at a successful checkpoint, the gath-

ering is finished we call the procedure which processes the arrays and saves the

3 Nmax represents the largest number of points we expect to store during the simulation.
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string configuration into a file. If, on the other end, the checkpoint is not suc-
cessful and the calculation is restarted, we discard all the points which have not
been validated yet and continue the gathering. This is done simply by setting
P = PVAL.

In practice the situation is a little bit more complicated since it can happen
that we want to start to gather points for another coordinate time 77, . while
we are still in the process of gathering points for 7§,,. Therefore we add one
more dimension to all the participating variables that indexes the concurrent

active gatherings. The index is circular and its dimension restricts the number

of concurrent active gatherings.

inter polated values saved at current time step

° ° ° ° ° ° timelevd 1

° ° timelevel 2
° timelevel 3

timelevd 4

T = const

Figure A.3: Part of the numerical grid showing the T = Ty, = const line and

the points stored in AS and AX at this time step.

Let us now describe how we process the arrays once the gathering is done.
First of all we sort the array AS. The sorting procedure produces an index file

which is then used for sorting AX. At this point we could simply save the arrays
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into a file and be done with it. However, we do not need to save all the data
when we just want to show the string profile. This would unnecessarily waste a
lot of disk space and the data processing would be slow. We need to save only
enough points to realistically picture the string profile. In particular, the task is
to choose such points that, when connected by lines, realistically represent the
string profile. It is intuitively clear that we need fewer points at places where the
string is relatively straight and more points where the string twists and turns.
We implemented the following algorithm (the number referencing a particular

point is its index in the sorted AS array).

1. Set NL =1 and NR = 3, save the first point.

2. Calculate the (Euclidean) distance from all the points NL +1,...,NR —1

to the line connecting the points NL and NR.

3. If the distance of some of the points exceeds a threshold value d we save

the (NR — 1)-th point, set NL = NR — 1, NR = NL + 2 and go to point 2.

4. If the distance from all points is less than d then we set NR = NR + 1 and

go to point 2

5. Repeat until we reach the last point which we always save.

The smaller the parameter d the better the string profile is approximated but
more points is saved.
Figure A.4 schematically shows part of the string before and after the appli-

cation of the algorithm.
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Figure A.4: The left profile represents a part of the string with all the grid points
while the right profile represents the approximation with smaller number of grid

points. In reality, of course, the string has a three-dimensional structure.
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Appendix B

Spherically-Symmetric Solutions

of D’Alambert Equation

A solution of the (n + 1)-dimensional D’Alambert equation
Oty = f (B.0.1)
can be written by using a retarded Green’s function

D(n+1)Gret

ret (z,2") = =0 (z — 2). (B.0.2)

We assume that in the infinite past there were no incoming waves. The solution

p(z) is then completely generated by the external ‘force’ f(z),

p(z) = —/G:ﬁl(x,x') f(z") d'. (B.0.3)

The Green’s function for odd n =2v + 1, v > 1, can be written as [54]

Gt (z,2') = S(t—t)2—R)|,  (B.04)

(1) "9(t —t') a
(2m) [(RdR)V—l

where R = |x —x'|. For our convenience, we rewrite it in a slightly different form
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It —t) [ dv?
ret N
Gyoi(z,2") = Sy [da“l 0N+ ) L (B.0.5)
Here
A=(t—-t)—|x—-x*, (B.0.6)
x —x'|> = p? + p? — 2pp'z, z =cosf, (B.0.7)

and @ is the angle between n-dimensional vectors x and x’.
We are interested in spherically symmetric solutions of D’Alambert equation.

Integrating over the angular variables we get

1

Glt.pit' ) = s [ dz(1= 2 OPG (gt piz), (B0

-1

where Q, = 27°F /T(E2) is a volume of a k-dimensional unit sphere S*. Here
we made explicit that G,¢, depends on the angle variables only through the
parameter z.

Let us denote

F=pf, P=p'p. (B.0.9)

Then in the absence of incoming waves the spherically symmetric solution of the

equation (B.0.1) is

P(t,p) = — / dt' dp’' G(t,p;t', ) F(t',p'), (B.0.10)

where
G(t,pit,0) = (p'p)” G(t,p;t', p) . (B.0.11)
Let us show that for odd n the representation (B.0.4) allows one to obtain

the Green’s function for this reduced equation. The reduced Green’s function G

can be written as

Glt,p;t', ) =90 —1t)

(B.0.12)
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where
dufl 1
B= [ — / dz (1 — 22" 16(b(z + z*))] , (B.0.13)
do” 1 o
A
No=(t—t)=p"=p% b=2pp, 2= °b+a. (B.0.14)

By calculating the integral in (B.0.13) one gets
B=B, - B_, (B.0.15)

Bi—l [dy : (122" lﬁ(z*il)}] : (B.0.16)

b [dav! a0
Now let us note that if any of the derivative over « is acting on the ¥-function,

2

the result vanishes because of the remaining factor 1 — z7. Using Rodrigues’

formula for Legendre polynomials ([55], relation 22.11.5)

P (z) T I [(1—2%)"], (B.0.17)
one obtains
B. = 9()\s) (_?f—l (v = 1)1 P, 1 (Ao/b) (B.0.18)
where
Ae=(E—t)— (07 F)). (B.0.19)

Combining the above expressions we obtain the following representation for the

reduced Green’s function

Gt ) = CuPs (32 ) 0O 0000, (B0
where 1
C, = (_1);F((V”)_ L' (B.0.21)
For v = 1, which corresponds to a n = 3 brane we have
plt0) =~ [ dtddZ (. 90— 90). (B.0.22)

A similar procedure can be applied for the case of even n, i.e., odd number
of spacetime dimensions. The expressions are more complicated, and we will not

discuss them here.
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