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ABSTRACT ii

ABSTRACT

In this thesis I present results for the evolution and dynamics of massive electromagnetically cou-
pled Maxwell-Klein-Gordon fields in black hole spacetimes. The first part of my investigation for
gravitationally and electromagnetically self-interacting fields in spherical symmetry reveals two dis-
tinct types of solution at the threshold of black hole formation. For fields with relatively small mass
parameter I observe Type II discretely self-similar behaviour for the critical solutions and obtain
the black hole mass and charge scaling relations. However, when the mass parameter is sufficiently
large a different type of critical solution is obtained. This new solution is periodic and resembles
a perturbed charged boson star solution. This new solution exhibits Type I critical behaviour and
its lifetime obeys a well-defined scaling law.

The second aspect of investigation involves massive electromagnetically coupled scalar field
perturbations in axial symmetry on a Kerr black hole spacetime. Here, results show that both the
mass and charge coupling parameters play a significant role in the field dynamics on the spacetime
background. For relatively weak parameter values the perturbations exhibit strong gravitational
interaction through the phenomenon of orbiting resonances. In the case of pure electromagnetic
perturbation there is also evidence of superradiant scattering when the black hole rotation is large.
When the parameter values are large both the physics and complexity of the dynamics change.
For intermediate values of the mass and charge parameter, the perturbations exhibit trapping and
a preference for scattering along the axis of black hole rotation. Finally, all electromagnetically
coupled solutions generically display charge separation and dynamo-like behaviour.
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CHAPTER 1

INTRODUCTION

Of all conceptions of the human mind perhaps the most fantastic is the black hole.
Black holes are neither bodies nor radiation. They are clots of gravity.1

This dissertation concerns the numerical study of black hole formation from charged, massive
scalar fields in spherical symmetry, and the axially symmetric scattering and accretion of such
matter onto rotating black holes. In the gravitational collapse to a black hole, and in accretion
onto black holes, astrophysically realistic matter will likely be magnetohydrodynamic (MHD)—
fluid-like, and ionized. Only in very few highly symmetric cases has the fully general relativistic
problem (where matter sources dynamically influence the curvature of spacetime) been completely
studied. Even then, computational techniques are required. Shock formation in fluid systems
further complicates the details. Numerical simulation of general relativistic MHD systems is in
its infancy, and insight gained through the study of MHD analogues like the charged, massive
scalar field is required for progress. Furthermore, scalar field models can represent the pions
π0, π+ and π−, and have been proposed as candidates for early universe and dark matter. The
study of charged, massive scalar fields is therefore interesting in and of itself. Finally, there is
the connection to matter models in which critical behaviour has been studied at the threshold of
gravitational collapse and open questions in that regard.

Essential to a complete understanding of the physics are both: (1) spherically symmetric in-
vestigation of the general relativistic problem; and (2) analysis of the dynamics in axial symmetry.
While the spherically symmetric investigation provides information on how the matter dynamically
influences spacetime curvature, the effects of magnetic fields and electromagnetic radiation can not
be extracted until the imposed symmetry is (at most) axial. The charged, massive scalar field
system has not been studied in much detail in these regards, so any additional insight regarding
its physics will certainly be useful.

1.1 Scalar Field Critical Collapse

In 1993 Choptuik published the results of an interesting phenomenon in gravitational collapse [23].
There he gave answers to the questions “What happens at the threshold of gravitational collapse?”
and “What happens in the limit of increasingly small mass black hole formation?” The system in
which he first observed these critical phenomena was the massless scalar field minimally coupled
to gravity. Since that time, critical phenomena have been observed in a variety of different matter
models. Those I will mention are but a small subset of those studied, but they do form the set
most important to the discussions which follow. Specifically, I will mention works by Hod and
Piran [66], [68], Brady, Chambers and Goncalves [12], [16], Hawley and Choptuik [63], [64], [65], as
well as an analysis by Gundlach and Martin-Garcia [57]. Finally, relatively complete overviews of
critical phenomena in gravitational collapse have also been provided by Gundlach in [59] and [60].

In brief, for the minimally coupled massless Klein-Gordon field in spherical symmetry, Choptuik
considered families of solutions S[p] with the property that the critical value of the parameter p = p∗

separates solutions which form black holes from those which do not [23]. He found evidence that
supported two conjectures. First, he obtained numerical evidence supporting the universality of
the solution p → p∗ and that it forms structure on arbitrarily small spatiotemporal scales. That

1Quoted from [116].
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is, not only were all solutions approaching criticality “the same”, but they also exhibited a type of
self-similarity in space and time as the evolution proceeded. Second, he observed that there exists
a mass-relation for the solutions which formed black holes. Specifically, that the mass of the black
hole obeyed a power law

mBH ∝ |p− p∗|γm , (1.1)

where γm ≈ 0.37, is a universal exponent. In principle, the mass of the black hole can be made
arbitrarily small (i.e., there is no mass gap in the black hole spectrum). In analogy to phase
transitions in condensed matter systems, this continuous scaling of the black hole mass has since
been identified as Type II critical behaviour in black hole formation.

Key to the discussion of his results was the observation that, expressed in the usual (t, r, θ, φ)
spherical coordinates, his system was invariant under the rescalings

t → kt , (1.2)

r → kr , (1.3)

k being an arbitrary positive constant. Expressing his variables in terms of the form-invariant
quantities X(t, r) and Y (t, r), he found there exists a unique sequence of this set of variables [X,Y ]
in the limit of the exactly critical solution [X,Y ] → [X∗, Y ∗]. Expressing this sequence in terms
of the logarithmic spatial and temporal variables τ = τ(t) and ρ = ρ(r), Choptuik found that for
[X,Y ] → [X∗, Y ∗]

[X∗(τ − ∆τ , ρ− ∆ρ), Y
∗(τ − ∆τ , ρ− ∆ρ)] ' [X∗(τ, ρ), Y ∗(τ, ρ)] , (1.4)

where ∆τ ' ∆ ' ∆ρ is a universal constant with approximate value ∆ ≈ 3.4. Specifically, Choptuik
found

∆τ ≈ 3.43 , ∆ρ ≈ 3.44 . (1.5)

This means that every time the profiles X,Y are re-examined after evolution of geometric time
interval δT0, T0 = T0(t) being the proper time of a stationary observer at r = 0, the solutions
essentially appear rescaled by a factor of exp(∆) ≈ 30. Therefore, there exists a discrete self-
similarity in the solution in the form of a series of ever-decreasing echoes as the scalar field evolves
on the threshold of black hole formation.

The universality of critical phenomena can be understood in terms of perturbation theory.
Consider linear perturbations of the exactly critical solution. The perturbed critical solution will
have a number of modes, both stable and unstable. The stable modes decay, thus driving the
perturbed solution to the critical solution. The unstable modes, however, drive the system away
from the exactly critical solution. In the case at hand, the unstable modes would drive the system
to either black hole formation or dispersal. The exactly critical solution has only one unstable
mode. It is through the existence of this single mode that the universality of the solution can be
explained—tuning similar families of initial data to the critical solution, the system is driven to
the same critical point. Furthermore, perturbation theory analysis explains how the eigenvalue of
the unstable mode is directly correlated with the black hole scaling exponent γm, and correctly
predicts its value.

In subsequent research, Brady, Chambers and Goncalves examined critical phenomena in the
case of a minimally coupled massive scalar field [12], [16]. Their results showed that, for the
massive case, when the radial extent of the initial pulse λ is less than the Compton wavelength of
the scalar field m−1, then Type II critical behaviour is observed. The critical solution observed
in this case is exactly that which was found by Choptuik. However, they also observed that there
exists a minimum mass black hole that can be formed when the radial extent of the initial pulse is
much greater than the Compton wavelength (that is, a mass gap exists in the black hole spectrum
when λ � m−1). Again, in analogy to condensed matter systems, such behaviour has come to



CHAPTER 1. INTRODUCTION 3

be known as Type I critical phenomena.2 In the regime of Type I solutions, the exactly critical
solutions are unstable soliton stars rather than the naked singularities of the Type II case. In
fact, it is the presence of the mass parameter m which destroys the scaling of the system under
transformations (1.3) and (1.2). Hence, a different type of critical solution is expected and observed.
Noting similarities between the soliton stars examined by Brady, Chambers and Goncalves, and
boson stars composed of massive complex scalar fields, Hawley and Choptuik investigated the
behaviour of boson stars driven to the brink of black hole formation [63], [64], [65]. Hawley and
Choptuik thereby found Type I critical behaviour for massive complex scalar fields, the exactly
critical solutions being perturbed and periodically oscillating boson stars, their lifetimes obeying a
well-defined scaling relation as p→ p∗.

Finally, Gundlach and Martin-Garcia [57] discussed the possibility that, as in the case of the
massive minimally coupled scalar field, the presence of a parameter breaking the invariance under
transformations (1.3) and (1.2) could lead to behaviour in the electromagnetically coupled complex
scalar field different from that first found by Choptuik. The parameter in the electromagnetically
coupled complex scalar field system which breaks this invariance is the charge coupling parameter
e. However, Gundlach and Martin-Garcia performed an analysis which showed that, as the system
evolves, the effects of charge will play a decreasingly significant role. Specifically, assuming a self-
similar solution and also that field equations in this system always contain dominant contributions
from e in the combination er, a rescaling r → exp(−∆)r effectively scales e as e → exp(−∆)e.
Therefore, after each echo, the effects of the charge coupling will decrease exponentially with ∆.
In fact, they showed that in critical collapse the black hole mass should scale as

mBH ∝ |p− p∗|γm , (1.6)

where γm ≈ 0.37 (just as found by Choptuik [23]), and that the charge of the black hole should
scale as

QBH ∝ |p− p∗|γQ , (1.7)

where γQ ≈ 0.88. In fact, they predicted that for other charged matter models the relationship
between γm and γQ should obey γQ ≥ 2γm. They also predicted the solutions would be universal.
Furthermore, they postulated that if a second dimensionful parameter such as scalar field mass
mΦ is added to the system, then universality will not hold generically, but might be recovered in
the limit when e/mΦ → 0 or mΦ/e → 0. In conclusion, they also suggested the value of |e|/mΦ

could determine whether the system displays a Type I mass scaling typical of perturbed boson star
critical solutions.

Soon after Gundlach and Martin-Garcia published their results, Hod and Piran performed the
numerical study of the charged massless minimally coupled scalar field [66], [68]. As predicted
by Gundlach and Martin-Garcia, they found mass and charge scaling relations with exponents of
about γm ≈ 0.37 and γQ ≥ 2γm. They also verified that the infinitesimal mass black holes formed
were neutral or obeyed the relationship QBH � mBH.

To date, nothing has been published in the way of massive electromagnetically coupled scalar
field critical phenomena, and only modest work has been presented in hypothesis of the details.
The numerical results presented in Chapter 3 from my study of black hole critical phenomena of
charged massive scalar fields are the first of their kind.

1.2 Scattering and Scalar Accretion in Kerr Spacetime

From the Rutherford scattering of alpha particles off atomic nuclei, to modern experiments like
those at the Large Hadron Collider and proposed TeV electron-positron experiments at the Next
Linear Collider, particle scattering has revealed, and will continue to reveal, the physical nature of

2It should be noted that, even before the results of Brady, Chambers and Goncalves, Type I critical phenomena
was known to exist for the minimally coupled Yang-Mills field [26].
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the subatomic world. Photon scattering in its various forms has also provided much information
on the physics of matter—Thomson scattering has shown that atomic constituents can have both
positive and negative charge, Rayleigh scattering explains why the sky appears blue, Compton scat-
tering has revealed the corpuscular nature of the photon, Raman scattering provides information
on the excited energy states of a target material, and Bragg scattering has determined the lattice
spacing of crystalline substances. Particle and photon scattering experiments could, in principle,
also be performed on black holes. Under the hypothesis that the details would reveal interest-
ing physics, there has been rather detailed theoretical investigation of black hole wave scattering.
While much of the work has involved obtaining closed-form solutions, there recently has been much
effort in solving the black hole scattering problem using numerical techniques. Rather than provide
a complete overview of the developments I will simply address previous work in the field when it
pertains directly to the discussion of my results, and refer the reader to [49] and [51] for general
reference.

There are essentially three phases in the dynamics of any matter scattering in a black hole
spacetime: (1) an early phase which in many ways resembles the initial dynamics of the same
matter in a Minkowski spacetime; (2) an intermediate phase in which curvature effects become
apparent; and (3) an asymptotic late phase which can in many cases be described by a power law
decay in time. The late phase evolution has been studied in some detail in the context of quasi-

normal (i.e., damped, complex frequency) black hole modes.3 Since certain frequencies of the
quasi-normal modes should be independent of the process that generates them, these frequencies
are characteristic of, and directly connected to, the black hole parameters (mass, charge, and
angular momentum). They thereby provide a means of identifying the black hole spacetime.

While, by definition, scattering involves dynamics governed predominantly by interactions over
a limited range of space and a relatively short interval of time, the physics of interest in accretion is
also over a relatively small region of space but now persists over a prolonged period of time. In black
hole accretion, there are basically two modes of flow: (1) Bondi-like flow where angular momenta
are low and centrifugal forces are too weak to balance gravitational attraction and provide an
equilibrium state; and (2) thin-disc where angular momenta are sufficient to generate a stationary
state. Bondi-like flow qualitatively resembles spherical accretion, while thin-disk is typified by
matter in Keplerian and super-Keplerian orbits. Consequently, locally dissipated energy, entropy
and angular momentum are advected or carried along by the flow and lost to the black hole in
Bondi-like accretion. Meanwhile, in thin-disc accretion, matter exists at a fixed radius for many
orbits allowing for the opportunity to locally transfer substantial energy, entropy and angular
momentum.

In black hole accretion, astronomical evidence shows that a portion of inspiralling plasma and
generated electromagnetic radiation collimate into bipolar jets from the black hole. Only modest
progress has been made through the study of magnetohydrodynamical systems, and the details are
not well understood. It is assumed electromagnetic fields play a significant role in the collimation
process, but the details are again vague. Some notable computational simulations of this accretion
and collimation process have been presented in [42], [82], [107], [83] and [84]. Since the knowledge
is incomplete, there is clearly interest to investigate possible electromagnetic effects in black hole
accretion and scattering phenomena through matter models simpler than magnetohydrodynamics.
As a step towards this goal, and in order to distinguish between matter and gravitational effects—
essential to discussion of the fully general relativistic system—Chapter 4 of this dissertation presents
results from my axially symmetric study of charged, massive scalar field (i.e., the Maxwell-Klein-
Gordon system) accretion and scattering in rotating black hole spacetimes. In this situation, I
treat the scalar field as test matter (it evolves about the black hole, but does not itself contribute
to the curvature of spacetime) and observe its dynamics. To my knowledge, this study is the first
of its kind.

3[85] provides a good summary of the research before 1999.
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1.3 Outline

In Chapter 2, I present methodology in terms of the Arnowitt-Deser-Misner (ADM) formalism,
focusing specifically on the polar areal coordinate system. I then discuss the initial value formalism
for electromagnetism and general relativity, and close with brief discussion of regularity conditions.

Chapter 3 presents the study of critical solutions for massive charged scalar fields in spherical
symmetry, beginning with a presentation of the system of equations. Among the results are both
Type I and Type II solutions and the scaling relations associated with each.

By far the most voluminous is Chapter 4 where I present the investigation of massive electro-
magnetically coupled scalar field dynamics in Kerr spacetime. I provide discussion of the effective
potential formalism and its implications. Following that, I provide the system of equations, and
then proceed with presentation of my results. Included in the results are electromagnetically
uncoupled (i.e., e = 0) Klein-Gordon field dynamics, Maxwell field dynamics, and finally, electro-
magnetically coupled Maxwell-Klein-Gordon equation dynamics in Kerr spacetime. These results
cover a range of scalar field mass, electromagnetic coupling, and black hole angular momentum pa-
rameters. Among the results shown are orbiting resonances, superradiant scattering and trapping
of fields in the black hole spacetime. Also included are solutions demonstrating the preference for
Maxwell-Klein-Gordon fields to scatter along the axis of black hole rotation under a certain set of
conditions, and also the generic emergence of charge separation and dynamo-like behaviour when
the Maxwell and Klein-Gordon fields are coupled electromagnetically through charge.

Chapter 5 provides a summary and outlook, Appendix A provides a glossary of notation, and
Appendix B provides a summary of finite difference and discrete operators used throughout the
dissertation. Appendix C provides discussion of the numerical and computational techniques used
to obtain all the presented results. Finally, Appendix D provides a detailed account of Maxwell-
Klein-Gordon dynamics in Minkowski spacetime. There I discuss the Monotonically Increasingly
Boosted (MIB) coordinate system and its utility in treating outer boundary conditions. Along
with a presentation of the equations, I provide results to compare and contrast flatspace dynamics
to those for the black hole background. These results include Klein-Gordon fields, Maxwell fields,
and the Maxwell-Klein-Gordon system for a variety of field mass and charge coupling parameter
values.

1.4 Conventions and Units

Throughout this dissertation I employ the index notation, where, for example,

T abc...
def... (1.8)

designates the abc... contravariant components and def... covariant components of tensor T . Indices
a, b, c, d, e, f, ... take on values 0, 1, 2, 3, where 0 typically designates the temporal component and
1, 2, 3 designate the spatial components in a given coordinate system. In a situation where indices
are repeated, the Einstein summation convention is implied as per

T abc...
daf... ≡

3∑

a=0

T abc...
daf... . (1.9)

I also employ the metric signature (−,+,+,+), and use Planckian units where ~ = G = c = 1. A
quantity with dimension lengthm × massn × timep in ordinary units is therefore dimensionless in
Planckian units. To retrieve an equation valid in ordinary units one simply multiplies each quantity
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in Planckian units by its conversion factor

cp
(
G

c2

)n(
c3

G~

)(m+n+p)/2

. (1.10)

In SI units the fundamental constants have values c = 3.00×108m s−1, G = 6.67×10−11m3 kg−1 s−2,
and ~ = 6.626× 10−34J s.

1.5 Significant Figures and Uncertainties

Finally, where other’s numerical results are quoted, all significant figures are assumed accurate.
For example, Choptuik’s original result, ∆ρ ≈ 3.44, is accurate in all three digits. My numerically
computed results, however, are usually accurate in all figures but the last significant digit. Thus,
my ∆ ≈ 3.47 is accurate in the first two digits but uncertain in the last. The exception is in cases
where my result has but one significant digit. The quantity is then accurate in that single digit.
For example, in my k ≈ 1 × 10−2, uncertainties would enter at the level of subsequent figures.

1.6 Web References

In the body of this thesis there are a number of references to files found in the World Wide Web.
While the availability of all files cannot be guaranteed in the future, efforts will be made to maintain
access to those whose Uniform Resource Locator (URL) currently has laplace.physics.ubc.ca

for host. While there will be a change in file URL in the event of a host change, the path should
be preserved. Thus, file URLs like http://$WWW/People/petryk/animations/9.mpeg will still be
valid in the future, but $WWW may differ from its current value laplace.physics.ubc.ca .
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CHAPTER 2

PHYSICAL FORMALISM

2.1 The 3+1 or Arnowitt-Deser-Misner (ADM) Formalism

In this section I introduce the so-called 3+1 or Arnowitt-Deser-Misner (ADM) formulation of
relativity. Relevant historical references are [47], [33], [4], and [148]. While the 3+1 formalism
was originally developed for use in quantum gravity (see [4]), this approach has perhaps seen its
greatest successes in numerical relativity. I employ the 3+1 approach in my investigations and now
just briefly cover some of its key points. The following exposition is based upon [27] which is itself
a reworking of the results in [148].

2.1.1 Foliations

Start with a spacetime manifold M endowed with a metric gab. Assume the metric is expressed in
coordinates, where t is the temporal parameter. The spacetime can always be foliated as a sequence
{Σt} which are isosurfaces to t. These spacelike hypersurfaces are locally described by the dual
vector field Ωa defined

Ωa = ∇at, (2.1)

and has norm
gabΩaΩb = −α−2, (2.2)

where α is known as the lapse function (or simply the lapse). Given this, I can construct a unit-norm
dual vector, na, as per

na = −αΩa = −α∇at, (2.3)

where the sign is chosen so that the related unit-norm vector, na,

na = gabnb (2.4)

is future-directed. na can be viewed as the four-velocity of an observer moving orthogonally to the
hypersurfaces of Σt. Finally, such an observer will have a four-acceleration, aa, according to

aa = nb∇bn
a. (2.5)

2.1.2 Projections

In the 3+1 formalism I aim to decompose tensors into their single temporal (hypersurface-normal)
and three spatial (hypersurface-tangential) parts. To extract the temporal part of vector W a I
simply contract with na as per

W n̂ = −W ana. (2.6)

For a covector Wa I contract with na

Wn̂ = +Wan
a. (2.7)

There are two items to note in the preceding pair of equations. First, the superscripts and subscripts
n̂ designate the original tensor index has been contracted with na or na. Second, the choice of sign
− or + is a convention adopted directly from that of [148]. Meanwhile, partial components are
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extracted with the rank-two projection tensor

⊥a
b ≡ δa

b + nanb. (2.8)

Then any tensor T abc...
def... which has had all its free indices projected out with ⊥a

b in the manner

⊥T abc...
def... ≡ ⊥a

g⊥b
h⊥c

i · · ·⊥j
d⊥k

e⊥l
f · · ·T jkl..

ghi... (2.9)

is referred to as a spatial tensor. Above and onwards ⊥ (with no indices) is shorthand to designate
that spatial projection is applied to all free indices in the trailing tensor.

When applied to all free indices of the metric tensor, gab, projection yields the spatial metric
γab,

γab = ⊥gab = gab + nanb. (2.10)

By extension, the contravariant spatial metric is given by

γab = ⊥gab = gab + nanb. (2.11)

Note that tensor indices of T abc...
def... continue to be raised and lowered with spacetime metric gab—not

with γab—as γab and γab are not inverses in the four-dimensional spacetime manifold. The only
time γab can be used to raise or lower indices is when the tensor acted upon is spatial (i.e., it has
no temporal piece).

2.1.3 Covariant Derivatives on the Spacelike Hypersurface

The spatial projection tensor can then be applied to the operator ∇a to define the natural derivative
operator Da for spatial tensors,

Da ≡ ⊥∇a. (2.12)

The action of Da on a spatial tensor ⊥T abc...
def... would then be

Dj⊥T abc...
def... ≡ ⊥∇j⊥T abc...

def... , (2.13)

where shorthand ⊥ again indicates I apply the projection operator to all free tensor indices. Since

Daγbc = ⊥∇aγbc = ⊥∇a(gbc + nbnc) = ⊥∇a(nbnc) = ⊥(nc∇anb + nb∇anc) = · · · = 0, (2.14)

and similarly for Daγ
bc, Da is clearly the natural derivative operator for the spatial metric γab.

2.1.4 Intrinsic and Extrinsic Curvature

Given the covariant derivative on the spacelike hypersurfaceDa, it is natural to define the curvature
of the spacelike hypersurface, R d

abc , via

(DaDb −DbDa)⊥Wc = R d
abc ⊥Wd, (2.15)

where Wa is some covariant vector. R d
abc is referred to as the intrinsic curvature. R d

abc is itself a
spatial tensor and possesses the expected symmetries

R(ab)cd = Rab(cd) = 0, (2.16)

Rabcd = Rcdab, (2.17)

and
R[abc]d = 0. (2.18)
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In continuation, the spatial Ricci tensor , Rab, and scalar, R, are defined via

Rab = R c
acb (2.19)

and
R = R a

a . (2.20)

While the intrinsic curvature describes the geometry of the spacelike hypersurfaces, it is the
extrinsic curvature that describes how spacelike hypersurfaces are embedded in the spacetime. The
extrinsic curvature, Kab, is defined either through covariant differentiation as per

Kab = −⊥∇anb, (2.21)

or equivalently via Lie differentiation along the normal vector field as in

Kab = −1

2
⊥£ngab. (2.22)

Using the (easily derived) property

⊥∇anb = ∇anb + naab (2.23)

in the first form of Kab, I obtain
Kab = −∇anb − naab, (2.24)

which makes clear a relationship between the spatial extrinsic curvature tensor, and the four-
velocities and four-accelerations of observers moving orthogonally to the spacelike hypersurfaces.

2.1.5 The Spacetime Constraint Equations

Having introduced the necessary elements of the 3+1 formalism, I are now in a position to derive
the evolution of spacetime from Einstein’s field equations,

Gab = Rab −
1

2
gabR = 8πTab. (2.25)

I begin by defining three projections of the stress-energy tensor, Tab,

ρ ≡ Tn̂n̂ = Tabn
anb, (2.26)

ja ≡ ⊥T an̂ = −⊥
(
T abnb

)
, (2.27)

Sab ≡ ⊥T ab. (2.28)

ρ, ja, and Sab, can respectively be interpreted as the local energy density, momentum density and
spatial stress tensor as seen by an observer with four-velocity na.

Omitting the detailed algebra, I simply state that contracting Einstein’s equations twice with
na obtains the Hamiltonian constraint

R +K2 −Ka
bK

b
a = 16πρ , (2.29)

where K ≡ TrK ≡ Ka
a. Likewise, contracting Einstein’s equations once with na and then project-

ing onto the spacelike hypersurface, I obtain the momentum constraint

DbK
ab −DaK = 8πja. (2.30)

Notice the preceding two equations contain only spatial tensors and derivatives, and no explicit
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temporal derivatives, as they are truly equations of constraint. Being constraints, they must be
satisfied at every time or hypersurface in the foliation {Σt} by the values of γab and Kab (the
fundamental 3+1 variables).

2.1.6 Time Derivatives

While the spacetime history could, in principle, be obtained from the constraint equations alone,
it is often useful to obtain the solutions from evolutionary equations instead. To this end, I must
first define the appropriate time derivatives. It turns out that vector field N a defined

Na = αna (2.31)

is a natural vector along which I could Lie differentiate. Since

na = −αΩa, (2.32)

and
ΩaΩa = 1, (2.33)

contracting Na with Ωa is a unit norm,

NaΩa = 1. (2.34)

However, there is no reason to be so restrictive, and I could, in principle, construct a more general
vector field, ta, appropriate for Lie differentiation,

ta = Na + βa. (2.35)

Providing the shift vector βa is spatial
βana = 0, (2.36)

I prove ta = ∂
∂t is an equally valid choice, since

taΩa = (Na + βa) Ωa = NaΩa + βaΩa = NaΩa = 1 (2.37)

also has the desired property.
The vector βa I just introduced can be interpreted as follows. Four-velocity ta represents a

congruence of observers moving in the future direction. In moving from one spacelike hypersurface
to the next in foliation {Σt}, the observers move into the future an amount na perpendicular to the
original hypersurface Σt. But on the future hypersurface Σt+dt, the position of the observers has
been spatially shifted by an amount βa. So, only if βa = 0 is the propagation purely perpendicular
to Σt. This scenario is depicted in Figure 2.1 below.

2.1.7 Spacetime Evolution Equations

With all the preliminaries developed, I are now in a position to state the equations of spacetime
evolution. The derivation of evolution equations for the spacetime begins with the Lie derivative
definition of the extrinsic curvature, Kab,

Kab = −1

2
£tgab, (2.38)

where for full generality I Lie differentiate along vector ta rather than na. I thus obtain

£tγab = −2αKab + £βγab, (2.39)
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PSfrag replacements

na

βa

t =
(
∂
∂t

)a

Σt

Σt+dt

(t, xa)

(t + dt, xa)

Figure 2.1: A schematic depiction of the 3+1 decomposition. na is the unit normal to Σt at
coordinate (t, xa). Moving in the future direction amount dt, an observer with four-
velocity

(
∂
∂t

)a
= ta = Na+βa = αna+βa ends up on hypersurface Σt+dt at coordinate

(t+ dt, xa). α is the lapse function and measures movement into the future. The shift

vector βa measures the spatial displacement of coordinates in going from Σt to Σt+dt.
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which are the evolution equations of the spatial metric.
The procedure to obtain the evolution of the extrinsic curvature is somewhat more lengthy

and involves, among other things, contractions of Einstein’s field equations and projections of the
curvature tensor Rabcd (and its contractions) onto the spacelike hypersurfaces. For brevity I omit
the details and simply state the results.1 Evolution equations for the extrinsic curvature thus
obtained are

£tKab = £βKab −DaDbα+ α

(
Rab +KKab − 2KacK

c
b − 8π

(
Sab −

1

2
γab (S − ρ)

))
, (2.40)

where S ≡ TrS ≡ Sa
a. Finally, raising an index produces the often more useful form

£tK
a
b = £βK

a
b −DaDbα+ α

(
Ra

b +KKa
b + 8π

(
1

2
⊥a

b (S − ρ) − Sa
b

))
. (2.41)

2.1.8 Spherically Symmetric Spacetime in Polar Areal Coordinates

In a following chapter I study the evolution of spherically symmetric spacetime in the context of
critical gravitational collapse of a massive electromagnetically coupled complex scalar field. Since
the study employs the 3+1 formalism in the polar areal coordinate system, it is natural now to
present the spacetime constraints and evolution equations for that choice of metric.

The most general spherically symmetric spacetime metric in (t, r, θ, φ) coordinates is given by
line element

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2, (2.42)

where α = α(t, r), β = β(t, r), a = a(t, r), b = b(t, r), and where

dΩ2 = dθ2 + sin2 θdφ2 (2.43)

is the usual metric on the unit sphere. In the special case

β = 0, b = 1 (2.44)

the line element reduces to that of the polar areal coordinate system

ds2 = −α2dt2 + a2dr2 + r2dΩ2. (2.45)

The future-directed unit-norm spatial hypersurface orthogonal vector is na = (1/α, 0, 0, 0). The
term polar is used because of the usual association of r, θ, and φ with the polar coordinate system
in flat spacetime, while areal is used because the proper area of a two-sphere of radius r, centered
at r = 0, is 4πr2. r is thus a geometric quantity. This polar slicing condition places a restriction
on the trace of the extrinsic curvature tensor, Kab,

K ≡ TrK ≡ Ka
a = Kr

r. (2.46)

It is straightforward to show (algebra omitted) this in turn implies

Kθ
θ = Kφ

φ = 0. (2.47)

Finally, since a generalized Birkhoff’s theorem tells us that spherically symmetric electrovac solu-
tions are uniquely Reissner-Nordström, I can identify polar areal metric functions α and a outside

1I refer the reader to [148] or [27] for the full procedure.
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sources through2

α2 =

(
1 − 2m

r
+

q2

4πr2

)
, (2.50)

a2 =

(
1 − 2m

r
+

q2

4πr2

)−1

, (2.51)

where parameters m = m(t, r) and q = q(t, r) respectively represent the gravitational mass and
electric charge of the source. Then, rewriting (2.51) I obtain

m =
r

2

(
1 − 1

a2
+

q2

4πr2

)
, (2.52)

the so-called mass aspect function [28]. In an evolutionary problem, the divergence of a2 signals
the formation of an apparent horizon—and therefore existence of a black hole—for this choice of
coordinates.3 In the limit r → ∞ the mass aspect function is then interpreted as the total effective

mass of the black hole, consisting of the usual ADM mass (see [4]) less the difference of total ingoing
and outgoing matter flux at the time of apparent horizon formation [56].4 As noted in [21], this
total effective mass is the natural measure in the signal of black hole formation for time-dependent
problems. Once a2 has diverged, I can integrate the charge density to obtain q(t, r). Knowing all
the functions on the right hand side of (2.52) I can immediately deduce m(t, r) for the solution.

I now state (without derivation) the values of DaDbα, Ka
b, K, DbK

ab, DaK, Ra
b and R

required by the equations of spacetime constraint and evolution. The non-vanishing contributions
are

DrDrα =
1

a

(
α′

a

)′

, DθDθα = DφDφα =
α′

a2r
, (2.57)

Kr
r = − ȧ

aα
, (2.58)

2The last term employs a common convention different from those of [62], [145], [40], [49], and [17]. The factor
1
4π

has been inherited by the current term since I use the Maxwell equation convention

∇aFab = −Jb, (2.48)

rather than
∇aFab = −4πJb. (2.49)

3The equation for a trapped surface is [44]
“

γab − sasb
”

(Dasb − Kab) = 0 , (2.53)

where sa is a spacelike, outward-pointing, unit-norm to the surface. Using the polar areal coordinate system in
spherical symmetry sa is given by

sa =

„

0,
1

a
, 0, 0

«

. (2.54)

In polar areal coordinates, expression (2.53) then evaluates to

2

ar
= 0 . (2.55)

Since a becomes arbitrarily large, but never reaches the limit a → ∞, apparent horizons never actually form in this
coordinate system. However, apparent horizon formation is imminent as a increases to arbitrarily large values. With
some confidence, the location at which a diverges can then be used to estimate the eventual location of the apparent
horizon. Finally, if an apparent horizon forms, an event horizon is known to exist at or outside the location of the
apparent horizon. It is in this sense that I refer to the formation of a black hole.

4As can be seen from results that follow, choosing polar areal coordinates allows the Hamiltonian constraint in
the q = 0 limit to be rewritten in the suggestive form

dm

dr
= 4πr2ρ. (2.56)
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K = − ȧ

aα
, (2.59)

DaKr
a = −

(
ȧ

aα

)′

− 2ȧ

raα
, (2.60)

DrK = − ȧ

a3α
, (2.61)

Rr
r =

2a′

ra3
, Rθ

θ = Rφ
φ =

1

ar2

(
a−

( r
a

)′)
, (2.62)

R =
2

ar

(
−2

(
1

a

)′

+
a

r

(
1 − 1

a2

))
, (2.63)

where prime, ′, designates partial differentiation with respect to radial coordinate r, and overdot,
˙, designates partial differentiation with respect to time coordinate t. Substituting these quantities
into the results of subsections 2.1.5 and 2.1.7 I obtain the Hamiltonian constraint

a′

a
+
a2 − 1

2r
− 4πra2ρ = 0, (2.64)

and the momentum constraint

ȧ− 4πraαjr = 0. (2.65)

Rather than directly using the evolution equations for the spatial metric and extrinsic curvature,
I find the so-called slicing condition more useful in the calculations. This equation can be derived
from the evolution equations for Ka

b . First note that, since the spacetime metric is torsion-free,
Lie derivatives of Kab with respect to N c reduce to covariant derivatives as per

£NK
a
b = (DcK

a
b)N

c −Kc
b (DcN

a) +Ka
c (DbN

c) . (2.66)

For polar areal metric (2.45) this reduces (2.41) to

DtK
a
b = −DaDbα+ α

(
Ra

b +KKa
b + 8π

(
1

2
⊥a

b (S − ρ) − Sa
b

))
. (2.67)

Then, using Kθ
θ = K̇θ

θ = 0, and substituting Hamiltonian constraint (2.64) where appropriate,
(2.67) becomes

α′

α
− a2 − 1

2r
− 4πra2

(
S − 2Sθ

θ

)
= 0 . (2.68)

However, using the Einstein field equations, it is possible to show that here

T θ
θ = T φ

φ , (2.69)

from which it follows
Sθ

θ = Sφ
φ , (2.70)

reducing the slicing condition to

α′

α
− a2 − 1

2r
− 4πra2Sr

r = 0 . (2.71)

The set of equations (2.64), (2.65), (2.71) is sufficient to solve for the entire evolution of spacetime
geometry. The method by which to choose appropriate data from which to begin evolution is the
initial value problem of general relativity. It is the topic of the next section.
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2.2 The Initial Value Problem

The Cauchy problem of a theory amounts to (1) the determination of a boundary and conditions on
that boundary along with (2) equations which yield unique solutions for these boundary conditions.
The boundary of the Cauchy problem is known as a Cauchy surface. In an evolutionary theory like
general relativity or electromagnetism where a 3 + 1 formulation has been adopted, the Cauchy
surface is the spatial hypersurface Σt=0 on which initial conditions are specified, from which the
system is deterministically evolved.5 In fact, the Cauchy problems of electromagnetism and gen-
eral relativity are remarkably similar. Both the Einstein equations and the Maxwell equations with
sources form sets of coupled nonlinear partial differential equations, both sets containing evolution-
ary equations of hyperbolic character as well as constraint equations of elliptic type. And not only
are the same solution methods applicable to the hyperbolic equations of both electromagnetism
and general relativity, but also similar are the methods for solving the elliptic constraints and
initial value problems of both theories. The next chapter provides a rather detailed account of the
numerical techniques used to solve the initial value and evolutionary equations. I now demonstrate
well-posedness of the Maxwell equations as discussed in [145] and outline the solution of the initial
value problem as developed by [149]. Since this thesis involves only the solutions of Einstein’s
equations in spherical symmetry, but the Maxwell equations in both spherical symmetry and axial
symmetry, I focus discussion primarily on the initial value problem of electromagnetism.

2.2.1 The Initial Value Problem for Electromagnetism

In covariant form the Maxwell’s equations for non-polarizable, non-magnetizable media are

∇aFab = −Jb , (2.72)

∇aFbc + ∇cFab + ∇bFca = 0 , (2.73)

where Fab is the electromagnetic field-strength tensor and Ja is the four-current. (2.72) are the
inhomogeneous equations and (2.73) are the homogeneous Maxwell equations. Since Fab is anti-
symmetric, contracting (2.72) with the covariant derivative obtains

0 = ∇b∇aFab = −∇bJb , (2.74)

demonstrating Ja is conserved current. I can use

Fab = ∇aAb −∇bAa (2.75)

to write them in terms of the four-vector potential Aa as

∇a(∇aAb −∇bAa) = −Jb , (2.76)

∇a(∇bAc −∇cAb) + ∇c(∇aAb −∇bAa) + ∇b(∇cAa −∇aAc) = 0 . (2.77)

The inhomogeneous Maxwell equations are exactly what I derive for Aa using the Euler-Lagrange
equations. In addition, it is clear that by substituting

(∇a∇b −∇b∇a)T c1...ck

d1...dl
= −

k∑

i=1

R ci

abe T c1...e...ck

d1...dl
+

l∑

j=1

R e
abdj

T c1...ck

d1...e...dl
(2.78)

5The one caveat is occurrence of a Cauchy horizon marking the boundary of the domain of dependence beyond
which the evolution will not be determined by data supplied on the Cauchy surface. While Cauchy horizons occur
in black hole spacetimes, such as Reissner-Nordström and Kerr, they are typically shrouded by event horizons.
Furthermore, as discussed in Chapter 3, the Cauchy horizon is known to be unstable in the case of Reissner-
Nordström, and it is also debatable whether one will form during the gravitational collapse of a realistic matter
distribution.
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into the left hand side of (2.77) I obtain

∇a(∇bAc −∇cAb) + ∇c(∇aAb −∇bAa) + ∇b(∇cAa −∇aAc)

= − (Rbdac +Radcb +Rcdba)Ad

= (Rdbac +Rdacb +Rdcba)Ad

= 0 , (2.79)

and so the homogeneous Maxwell’s equations hold by construction, by virtue of the vector potential
formulation of the theory.6 However, I have still not discussed the character of these equations.

Because the homogeneous equations hold by construction, there is no need to examine them in
any more detail. However, since the inhomogeneous equations must be solved explicitly, it is useful
to examine their character, as it will determine how I must solve for the dynamics of the system.
First, notice that, because of antisymmetry, the inhomogeneous equations

∇aFab = ∇a(∇aAb −∇bAa) = −Jb (2.84)

contain no nonvanishing terms ∇i∇iAi, where summation over repeated indices is in this instance
not implied, and index i designates a specific component living in the n-dimensional spacetime.
Because of this, (2.84) can only provide evolution equations for n − 1 of the n components Aa.
Specifically, if At is the temporal component, then the inhomogeneous equation

∇aFat = ∇a(∇aAt −∇tAa) = −Jt (2.85)

is an elliptic equation of constraint for the electromagnetically coupled system.7 (2.85) must be
satisfied at all times. The question which naturally arises, is, “If (2.85) is satisfied at the initial
time, will the evolution equations preserve the solution of (2.85) for all time?” The answer to this
question is “yes”, and it is reasonably straight-forward to demonstrate. To obtain the answer, I
first choose a gauge. For the current purposes, Lorentz gauge

∇aA
a = ∇aAa = 0 (2.87)

6In electromagnetism texts this proof is typically presented for stationary observers in flat spacetime as follows.
In (spatial) three-vector notation the homogeneous Maxwell’s equations terms of the magnetic field, ~B, and electric

field, ~E, are written

~∇ · ~B = 0 , (2.80)

~∇× ~E +
∂ ~B

∂t
= 0 . (2.81)

In terms of the three-vector potential ~A and scalar potential ϕ, the ~B and ~E are

~B = ~∇× ~A , (2.82)

~E = −∂ ~A

∂t
− ~∇ϕ . (2.83)

Then, since the divergence of the curl of any vector field is identically zero (i.e., ~∇ ·
“

~∇× ~A
”

= 0) and since the

curl of the gradient of any scalar field is also identically zero (i.e., ~∇× ~∇ϕ = 0) equations (2.80) and (2.81) hold by
construction.

7Using the (spatial) three-vector nomenclature of flat space, this constraint equation is simply Gauss’ law of
electrodynamics,

~∇ · ~E = ρQ , (2.86)

where ρQ is the charge density.



CHAPTER 2. PHYSICAL FORMALISM 17

is the most convenient. Then, substituting

∇aFab = ∇a(∇aAb −∇bAa) = ∇a∇aAb −Rc
acbA

a = ∇a∇aAb −Ra
bAa , (2.88)

(which has incorporated in it the Lorentz gauge condition) into (2.76) I obtain the form

∇a∇aAb −Ra
bAa + Jb = 0 , (2.89)

a wave equation for the field Ab. Since I are generally allowing gravitational back-reaction, the
Ricci tensor Ra

b will be dependent on the stress-energy tensor. Now, covariantly differentiating
(2.89) I obtain

∇b∇a∇aAb −∇aRaeA
e = 0 , (2.90)

where I have used the symmetries of the Ricci tensor and ∇aJa = 0 to get the result. Next, using
(2.78) I find that

∇b∇a∇aAb = ∇b∇a∇aAb

= ∇a∇b∇aAb −R a
bae ∇eAb −R b

bae ∇aAe

= ∇a∇b∇aA
b −R a

bae ∇eAb −R b
bae ∇aAe

= ∇a∇a∇bA
b −∇aR b

bae A
e −R a

bae ∇eAb −R b
bae ∇aAe

= ∇a∇a∇bA
b + ∇aRaeA

e . (2.91)

Then, substituting (2.91) into (2.90) I find

∇a∇a

(
∇bA

b
)

= 0 . (2.92)

Clearly, the Euler-Lagrange equations for vector potential Aa (i.e., the inhomogeneous Maxwell
equations) can be written as a linear, diagonal second-order hyperbolic system. As such, it has a
well-posed initial value formulation as proven by theorems (see [145] for details). Then, given both
an initial data set (Aa, ∂Aa

∂t ) satisfying (2.85) and the Lorentz gauge condition on a Cauchy surface
Σt=0, this system is guaranteed to satisfy the Maxwell equations and Lorentz gauge condition
everywhere for all time.

To solve constraint equation (2.85) I implement the procedure outlined by York and Piran [149],
described in terms of the electric field8

Ea = Fabn
b (2.94)

as follows. Since the constraint equation is essentially Gauss’ law for the electric field, I start by
decomposing the electric field into its longitudinal (divergenceful) and transverse (divergenceless)
parts, La and Ta respectively,

Ea = La + Ta . (2.95)

Now, I introduce a scalar field U and define it to be the potential for the electric field,

La = DaU , (2.96)

8Here the magnetic field would be expressed

Ba = −1

2
ε cd
ab Fcdnb , (2.93)

where εabcd is the totally antisymmetric tensor of positive orientation.
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where Da is again the spatial covariant derivative operator. Then, clearly,

DaEa = Da (La + Ta)

= DaLa

= DaDaU , (2.97)

where DaDa is the (spatial) 3-dimensional Laplacian operator.9 Then, since

DaDaU = DaEa = ρQ , (2.99)

where ρQ = −naJa is the electric charge density,10 I recognize this constraint equation as the usual
Poisson equation. As expected, it is of elliptic type. Once I have solved elliptic differential equation
(2.99) for U , I can determine Ea up to a transverse component Ta as

Ea = La + Ta = DaU + Ta . (2.100)

The electromagnetic initial value problem thus has been reduced to a single equation (2.99).
Now, while the longitudinal component La is explicitly involved in the solution of U , the transverse
component Ta (which represents the radiative degrees of freedom) is freely specifiable. I could just
as well choose it to be vanishing at initial time. Thus, given charge density ρQ, I can solve for U
via (2.99). Having found U , I can then determine La via (2.96). Meanwhile, I are free to specify
any reasonable (i.e., smooth, differentiable, and satisfying regularity conditions discussed in section
2.4) initial values for any remaining variables not determined by gravitational constraints.

2.2.2 The Initial Value Problem for General Relativity

The Einstein, Einstein-Klein-Gordon and Einstein-Maxwell equations are known to possess well-
posed initial value formulations.11 The initial value problem of the Einstein equations is in many
ways analogous to that of electromagnetism. Where in electromagnetism a choice of gauge con-
dition had to be made for four-vector potential Aa, the gauge choice for the Einstein equations
amounts to a choice of coordinates along with a slicing condition that determines the embedding
of hypersurfaces Σt. Furthermore, while the well-posedness of electromagnetism was dependent on
the ability to cast the inhomogeneous Maxwell equations as a linear, diagonal second-order hyper-
bolic system, well-posedness for general relativity requires the reformulation of Einstein’s equations
as a quasilinear, diagonal second-order hyperbolic system (see [145] for details). Well-posedness of
the Einstein equations was first demonstrated in [33]. Further developments of special significance
were produced in [34], and [35].

While the inhomogeneous Maxwell equations (2.85) form the initial value constraints of elec-
tromagnetism, for Einstein’s equations they are furnished by the Hamiltonian constraint (2.29)
and momentum constrains (2.30). Then, by theorem, providing an initial data set (Σt=0, hab,Kab)
satisfying (2.29) and (2.30) is supplied on a Cauchy surface diffeomorphic to Σt=0, the system is
guaranteed to satisfy the Einstein equations on subsequent Σt. Here γab is the spatial three-metric
as defined in subsection 2.1.2 and Kab is the extrinsic curvature as defined in subsection 2.1.4.

9The 3-dimensional Laplacian in polar areal coordinates acting on U(t, r) is

DaDaU(t, r) =

„

1

a2

«»

2

r
(∂rU) − 1

a
(∂ra) (∂rU) + (∂r∂rU)

–

=

„

1

a

«

1

r2
∂r

»

r2

a
(∂rU)

–

. (2.98)

10In polar-areal coordinates, ρQ = −naJa = − 1
α

Jt.
11The equations of Chapter 3 form an Einstein-Maxwell system where the sources are given by an electromagnet-

ically coupled complex scalar field.
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The solution of (2.29) and (2.30) can be carried out by decomposing extrinsic curvature, Kab,
into longitudinal and transverse components, and then freely specifying the divergenceless (trans-
verse) component while solving the required elliptic for the divergenceful (longitudinal) part. This
is closely analogous to the preceding decomposition and solution of the electric field where the
transverse component represented the radiative degrees of freedom for the electromagnetic field.
In the case of Einstein’s equations, the transverse component of the extrinsic curvature encodes
gravitational radiation content of the spacetime.12

2.3 Conserved Quantities

If a given tensor T abc···
def ··· is divergenceless, for example

∇aT
abc···
def ··· = 0, (2.101)

it has associated with it zero or more conserved quantities, depending on the symmetries (and thus
Killing vectors) of the spacetime. If the divergenceless tensor is the stress-energy, Tab, then the
conserved quantities will be energy and a component of the momentum. If the tensor is instead
the current four-vector Ja, the conserved quantity will be a charge.

2.3.1 Conservation of Charge

Consider first the case of a conserved current four-vector, Ja,

∇aJ
a = 0, (2.102)

an example being the electromagnetic current. Then, contracting this vector with the hypersurface
orthonormal na yields charge density, ρQ,

ρQ = −naJ
a, (2.103)

as measured by an observer with four-velocity na. Using Gauss’ theorem, the total charge, Q, can
be obtained by integrating (2.103) over one of the spacelike hypersurfaces Σt,

Q = −
∫

Σt

√
|γ|naJ

ad3x, (2.104)

where |γ| is the determinant of the spacial metric γab, and d3x is the invariant volume element
on Σt. This integrated charge will then be a constant, regardless of any dynamics. Observe how
conservation is manifest for divergenceless four-vectors regardless of spacetime symmetry. The
situation is different for tensors of rank-two or more—conservation there depends on the existence
of Killing vectors.

2.3.2 Conservation of Energy and Momentum

The (rank-two) stress-energy tensor Tab is by construction divergenceless,

∇aT
ab = ∇aT

ba = 0. (2.105)

12For the spherically symmetric spacetime in polar-areal coordinates, the constraint equations and slicing condition
have been reduced to ordinary differential equations (2.64), (2.65) and (2.71) which can easily be integrated. In this
case, the system also possesses no radiative degrees of freedom.
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In situations where the spacetime possesses a timelike Killing vector field ta, the contraction

ρT = natbT
ab (2.106)

is the energy density measured by an observer with four-velocity na. And when the spacetime
possesses a spacelike Killing vector field sa, the quantity

ρS = −nasbT
ab (2.107)

represents the momentum density in the direction of sa. Then integrals

T =

∫

Σt

√
|γ|natbT

abd3x (2.108)

and

S = −
∫

Σt

√
|γ|nasbT

abd3x (2.109)

respectively represent the total conserved energy and total conserved component of momentum. For
instance, S could be the radial, angular, or other-directional momentum, the specifics depending
on Killing vector sa.

2.4 Regularity Conditions

In simulations presented later in this dissertation I employ coordinate systems which become de-
generate over finite sets of spatial coordinate values. Specifically, in the spherically symmetric
simulation of charged scalar critical collapse in Chapter 3, I use the (t, r, θ, φ) polar-areal coordi-
nate system over a range which includes r = 0. Similarly, in Chapter 4, I study axially symmetric
charged scalar accretion in (t, r, θ, φ) Kerr-Schild coordinates over a range which includes θ = 0
and θ = π. The system of equations to be evolved sometimes become singular at r = 0 for the
polar-areal coordinates, and at θ = 0 or θ = π for Kerr-Schild. In cases where the equations do
not explicitly diverge, the evolution often becomes numerically unstable at the degenerate points
unless the equations are recast in a more appropriate form. The form they take on is determined
by so-called regularity conditions at the degenerate coordinate values [6], [45].

2.4.1 Regularity at r = 0 in Polar-Areal Coordinates

Following [6], I say a tensorial quantity is regular at r = 0 of the (t, r, θ, φ) polar-areal coordinate
system if and only if its components can there be expanded in non-negative integer powers of the
(x, y, z) spatial Cartesian components defined

x = r sin θ cosφ , (2.110)

y = r sin θ sinφ , (2.111)

z = r cos θ . (2.112)

Clearly, assuming neither the spacetime nor matter are anywhere singular, I should ensure that
all physical quantities are in this sense regular. Once the regularity conditions have been deter-
mined for the physical quantities, their consequences should be consistently propagated through
the equations of any unphysical auxiliary variables. For example, under this definition, a physical
rank-zero tensor quantity such as electric charge density, ρQ, or scalar field amplitude, Φ = Φ(t, r),
would to leading order have to be an even function of radial coordinate at r = 0. This would in
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turn imply that an auxiliary variable such as

Φr(t, r) ≡ ∂rΦ (2.113)

would by consequence have to be an odd function of r and therefore vanishing about r = 0.
Furthermore, as the electric field is a rank-one tensor, the radial component Er would have to be
odd in r in order to be regular there. Indeed, if I were to integrate charge density ρQ over space, I
would find that Er would have to be odd about r = 0 by consequence of ρQ being even there (cf.
Appendix C). This line of argument is similarly applied to determine the nature of each function
about r = 0 in the evolution leading to critical collapse of charged scalar fields in Chapter 3.

2.4.2 Regularity at θ = 0 and θ = π in Kerr-Schild Coordinates

Extending the definition, I say a tensorial quantity is regular at θ = 0 and θ = π of the (t, r, θ, φ)
Kerr-Schild coordinate system if and only if its components can be expanded in non-negative integer
powers of its (x, y, z) spatial Cartesian components at these coordinate values. As a consequence,
physical rank-zero tensors such as the scalar field, Φ = Φ(t, r, θ), or charge density, ρQ, are to
leading order in θ even functions about θ = 0 and θ = π. By definition, auxiliary quantity

Φθ(t, r, θ) ≡ ∂θΦ (2.114)

would then have to be odd at these degenerate coordinate values. The components of a physical
rank-one tensor can similarly be determined. For example, regularity requires the radial and axial
components, Er and Eφ, of the electric field vector be even to leading order in θ, and the angular
component, Eθ, be odd in θ about θ = 0 and θ = π. The regularity conditions are obtained and
enforced for all functions in Chapter 4.

2.5 The Sommerfeld Condition

When studying a dynamical system—or any system, for that matter—on a finite spatial domain,
properties of the system on the domain boundary must be considered. The exact properties may
or may not be known. If not known, the only choice is to apply approximate boundary conditions
and examine whether they are sufficient for the purpose of current investigation.

As an example of a system where exact boundary conditions can be determined, consider the
spherically symmetric massless Klein-Gordon equation

∇a∇aΦ(t, r) = 0 (2.115)

in Minkowski spacetime. In the usual (t, r, θ, φ) spherical polar coordinates, the spacetime is de-
scribed by line element

ds2 = −dt2 + dr2 + r2dΩ2 , (2.116)

where
dΩ2 = dθ2 + sin2 θdφ2 . (2.117)

The spherically symmetric massless Klein-Gordon equation (2.115) can then be written

∂tt(rΦ) = ∂rr(rΦ) , (2.118)

where ∂tt denotes the second partial derivative with respect to temporal coordinate t, and ∂rr

designates the second partial derivative with respect to radial coordinate r. There are both ingoing
and outgoing solutions to (2.118), the ingoing being given by

(rΦ)(t, r) = f(c−t+ r) , (2.119)
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f(c−t+ r) being an arbitrary function of its single variable, while the outgoing solution is given by

(rΦ)(t, r) = g(c+t− r) , (2.120)

g(c+t− r) again being an arbitrary function of just one variable, c− being the ingoing wave speed
and c+ being the outgoing wave speed. The wave speeds are given by solutions of the radial null
geodesic equation, here (

dr

dt

)

±

= c± = ±1 . (2.121)

From (2.119) it follows that ingoing solutions can be written

∂t(rΦ) − (c−)∂r(rΦ) = 0 , (2.122)

while from (2.120) it can be shown that outgoing solutions have the form

∂t(rΦ) + (c+)∂r(rΦ) = 0 . (2.123)

A radial inflow boundary condition for (2.115) then is given exactly by (2.122), while radial outflow
is given exactly by (2.123). When applied at the domain boundary, equation (2.123) is commonly
known as an outgoing radiation boundary condition or the Sommerfeld condition (cf. [135], [136]).

2.5.1 The Sommerfeld Condition in Polar Areal Coordinates

In the spacetime described by polar areal metric

ds2 = −α2dt2 + a2dr2 + r2dΩ2 , (2.124)

where α = α(t, r), a = a(t, r), and dΩ2 again is given by (2.117), the Sommerfeld condition (2.123)
will exactly describe outflow conditions of the massless Klein-Gordon equation when α = 1 and
a = 1 on the boundary. The Sommerfeld condition can still be applied when the spacetime is
curved, but the quality of its approximation to perfect outflow will have to be tested. In the case
of curved spacetime, radial null geodesics satisfy

(
dr

dt

)

±

= c± = ±
(α
a

)
, (2.125)

and so the (now approximate) condition (2.123) becomes

∂t(rΦ) +
(α
a

)
∂r(rΦ) = 0 . (2.126)

In Chapter 3 (2.126) is used to study the critical gravitational collapse of charged massive complex
scalar fields in spherical symmetry. While only approximate, the condition is sufficient for the
choices of scalar field parameters and coordinate range, as demonstrably little inflow or reflection
is observed from the domain boundary.

2.5.2 The Sommerfeld Condition in Kerr-Schild Coordinates

Suppose, instead, the massless Klein-Gordon equation is evolving in the spacetime of a rotating
black hole described by the Kerr metric. In (t, r, θ, φ) Kerr-Schild coordinates, this spacetime is
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described by the line element

ds2 = −
(

1 − 2Mr

Σ

)
dt2 +

(
1 +

2Mr

Σ

)
dr2 + Σdθ2 + sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
dφ2

+

(
4Mr

Σ

)
dtdr −

(
4Mra sin2 θ

Σ

)
dtdφ− 2a sin2 θ

(
1 +

2Mr

Σ

)
drdφ , (2.127)

where
Σ ≡ r2 + a2 cos2 θ , (2.128)

a ≡ J

M
, (2.129)

t is the temporal coordinate, and r, θ and φ are respectively the radial and angular spatial coordi-
nates, M represents the total mass of the black hole spacetime and J its total angular momentum.
In this case, the radial null geodesics satisfy equation

0 = −
(

1 − 2Mr

Σ

)
dt2 +

(
4Mr

Σ

)
dtdr +

(
1 +

2Mr

Σ

)
dr2 , (2.130)

and so the wave speeds are

(
dr

dt

)

±

= c± =

(−2Mr/Σ± 1

1 + 2Mr/Σ

)
. (2.131)

Assuming the scalar field wavefronts are nearly spherical at the domain boundary, the approximate
Sommerfeld condition can then be written

∂t(rΦ) +

(−2Mr/Σ + 1

1 + 2Mr/Σ

)
∂r(rΦ) = 0 . (2.132)

This approximate boundary condition is used in Chapter 4 when studying the dynamics of electro-
magnetic radiation and charged massive scalar fields on a Kerr spacetime background. As discussed
above, the implementation must be tested for inflow and reflections off the outer boundary. In doing
so (2.132) is found sufficient for the purposes of the study.

To conclude, the Sommerfeld condition is often acceptable in practice. The computational
boundaries can always be moved sufficiently far from regions of physical interest that partial re-
flections at late time will add only a tolerably small error to the solution. In situations where more
precisely outgoing conditions are required on the boundary of a finite domain, a technique using
boosted coordinates in conjunction with numerical dissipation can be applied. However, as the
Sommerfeld condition is sufficient for the investigations presented in Chapters 3 and 4, discussion
of this boosted coordinate method is reserved for Appendix D.
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CHAPTER 3

CHARGED SCALAR CRITICAL COLLAPSE

3.1 Preliminary Discussion

3.1.1 Context of This Study

The near-critical collapse of a charged massive scalar field in spherical symmetry is studied in this
chapter. Critical phenomena in gravitational collapse have been briefly discussed in the Chapter
1. More important, the interested reader can access a significant amount of review work on this
subject, most notably due to Gundlach [59], [60], along with other detailed accounts of previous
studies of critical phenomena in spherical symmetry. The latter include Ph. D. theses of many
of Choptuik’s former students (specifically, Liebling [93], Neilsen [106], Hawley [64], Honda [77],
Pretorius [127], Ventrella [144], Noble [108], Olabarrieta [117] and Lai [92]).

Briefly, the reader is reminded that, in traditional critical behaviour, a critical solution has come
to be identified as a type of separatrix (in solution space) between solutions modelling collapse to
a black hole from those which do not. This separatrix has a small number of unstable modes—
indeed, often only a single unstable mode—in perturbation theory. Even within the context of
spherical symmetry, in which the bulk of critical phenomena computations—including those in this
chapter—have been carried out, critical solutions are characterized by additional symmetry relative
to generic solutions admitted for the model. To date, the additional symmetry has been of one of
two types, each of which is further sub-typed as to whether the symmetry is discrete or continuous.

This has lead to the following classification hierarchy of critical solutions. In the top of this
hierarchy, the phase transition between black hole spacetimes and those that are not are classified
first or second order (Type I or Type II respectively) depending on whether or not the minimum
black hole mass above threshold is finite or infinitesimal. Historically, this motivation through
observation that the mass could be viewed as an order parameter traces back to Christodoulou
[36] and Evans [46]. Now, in the second level of this hierarchy, the solutions are further sub-
classified as either discrete or continuous, depending on their symmetry. As discussed in Chapter
1, one of the additional symmetries of Type II solutions is spatiotemporal discrete self-similarity
(DSS). Continuously self-similar (CSS) and static solutions have also been found for Type II case
in spherical symmetry. On the other hand, Type I solutions in spherical symmetry have been found
to additionally possess a time-translational symmetry, which manifests as either (discrete) periodic
or (continuous) static evolution. This classification hierarchy is presented with examples in Table
3.1.

One of the more novel features of the model studied in this chapter—shared with those of
[24], [12] and [16] (for the massive real scalar field), [26] and [29] (for SU(2) Yang-Mills), [9] and
[10] (for the SU(2) Skyrme model), [63], [64], [65] and [92] (for massive complex scalar fields),
and [114] and [108] (for perfect fluids)—is the existence of both Type I and Type II behaviour.
This arises from dimensionful terms in the matter Lagrangian that set a length scale which factors
into the type critical solution obtained. In the limit of small scalar field mass mΦ, and for an
appropriate range of electric coupling parameter e, the massive charged scalar field solutions at
black hole threshold should observe the Type II scaling relations noted in [66], [68] and [58]. The
existence and properties of charged boson star solutions (see [79], [80], [81]), together with the
current understanding of massive scalar critical phenomena, suggest that Type I critical solutions
resembling perturbed charged boson stars should exist for an appropriate set of initial conditions
and range of parameter values e and mΦ [31]. However, details regarding the emergence and
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critical solution additional symmetry example (from spherical symmetry)

Type I continuous (static) SU(2) Yang-Mills [26], [29]

SU(2) Skyrme [9]

perfect fluids [108]

discrete (periodic) massive real scalar field [12], [16]

Type II continuous (static) SU(2) Skyrme [10]

continuous (CSS) perfect fluids [114], [108]

discrete (DSS) massive real scalar field [24]

SU(2) Yang-Mills [26], [29]

Table 3.1: Classification hierarchy of critical solutions. At the top of the hierarchy, the solutions
are classified as either Type I or Type II. In Type I, near-critical black hole masses are
finite. The spherically symmetric Type I solutions are further sub-typed by additional
symmetry as either continuous (static) or discrete (periodic). In Type II, near-critical
black hole masses are infinitesimal. The spherically symmetric Type II solutions are
further sub-typed by additional symmetry as either continuously self-similar (CSS) or
static, or discretely self-similar (DSS). Examples are given from spherically symmet-
ric computations for each of these sub-types. All of the tabulated example models
allow both Type I and Type II solutions, depending on parameter values and initial
conditions.

properties of such solutions have not been documented elsewhere.
Note that the study described below has much in common with those of Brady, Chambers

and Goncalves [12], [16], Hod and Piran [66], [68], Gundlach and Martin-Garcia [57], Hawley and
Choptuik [63], [64], [65] and Lai [92]. Also note that, for the case of the Type II behaviour described
herein, the results of Hod and Piran [66], [68] are expected to be significantly more accurate, and
possessive of better convergence properties due to the fact that they were computed using a high-
order unigrid technique, originally due to Garfinkle [52], tailored to the critical solution. The
value of this particular study then, has been largely one of providing further confirmation of the
view described by Gundlach and Martin-Garcia [57], and Hod and Piran [66], [68] with regards to
charge scaling in the model, as well as completeness, as yet another case of critical collapse has
been examined and the basic theoretical understanding of the phenomenology found solid. Perhaps
most important, this study has provided valuable experience and insight into the nature of critical
phenomena. This experience is likely to be vital in the studies of non-spherical charged collapse
planned for the future.

3.1.2 Issues Regarding Horizons

Before solving the Einstein-Maxwell-Klein-Gordon equations with electromagnetically coupled com-
plex scalar field sources, it is prudent to first consider what global structure one could expect for
the spacetime. Even the spherically symmetric gravitational collapse of simple charged matter
is nontrivial. The spacetime that results is one of a spherically symmetric charge-carrying black
hole with some dynamic spherically symmetric charged matter distribution in its exterior. How-
ever, a generalization of Birkhoff’s theorem guarantees the spacetime external to all matter is
represented by the static Reissner-Nordström solution. While the maximal analytic extension of
Reissner-Nordström spacetime is described by the Penrose diagram 3.1, it does not actually depict
the spacetime generated by the realistic collapse of charged matter in spherical symmetry.

The dynamical evolution of a charged spherical shell of dust has been described in detail by
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Figure 3.1: Penrose diagram showing causal structure of Reissner-Nordström spacetime (cf. [62]).
I and I’ depict asymptotically flat regions of the spacetime outside the black hole. II
and II’ are interior to the event horizon at r = r+, while interior regions III and III’
are separated from II and II’ by the Cauchy horizons at r = r−. I

+ represents future
null infinity and I

− past null infinity, while i− represents past timelike infinity, i+

future timelike infinity and i0 spacelike infinity. The singularity at r = 0 is timelike,
and can thus be avoided by a timelike trajectory.
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Figure 3.2: Conformal diagram for gravitational collapse and apparent horizon formation for a
spherical shell of charged dust when the charge is too small to prevent spacelike
singularity formation in its interior (cf. [11]). I

+ represents future null infinity, I
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past null infinity, i0 is spacelike infinity, and i+ represents future timelike infinity. An
apparent horizon forms at radial coordinate r = r+, and r = r− represents a Cauchy
horizon. The spacetime singularity is spacelike and appears in the interior at r = 0.

Boulware [11] for various values of total mass, M , total charge, Q, and total rest mass M.1 While
the spacetime interior to the spherically symmetric distribution is flat, the complete structure of
spacetime is generally complicated and dependent on the values M , Q and M. For example, if the
charge carried by the matter is sufficiently small, it will not be able to prevent the formation of a
spacelike spacetime singularity in its interior by electrostatic repulsion. In this case, the collapse
will follow the evolution shown in Figure 3.2, which is a conformal diagram showing formation of
an apparent horizon at radial coordinate value r = r+ during evolution. The spacetime singularity
appears in the interior at r = 0, and there exists a Cauchy horizon at r = r− beyond which
spacetime is not determined by Einstein’s equations with the given initial data. In the case where
charge Q is large enough to prevent spacelike singularity formation, the evolution proceeds as
depicted in Figure 3.3. An apparent horizon still forms at r = r+, and a Cauchy horizon at
r = r−. A singularity again forms within the apparent horizon, but outside the charged matter.
This singularity is now timelike and therefore can be avoided by the evolving matter. In fact, once
inside r = r+, the matter can pass through r = r−, and, avoiding the singularity, re-expand into a
second asymptotically flat region of space.

However, the case where a charged shell collapses to leave a black hole spacetime with timelike
singularity is thought to be unrealistic. In fact, Penrose was first to notice that an observer crossing
Cauchy horizon r = r− would see the entire history of asymptotically flat regions in a finite time
[122], implying that r = r− should be unstable to small perturbations as later demonstrated
in [100]. Meanwhile, by studying generic self-gravitating charged scalar field collapse, Hod and
Piran were the first to demonstrate that in addition to the spacelike singularity at r = 0, a null
singularity forms along the Cauchy horizon which then contracts and meets the spacelike singularity

1Novikov similarly studied the evolution of a shell of charged matter in [115].
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Figure 3.3: Conformal diagram for gravitational collapse and apparent horizon formation for a
spherical shell of charged dust when the charge is large enough to prevent spacelike
singularity formation in its interior (cf. [11]). I
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apparent horizon forms at radial coordinate r = r+, and r = r− represents a Cauchy
horizon. A spacetime singularity again appears at r = 0, but it is now timelike and
exterior to the matter.
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contacts to meet the spacelike singularity at r = 0.

at r = 0 [72], [73]. This scenario is depicted in Figure 3.4. These results were confirmed and
analyzed in somewhat greater detail by Oren and Piran [119]. Furthermore, their investigations
demonstrated the contracting null singularity is weak, in that an observer crossing it will experience
only finite tidal forces (cf. [120], [121]). So while their future is unpredictable after crossing r = r−,
observers can ultimately still escape to a causally disconnected region of spacetime which may also
be asymptotically flat.

The salient feature of all these charged matter collapse scenarios is the appearance of the
apparent horizon, outside which the spacetime is still predictable, regardless of any details within
the Cauchy horizon. This property is what allows the use of any of a large number of coordinates
to model processes leading up to the formation of a black hole by charged matter. Providing I am
not interested in evolution beyond apparent horizon formation, non-penetrating coordinates are a
completely suitable choice. The system of equations used in simulations of critical gravitational
collapse of charged massive scalar fields now follows.

3.2 System of Equations

3.2.1 The Matter Lagrangian and Equations of Motion

The Lagrangian for a massive electromagnetically coupled complex scalar field is given by [62]

LM =
√−g[−(∇aΦ − ieAaΦ)(∇aΦ∗ + ieAaΦ∗) − 1

4
F abFab −m 2

Φ Φ∗Φ] , (3.1)
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where mΦ is the scalar field mass parameter, e sets the strength of electromagnetic coupling be-
tween the real and imaginary components of complex scalar field Φ = Φ(t, r), the symbol ∗ denotes
complex conjugation, Aa = Aa(t, r) is the electromagnetic vector potential, and Fab is the anti-
symmetric electromagnetic field strength tensor defined according to

Fab = ∇aAb −∇bAa . (3.2)

In terms of its real and imaginary components (respectively φ1 = φ1(t, r) and φ2 = φ2(t, r)) the
scalar field is written

Φ = φ1 + iφ2 . (3.3)

To make connection with the physical fields, an observer moving with four-velocity na would
measure an electric field

Ea = Fabn
b (3.4)

and a magnetic field

Ba = −1

2
ε cd
ab Fcdn

b , (3.5)

where εabcd is the totally antisymmetric tensor of positive orientation.2

The set of Euler-Lagrange equations for the system described by (3.1),

∂LM

∂Φ
−∇a

[
∂LM

∂(∇aΦ)

]
= 0 ,

∂LM

∂Φ∗
−∇a

[
∂LM

∂(∇aΦ∗)

]
= 0 , (3.6)

∂LM

∂Ab
−∇a

[
∂LM

∂(∇aAb)

]
= 0 , (3.7)

yields equations of motion3

∇a∇aΦ∗ + 2ie(∇aΦ
∗)Aa − e2Φ∗AaA

a + ieΦ∗∇aA
a −m 2

Φ Φ∗ = 0 , (3.8)

∇a∇aΦ − 2ie(∇aΦ)Aa − e2ΦAaA
a − ieΦ∇aA

a −m 2
Φ Φ = 0 , (3.9)

∇aFab − ie(Φ∗∇bΦ − Φ∇bΦ
∗) − 2e2ΦΦ∗Ab = 0 . (3.10)

I have the freedom to choose an electromagnetic gauge condition. I choose the Lorentz gauge
condition

∇aA
a = 0 . (3.11)

This provides me with an equation of evolution for the temporal component of Aa.
Furthermore, since it can be demonstrated that

∇aJ
a = 0 , (3.12)

where

−Jb ≡ ∇aF
ab = ie(Φ∗∇bΦ − Φ∇bΦ∗) + 2e2ΦΦ∗Ab, (3.13)

I conclude Ja is a conserved current.4

2εabcd has norm given by εabcdεabcd = −24, and ε0123 = 1 in a right-handed orthonormal basis.
3Under decomposition (3.3) it is clear that (3.8) and (3.9) are completely equivalent.
4The choice of sign and normalizing factor on Jb are somewhat arbitrary. A different choice of sign would later

introduce a factor of −1 in the value of the electric charge density ρQ.
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3.2.2 The Einstein Lagrangian and Field Equations

The Einstein Lagrangian is
LG =

√−gR , (3.14)

and the total Lagrangian is given by minimally coupling the matter Lagrangian to the geometry
via

L = LG + αMLM , (3.15)

where coupling constant αM will have to be chosen to give the correct normalization for the stress-
energy tensor of the matter field.

The Einstein field equations are obtained by variation of the action

S[gab,Φ,Φ
∗, Aa] =

∫
Ld4x (3.16)

with respect to gab. They are

Gab = Rab −
1

2
gabR = 8πTab , (3.17)

where the stress-energy tensor Tab is given by

Tab =
αM

8π

1√−g

(
−∂LM

∂gab
+

1

2
gabLM

)
. (3.18)

Using (3.1) and (3.18) I explicitly obtain

Tab =
1

2
(∇aΦ∇bΦ

∗ + ∇bΦ∇aΦ∗) − 1

2
ie [(Φ∇bΦ

∗ − Φ∗∇bΦ)Aa + (Φ∇aΦ∗ − Φ∗∇aΦ)Ab]

+e2ΦΦ∗AaAb +
1

2
FacFbdg

cd − 1

2
gab[(∇cΦ − ieAcΦ)(∇cΦ∗ + ieAcΦ∗) +

1

4
F cdFcd

+m 2
Φ Φ∗Φ] , (3.19)

where αM = 8π has been chosen in order that I retrieve the Einstein-Maxwell-Klein-Gordon
equations from (3.17).

3.2.3 The Spacetime Metric and Equations

While many coordinate systems could be used to study the critical collapse of a massive charged
scalar field, one convenient choice is polar-areal. As presented in subsection 2.1.8, the line element
of a spherically symmetric spacetime in polar-areal coordinates is

ds2 = −α2dt2 + a2dr2 + r2dΩ2, (3.20)

where α = α(t, r), a = a(t, r), dΩ2 = dθ2 + sin2 θdφ2, t is the temporal coordinate, and r, θ and φ
are respectively the radial and angular spatial coordinates. Again, the future-directed unit-norm
spatial hypersurface orthogonal vector is na = (1/α, 0, 0, 0), and the spatial metric is

γab = diag
(
a2, r2, r2 sin2 θ

)
. (3.21)

Clearly, as the divergence of a2 marks the formation of an apparent horizon, this coordinate sys-
tem becomes singular and is therefore horizon non-penetrating. With the choice I’ve made for
normalization of the electromagnetic field Lagrangian density, the mass aspect function takes on
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the form

m =
r

2

(
1 − 1

a2
+

q2

4πr2

)
, (3.22)

where m = m(t, r) is the gravitational mass and q = q(t, r) is the electric charge of the source.
Finally, the Hamiltonian constraint is

a′

a
+
a2 − 1

2r
− 4πra2ρ = 0, (3.23)

the momentum constraint is
ȧ− 4πraαjr = 0, (3.24)

and the polar slicing condition is

α′

α
− a2 − 1

2r
− 4πra2Sr

r = 0, (3.25)

where prime, ′, designated partial differentiation with respect to radial coordinate r, overdot, ,̇
designates partial differentiation with respect to temporal coordinate t.5 The explicit forms of ρ
(energy density), jr (momentum density) and Sr

r (stress tensor) are

ρ = Tabn
anb

=
1

2

(
1

a2

)
[ΠΦΠ∗

Φ + (Φr − ieΦAr) (Φ∗
r + ieΦ∗Ar)] +

1

4
(Πr)

2 +
1

2
m 2

Φ ΦΦ∗ , (3.26)

jr = −⊥ (T a
r na)

= −1

2

(
1

a

)
[(Φ∗

r + ieΦ∗Ar) ΠΦ + (Φr − ieΦAr) Π∗
Φ] , (3.27)

Sr
r = ⊥T r

r

=
1

2

(
1

a2

)
[ΠΦΠ∗

Φ + (Φr − ieΦAr) (Φ∗
r + ieΦ∗Ar)] −

1

4
(Πr)

2 − 1

2
m 2

Φ ΦΦ∗ , (3.28)

where ΠΦ = ΠΦ(t, r), Φr = Φr(t, r), and Πr = Πr(t, r) are defined below in equations (3.30), (3.31)
and (3.38).

3.2.4 Matter Equations in First-Order Form

I can rewrite equation of motion (3.9) as

∇a (∇aΦ − ieAaΦ) − ieAa (∇aΦ − ieAaΦ) −m 2
Φ Φ = 0 . (3.29)

Then, computing covariant derivatives of (3.29) for metric (3.20), the equation of motion is a
relatively simple expression. I choose to re-express it in first order form. Defining

ΠΦ(t, r) ≡ naa (∇aΦ − ieAaΦ) , (3.30)

Φr(t, r) ≡ ∂rΦ , (3.31)

5However, to eliminate divergences and loss of numerical precision when a and α approach values close to zero,
the Hamiltonian constraint and slicing condition are best solved using logarithmic variables A ≡ ln a and L ≡ ln α.
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where ∂r designates partial differentiation with respect to coordinate r, equation of motion (3.29)
becomes the following triplet

Π̇Φ = 3∂r3

[
r2
α

a
(Φr − ieArΦ)

]
− ie

[α
a

(Φr − ieArΦ)Ar − ΠΦAt

]
− αam 2

Φ Φ , (3.32)

Φ̇r = ∂r

[α
a

(ΠΦ) + ieAtΦ
]
, (3.33)

Φ̇ =
[α
a

(ΠΦ) + ieAtΦ
]
, (3.34)

where overdot, ,̇ again designates partial differentiation with respect to t, and I have used the chain
rule to rewrite the partial derivative with respect to r as a partial derivative with respect to r3,
designated ∂r3 .6

As with the scalar field, I choose to write and evolve the spatial part of Aa in first order form.7

Defining

Πr(t, r) ≡ na 1

a
(∇aAr −∇rAa) , (3.38)

Atr(t, r) ≡ ∂rAt , (3.39)

the Euler-Lagrange equation for the spatial component of Aa becomes the following set of three
equations

Π̇r =
α

a
(Jr) , (3.40)

Ȧr = [αa (Πr) +Atr] , (3.41)

Atr = ∂r (At) , (3.42)

where (3.13) gives
Jr = −ie(Φ∗Φr − ΦΦ∗

r) − 2e2ΦΦ∗Ar . (3.43)

Finally, while the Lorentz gauge condition is already in first order form, I find it convenient to
define

Ωt(t, r) ≡ naaAa , (3.44)

Πt(t, r) ≡ Ω̇t , (3.45)

6By using the chain rule as per
∂f

∂r
=

∂rn

∂r

∂f

∂rn
= nrn−1 ∂f

∂rn
(3.35)

numerically unsuitable forms such as
1

r2

∂f

∂r
(3.36)

at r = 0 can be rewritten more appropriately as

1

r2

∂f

∂r
= 3

∂f

∂r3
. (3.37)

The first appearance in the literature of numerical relativity for this application of the chain rule was [45].
7It can be demonstrated that in spherical symmetry the components Aθ and Aφ must completely decouple from

the system of equations. I am therefore free to set them both to zero for all time.
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and recast the gauge condition as the triplet

Πt = 3∂r3

[
r2
α

a
(Ar)

]
, (3.46)

Ω̇t = Πt , (3.47)

At =
α

a
(Ωt) , (3.48)

where the chain rule has again been applied to recast the differential equation in a more appropriate
form.

3.2.5 Physical and Conserved Quantities

The only non-vanishing electromagnetic field component measured by an observer with four-velocity
na can be expressed

Er = −aΠr , (3.49)

the temporal component of the current four-vector can be written

Jt = ie
α

a
(Φ∗ΠΦ − ΦΠ∗

Φ) , (3.50)

and the conserved electric charge density expressed

ρQ = −ie1

a
(Φ∗ΠΦ − ΦΠ∗

Φ) . (3.51)

Outside gravitational sources, where ta = (1, 0, 0, 0) is a timelike Killing vector field, the quantity

ρT =
1

2

( α
a2

)
[ΠΦΠ∗

Φ + (Φr − ieΦAr) (Φ∗
r + ieΦ∗Ar)] +

1

4
α (Πr)

2
+

1

2
αm 2

Φ ΦΦ∗ (3.52)

is a conserved energy density. Then, from (2.104), the total charge,

Q =

∫ 2π

φ=0

∫ π

θ=0

∫ ∞

r=0

ρQ

(
ar2 sin θ

)
drdθdφ , (3.53)

will be constant. Similarly, from (2.108), the total energy,

T =

∫ 2π

φ=0

∫ π

θ=0

∫ r2

r=r1

ρT

(
ar2 sin θ

)
drdθdφ , (3.54)

will also be constant if no gravitational sources reside within r1 ≤ r ≤ r2.

3.2.6 Regularity, Boundary Conditions and Dissipation

According to the definitions of section 2.4 (cf. [6], [45]), the regularity conditions for functions listed
above require that matter variables Φ, ΠΦ, At, Ωt, Πt Jt, ρQ and ρT are, to leading order, even in
r about r = 0. Variables Φr, Ar, Πr, Atr, Jr and Er will to leading order be odd. For the leading-
order-even variables I enforce regularity at the grid point corresponding to r = 0 by applying a
quadratic fix as listed in Appendix C. Meanwhile, the regularity condition of the leading-order-odd
variables is enforced by setting the functions equal to zero at the degenerate point.

I apply the (approximate) Sommerfeld outgoing radiation condition to Φ at the computational
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domain boundary r = rmax. As discussed in Chapter 2, this condition adopts the form

∂t(rΦ) +
(α
a

)
∂r(rΦ) = 0 (3.55)

for the spherically symmetric metric in polar areal coordinates. Assuming spacetime is essentially
flat at r = rmax, condition (3.55) reduces to

∂t(rΦ) + ∂r(rΦ) = 0 . (3.56)

Observe how (3.55) and (3.56) assume both e and mΦ have an insignificant effect on scalar field
dynamics at the boundary. It can be shown that, under these assumptions, an approximate Som-
merfeld condition can also be written for ΠΦ as per

∂t(rΠΦ) + ∂r(rΠΦ) = 0 . (3.57)

Assuming r = rmax is sufficiently large, an approximate Sommerfeld condition can similarly be
written for Φr. I implement the these equations (and all others containing partial derivatives in r)
using backwards spatial differencing operators.

Since the Hamiltonian constraint is solved by integrating outwards, I impose the inner boundary
condition

a(t, 0) = 1 (3.58)

on metric function a(t, r). Function a is set to unity here because this is the flat-space value the
metric takes interior to a spherically symmetric matter distribution. Meanwhile, for α(t, r) I impose
an outer boundary condition

α(t, rmax) =
1

a(t, rmax)
. (3.59)

The condition is for the outer boundary because I solve the slicing condition by integrating inwards
from r = rmax. Furthermore, the specific choice a−1(t, rmax) is used because of the analogy with
Reissner-Nordström spacetime in which the temporal and radial metric functions are reciprocal.
Finally, regularity for metric functions a and α requires they be even to leading order in coordinate
r about r = 0.

I employ Kreiss-Oliger dissipation as discussed in Appendix C. The dissipation is added to
all functions whose evolutionary equations explicitly include derivatives with respect to t. The
complete set is Φ, Φr, ΠΦ, Ar, Πr, Ωt and amom, where amom represents the metric function a(t, r)
when solved using the momentum constraint (3.24). Since the Kreiss-Oliger dissipation operator
has a stencil8 five points wide, it is only applied at locations two grid points from the bounds of
the computational domain (r = 0 and r = rmax). Finally, I find the value ε = 0.5 a good choice
for the adjustable dissipation parameter in all simulations presented. With the choice of Courant
factor λ = 0.5, the system of equations evolves stably under the Crank-Nicholson iterative scheme.

3.3 Results

3.3.1 Initial Data Profiles

The basic idea is to choose a family of initial data parametrized by a single variable p and let the
system evolve. Observing the dynamics, I note whether or not the outcome is formation of a black
hole at some future time. I then successively adjust the value of p to the critical value p∗ which
marks the threshold of black hole formation: if p > p∗ the system forms a black hole, if p < p∗ it
does not.

8A stencil is essentially a list of the set of points on which a finite difference operator is dependent. Details and
discussion can be found in Appendix C.
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Now, since the scalar field is complex

Φ = φ1 + iφ2 , (3.60)

its conjugate momentum must also be complex

ΠΦ = Π1 + iΠ2 , (3.61)

where Π1 = Π1(t, r) and Π2 = Π2(t, r). From definition (3.30) it is evident the complex components
of ΠΦ are explicitly

Π1 =
a

α

(
φ̇1 + eAtφ2

)
, (3.62)

and
Π2 =

a

α

(
φ̇2 − eAtφ1

)
. (3.63)

In terms of the field variables, electromagnetic coupling parameter, and metric components, the
electric charge density (3.51) is explicitly

ρQ = −2e

a
(φ1Π2 − φ2Π1)

= −2e

α

(
φ1φ̇2 − φ2φ̇1 − eAt(φ

2
1 + φ2

2)
)
. (3.64)

So while it may be tempting to ascribe positive charge to, say, scalar field component φ1 and
negative charge to φ2, the dependencies of Π1 and Π2 on both φ1 and φ2 indicates that positive
and negative charge must simultaneously be attributed to both scalar field components. Families
of initial data can therefore possess a variety of charge density profiles, depending on the choice of
φ1, φ2, Π1, Π2 and e, and generic initial data will evolve to a state with both positive and negative
charge density distributed within some volume of space.9

For given values of e and mΦ, I choose from one of six different initial data families tabulated
below and tune a single free parameter to its critical value. Each of the six families are constructed
from initial Gaussian profiles for φ1, φ2, Π1, Π2, At and Ar.

10 That is,

φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2) , (3.65)

φ2(t = 0, r) = a2 exp(−((r − r2)/δ2)
2) , (3.66)

Π1(t = 0, r) = a3 exp(−((r − r3)/δ3)
2) , (3.67)

Π2(t = 0, r) = a4 exp(−((r − r4)/δ4)
2) , (3.68)

At(t = 0, r) = at exp(−((r − rt)/δt)
2) , (3.69)

9Furthermore, assume that a system is assembled from two species of massive complex scalar field, both with the
same charge coupling parameter e, but one having a large mass parameter mΦ and the other a small one. Data could
always be constructed where the field with large mass parameter contributes a positive charge density at initial time,
while the field with small mass parameter contributes a negative charge density. However, as evident from equation
(3.64), generic evolution of the field with initial positive charge density will soon appear to carry a component of
negative charge, while the initially negative charge density field will appear to contribute some amount of positive
charge. While total charge of the ensemble will be conserved, neither positive nor negative contributions by either
field need remain separately constant. This behaviour is borne out by numerical simulation. It is in this sense that
massive charged scalar fields are incapable of modelling the generic behaviour of an ionized gas composed of heavy,
always positively charged ions amid a cloud of light, always negatively charged electrons.

10From equation (3.43) a nonzero radial electric current requires e, Φ and Φ∗ to be nonzero. In addition, the
conditions for a nonzero current are either Ar be nonzero, Φr be nonzero, or Φ∗

r be nonzero. Clearly, families A, B,
C and D of Table 3.2 satisfy the nonzero current condition at initial time if e 6= 0. Charge separation in these four
cases can therefore be said to originate at initial time t = 0. Furthermore, since families E or F do not satisfy the
requirements for nonzero radial current at initial time, charge separation can only occur when t > 0.
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and
Ar(t = 0, r) = ar exp(−((r − rr)/δr)

2) . (3.70)

The tuning parameter is always a1, at = ar = 0.0132, and depending on the family, a2, a3 and a4

take on values either 0.0 or 0.0132. For all families

r1 = r2 = r3 = r4 = 10.0 (3.71)

and
δ1 = δ2 = δ3 = δ4 = 2.0 . (3.72)

The spatial coordinate range is always 0 ≤ r ≤ 80. Finally, all solutions are computed on a finite
difference grid with at least J = 3201 grid points in the radial direction, and using adaptive mesh
refinement as outlined in Appendix C.

family φ1, φ2, Π1, Π2 ρQ(t = 0, r; e 6= 0)

A φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), 6= 0

φ2(t = 0, r) = a2 exp(−((r − r2)/δ2)
2),

Π1(t = 0, r) = a3 exp(−((r − r3)/δ3)
2),

Π2(t = 0, r) = a4 exp(−((r − r4)/δ4)
2)

B φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), 6= 0

φ2(t = 0, r) = 0,

Π1(t = 0, r) = a3 exp(−((r − r3)/δ3)
2),

Π2(t = 0, r) = a4 exp(−((r − r4)/δ4)
2)

C φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), 6= 0

φ2(t = 0, r) = a2 exp(−((r − r2)/δ2)
2),

Π1(t = 0, r) = a3 exp(−((r − r3)/δ3)
2),

Π2(t = 0, r) = 0

D φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), = 0

φ2(t = 0, r) = 0,

Π1(t = 0, r) = a3 exp(−((r − r3)/δ3)
2),

Π2(t = 0, r) = 0

E φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), = 0

φ2(t = 0, r) = a2 exp(−((r − r2)/δ2)
2),

Π1(t = 0, r) = 0,

Π2(t = 0, r) = 0

F φ1(t = 0, r) = a1 exp(−((r − r1)/δ1)
2), = 0

φ2(t = 0, r) = 0,

Π1(t = 0, r) = 0,

Π2(t = 0, r) = 0

Table 3.2: Critical gravitational collapse initial data families A through F. The first column lists
the family and the second column specifies the initial data profiles for φ1, φ2, Π1 and
Φ2 of that family. The third column lists whether or not the initial data can carry
nonzero electric charge density when e 6= 0.
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3.3.2 Results for e = 1.0 with mΦ = 0.0

As expected, I recover Choptuik’s original discretely self-similar and universal solution [23] in the
limit e→ 0 and mΦ → 0. For values e = 1.0 with mΦ = 0.0 I again observe a discretely self-similar
and universal solution, but the near-critical solution now carries electric charge.

Discrete Self-Similarity and Universality

The solution represents itself as an infinite series of echoes as the scalar field repeatedly attempts
to collapse to a black hole, but never quite makes it. With each failed attempt some scalar field is
shed, and the succeeding echo occurs on an exponentially smaller spatial scale after an exponentially
shorter interval of time.

The discrete self-similarity of the critical solution is apparent in successive maxima of the
quantity

2m(t, r)/r = (1 − a−2) +Q 2/(4πr2) , (3.73)

where Q = Q(t, r) is the net charge enclosed by a sphere of radius r at time t. For example, having
tuned to |p − p∗| ∼ 10−16, I take the profile of 2m(t, r)/r at the maximum of its third echo for
family A and spatially rescale it by a factor exp(∆), ∆ ≈ 3.47. I then find the rescaled third echo
profile matches that of the preceding (second) echo, consistent with the findings of [66] and [68].
This is displayed below in Figure 3.5. Meanwhile, universality of the solution is manifest in the
fact that all critical solutions exhibit like profiles and that the scaling exponents ∆ are essentially
the same for all families A through F.

Mass and Charge Scaling

As the critical solution is approached from above, it would appear the back holes formed become
arbitrarily small as p → p∗. This is supported by the results presented in Figure 3.6. Down to
machine precision, black hole masses there observe a power-law behavior

ln(mBH) = γm ln ((p− p∗)/p∗) + c1, (3.74)

where c1 is a family dependent constant. For family A I find a value γm ≈ 0.385, consistent with
the results of [66], [68] and analysis of [57]. Not only do black hole masses observe a power-law
relationship with respect to the critical parameter, but so do the black hole charges. Supporting
numerical results are presented in Figure 3.7. Similarly, this power-law has the functional form

ln(|QBH|) = γQ ln ((p− p∗)/p∗) + c2, (3.75)

where c2 is another family dependent constant.11 However, γQ > γm so the black hole sheds charge
more rapidly than mass with each successive echo as the critical solution is approached from above.
For family A I find γQ ≈ 0.854, again consistent with [66], [68] and [57], and also their prediction
that γQ ≥ 2γm. Explicitly, I show the charge to mass ratio of the black hole solutions in Figure
3.8. Clearly, while the ratio |QBH|/mBH decreases exponentially as p → p∗, it is possible to form
black holes with 0 . |QBH|/mBH . 1 when sufficiently far from the critical solution.

11The data of Figure 3.7 suggest a small periodic wiggle superimposed on the otherwise straight line fit, consistent
with the predictions and results of [57], [66] and [68]. While a similar periodic wiggle is known to exist for the mass
scaling relationship of both charged [57], [66], [68] and uncharged [58], [67] massive scalar fields, the behaviour is
not apparent in Figure 3.6. The absence of a wiggle can there be attributed to numerical inaccuracy arising with
the divergence of polar areal radial metric function a(t, r) just before apparent horizon formation. Of course, the
periodic wiggle could be explored further by examining maximum spacetime curvature of subcritical solutions as
p → p∗ from below.
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Figure 3.5: Discrete self-similarity for the critical solution of family A with e = 1.0, mΦ = 0.0
as demonstrated by spatially rescaling the third echo of 2m(t, r)/r by exp(∆) and
comparing it to the unscaled second echo. The two echo profiles agree so closely their
differences are not apparent on the scale of this figure.
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Figure 3.6: Power-law scaling of the black hole mass mBH as the critical solution is approached
from above for family A with e = 1.0 and mΦ = 0.0. Here, the scaling exponent is
γm ≈ 0.385.
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Figure 3.7: Power-law scaling of the black hole charge QBH as the critical solution is approached
from above for family A with e = 1.0 and mΦ = 0.0. Here, the scaling exponent is
γQ ≈ 0.854.



CHAPTER 3. CHARGED SCALAR CRITICAL COLLAPSE 42

Figure 3.8: Charge to mass scaling of the black hole solutions as the critical solution is approached
from above for family A with e = 1.0 andmΦ = 0.0. The charge of black hole solutions
decreases more rapidly than black hole mass as p→ p∗, indicating the exactly critical
solution will be uncharged. Furthermore, solutions with 0 . |QBH|/mBH . 1 can be
obtained when p is sufficiently far from its critical value p∗.
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3.3.3 Results for e = 1.0 with mΦ = 1.0

When the scalar field mass parameter mΦ is sufficiently larger than zero, the critical solution ceases
to be discretely self-similar. Rather, it becomes periodic—resembling an oscillating perturbed boson
star with nonzero electric charge. Again, the existence of such solutions is not surprising—not only
are charged boson star solutions known to exist [79], [80], [81], but the current understanding of
massive scalar critical phenomena would also suggest that critical solutions resembling perturbed
charged boson stars should exist for an appropriate set of initial conditions and range of parameter
values e and mΦ [31]. However, the emergence and details of such solutions were not previously
observed.

Figures 3.9, 3.10 and 3.11 show the maximum of 2m(t, r)/r and its location for an e = 1.0,
mΦ = 1.0 supercritical evolution of the family F when |p − p∗| ∼ 10−16. Examining Figures 3.10
and 3.11 it is clear the nearly critical solutions are composed of a high frequency component with
period ≈ 4t modulated by a lower frequency of period ≈ 40t. Assuming the results from [63],
[64] and [65] carry over to the situation presented here, the low frequency period ≈ 40t can likely
be attributed to excitation of the first harmonic mode of an unstable boson star. However, the
occurrence of an additional higher frequency period (≈ 4t or otherwise) has not been noted in
previous studies of critical gravitational collapse in massive complex scalar field systems. But note
those previous studies involved perturbation of (static) boson star initial conditions when obtaining
critical solutions. It is entirely possible initial conditions of that sort may actually disallow the
additional high frequency components as observed in this study. Finally, note the presence of the
high frequency mode throughout the entire evolution (not just over the critical phase 140 . t . 450)
here indicates it is not unique to the critical solution, and so must be associated with more generic
properties of the scalar field evolution.

To investigate further consequences of the additional high frequency mode, the scalar field
modulus at r = 0 is plotted as a function of time in Figure 3.12. It is there apparent how the
maxima of |Φ(t, 0)| follow a low frequency period likely equal to that of the first harmonic mode
of an unstable boson star. However, the scalar field amplitude also oscillates with a period ≈ 4t,
dropping to nearly zero with each oscillation.12 Furthermore, careful examination reveals that
while the low frequency maxima of |Φ(t, 0)| occur in phase with the low frequency mode maxima
of max(2m(t, r)/r), the high frequency extrema of |Φ(t, 0)| occur exactly out of phase with those of
max(2m(t, r)/r). This opposing phase correlation is observed throughout evolution, not just during
the critical phase 140 . t . 450. Furthermore, the high frequency opposing phase correlation is
observed between functions |Φ(t, 0)| and max(2m(t, r)/r) for (generic) evolution of this family when
p is far from p∗.

To examine possible correlation of the two dominant modes of oscillation and electric charge,
Figure 3.13 displays Q(t, r), the total charge contained within spheres of r, for family F when
|p − p∗| ∼ 10−16. The chosen values for r are r = r̄, r = 2r̄, r = 3r̄ and r = 4r̄, where r̄ ≈ 2.7
is the average radius of max(2m(t, r)/r) over 150 . t . 360. This figure shows how, just as for
|Φ(t, 0)|, the low frequency local maxima in Q(t, r̄) and Q(t, 2r̄) correlate with the low frequency
local maxima in max(2m(t, r)/r). Furthermore, a high frequency component is observed in Q(t, r̄)
and Q(t, 2r̄), as would be expected from the relationship between charge density and scalar field
amplitude. Notice how integration of charge density over larger radii effectively averages the
dynamics observed in Q(t, r). Finally, it is clear the average value of Q(t, r) tends towards zero
from above, indicating small net leakage of positive charge (or inflow of negative charge) from
smaller (larger) radii during critical evolution.

Finally, to investigate whether the additional high frequency mode stems from electromagnetic
coupling, the critical solution was obtained for family F when mΦ = 1.0 and e = 0.0. In doing so,
it found the high frequency oscillation of period ≈ 4t was again present, as was the fundamental

12Similar behaviour has been noted for the so-called (uncharged, non-critical) phase-shifted boson star solutions
documented in Hawley’s dissertation [64]. There, numerical evolution suggested the oscillations in scalar field
amplitude were likely stable and quasi-periodic.
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Figure 3.9: max(2m(t, r)/r) of the critical periodic state for e = 1.0, mΦ = 1.0 Maxwell-Klein-
Gordon fields evolved from initial data family F when |p − p∗| ∼ 10−16. After an
initial phase of evolution, the solution enters its critical state which lasts over the
period 140 . t . 450. The sharp increase of max(2m(t, r)/r) at late time corre-
sponds with a(t, r) → 1, the signal of imminent apparent horizon formation. An
MPEG animation of 2m(t, r)/r over the period 0 ≤ t . 507 leading to black hole
formation is available at http://$WWW/People/petryk/animations/1.mpeg where
$WWW is currently laplace.physics.ubc.ca .
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Figure 3.10: A closer view of max(2m(t, r)/r) showing oscillations within the critical periodic
state for e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon fields evolved from family F
when |p − p∗| ∼ 10−16. The average value of max(2m(t, r)/r) over 150 . t . 360
is approximately 0.30. The periodicity of the solution is clearly evident as a low
frequency component with period ≈ 40t along with a high frequency component
with periodicity ≈ 4t.
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Figure 3.11: A view of r(max(2m(t, r)/r)) within the critical periodic state for e = 1.0, mΦ = 1.0
Maxwell-Klein-Gordon fields evolved from family F when |p− p∗| ∼ 10−16. Clearly,
the location of max(2m(t, r)/r) oscillates about an average radius of approximately
r̄ ≈ 2.7 for 150 . t . 360 during the critical phase of evolution.
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Figure 3.12: Modulus of the scalar field amplitude at r = 0 for the critical periodic state of
e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon fields evolved from family F when |p −
p∗| ∼ 10−16. Unlike previously studied boson star critical solutions where just
the first harmonic mode is excited and |Φ(t, 0)| remains far from zero, the central
scalar field amplitude of the highly excited periodic critical solution drops to nearly
zero with each high frequency oscillation of period ≈ 4t.14 Furthermore, while
previous perturbed boson star critical solutions displayed coincident peak values
of max(2m(t, r)/r) and |Φ(t, 0)|, just the local maxima associated with the low
frequency excitation remain coincident for the solution displayed here. In fact, local
maxima associated with the high frequency mode of |Φ(t, 0)| are precisely coincident
with the local minima associated with the high frequency mode of max(2m(t, r)/r).
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Figure 3.13: Charge contained within spheres of radius r for the critical periodic state from
e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon fields evolved from initial data family
F. A frame displaying max(2m(t, r)/r) is provided for reference. Subfigure (a) dis-
plays Q(t, r) for r = r̄ where r̄ ≈ 2.7 is the average radius of max(2m(t, r)/r) over
150 . t . 360. Meanwhile, (b) displays Q(t, r) for r = 2r̄, (c) displays Q(t, r) for
r = 3r̄, and (d) shows Q(t, r) for r = 4r̄. From (a) and (b) it is clear that, at
small radii, Q(t, r) fluctuates with a low frequency component period ≈ 40t and a
high frequency component period of ≈ 4t. While the low frequency mode becomes
somewhat irregular at later time, the high frequency component is persistent and
very regular throughout evolution. Integration over larger radii effectively averages
the fluctuations in Q(t, r). In doing so, it makes clear a tendency for the net charge
within r = 4r̄ to slowly decrease in time during the critical phase of evolution.
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Figure 3.14: Lifetime of the critical periodic state for e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon
fields evolved from initial data family F. The exponential scaling of τ with |p−p∗| is
typical of perturbed boson star critical solutions [63], [64], [65], [92], and the scaling
exponent is here γτ ≈ 12.3.

harmonic mode of period ≈ 40t. The critical solutions for family F with mΦ = 1.0 and e = 1.0, and
mΦ = 1.0 and e = 0.0 are very similar in all but two regards. The first being the obvious lack of
charge for case e = 0.0. The second is the lifetime of the critical state for |p− p∗| ∼ 10−16. While
the critical phase of evolution for the e = 1.0 charged case was 140 . t . 450, the critical phase of
the e = 0.0 uncharged case was merely 140 . t . 240, indicating the unstable mode of the charged
critical solution appears to grow more slowly than that of the uncharged critical solution when the
adjustable parameter of this family is tuned to its critical value to within one part in 10−16.

This brings discussion to the lifetimes of the charged periodic critical solutions. Figure 3.14
displays the scaling of the critical solution lifetime, τ , with ln |p− p∗|. Clearly, the relationship of
lifetime with tuning parameter is

τ = −γτ ln |p− p∗| + c3 , (3.76)

where γτ and c3 are solution-dependent constants (cf. [63], [64], [65], [92]).15 The lifetime of
the critical solution is measured from the time it takes to form a black hole from the slightly
supercritical data. In the present case γτ ≈ 12.3.

15This constant is known to be related to the growth factor of unstable modes for uncharged boson stars. The
relationship can be verified through perturbation theory analysis about equilibrium boson star solutions. While it
is likely that a similar relationship exists for weakly charged boson stars, I am unaware how this relationship could
carry over for boson stars with strong electromagnetic coupling. Investigation along these lines are certainly of
interest for future calculation.
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Typical of such periodic critical solutions is the presence of a mass gap in the black hole spectrum
when tuning to p∗ from above (i.e., they exhibit Type I critical behaviour). This means there is a
minimum mass for the black holes formed from supercritical evolution. This behaviour is clearly
depicted in Figure 3.15 where the average black hole mass limit is mBH ≈ 0.48. A least-squares
fit of the data to mBH = c4 ln |p − p∗| + c5 yields values c4 ≈ −9.2 × 10−4 and c5 ≈ 4.6 × 10−1.
Also provided is Figure 3.16 displaying how the average charge of these black holes approaches the
limit QBH ≈ 0.0032. A least-squares fit to QBH = c6 ln |p− p∗|+ c7 here yields c6 ≈ 3.6× 10−5 and
c7 ≈ 4.1× 10−3. These results together imply a charge to mass ratio QBH/mBH ∼ 10−2 as p→ p∗

for this family of solutions. These periodic solutions carrying electric charge represent a new result,
because the only critical solutions found prior to this investigation have been uncharged. Finally,
the oscillation periods of the critical solution are dependent on e and mΦ, and the scaling exponent
γτ depends on the initial data family. Of course, the family dependence of perturbed boson star
solutions is well known [63], [64], [65], [92] and means the critical solutions are not universal. Table
3.3 lists the properties of black holes formed from slightly supercritical Type I solutions for each
of the families A through F when e = 1.0 and mΦ = 1.0. Each family exhibiting Type I critical
behaviour has a scaling exponent γτ ≈ 12 and forms a black hole of mass mBH ≈ 0.5. However,
the black hole charges vary widely, and the charge to mass ratios of the black holes range from
|QBH|/mBH ∼ 0.006 for family D to |QBH|/mBH ∼ 0.3 for family B.

family ρQ(t = 0, r) Q(t = 0, r) γτ mBH(p→ p∗) QBH(p→ p∗)

A − − − − −
B < 0 ≈ −0.46 ≈ 12.4 ≈ 0.48 ≈ −0.16

C − − − − −
D = 0 = 0 ≈ 11.9 ≈ 0.45 ≈ 0.0026

E = 0 = 0 ≈ 12.3 ≈ 0.47 ≈ 0.0032

F = 0 = 0 ≈ 12.3 ≈ 0.48 ≈ 0.0032

Table 3.3: Black hole properties from gravitational collapse of slightly supercritical Type I solu-
tions for families A through F when e = 1.0 and mΦ = 1.0. The first column lists the
family (cf. Table 3.2), the second column specifies whether the initial charge density
is nonzero and the third column lists the total charge carried by the initial data. The
fourth column lists the lifetime scaling exponent for the Type I critical solution. The
scaling exponents are all close in value. The fifth and sixth columns respectively list
the black hole mass and charge from gravitational collapse of slightly supercritical so-
lutions. The black hole masses are all close in value, but the charges cover a wide range
of values. The charge to mass ratio of the black holes range from |QBH|/mBH ∼ 0.006
for family D to |QBH|/mBH ∼ 0.3 for family B. The entries for families A and C are
left blank, since those initial data profiles do not exhibit Type I critical solutions for
any value of tuning parameter φ1.

Concluding discussion of the results, I now comment on the final fate of subcritical periodic
solutions. In the earlier studies [63], [64] and [65] it was assumed the subcritical periodic solutions
were simply described by dispersal of the scalar field to large distances. Since then it was found
that slightly subcritical periodic solutions may actually begin dispersal, only to gravitationally
recontract to a more compact distribution at later time [92]. After such recontraction to a more
compact state, the scalar field distribution may either collapse to form a black hole or again expand
to larger radii. If a second dispersal is attempted, the scalar field distribution will again recontract
to a more compact compact state before either collapsing to a black hole or repeating the process
of expansion and contraction. The results I now present displaying this behaviour were found
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Figure 3.15: Mass gap for (supercritical) black hole solutions for e = 1.0, mΦ = 1.0 Maxwell-
Klein-Gordon fields evolved from initial data family F. The average minimum mass
of black holes formed from slightly supercritical data remains fairly constant about
mBH ≈ 0.48 as p→ p∗. The best fit line is shown for reference.
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Figure 3.16: Minimum charge of (supercritical) black hole solutions for e = 1.0, mΦ = 1.0
Maxwell-Klein-Gordon fields evolved from initial data family F. The average charge
of black holes formed from slightly supercritical data remains fairly constant about
QBH ≈ 0.0032 as p→ p∗. The best fit line is shown for reference.
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independent, and without knowledge, of those eventually published in [92]. Figure 3.17 shows
max(2m(t, r)/r) and |Φ(t, 0)| in time for the slightly subcritical evolution of family F with e = 1.0
and mΦ = 1.0. Meanwhile, Figure 3.18 shows max(2m(t, r)/r) and |Φ(t, 0)| in time for the slightly
subcritical evolution of family F with e = 0.0 and mΦ = 1.0. In both cases, the displayed evolution
is for a state with |p − p∗| ∼ 10−16. Observe how the solution with e = 1.0 enters its critical
phase of evolution from 140 . t . 450 before attempting dispersal. The solution then attempts
recollapse and max(2m(t, r)/r) peaks at t ≈ 660. The charged scalar field attempts a second
dispersal, but then undergoes complete gravitational collapse at t ≈ 960. Also observe how the
high frequency oscillations with period ≈ 4t persist throughout the evolution. Furthermore, note
the correlation between the high frequency oscillations of |Φ(t, 0)| and those of max(2m(t, r)/r),
and how the amplitude |Φ(t, 0)| drops to nearly zero with each oscillation period ≈ 4t from the
beginning to the end of evolution. Meanwhile, Figure 3.18 demonstrates how the slightly subcritical
evolution of for e = 0.0 enters the critical phase of evolution which lasts from 140 . t . 250 before
attempting a seemingly infinite series of attempted dispersals and collapses. The high frequency
oscillations of period ≈ 4t are again observed throughout evolution in both max(2m(t, r)/r) and
|Φ(t, 0)|. While the |Φ(t, 0)| drops to nearly zero with each oscillation, the cycle averaged value of
|Φ(t, 0)| shows direct correlation with the cycle averaged value of max(2m(t, r)/r). Finally, with
each attempted dispersal and contraction on the scale of ≈ 230t (similar to that found in [92]), the
value of max(2m(t, r)/r) asymptotes towards a value ≈ 0.14. Similar behaviour is seen in |Φ(t, 0)|
as its peak values tend to approach ≈ 0.04. While only presented for family F initial conditions,
similar behaviour can be observed for periodic solutions of all families A through F when mΦ = 1.0
and 0.0 ≤ e ≤ 1.0.

3.3.4 Code Testing

Finally, the adaptive mesh code I use to obtain the results is demonstrably convergent to second
order, and through convergence of conserved quantities can be shown to be accurate to well within
a percent for a typical evolution. Also, the suitability of the approximate Sommerfeld boundary
condition was briefly investigated and found to contribute an error on the order of a percent in worst
case scenarios. Detailed investigation of these boundary condition effects is certainly of interest in
future calculation.

In conclusion I provide in Figure 3.19 an explicit demonstration that the code, being convergent,
generates lifetime scaling exponents that asymptote towards a specific value. In this figure are
plotted the lifetime of the nearly critical periodic solutions for family F when e = 1.0 and mΦ = 1.0.
The lifetimes were calculated using the adaptive code, but with the mesh refinement effectively
disabled by setting a large solution error tolerance.16 Results were thus obtained on fixed finite
difference meshes with J = 1601, J = 801 and J = 401 grid points. Since the critical parameter
value p∗ is resolution dependent, this required recalculation of the critical parameter value for each
of the three resolutions. Fitting a liner function to the results at each resolution generates values of
γτ ≈ 12.5 for J = 1601, γτ ≈ 13.0 for J = 801 and γτ ≈ 17.5 for J = 401. Clearly, as resolution is
increased, the lifetime scaling exponent approaches the value γτ ≈ 12.3 obtained using the adaptive
code. Of course, this behaviour is entirely expected.

16See Appendix C for discussion of the adaptive algorithm and refinement by solution error.
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Figure 3.17: max(2m(t, r)/r) and |Φ(t, 0)| in coordinate time t for the e = 1.0, mΦ = 1.0 fields
for slightly subcritical initial data family F, specifically |p− p∗| ∼ 10−16. After the
critical phase of evolution 140 . t . 450, the charged massive scalar field attempts
dispersal twice before eventually collapsing to form a black hole at t ≈ 960. The
high frequency oscillations of period ≈ 4t are apparent throughout evolution for
both max(2m(t, r)/r) and |Φ(t, 0)|, and |Φ(t, 0)| drops to nearly zero with each of
these oscillations.
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Figure 3.18: max(2m(t, r)/r) and |Φ(t, 0)| in coordinate time t for the e = 0.0, mΦ = 1.0 fields
for slightly subcritical initial data family F, specifically |p− p∗| ∼ 10−16. The mas-
sive scalar field exits its critical period of evolution and undergoes an apparently
infinite series of dispersals and contractions. The high frequency oscillations of pe-
riod ≈ 4t are apparent throughout evolution for both max(2m(t, r)/r) and |Φ(t, 0)|,
and |Φ(t, 0)| drops to nearly zero for each of these oscillations. It appears that
max(2m(t, r)/r) and |Φ(t, 0)| gradually relax to a less excited state as the evolution
proceeds.
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Figure 3.19: Lifetime of the critical periodic state for e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon
fields evolved from initial data family F on three successive grid resolutions. The
lifetime scaling exponent of the nearly critical solution on a grid of J = 401 points is
γτ ≈ 17.5, on a grid of J = 801 points is γτ ≈ 13.0, and on a grid of J = 1601 points
is γτ ≈ 12.5. With increase in resolution, the scaling exponent thus approaches a
value near γτ ≈ 12.3 as found with the adaptive code.
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CHAPTER 4

CHARGED SCALAR ACCRETION

To summarize, Chapter 1 introduced and motivated the research and results to be presented in this
dissertation, Chapter 2 covered the physical formalism to be used in the investigations of following
chapters, and Chapter 3 provided discussion and results for the critical gravitational collapse of
spherically symmetric charged massive scalar fields. This chapter will cover the scattering and
accretion of axially symmetric charged massive scalar fields in Kerr spacetime. The length of this
chapter warrants outline of the physics to be investigated and results obtained through numerical
solution. Table 4.1 has also been provided for reference and summary.

In this chapter, I first provide discussion of theory and previous work on the subject of s = 0
(scalar) and s = 1 (electromagnetic) perturbations of black hole spacetimes. Specifically, §4.1.1
outlines the effective potential formulation for Schwarzschild spacetime, the trapping of massive
scalar perturbations in the effective potential formulation, and the scattering of both scalar and
electromagnetic perturbations from the effective potential perspective. §4.1.2 outlines the physics
of glories and orbiting resonances in Schwarzschild spacetime from the perspective of the effective
potential formulation. §4.1.3 outlines the effective potential formulation of s = 0 and s = 1
perturbations in Kerr spacetime, and §4.1.4 covers the physics of superradiant scattering and some
related topics. §4.1.5 and §4.1.6 close discussion of the underlying theory by respectively covering
the topic of black hole perturbation decay at late time and reviewing related work in the area
of charged scalar perturbations. Table 4.1 references these subsections in the context of physics
investigated through numerical simulation as presented later in the chapter.

Following the theory is a section which details the system of equations to be used in numerical
simulation. This includes discussion of the Kerr spacetime (§4.2.1), the matter Lagrangian and
equations of motion (§4.2.2 and §4.2.3), physical fields and conserved quantities (§4.2.4). The
section ends by discussing some aspects of the numerical solution method, including regularity,
boundary conditions and dissipation (§4.2.5), and then strategies for adaptive mesh refinement
and parallel computation (§4.2.6).

The remainder of this chapter presents numerical solution of the equations presented in §4.2
to investigate the theory of §4.1. Specifically, §4.3.1 outlines the prescription of initial data, §4.3.2
presents results for orbiting resonances and mode trapping of massive s = 0 perturbations and
§4.3.3 presents results displaying orbiting resonance and superradiant scattering of s = 1 pertur-
bations. §4.3.4, §4.3.5 and §4.3.6 then present solutions for electromagnetically coupled s = 0 and
s = 1 perturbations which display orbiting resonance, charge separation, dynamo-like behaviour
and collimation along the axis of black hole rotation. Again, Table 4.1 provides quick and con-
venient summary of the observed physics in relation to predictions from the theory of black hole
perturbations. The last few subsections of the chapter provide validation of the numerical solutions
through convergence testing (§4.3.7) and independent residual testing (§4.3.8) the numerical imple-
mentation, and by testing the approximate outgoing radiation boundary condition used throughout
(§4.3.9).
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s phenomenon, mΦ, e, a/M detail(s)

subsection(s)

0 orbiting resonance, 0.0, 0.0, ≥ 0.0 orbital period ≈ 70t,

§4.1.1, §4.1.2, §4.1.3, orbital attenuation ∼ 10−1,

§4.3.2 log(T ) ∼ −kt, k ≈ 1 × 10−2

mode trapping, 0.3, 0.0, ≥ 0.0 log(T ) ∼ −kt, k ≈ 5 × 10−3

§4.1.1, §4.1.3, §4.3.2

rapid infall, 2.4, 0.0, ≥ 0.0 log(T ) ∼ −kt, k ≈ 7 × 10−2

§4.1.1, §4.1.3, §4.3.2

energy collimation, 0.3, 0.0, ≥ 0.0
∫
ρT (t, r, 0)dtdr

§4.3.2 ≈
∫
ρT (t, r, π)dtdr

�
∫
ρT (t, r, π/2)dtdr

1 orbiting resonance, 0.0, 0.0, ≥ 0.0 orbital period ≈ 70t,

§4.1.1, §4.1.2, §4.1.3, orbital attenuation ∼ 10−1,

§4.3.3 log(T ) ∼ −kt, k ≈ 1 × 10−2

superradiant scattering, 0.0, 0.0, 0.8 amplification ≈ 0.05%

§4.1.3, §4.1.4, §4.3.3 0.0, 0.0, 0.98 amplification ≈ 1.3%

0.0, 0.0, ≥ 0.998 amplification ≈ 1.6%

0, 1 orbiting resonance, 0.0, ≤ 0.6, ≥ 0.0 orbital period ≈ 70t,

§4.1.1, §4.1.2, §4.1.3, orbital attenuation ∼ 10−1,

§4.3.4, §4.3.5 log(T ) ∼ −kt, k ≈ 1 × 10−2

orbiting resonance, 0.6, 0.6, ≥ 0.0 orbital period ≈ 70t,

§4.1.1, §4.1.2, §4.1.3, orbital attenuation ∼ 10−1,

§4.3.6 log(T ) ∼ −kt, k ≈ 6 × 10−3

charge separation, ≥ 0.0, > 0.0, ≥ 0.0 ∂tρQ(t, r, θ) 6= 0 for t ≥ 0

§4.3.4, §4.3.5, §4.3.6

dynamo-like behaviour, ≥ 0.0, > 0.0, ≥ 0.0 ∂tJφ(t, r, θ) 6= 0 for t ≥ 0

§4.3.4, §4.3.5, §4.3.6

energy collimation, 0.3, 0.6, ≥ 0.0
∫
ρT (t, r, 0)dtdr

§4.3.6 ≈
∫
ρT (t, r, π)dtdr

�
∫
ρT (t, r, π/2)dtdr,∫

ρT (Φ)(t, r, 0)dtdr

�
∫
ρT (A)(t, r, 0)dtdr

�
∫
ρT (ΦA)(t, r, 0)dtdr

Table 4.1: Predicted and observed physics of the s = 0 (scalar) and s = 1 (electromagnetic)
perturbations in Kerr spacetime. The second column lists phenomena which arise
and chapter subsections covering the relevant theory and numerical solutions. The
third column specifies the scalar field mass parameter mΦ, the fourth lists the value of
electromagnetic coupling parameter e, and the fifth column lists a/M where M is the
black hole mass and a is the black hole angular momentum per unit mass. The sixth
column summarizes some of the most significant details from numerical simulation.
This table is to be treated as an index, and the reader is referred back to the listed
chapter subsections for notation, detail and complete discussion.
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4.1 Scattering and the Physics of Black Hole Perturbations

4.1.1 The Effective Potential Formulation for Schwarzschild Spacetime

The programme of quasi-normal mode analysis has provided insight that, in part, helps explain
the early and intermediate time behaviour in the scattering phenomena I study. Consider a pertur-
bation Ψ = Ψ(t, r, θ, φ) in the form of a massless, uncharged Klein-Gordon field in Schwarzschild
spacetime. Recall this spacetime is described by the line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2 (4.1)

in the usual (t, r, θ, φ) Schwarzschild coordinates, where M determines the black hole mass and

dΩ2 = dθ2 + sin2 θdφ2 . (4.2)

By instead choosing to use the (t, r∗, θ, φ) radial tortoise coordinate system, defined in relation to
the (t, r, θ, φ) coordinates by

d

dr∗
=

(
1 − 2M

r

)
d

dr
, (4.3)

and expanding the perturbing field in spherical harmonics Ylm(θ, φ) as per

Ψ(t, r, θ, φ) =
∑

l,m

ψl(t, r)

r
Ylm(θ, φ) , (4.4)

the radial equation of motion for the perturbing field is simply

(
∂2

∂r2∗
− ∂2

∂t2
− Vl(r)

)
ψl(t, r) = 0 , (4.5)

where Vl(r) is the effective or Regge-Wheeler potential (cf. [132])

Vl(r) =

(
1 − 2M

r

)(
l(l+ 1)

r2
+

2M

r3

)
. (4.6)

Furthermore, if a harmonic time decomposition

ψl(t, r) =

∫
ψ̃l(ω, r)e

−iωtdω (4.7)

is assumed, then equation (4.5) becomes the ordinary differential equation

(
d2

dr2∗
+ ω2 − Vl(r)

)
ψ̃l(ω, r) = 0 , (4.8)

where Vl is again given by (4.6). More generally, for axial perturbations (i.e., those which transform
as (−1)l+1 under a change of parity)

Vl(r) =

(
1 − 2M

r

)(
l(l+ 1)

r2
+

2(1− s2)M

r3

)
, (4.9)

where s = 0, 1, 2 is the spin of the perturbing field. For massless Klein-Gordon fields s = 0, for
electromagnetic radiation perturbations s = 1, and for gravitational perturbations s = 2. The term
2M/r is interpreted as the Newtonian contribution, l(l+ 1)/r2 is the so-called centrifugal barrier,
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Figure 4.1: The effective (Regge-Wheeler) potential for massless scalar perturbations in M = 0
Minkowski spacetime. Displayed is the potential for modes l = 0 through l = 10.
l = 0, l = 5 and l = 10 are highlighted for reference. Since M = 0, only the centrifugal
barrier contributes to scattering of scalar perturbations. This indicates scalar modes
cannot be trapped in the Minkowski spacetime.

and 2(1− s2)M/r3 is the additional term from relativistic effects. Notice how the relativistic term
is dominant for sufficiently small r. Purely radial modes are those with l = 0. Equations (4.6)
and (4.9) show the effective potential has a peak near r = 3M (corresponding with the unstable
circular photon orbit from the null geodesic equations). Figures 4.1, 4.2 and 4.3 show the effective
potential for scalar modes l = 0 through l = 10 for M = 0, M = 1 and M = 5 spacetimes,
respectively. Except for the case M = 0, it is clear that a change in black hole mass M rescales
the Vl, but leaves them otherwise unchanged. In the exceptional M = 0 case, only the centrifugal
barrier contributes. Figure 4.4 displays the effective potential for electromagnetic modes l = 0
through l = 10. Besides the vanishing l = 0 mode, the electromagnetic effective potential is similar
to that for scalar perturbations. Because the effective potential has at most a single extremum (in
this case a maximum) massless scalar and electromagnetic perturbations are expected to scatter
without becoming trapped.

Now, allowing for massive scalar perturbations in Schwarzschild spacetime, the effective poten-
tial becomes

Vl(r) =

(
1 − 2M

r

)(
l(l + 1)

r2
+

2(1 − s2)M

r3
+

(1 − s)(2 − s)m2
Ψ

2

)
, (4.10)

mΨ being the mass parameter of the perturbing scalar field. Figures 4.5 and 4.6 show the effective
potential for scalar modes l = 0 through l = 10 in a spacetime with M = 5, respectively for
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Figure 4.2: The effective (Regge-Wheeler) potential for massless scalar perturbations in
Schwarzschild spacetime with M = 1. Displayed is the potential for modes l = 0
through l = 10. l = 10. l = 0, l = 5 and l = 10 are highlighted for reference.
Scalar perturbations can scatter off the centrifugal barrier and also off the peak near
r = 3M , but cannot be trapped in the spacetime.
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Figure 4.3: The effective potential for massless scalar perturbations in Schwarzschild spacetime
with M = 5. Displayed is the potential for modes l = 0 through l = 10. l = 10.
l = 0, l = 5 and l = 10 are highlighted for reference. Again, while scalar perturbations
scatter off both the centrifugal barrier and potential peak near r = 3M , they do not
experience trapping in the spacetime. The change in black hole mass simply shifts
the location of the potential maximum to larger radii.
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Figure 4.4: The effective potential for electromagnetic perturbations in Schwarzschild spacetime
with M = 5. Displayed is the potential for modes l = 0 through l = 10. l = 10. l = 0,
l = 5 and l = 10 are highlighted for reference. As in the case of scalar perturbations,
scattering off the centrifugal barrier and potential peak near r = 3M does not allow
the possibility of mode trapping.
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Figure 4.5: The effective potential for mΨ = 0.3 massive scalar perturbations in Schwarzschild
spacetime with M = 5. Displayed is the potential for modes l = 0 through l = 10.
l = 10. l = 0, l = 5 and l = 10 are highlighted for reference. The nonzero scalar
perturbation mass introduces a local minimum of potential about which perturbations
can be trapped.

mΨ = 0.3 and mΨ = 0.6. This shows the scalar field mass parameter can modify the effective
potential by either removing the maximum, or shifting its location to larger radii and possibly
introducing a local minimum. The details depend on the black hole mass, the mode number, and
the scalar field mass parameter. Figures 4.7 and 4.8 show the effective potential for the scalar modes
with local minima for mΨ = 0.3 and mΨ = 0.6 respectively. For the case mΨ = 0.3 the minimum
occurs near r = 45 for mode l = 5, and for mΨ = 0.6 it occurs near r = 35 for l = 10. Since
the effective potential possess a local minimum, massive scalar perturbations of an appropriate
mode and energy can become trapped and persist indefinitely in a region of spacetime not far from
the black hole. The effect is like that of mirrors reflecting the modes back and forth between two
radii straddling the potential minimum. Also note that trapping does not occur in the M = 0
Minkowski limit, since then the only contributions to the potential are a positive term l(l+ 1)/r2,
and a constant m2

Ψ.
Deeper analysis of the effective potential reveals interesting behaviour. The effort is simplified

if one considers high or low frequency limits for scattered perturbations. In these cases closed form
approximations can be obtained. The results for massless scalar and electromagnetic perturbations
clearly indicate that, in the high frequency limit ωM → ∞, perturbations are hardly affected by
the effective potential barrier. This means that such incident perturbations are almost completely
absorbed by the black hole (it has a large transmission amplitude, Atran, and small reflection
amplitude, Aref). The opposite is true in the low frequency limit ωM → 0. In that case, almost all
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Figure 4.6: The effective potential for mΨ = 0.6 massive scalar perturbations in Schwarzschild
spacetime with M = 5. Displayed is the potential for modes l = 0 through l = 10.
l = 10. l = 0, l = 5 and l = 10 are highlighted for reference. Again, the scalar
perturbation mass gives rise to a local minimum of potential where perturbations can
be trapped. Furthermore, the location of this minimum changes with perturbation
mass.
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Figure 4.7: The l = 5 effective potential for mΨ = 0.3 massive scalar perturbations in
Schwarzschild spacetime with M = 5. This figure details the potential for l = 5
scalar modes. These modes exhibit the deepest local minimum of potential and
should therefore experience the greatest trapping in the M = 5 spacetime. The local
minimum is in this case located near r = 45.
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Figure 4.8: The l = 10 effective potential for mΨ = 0.6 massive scalar perturbations in
Schwarzschild spacetime with M = 5. The l = 10 modes experience the deepest
local minimum for the M = 5 spacetime. The minimum is located near r = 35 for
this choice of perturbation mass. This designates the location about which mΨ = 0.6
perturbations are likely to be trapped.
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of the incident perturbation is scattered off the potential barrier (Atran is low, and Aref is high).
The analysis is well documented, and I refer the reader to [49], [51] and references contained therein.
Finally, it should be clear from this discussion that the radial profile of an ingoing perturbation
will have an effect on the transmission and reflection amplitudes. Specifically, steep gradients in
the radial profile imply rapid changes in amplitude as the perturbation moves past a fixed radius.
This means the high frequency content of such a perturbation will be relatively large. The converse
is true with perturbations possessing a relatively flat radial profile. This effectively means sharply
peaked distributions will have smaller Atran (and larger Aref) that those with a flatter profile.
For demonstrative purposes, I have computed the scattering of initially ingoing massless scalar
perturbations from a Schwarzschild black hole in spherical symmetry. The radial profile of the
scalar perturbation is specified at initial time with a Gaussian

Ψ(t = 0, r) = aΨ exp

[
−
(
r − rΨ
δΨ

)2
]
, (4.11)

where aΨ is the Gaussian amplitude, rΨ determines the center of the Gaussian profile, and δΨ sets
its width. As expected, the transmission increases (and reflection decreases) with decreasing δΨ,
as such profiles have steeper radial gradients. Denoting the energy of the set of ingoing modes Tin

and the energy of that set upon reflection Tout, the fractional transmitted energy, Z + 1, is

Z + 1 =
Tout

Tin
, (4.12)

Figure 4.9 shows this fractional transmitted energy as a function of 0 ≤ δΨ/M ≤ 25.

4.1.2 The Glory Effect and Orbiting Resonances

The phenomena of glories and orbiting resonances can also be obtained as limiting cases in the
analysis of (4.10). The details are again summarized in [49] and [51], while a more recent and
rather thorough investigation of scalar glories for both Schwarzschild and Kerr spacetime has been
presented in [54]. The glory is a diffraction phenomenon that happens when a differential scattering
cross-section diverges in either the forwards or backwards directions. The phenomenon is known
to occur in optics, quantum mechanics, and also in the scattering of perturbations off a black
hole, among others. In the case of black hole scattering, glories arise as a consequence of strong
gravitational interaction of high frequency perturbations through angles near Θ = kπ, k being an
integer. The generic relationship between total scattering angle Θ and impact parameter b = b(Θ)
for massless perturbations of this sort is [38], [39], [102],

b ≈ 3
√

3M + 3.48M exp(−Θ) , (4.13)

providing b ∼ 2M . The impact parameter for the first backwards glory Θ = π is thus b = bglory ≈
5.35M . Figure 4.10 depicts scattering trajectories for angles near Θ = π. The differential scattering
cross-section for massless perturbations of arbitrary spin near angles Θ = kπ is given by [43], [155]

dσ

dΩ

∣∣∣∣ ≈ 2πωb2
∣∣∣∣
db

dΘ

∣∣∣∣ J
2
2s (ωb sinΘ) , (4.14)

where b = b(Θ) is provided by (4.13), s is the perturbation spin, and J2s (ωb sinΘ) is the standard
Bessel function with argument ωb sinΘ. From (4.14), it is apparent that glories constructively
interfere for massless (s = 0) scalar fields, but destructively interfere for (s = 1) electromagnetic
and (s = 2) gravitational perturbations.

The phenomenon known as orbiting resonance occurs when a perturbation scatters through an
angle Θ ≥ 2π. The perturbations can be deflected through several multiples of 2π before escaping to
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Figure 4.9: Fractional transmitted energy, Z + 1, for spherically symmetric massless scalar per-
turbations scattering off a Schwarzschild black hole. The profile is an initially ingoing
Gaussian profile of width δΨ. The fractional transmitted energy is plotted as a func-
tion of δΨ/M , where M is the black hole mass.
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PSfrag replacements

b = bglory

Figure 4.10: In the glory effect, perturbations with impact parameters b = bglory deflect through
an angle of Θ = π. Impact parameters larger that bglory scatter through smaller
angles, while smaller impact parameters scatter through angles larger than Θ = π.
This figure depicts scattering trajectories for angles near Θ = π.
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Figure 4.11: Orbiting resonances require impact parameters, b, smaller than those for a glory,
bglory. In an orbiting resonance, the total scattering angle is Θ = 2π or larger. This
figure depicts the trajectory for a resonance which orbits the black hole several times
before escaping to large distances.

distances much larger than r ∼ 2M . However, the cross-section observes approximately exponential
decay in Θ. For example, equation (4.14) shows that a second backwards glory (scattered through
angle Θ = 3π) is suppressed by at least exp (−2π) relative to the first backwards glory (with
scattering angle Θ = π). An resonance of several orbits is depicted in Figure 4.11.

4.1.3 The Effective Potential Formulation for Kerr Spacetime

The calculations become further complicated when considering rotating black hole spacetimes. In
the simplest case of Kerr spacetime1, the perturbation equations can be separated into radial and
angular parts if, rather than spherical harmonics, the expansion of the perturbing field is performed
in terms of the spin-weighted spheroidal harmonics Slm(θ) as per

Ψ(t, r, θ, φ) =
∑

l,m

ψlm(t, r)√
2π

Slm(θ)e−imφ . (4.20)

Then, assuming a harmonic time decomposition

ψlm(t, r) =

∫
ψ̃lm(ω, r)e−iωtdω , (4.21)

1Recall the line element for Kerr spacetime in (t, r, θ, φ) Boyer-Lindquist coordinates is

ds2 = −
„

1 − 2Mr

Σ

«

dt2 − 4Mra sin2 θ

Σ
dtdφ +

Σ

∆
dr2 + Σdθ2 +

A sin2 θ

Σ
dφ2 , (4.15)

where
Σ ≡ r2 + a2 cos2 θ , (4.16)

∆ ≡ r2 − 2Mr + a2 , (4.17)

A ≡
`

r2 + a2
´2 − a∆ sin2 θ , (4.18)

and

a ≡ J

M
(4.19)

is the black hole angular momentum per unit mass, J designating the black hole angular momentum.
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and using the (t, r∗, θ, φ) tortoise coordinate system related to the standard (t, r, θ, φ) Boyer-
Lindquist coordinates through

d

dr∗
=

∆

r2 + a2

d

dr
, (4.22)

the radial part of the perturbation equation becomes

[
d2

dr2∗
+
K2 − 2is(r −M)K + ∆

(
4irωs− λ− r2(1 − s)(2 − s)m2

Ψ/2
)

(r2 + a2)2
−G2 − dG

dr∗

]
χ̃lm(ω, r) = 0 ,

(4.23)
where

K ≡ (r2 + a2)ω − am , (4.24)

λ ≡ E − s(s+ 1) + a2ω2 − 2amω , (4.25)

G ≡ s(r −M)

r2 + a2
+

r∆

(r2 + a2)2
, (4.26)

χ̃lm ≡ (r2 + a2)1/2∆s/2ψlm , (4.27)

E being the separation constant

E ≡ l (l + 1) − 2maωs2

l (l + 1)
+ O

(
a2m2

Ψ

(
1 − ω2

m2
Ψ

))
, (4.28)

∆ ≡ r2 − 2Mr + a2, M is the black hole mass, a is the black hole angular momentum per unit
mass, s is again the spin of the perturbing field, and mΨ is the mass parameter of the scalar (s = 0)
perturbations. It is clear from (4.23) the effective potential is now dependent on the perturbation
frequency, and that it reduces to the expected Schwarzschild form (4.10) in the limit a → 0. All
the scattering phenomena previously presented will therefore play a role in Kerr spacetime.

4.1.4 Polarization, Superradiance, and the Black Hole Bomb

Two new scattering effects are present for perturbations on Kerr spacetime which are absent from
the Schwarzschild black hole scenario discussed in subsection 4.1. They are polarization and su-
perradiant scattering of the incident perturbation. Both electromagnetic and gravitational per-
turbations can be partially polarized by scattering off a rotating black hole. [98] and [99] present
the first calculations demonstrating this polarization effect for electromagnetic perturbations in
Kerr spacetime. The calculations are involved, but essentially different polarization states scatter
differently in the rotating black hole spacetime. It should, in principle, be possible to observe these
effects in the numerical evolutions I present.

The superradiant scattering effect should also play a role in my computations. In superradiant

scattering an incident perturbation is amplified as it scatters off the black hole, the additional
energy being drawn from the rotation of the black hole. Some of the earliest studies of superra-
diant scattering were [151], [152], [153], [5], [101], [124], [137], [138] and [141]. The appearance
of superradiant scattering is intimately connected with the change of character of Killing vector
ta = (1, 0, 0, 0) in different regions of the Kerr spacetime. For radii r > rs = M +

√
M2 − a2 cos2 θ,

ta is timelike. However, ta becomes spacelike for r < rs. This implies energy densities ρT can
be negative within the ergoregion, defined by r < rs. Under these circumstances an incident
perturbation can carry negative energy into the black hole, leaving a reflected component with
greater amplitude and energy than that which was incident. From analysis of (4.23) the incident
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perturbation will carry negative energy when

0 < ω < mΩH , (4.29)

ΩH being the horizon angular velocity

ΩH =
a

r2+ + a2
, (4.30)

where r+ = M +
√
M2 − a2 marks the location of the event horizon. Equation is known as the

superradiance condition, since it can be shown that superradiance must occur the condition is met.
Clearly, this requires the perturbations be prograde (ω > 0), and also that mode numbers satisfy
m > 0. [141] found this superradiant amplification is maximal for a = M , and drops sharply with
decreasing a, or with increasing mode numbers l and m. Denoting the energy of an ingoing mode
Tin and the energy of that mode upon reflection Tout, [141] numerically determined the maximum
of fractional energy change, Z, given by

Z =
Tout

Tin
− 1 , (4.31)

for a single mode is 1.38 for (s = 2) gravitational perturbations, and 1.044 for (s = 1) electromag-
netic perturbations. The maximal value of Z was calculated at 1.003 for (s = 0) massless scalar
perturbations in [124]. More recent investigations have shown that the maximal value of Z can be
increased to near 1.07 for scalar perturbations confined to a toroidal wedge in the equatorial plane
of the Kerr black hole [142], [1]. For the same geometry, Z decreases to approximately 1.003 in
the case of confined electromagnetic perturbations [1]. Confinement of plasma in a toroidal ring
by magnetospheric dynamics was the motivation for these two investigations.

Because massive scalar perturbations are dispersive, it is difficult to define notions of purely
ingoing and outgoing modes when mΨ > 0. None the less, modes can be reflected superradiantly.
The superradiant condition is again (4.29). It was pointed out to me by [48] that such massive
perturbation modes possess growing mode instabilities when they become trapped by the effective
potential of the black hole spacetime. If modes are trapped, then superradiant scattering can
amplify the trapped modes over and over, thereby leading to a growing mode instability. The
effect is analogous to the so-called black hole bomb first discussed by Press and Teukolsky [124].
The first work to note this instability for massive scalar perturbations was [37]. Later studies
include [156], [41], [50] and [140]. One implication is that through this mechanism, a black hole
can, in principle lose all of its angular momentum. However, these unstable massive scalar modes
are slowly growing, with a growth times similar to the age of the universe for solar mass black holes.
These instabilities are thus not expected to play a role in my calculations (which cover significantly
shorter timescales). Recalling that scalar field models can represent the pions, note how this
time scale is also quite large relative to π0, π+ and π− lifetimes of 8.4 × 10−17s and 2.6 × 10−8s
respectively. Furthermore, for typical π0, π+ and π− masses of mΨ ' 2.4 − 2.5 × 10−28kg, the
growth rate is found to be maximal for black hole masses M � 1015kg. Such black holes are far
less massive than solar mass stars, where M = M� ' 2.0 × 1030kg.

4.1.5 Late Time Decay, and the Coupling of Electromagnetic and
Gravitational Perturbations

Perturbations are known to exhibit exponential amplitude decay at sufficiently late time. Like
the intermediate phase of evolution, these asymptotic late time dynamics also originate from the
spacetime curvature. From analysis of (4.10), it has been shown that decay rates of massless (s = 0)
scalar, (s = 1) electromagnetic, and (s = 2) gravitational perturbation amplitudes in Schwarzschild
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spacetime observe the late-time relationship

|Ψ(t, r)| ∼ t−(2l+P+1) , (4.32)

where P = 1 if the field is initially static, and P = 2 otherwise [130], [131]. Meanwhile, it was found
by [89] that, for massive Klein-Gordon perturbations, the late-time decay rate is independent of
the mode number and adopts the form

|Ψ(t, r)| ∼ t−5/6 . (4.33)

While the authors of [89] have studied the massive scalar problem in detail in [88] and [90], the
first to begin investigation of this system were Novikov and Starobinski [139], and Burko [14].

While, it was shown in [15] that (4.33) also holds for sufficiently late times in Kerr spacetime,
regardless of the black hole angular momentum, the power-law decay of massless scalar, electromag-
netic, and gravitational perturbations differ from (4.32) when the black hole rotates. Specifically,
[74] [75] and [76] studied the r|ω| � 1 and a|ω| � 1 limits of massless perturbations. It was found
the decay of massless (s = 0) scalar perturbations at timelike infinity obeys

|Ψ(t, r)| ∼ t−(2l+3) , (4.34)

when |m| ≤ l ≤ |m| + 1, and
|Ψ(t, r)| ∼ t−(l+|m|+P+1) , (4.35)

when |m|+ 2 ≤ l, where P = 0 if l− |m| is even and P = 1 otherwise. Meanwhile, electromagnetic
and gravitational perturbations were found to obey

|Ψ(t, r)| ∼ t−(2max(|m|,s)+3) , (4.36)

when max(|m|, s) ≤ l ≤ max(|m|, s) + 1, and

|Ψ(t, r)| ∼ t−(l+max(|m|,s)+1) , (4.37)

when max(|m|, s) + 2 ≤ l. While results (4.34) through (4.37) hold for perturbations consisting of
a single mode l, [74] demonstrated that when a perturbation is initially a superposition of many
modes, the decay law becomes

|Ψ(t, r)| ∼ t−(2max(|m|,s)+3) , (4.38)

for all s. These results contradict the previously widely held belief that late time decay of perturba-
tions in gravitational collapse is universal (i.e., independent of s), and are presumably a consequence
of the coupling of modes with different l for rotating black hole spacetimes. Furthermore, these
results demonstrate the possibility of slower decay rates than in the non-rotating case. In a more
general pair of studies [3] and [55] found the decay rate of massless scalar perturbations reduces to

|Ψ(t, r)| ∼ t−1 , (4.39)

for a maximally rotating black hole (i.e., a = M). This slower decay rate is apparently the result
of superradiant scattering.

In principle, all these late time relations for scalar and electromagnetic perturbations should be
observable for the system I study in this dissertation. However, since my numerical evolutions are
relatively short, I do not expect to get good estimates of any power law decay. Furthermore, since
the chosen computational domain only covers finite radii, the results obtained for asymptotically
large distances will not be attainable. Spatial compactification would be one way to correct this
second restriction.
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4.1.6 Charged Scalar Perturbations in Static and Stationary
Spacetimes

Finally, the effective potential formulation of black hole perturbations has been studied for charged
scalar fields in static and stationary spacetime. The analysis was performed in the context of
weakly charged perturbations about a Reissner-Norström black hole in [69], [70], [86], [87]. In
[37] and [50] analysis was also carried out for weakly charged perturbations, but their spacetime
was Kerr-Newman (i.e., the charged analogue of Kerr). In all these studies it was assumed the
scalar perturbations carry test charge in the sense that while they could be electromagnetically
affected by the charge of the black hole, they themselves did not contribute to electric or magnetic
fields. These charged perturbations did not electromagnetically self-interact. In the limit where
the black hole charge vanishes, this system is thus exactly that of uncharged scalar perturbations
in Schwarzschild spacetime. It is through this approximation the equations of a charged scalar
perturbation become linear and allow an effective potential formulation.2

The system I study—described in the next section—assumes a fundamentally different ap-
proximation. The scalar perturbations are massive and electromagnetically self-interacting. But
while self-interacting, this system assumes the charge carried by these perturbations doesn’t in-
fluence the curvature of the spacetime in which they evolve. However, this does not imply weak
electromagnetic interaction, or even limitation to a regime in which electromagnetic interaction is
subordinate to all gravitational effects—consider a common crystalline substance where electromag-
netic binding energy is orders of magnitude stronger than gravitational attraction. Furthermore,
the system assumes the field mass is likewise too small to affect the curvature of spacetime. Since
the influence of charge and mass on spacetime must be through the stress-energy tensor, the as-
sumptions are essentially a statement that the local energy density of the field must be small.
The notion of small can be roughly quantified through comparison with the Schwarzschild solu-
tion. Since the Schwarzschild radius is RS = 2M , the average energy density of the black hole is
ρTS ∼ M/( 4

3πR
3
S) = 3/(32πM2). Therefore, the assumption that the perturbation energy density

ρT is small means ρT /ρTS ∼ 3ρT /(32πM2) � 1. For the results presented in section 4.3, where
M = 5, the maximum energy densities are ρT ≈ 1–10, so the assumption ρT /ρTS � 1 holds.

The system of equations for these perturbations are nonlinear and so cannot be cast in the form
of an effective potential problem. Being nonlinear, the system must be solved numerically. To my
knowledge, the only other work that has analysed the nonlinear problem is [71], where the authors
investigated the late-time decay of massless charged scalar perturbations in a dynamic spherically
symmetric spacetime. Investigation of the nonlinear charged model in rotating spacetime has until
now been lacking—the results I present are the first of their kind.

2The effective potential formulation for charged spacetime backgrounds is known to couple electromagnetic and
gravitational perturbations. A purely electromagnetic incident perturbation can by this mechanism scatter as a
purely gravitational perturbation. This could lead to interesting consequences for both superradiant scattering and
eventually gravitational wave detection. The effect is apparently dependent on the existence of a background electric
field, which is not the case for the system I investigate. However, some of the earliest works on this topic are [18],
[154], [104], [53], [105], [19] and [118].
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4.2 System of Equations for Charged Scalar Accretion

4.2.1 The Spacetime Metric

The rotating black hole spacetime is described by the Kerr metric. In (t, r, θ, φ) Kerr-Schild coor-
dinates the line element takes the form

ds2 = −
(

1 − 2Mr

Σ

)
dt2 +

(
1 +

2Mr

Σ

)
dr2 + Σdθ2 + sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
dφ2

+

(
4Mr

Σ

)
dtdr −

(
4Mra sin2 θ

Σ

)
dtdφ− 2a sin2 θ

(
1 +

2Mr

Σ

)
drdφ , (4.40)

where
Σ ≡ r2 + a2 cos2 θ , (4.41)

a ≡ J

M
, (4.42)

t is the temporal coordinate, and r, θ and φ are respectively the radial and angular spatial coordi-
nates, M represents the total mass of the black hole spacetime and J its total angular momentum.
The metric (4.40) diverges at Σ = 0 and the scalar invariantRabcdR

abcd indicates the root r = a cos θ
is a true curvature singularity. The singularity is a ring of radius a. Because the form (4.40) is
horizon penetrating, it doesn’t immediately reveal the existence of other special surfaces in the
spacetime such as ∆ = 0, where

∆ ≡ r2 + a2 − 2Mr . (4.43)

When a2 ≤ M2 the root r = r+ = M +
√
M2 − a2 marks the location of the event horizon. It is

geometrically a sphere in the given coordinates. The second root r = r− = M −
√
M2 − a2 is a

Cauchy horizon.3 When a2 > M2 there is no event horizon and the ring singularity is naked. Since
in this instance there is no event horizon, the metric does not describe a black hole spacetime.
Such a spacetime would be in violation of the Cosmic Censor Conjecture as put forth by [123]
which states no such singularities should be visible to any observer. The spacetime (4.40) possesses
two Killing vector fields ta = (1, 0, 0, 0) and sa = (0, 0, 0, 1). ta is timelike and sa spacelike in the
portion of spacetime where r > rs = M +

√
M2 − a2 cos2 θ. However, when r+ < r < rs the Killing

vector field ta becomes spacelike. The region r+ < r < rs is known as the ergosphere. From the
perspective of a stationary observer at infinity, a timelike orbit cannot remain stationary within
the ergosphere, but must rotate in the direction of rotation of the black hole. r = rs is thus called
a stationary limit surface in this strong example of the frame-dragging effect. Figure 4.12 depicts
the rotating Kerr black hole spacetime, and Figure 4.13 displays its causal structure.

Finally, the future-directed unit-norm spatial hypersurface orthogonal vector is

na =

(√
grr,−

gtr√
grr

, 0, 0

)
(4.44)

3Based upon arguments that an observer crossing r = r− will see entire histories evolved from a Cauchy surface
of the Kerr spacetime in a finite period of time, the Cauchy horizon at r = r− is thought to be unstable, as first put
forth by Penrose in [122]. However, definitive results, numerical or otherwise, detailing the formation and evolution
of the Kerr Cauchy horizon are apparently lacking. But if the results known for horizons of charged spherically
symmetric black holes carry over, then perturbations of the Kerr spacetime could lead to the formation of null
singularities which then merge with the Cauchy horizon. However, as in the charged spherically symmetric case, this
null singularity may still be traversable by observers willing to suffer finite tidal forces. While the Kerr metric may
not accurately describe the interior of a black hole formed by the collapse of matter with angular momentum, it is
assumed to accurately depict the exterior spacetime after a stationary state has been achieved. Since my interest is
with the dynamics of fields outside the event horizon r = r+, I can excise the portion of spacetime r < r+ without
additional concern.
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(b)

ΩH

r = r+ r = rs

Figure 4.12: Horizons of Kerr spacetime: side view (a) and top view (b). r = r+ marks the
event horizon, r = rs is the stationary limit surface, and ΩH is the horizon angular
velocity. The ergosphere is the region r+ < r < rs. The ring singularity is shrouded
by the event horizon.
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Figure 4.13: Penrose diagram showing causal structure of Kerr spacetime (cf. [62]). I and I’
depict asymptotically flat regions of the spacetime outside the black hole. II and
II’ are interior to the event horizon at r = r+, while interior regions III and III’ are
separated from II and II’ by the Cauchy horizons at r = r−. I

+ represents future
null infinity and I

− past null infinity, while i− represents past timelike infinity, i+

future timelike infinity and i0 spacelike infinity. The singularity at r = 0 is timelike,
and can thus be avoided by a timelike trajectory originating on the Cauchy surface
(red).
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where

gtr =

(
2Mr

Σ

)
, (4.45)

grr =

(
1 +

2Mr

Σ

)
, (4.46)

and the spatial metric is encapsulated by the hypersurface line element

dσ2 =

(
1 +

2Mr

Σ

)
dr2 + Σdθ2 + sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
dφ2

− 2a sin2 θ

(
1 +

2Mr

Σ

)
drdφ . (4.47)

4.2.2 The Matter Lagrangian and Equations of Motion

The Lagrangian for a massive electromagnetically coupled complex scalar field is again

LM =
√−g[−(∇aΦ − ieAaΦ)(∇aΦ∗ + ieAaΦ∗) − 1

4
F abFab −m 2

Φ Φ∗Φ] , (4.48)

where mΦ is the scalar field mass parameter, e sets the strength of electromagnetic coupling
between the real and imaginary components of complex scalar field Φ = Φ(t, r, θ) (respectively
φ1 = φ1(t, r, θ) and φ2 = φ2(t, r, θ)), the symbol ∗ denotes complex conjugation, Aa = Aa(t, r, θ) is
the electromagnetic vector potential, and Fab is the antisymmetric electromagnetic field strength
tensor. The set of Euler-Lagrange equations for the system described by (4.48) yields equations of
motion

∇a∇aΦ∗ + 2ie(∇aΦ
∗)Aa − e2Φ∗AaA

a + ieΦ∗∇aA
a −m 2

Φ Φ∗ = 0 , (4.49)

∇a∇aΦ − 2ie(∇aΦ)Aa − e2ΦAaA
a − ieΦ∇aA

a −m 2
Φ Φ = 0 , (4.50)

∇aFab − ie(Φ∗∇bΦ − Φ∇bΦ
∗) − 2e2ΦΦ∗Ab = 0 . (4.51)

where (4.49) and (4.50) are completely equivalent. I also choose the Lorentz gauge condition

∇aA
a = 0 , (4.52)

the conserved current is

−Jb ≡ ∇aF
ab = ie(Φ∗∇bΦ − Φ∇bΦ∗) + 2e2ΦΦ∗Ab, (4.53)

and the stress-energy tensor is once again

Tab =
1

2
(∇aΦ∇bΦ

∗ + ∇bΦ∇aΦ∗) − 1

2
ie [(Φ∇bΦ

∗ − Φ∗∇bΦ)Aa + (Φ∇aΦ∗ − Φ∗∇aΦ)Ab]

+e2ΦΦ∗AaAb +
1

2
FacFbdg

cd − 1

2
gab[(∇cΦ − ieAcΦ)(∇cΦ∗ + ieAcΦ∗) +

1

4
F cdFcd

+m 2
Φ Φ∗Φ] . (4.54)

4.2.3 Matter Equations in First-Order Form

Equation of motion (4.50) can be rewritten as

∇a (∇aΦ − ieAaΦ) − ieAa (∇aΦ − ieAaΦ) −m 2
Φ Φ = 0 . (4.55)
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Computing covariant derivatives with respect to metric (4.40), the equation of motion adopts a
rather complicated form. I choose to rewrite (4.55) in terms of first-order temporal and spatial
derivatives. To recast it in a more tractable form I first define field variables

ΠΦ(t, r, θ) ≡ na√−g (∇aΦ − ieAaΦ) , (4.56)

Φr(t, r, θ) ≡ ∂rΦ , (4.57)

Φθ(t, r, θ) ≡ ∂θΦ , (4.58)

Atr(t, r, θ) ≡ ∂rAt , (4.59)

Atθ(t, r, θ) ≡ ∂θAt , (4.60)

Arr(t, r, θ) ≡ ∂rAr , (4.61)

Arθ(t, r, θ) ≡ ∂θAr , (4.62)

Aθr(t, r, θ) ≡ ∂rAθ , (4.63)

Aθθ(t, r, θ) ≡ ∂θAθ , (4.64)

Aφr(t, r, θ) ≡ ∂rAφ , (4.65)

Aφθ(t, r, θ) ≡ ∂θAφ , (4.66)

and auxiliary metric functions

ftφ(t, r, θ) ≡ gtφ

sin θ
, (4.67)

fφφ(t, r, θ) ≡ gφφ

sin θ
, (4.68)

etφ(t, r, θ) ≡ gtφ

sin2 θ
, (4.69)

eφφ(t, r, θ) ≡ gφφ

sin2 θ
, (4.70)

where

gtφ = −2Mra sin2 θ

Σ
, (4.71)

gφφ = sin2 θ

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
, (4.72)

and

g = −

(
g2

trgφφ − g2
tφgrr

)2

g4
tr sin2 θ

. (4.73)
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Under these transformations equation of motion (4.55) becomes the set

Π̇Φ = e2

(
− fφφ

g
3/2
rr

A2
r + 2

ftφ

gtr
√
grr

ArAφ − sin θ√
grr

A2
θ −

1

sin θ
√
grr

A2
φ

)
Φ + ie

[(
(∂rgrr) fφφ

g
5/2
rr

Ar

− (∂rfφφ)

g
3/2
rr

Ar −
fφφ

g
3/2
rr

Arr −
cos θ√
grr

Aθ −
sin θ√
grr

Aθθ −
(∂rgtr) ftφ√

grrg2
tr

Aφ +
(∂rftφ)√
grrgtr

Aφ

+
ftφ√
grrgtr

Aφr

)
Φ −

(
2
fφφ

g
3/2
rr

Ar − 2
ftφ√
grrgtr

Aφ

)
Φr −

(
2

sin θ√
grr

Aθ

)
Φθ +

(
At

− gtr

grr
Ar

)
ΠΦ

]
+m2

Φ

(
gtφ

√
grrftφ

g2
tr

− fφφ√
grr

)
Φ −

(
(∂rgrr) fφφ

g
5/2
rr

− (∂rfφφ)

g
3/2
rr

)
Φr

+
fφφ

g
3/2
rr

(∂rΦr) +
cos θ√
grr

Φθ +
sin θ√
grr

(∂θΦθ) −
(

1

2

gtr (∂rgrr)

g2
rr

− (∂rgtr)

grr

)
ΠΦ +

gtr

grr
(∂rΠΦ) ,

(4.74)

Φ̇r = ∂r

[
ie

(
At −

gtr

grr
Ar

)
Φ +

gtr

grr
Φr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

ΠΦ

]
(4.75)

Φ̇θ = ∂θ

[
ie

(
At −

gtr

grr
Ar

)
Φ +

gtr

grr
Φr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

ΠΦ

]
(4.76)

Φ̇ = ie

(
At −

gtr

grr
Ar

)
Φ +

gtr

grr
Φr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

ΠΦ (4.77)

where the overdot, ,̇ again designates differentiation with respect to coordinate t.
I similarly choose to evolve the four-vector potential equations of motion (4.51) in first-order

form. For this purpose I define auxiliary variables

Πr(t, r, θ) ≡ na√−g (∇rAa −∇aAr) , (4.78)

Πθ(t, r, θ) ≡ na√−g (∇θAa −∇aAθ) , (4.79)

Πφ(t, r, θ) ≡ na√−g (∇φAa −∇aAφ) , (4.80)
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under which (4.51) become

Π̇r = − 1(
g2

treφφ − f2
tφgrr

)
(
g2

tr (∂θgrr) eφφ sin θ

g
3/2
rr

− g2
treφφ cos θ√

grr
+

(∂θgtr) f
2
tφ

√
grr sin θ

gtr

− (∂θgtφ) etφ
√
grr sin θ −

f2
tφ (∂θgrr) sin θ

√
grr

+ f2
tφ

√
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Π̇θ = − fφφ

g
3/2
rr
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Jθ , (4.82)
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Π̇φ = − 1
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)

g2
tr
√
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Jφ , (4.83)

Ȧrr = ∂r

[
Atr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πr

]
, (4.84)

Ȧθr = ∂r

[
Atθ −

gtr

grr
Arθ +

gtr

grr
Aθr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πθ

]
, (4.85)

Ȧφr = ∂r

[
gtr

grr
Aφr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πφ

]
, (4.86)

Ȧrθ = ∂θ

[
Atr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πr

]
, (4.87)

Ȧθθ = ∂θ

[
Atθ −

gtr

grr
Arθ +

gtr

grr
Aθr +
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tr√

grr (g2
trfφφ − gtφftφgrr)
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]
, (4.88)

Ȧφθ = ∂θ

[
gtr

grr
Aφr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πφ

]
, (4.89)
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Ȧr = Atr +
g2

tr√
grr (g2

trfφφ − gtφftφgrr)
Πr , (4.90)

Ȧθ = Atθ − gtr

grr
Arθ +

gtr

grr
Aθr +
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tr√

grr (g2
trfφφ − gtφftφgrr)

Πθ , (4.91)

Ȧφ =
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grr
Aφr +

g2
tr√

grr (g2
trfφφ − gtφftφgrr)

Πφ , (4.92)

where from (4.53)

Jr = −ie(Φ∗Φr − ΦΦ∗
r) − 2e2ΦΦ∗Ar , (4.93)

Jθ = −ie(Φ∗Φθ − ΦΦ∗
θ) − 2e2ΦΦ∗Aθ , (4.94)

Jφ = −2e2ΦΦ∗Aφ , (4.95)

and I have used the chain rule to rewrite some partial derivatives with respect to θ.4 Finally, the
Lorentz gauge condition (which evolves component At) is already in the first order form
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(
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) (gtr (∂retφ) − (∂rgtr) etφ)Aφ
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grr

(
g2
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g
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rr (g2
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Πr . (4.98)

4.2.4 Physical and Conserved Quantities

In axial symmetry, none of the components Ea or Ba generically vanish.5 This differs from the
spherically symmetric case presented in Chapter 3 where Er was the only nonzero component.
Explicitly, using definitions

Ea = Fabn
b (4.99)

4Applying the chain rule
∂f

∂θ
=

∂ cos θ

∂θ

∂f

∂ cos θ
= − sin θ

∂f

∂ cos θ
(4.96)

transforms numerically unsuitable forms at θ = 0 or θ = π such as

1

sin θ

∂f

∂θ
= − ∂f

∂ cos θ
. (4.97)

5Regularity will, however, require Eθ , Eφ, Bθ and Bφ to vanish on the axis of symmetry (i.e., along θ = 0 and
θ = π).
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and

Ba = −1

2
ε cd
ab Fcdn

b (4.100)

for an observer with four-velocity na,

Er = − g2
tr

(g2
trfφφ − gtφftφgrr)

Πr , (4.101)

Eθ = − g2
tr

(g2
trfφφ − gtφftφgrr)

Πθ , (4.102)

Eφ = − g2
tr

(g2
trfφφ − gtφftφgrr)

Πφ , (4.103)

Br =
gtr

√
grr(

g2
treφφ − f2

tφgrr

) (gtr (∂cos θAφ) + ftφArθ − ftφAθr) , (4.104)

Bθ = − 1√
grr sin θ

Aφr , (4.105)

and

Bφ =
gtr

√
grr

(
g2

treφφ − f2
tφgrr

) (gtrfφφArθ − gtrfφφAθr − ftφgrrAφθ) . (4.106)

Meanwhile, the temporal component of the current four-vector is

Jt = −ie gtr

grr
(Φ∗Φr − ΦΦ∗

r) − ie
g2

tr√
grr (g2

trfφφ − gtφftφgrr)
(Φ∗ΠΦ − ΦΠ∗

Φ) − 2e2
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grr
ΦΦ∗Ar ,

(4.107)
and the conserved electric charge density can be expressed

ρQ = ie
g2

tr

(g2
trfφφ − gtφftφgrr)

(Φ∗ΠΦ − ΦΠ∗
Φ) . (4.108)

Contracting the stress-energy tensor Tab of (4.54) with na from (4.44) and ta = (1, 0, 0, 0)
obtains a conserved energy density,

ρT = ρT (Φ) + ρT (A) + ρT (ΦA) , (4.109)

where ρT (Φ) is the contribution from the scalar field terms of Tab, ρT (A) is the contribution from
electromagnetic field variable terms, and ρT (ΦA) is the contribution from terms involving the in-
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teraction of Φ and Aa through coupling constant e.6 In detail,
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grr

At −
g2

tr

g
3/2
rr

Ar

)
(ΦΦ∗

r

−Φ∗Φr) +

(
g2

tr

(g2
trfφφ − gtφftφgrr)

At −
g3

tr

grr(g2
trfφφ − gtφftφgrr)

Ar

)
(ΦΠ∗

Φ − Φ∗ΠΦ)

]

+
m2

Φ

2

1√
grr

ΦΦ∗ +
1

2

g2
treφφ

g
3/2
rr (g2

treφφ − f2
tφgrr)

ΦrΦ
∗
r +
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(4.111)

6Before substituting auxiliary variables, ρT (Φ) has the form

ρT (Φ) =
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ρT (ΦA) = e2
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. (4.113)

Similarly, contracting Tab with na and sa = (0, 0, 0, 1) yields the conserved angular momentum
density

ρS = ρS(A) + ρS(ΦA) , (4.114)
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where
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is the electromagnetic field contribution, and

ρS(ΦA) =
ie

2

g2
tr

(g2
trfφφ − gtφftφgrr)

Aφ(ΦΠ∗
Φ − Φ∗ΠΦ) (4.116)

is from the coupling of scalar and electromagnetic fields. Then, from (2.104), the total charge
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∫ ∞
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grr
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drdθdφ , (4.117)

from (2.108), the total energy

T =
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∫ ∞
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ρT

√
grr
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trfφφ − gtφftφgrr

)

g2
tr

drdθdφ (4.118)

and, from (2.109), the total angular momentum

S =

∫ 2π

φ=0

∫ π

θ=0

∫ ∞

r=0

ρS

√
grr

(
g2

trfφφ − gtφftφgrr

)

g2
tr

drdθdφ (4.119)

will all be constant, providing ta is timelike everywhere the densities ρQ, ρT and ρS are non-zero.

4.2.5 Regularity, Boundary Conditions and Dissipation

From the definitions of section 2.4 (cf. [6], [45]), regularity for the functions listed above requires
Φ, Φr, Ar, Arr, Jr, Aθθ, Πθ, Aφ, Aφr, Jφ, At, Atr, Er, Eφ, Br, Bφ, Jt, ρQ, ρT and ρS be, to
leading order, even in θ on axis (i.e., at θ = 0 and θ = π). In addition to being even, Πθ, Aφ, Aφr,
Jφ, Eφ and Bφ must also vanish along the axis of symmetry (i.e., they are at least quadratic in θ
on axis). Meanwhile, remaining variables Φθ, ΠΦ, Arθ, Πr, Aθ, Aθr, Jθ, Aφθ, Πφ, Atθ, Eθ and Bθ

are, to leading order, odd. For the leading-order-even variables I enforce regularity on grid points
corresponding to θ = 0 and θ = π by applying a quadratic fix as listed in Appendix C. I also
apply interpolation in the direction of θ on the next-to-axis points for these variables using a 3rd
order Lagrange interpolant as discussed in Appendix C. Numerical testing shows the additional
interpolation helps ensure smooth and stable evolution along the axis of symmetry. Variables Πθ,
Aφ, Aφr, Jφ, Eφ and Bφ are exceptional cases. I enforce regularity by setting them equal to zero
on the axis and imposing a quadratic fix on the next-to-axis points. Meanwhile, regularity of the
leading-order-odd variables is enforced by setting the functions equal to zero at the degenerate
point. As with the leading-order-even variables, interpolation is applied next-to-axis.

Because their counterparts in the massless electromagnetically uncoupled (i.e., e = 0) theory
can be expressed as wave equations, I apply the (approximate) Sommerfeld outgoing radiation



CHAPTER 4. CHARGED SCALAR ACCRETION 90

condition to Φ, Ar, Aθ, Aφ and At. As discussed in Chapter 2, the condition can here be written

∂t(ru) +

(−2Mr/Σ + 1

1 + 2Mr/Σ

)
∂r(ru) = 0 , (4.120)

where u = u(t, r, θ) are one of Φ, Ar, Aθ, Aφ or At. The condition is applied on the outermost grid
points (i.e., at the points corresponding to the largest value of radial coordinate r = rmax) with the
exception of those lying on the axis of symmetry (θ = 0 or θ = π) and those next-to-axis (i.e., at
θ = ∆θ or θ = π−∆θ). Therefore, a backwards spatial differencing operator is used to implement
∂r. The Sommerfeld condition for Φ provides an algebraic equation for boundary values of ΠΦ as
well. Fields Er, Eθ and Eφ can similarly be rewritten as a set of wave equations. Sommerfeld
conditions for the electric field components provide outer boundary conditions for Πr, Πθ and Πφ,
which are again applied at all points r = rmax except those on axis or next-to-axis. Backwards
difference operators are similarly used at r = rmax for Φr, Arr, Aθr, Aφr and Atr, while Φθ, Arθ,
Jr, Aθθ, Jθ, Aφθ, Jφ, Atθ, Er, Eθ, Eφ, Br, Bθ, Bφ, Jt, ρQ, ρT and ρS require no special treatment.

I avoid both the Cauchy horizon at r = r− and ring singularity at r = a cos θ by excising grid
points within a surface of constant r = rex, r− < rex < r+, from the computational domain. I
have found that numerical evolution is stable and smooth if I apply a mixture of extrapolation (in
coordinate r) and interpolation (in θ) to the time-dependent grid functions u(t, r, θ). Formally, I
use the linear combination

u(t+ ∆t, r, θ) =
∆θ

∆r + ∆θ

(
P t+∆t

2,r

)
+

∆r

∆r + ∆θ

(
P t+∆t

3,θ

)
, (4.121)

where

P t+∆t
2,r = 3u(t+ ∆t, r + ∆r, θ) − 3u(t+ ∆t, r + 2∆r, θ) + u(t+ ∆t, r + 3∆r, θ) (4.122)

is the 2nd order extrapolating polynomial in r,

P t+∆t
3,θ = −1

6
u(t+∆t, r, θ−2∆θ)+

2

3
u(t+∆t, r, θ−∆θ)+

2

3
u(t+∆t, r, θ+∆θ)− 1

6
u(t+∆t, r, θ+2∆θ)

(4.123)
is the 3rd order Lagrange interpolating polynomial in θ, ∆t designating the interval in coordinate
t, ∆r the interval in r and ∆ the interval in θ. Factors

∆θ

∆r + ∆θ
, (4.124)

and
∆r

∆r + ∆θ
(4.125)

provide weights adjusted to differences in intervals ∆θ and ∆r. This weighted combination of
interpolation and extrapolation is applied at all points r = rex which are neither on axis nor
next-to-axis.

I employ Kreiss-Oliger dissipation as outlined and summarized in Appendix C. Dissipation is
added to all equations of motion explicitly involving partial derivatives with respect to t. This set
of functions is Φ, Φr, Φθ, ΠΦ, Ar, Arr, Arθ, Πr, Aθ, Aθr, Aθθ, Πθ, Aφ, Aφr, Aφθ, Πφ and At. The
Kreiss-Oliger dissipation operators have stencils five points wide. For coordinate r they can then
be applied only at locations two grid points from the boundaries r = rex and r = rmax. Similarly,
dissipation in coordinate θ can be applied only when, at minimum, two grid points away from
boundaries θ = 0 and θ = π. Therefore, dissipation in both r and θ is applied only in the bulk of
the computational domain—where rex + 2∆r ≤ r ≤ rmax − 2∆r and 2∆θ ≤ θ ≤ π − 2∆θ—while
dissipation in θ alone is applied at r = rex + ∆r and r ≥ rmax − ∆r. Formally, if u = u(t, r, θ)
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is one of the functions whose equation contains an explicit derivative in time, then, using the
Crank-Nicholson scheme without dissipation, its expression will be

u(t+ ∆t, r, θ) − u(t, r, θ)

∆t
=

1

2
[R(t+ ∆t, r, θ) +R(t, r, θ)] , (4.126)

where the left hand side is—to O
(
(∆t)

2
)

accuracy—the time derivative of u centered between

times t and t + ∆t, and the right hand side represents—to O
(
(∆r)2

)
and O

(
(∆θ)2

)
—all other

terms in the equation time averaged between steps t and t+ ∆t. Then, Kreiss-Oliger dissipation is
implemented by adding specific terms on the right hand side of equation (4.126). In this case,

u(t+ ∆t, r, θ) − u(t, r, θ)

∆t
=

1

2
[R(t+ ∆t, r, θ) +R(t, r, θ)]

+
1

2
[Dr(t+ ∆t, r, θ) +Dr(t, r, θ)]

+
1

2
[Dθ(t+ ∆t, r, θ) +Dθ(t, r, θ)] (4.127)

when rex + 2∆r ≤ r ≤ rmax − 2∆r and 2∆θ ≤ θ ≤ π − 2∆θ, and

u(t+ ∆t, r, θ) − u(t, r, θ)

∆t
=

1

2
[R(t+ ∆t, r, θ) +R(t, r, θ)]

+
1

2
[Dθ(t+ ∆t, r, θ) +Dθ(t, r, θ)] (4.128)

when 2∆θ ≤ θ ≤ π − 2∆θ and r = rex + ∆r or r ≥ rmax − ∆r, where

Dr(t, r, θ) = − εr
16∆t

[u(t, r + 2∆r, θ) − 4u(t, r + ∆r, θ) + 6u(t, r, θ)

−4u(t, r − ∆r, θ) + u(t, r − 2∆r, θ)] , (4.129)

Dθ(t, r, θ) = − εθ
16∆t

[u(t, r, θ + 2∆θ) − 4u(t, r, θ + ∆θ) + 6u(t, r, θ)

−4u(t, r, θ− ∆θ) + u(t, r, θ − 2∆θ)] , (4.130)

and 0 ≤ εr < 1 and 0 ≤ εθ < 1 are adjustable parameters. I use values εr = 0.5 and εθ = 0.5 for
the adjustable dissipation parameters in directions r and θ, respectively. Using a Courant factor

λ =
∆t√

1
2 ((∆r)2 + (∆θ)2)

' 0.25 , (4.131)

this system of equations evolves stably under the Crank-Nicholson iterative solution scheme.

4.2.6 Strategies for AMR and Parallel Computation

I have three functional numerical implementations that solve the dynamics of the Maxwell-Klein-
Gordon system: (1) a uniprocessor unigrid code; (2) a multiprocessor unigrid code; and (3) a
uniprocessor adaptive mesh code.7 The uniprocessor unigrid code was written with the aid of RNPL

7While I attempted to incorporate a multiprocessor adaptive code, I was unable to find conditions at once
compatible with the regularity conditions and processor distribution process. Specifically, all tested implementations
were found to introduce high frequency errors during the adaptive regridding process. It is suspected this problem
could be easily resolved by switching to another coordinate system where regularity is not at issue.
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([94], [95], [96], [97]), and was used exclusively in obtaining results for the uncharged Maxwell-Klein-
Gordon equations. My multiprocessor unigrid code and uniprocessor adaptive mesh codes make
use of the PAMR ([128], [129]) library. While I use the multiprocessor unigrid code extensively in
solving the electromagnetically coupled dynamics, I have not found mesh refinement very beneficial.
This is discussed below.

In the parallel implementation it is necessary to ensure the computational domain is properly
distributed among the compute nodes. While PAMR takes care of the processor distribution and
information passing processes, I must manually specify the ghost region8 widths. For the example
given in Appendix C, a ghost width of a single point was appropriate. However, in the present
case, the chosen difference equations involve not only Kreiss-Oliger dissipation operators, but also
interpolation and extrapolation operators. Simple counting reveals these operator stencils can
extend as many as 3 points in each grid direction from their centers. This means ghost regions at
least 3 points wide are required for complete information communication. However, more than 3
ghost points are not required. Using a wider ghost region is therefore unnecessary and will only
decrease computational efficiency. I exclusively use ghost regions with exactly 3 points in each grid
direction for this reason. Furthermore, it is important to use no more processors than necessary.
Specifically, since there is a cost associated with inter-node communication from the transfer of
data on ghost regions, choosing too many compute nodes could result in a total ghost point count
comparable to the number of points on the global domain itself. I have found that 64 processors is
typically a good choice for global domains having a total of 3.2× 105 grid points or more.

The uniprocessor adaptive mesh code uses the modified Berger and Oliger time stepping algo-
rithm as discussed in Appendix C, and implementation again uses the PAMR libraries. Central to
this algorithm is the relative solution error that compares results on successive levels of resolution.
It is important to consider appropriate grid functions in this measure of error. A good choice for
the system includes the functions representing physical fields Φ, Ea, Ba and Ja, and conserved
densities ρT , ρS and ρQ. Auxiliary fields and vector potential components could always be in-
cluded in the measure of error, but the physical fields and conserved densities are ultimately the
quantities of interest to physics, so ensuring they are properly resolved through the measure should
be sufficient. Forming the measure and from these quantities and using a number of different er-
ror tolerances, I have tested the adaptive implementation by evolving massive electromagnetically
coupled Maxwell-Klein-Gordon perturbations on an a = M = 5 Kerr spacetime. While evolution
was smooth and otherwise well behaved, I have found the regions of adaptive refinement quickly
grow and cover the greatest proportion of the computational domain, indicating the resolutional
requirements become nearly uniform across most of the domain. This behaviour is depicted in
Figure 4.14 for a maximum of four allowed levels of resolution. Considering the computational
overhead of the adaptive refinement procedure, it is not clear that long term advantages can be
gained from this implementation. The efficiency and cost is likely comparable to that of the parallel
implementation where I simply evolve on a grid of sufficient uniform resolution. While the adaptive
measure of solution error could probably be optimized, the improvement will probably not be great
for the choice of spatial domain, typical initial conditions and parameter values e and mΦ. I have
therefore not investigated mesh refinement in any more detail.9

8Effectively, the ghost region of a parallel finite difference code is that set of grid points whose values must be
communicated between processors. The size and form of a ghost region is determined by the computational domain
of dependence, which is itself established through the choice of specific finite difference approximations and thus
stencils. Details and discussion can be found in Appendix C.

9Of course, if the evolutionary details were known ahead of time, a non-uniform grid could be used in lieu
of adaptive mesh refinement. Clearly, these non-uniform grids would have to be chosen on a case by case basis
to accommodate resolutional requirements of the unfolding dynamics. So while much simpler to implement than
adaptive refinement, the case-specific nature of non-uniform grid methods pose a serious limitation for the technique.
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Figure 4.14: Adaptive mesh refinement (to a maximum of four levels) of the energy density for
massive electromagnetically coupled perturbations in for a = M = 5 Kerr spacetime.
The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in
the first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤
π, and the corners of the domain are labelled with their (r, θ) ordinate values. The
amplitude is scaled linearly and the colour gradient is scaled logarithmically. Refined
regions quickly grow to cover a large proportion of the computational domain.
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4.3 Results

4.3.1 Initial Data

The initial value problem for the Maxwell-Klein-Gordon system in Kerr spacetime amounts to
specification of all the variables in a manner consistent with regularity and gauge conditions, and
satisfying the electromagnetic constraint equation

DaEa = ρQ , (4.132)

where Da is the spatial covariant derivative operator, and ρQ, is, according to equation (4.108),

ρQ = ie
g2

tr

(g2
trfφφ − gtφftφgrr)

(Φ∗ΠΦ − ΦΠ∗
Φ) . (4.133)

Following the procedure of section 2.2.1, I decompose Ea into its longitudinal and transverse
parts, respectively La and Ta, to obtain

Ea = La + Ta . (4.134)

Then introducing the scalar potential, U = U(r, θ), as per

DaU = La , (4.135)

(4.132) becomes
DaDaU = DaEa = ρQ , (4.136)

where the left hand side is explicitly

DaDaU =
1

2

g2
tr

g2
rr

(
g2

treφφ − f2
tφgrr

) [2grr(∂reφφ)(∂rU) − (∂rgrr)eφφ(∂rU) + 2grreφφ(∂rrU)

+grr(∂θgrr)(∂θU) − 2g2
rr cos θ(∂cos θU) + 2g2

rr(∂θθU)
]
. (4.137)

After solving (4.136) using the methods of Appendix C, I reconstruct the longitudinal electric field
components, which are, from (4.135),

Lr = ∂rU , (4.138)

Lθ = ∂θU , (4.139)

Lφ = 0 . (4.140)

I can then specify any divergenceless set of components for the transverse part Ta. For simplicity,
I choose

Tr = 0 , (4.141)

Tθ = 0 , (4.142)

Tφ = 0 . (4.143)
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The completely reconstructed electric field at initial time is then

Er = ∂rU , (4.144)

Eθ = ∂θU , (4.145)

Eφ = 0 . (4.146)

Having solved for Ea, the final step is to then initialize Πr, Πθ and Πφ in accordance with (4.101),
(4.102) and (4.103), meaning

Πr = −g
2
trfφφ − gtφftφgrr

g2
tr

Er , (4.147)

Πθ = −g
2
trfφφ − gtφftφgrr

g2
tr

Eθ , (4.148)

Πφ = −g
2
trfφφ − gtφftφgrr

g2
tr

Eφ . (4.149)

Having satisfied the initial data constraint, I can freely specify the remaining variables in accor-
dance with their definitions and regularity conditions. For simplicity I choose Gaussian profiles for
the complex components of Φ(t, r, θ) = φ1(t, r, θ)+ iφ2(t, r, θ), ΠΦ(t, r, θ) = Π1(t, r, θ)+ iΠ2(t, r, θ),
and the vector potential components Aa(t, r, θ).10 That is,

φ1(0, r, θ) = a1 exp
(
−((r − r1)/δr1)

2
)
exp

(
−((θ − θ1)/δθ1)

2
)
, (4.150)

φ2(0, r, θ) = a2 exp
(
−((r − r2)/δr2)

2
)
exp

(
−((θ − θ2)/δθ2)

2
)
, (4.151)

Π1(0, r, θ) = a3 exp
(
−((r − r3)/δr3)

2
)
exp

(
−((θ − θ3)/δθ3)

2
)
, (4.152)

Π2(0, r, θ) = a4 exp
(
−((r − r4)/δr4)

2
)
exp

(
−((θ − θ4)/δθ4)

2
)
, (4.153)

At(0, r, θ) = ar exp
(
−((r − rt)/δrt)

2
)
exp

(
−((θ − θt)/δθt)

2
)
, (4.154)

Ar(0, r, θ) = ar exp
(
−((r − rr)/δrr)

2
)
exp

(
−((θ − θr)/δθr)

2
)
, (4.155)

Aθ(0, r, θ) = aθ exp
(
−((r − rθ)/δrθ)

2
)
exp

(
−((θ − θθ)/δθθ)

2
)
, (4.156)

Aφ(0, r, θ) = aφ exp
(
−((r − rφ)/δrφ)2

)
exp

(
−((θ − θφ)/δθφ)2

)
, (4.157)

where a1, a2, a3, a4, at, ar, aθ and aφ are constants setting the initial amplitudes, r1, r2, r3, r4,
rt, rr, rθ and rφ determine the Gaussian peaks in the radial direction, θ1, θ2, θ3, θ4, θt, θr, θθ

and θφ determine the Gaussian peaks in the θ coordinate direction, δr1, δr2, δr3, δr4, δrt, δrr, δrθ

and δrφ determine the Gaussian widths in coordinate r, and δθ1, δθ2, δθ3, δθ4, δθt, δθr, δθθ and δθφ

determine widths in θ. All remaining variables are initialized according to definitions in sections

10From equations (4.93) and (4.94), nonzero electric current components Jr and Jθ require e, Φ and Φ∗ to all be
nonzero. The condition for nonzero Jr additionally requires that either Ar, Φr or Φ∗

r be nonzero. Similarly, the
condition for nonzero Jθ additionally requires that either Aθ , Φθ or Φ∗

θ be nonzero. Clearly, the chosen initial data
(4.150)–(4.162) satisfies the nonzero conditions for both Jr and Jθ when e 6= 0. Therefore, it can be said charge
separation begins at t = 0 for this specification of the Maxwell-Klein-Gordon system.
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4.2.3 and 4.2.4. Unless otherwise specified, I use values

a1 = a2 = a3 = a4 = at = ar = aθ = aφ = 1.0 , (4.158)

r1 = r2 = r3 = r4 = rt = rr = rθ = rφ = 25.0 , (4.159)

θ1 = θ2 = θ3 = θ4 = θt = θr = θθ = θφ = π/2 , (4.160)

δr1 = δr2 = δr3 = δr4 = δrt = δrr = δrθ = δrφ = 5.0 , (4.161)

δθ1 = δθ2 = δθ3 = δθ4 = δθt = δθr = δθθ = δθφ = 0.3 . (4.162)

The chosen Kerr spacetime is exclusively mass M = 5 with variable angular momentum per unit
mass, a. Finally, the computational domain always covers the coordinate range 5 ≤ r ≤ 50 and
0 ≤ θ ≤ π.

Finally, while the form of metric (4.40) suggests symmetry about the equatorial plane (θ = π/2),
this symmetry is for the spacetime metric and not for matter evolving in the background spacetime.
Since the Maxwell-Klein-Gordon fields are here treated as perturbations not affecting the spacetime,
they are free to evolve in a manner which is not symmetric about the equatorial plane. Observe
how the equations of motion and constraint have been written in a general form consistent with
the assumption of axial symmetry and therefore allow a more generic evolution—one that need
not respect any symmetry about the equatorial plane.11 As shown in section 4.3.3, the choice
of initial conditions (4.132), (4.147)–(4.149), and (4.154)–(4.157) do not generate electromagnetic
fields with covariant components all symmetric about θ = π/2. Furthermore, since the difference

approximations used are accurate to only O
(
(∆θ)2

)
, slight asymmetries about the equatorial plane

will be expected throughout evolution regardless of how initial conditions are chosen.

4.3.2 Klein-Gordon Dynamics: Orbiting Resonances and Massive
Mode Trapping for s = 0 Perturbations

With initial data specified as discussed above, I evolve massive s = 0 perturbations on a Kerr
spacetime. The black hole mass is set to M = 5, and the angular momentum per unit mass is
chosen to be either a = 0 or a = M . I vary the Klein-Gordon mass parameter mΦ ≡ mΨ between
mΦ = 0.0 and mΦ = 2.4. The computational domain covers radial coordinate range 5 ≤ r ≤ 50
and angular coordinates 0 ≤ θ ≤ π. The computational domain has J = 401 points radially and
K = 201 points in the θ angular direction. The numerical evolutions span the range of coordinate
time 0 ≤ t . 200.

For a = M = 5, mΦ = 0.0 evolution, perturbations clearly display the glory effect and orbiting
resonances. Figure 4.15 displays the normalized energy density within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π by a sequence of steps from the evolution beginning at t = 0 and leading to a final
step at t = 77.11 shown in Figure 4.16. The orbit resonance period is ≈ 70t and each successive
orbit is attenuated by a factor of ∼ 10−1. Note how the orbital frequency ≈ 1/(70t) is more than
twice that of the unstable circular photon orbits occurring at r = 3M .12 While strong gravitational

11While an equatorially symmetric code could be written for the Maxwell-Klein-Gordon system, it would not allow
study of any physics unique to the non-equatorially symmetric system.

12The innermost stable circular orbit of the Schwarzschild spacetime described by (4.1) occurs at radius r = 6M ,
while the innermost unstable circular orbit occurs at r = 3M . From the study of timelike geodesics in Schwarzschild
spacetime it can be shown that circular orbits in the equatorial plane are given by

∂φ

∂τ
=

L

r2
, (4.163)

where τ is proper time and L is the angular momentum per unit rest mass as measured by a static observer at
infinity. The proper time for the innermost stable circular orbit of an M = 5 Schwarzschild spacetime is therefore
1800π

L
, while the proper time for the innermost unstable circular orbit in the same spacetime is 450π

L
. More cannot be

said about the orbital period without specifying a value for L. Instead consider the null geodesics of Schwarzschild
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interaction is observable in the form of orbiting resonances, neither mode trapping nor superradiant
scattering are apparent from the calculations. While mode trapping is expected only for massive
scalar perturbations, superradiant scattering could, in fact, be present for any scalar perturbation
mass. However, the effect is expected to be only on the order of a fraction of a percent [124].
Figure 4.17 displays the integrated normalized energy density within the computational domain
for 0 ≤ t . 200 for both a = 0 and a = M . Clearly, the addition of black hole angular momentum
has but a small effect on the scalar perturbation evolution.13 Predominantly, addition of black
hole angular momentum decreases the perturbation energy flux through surfaces r = 5 and r = 50.
While not exact for either a = 0 or a = M , the late time decay of integrated normalized energy,
T , is approximately a power law of form

log(T ) ∼ −kt , (4.165)

with constant of proportionality k ≈ 1× 10−2. A local maximum in this integrated energy density
would be sufficient for identification of superradiant scattering. But since scalar perturbations are
flowing out of the computational domain at both the r = 5 excision surface and the r = 50 outer
boundary, a better test would also incorporate the energy flux through the surface r = 50. A local
maximum in the integrated energy within the computational domain plus that of the outflowing
flux would constitute a necessary condition for superradiant scattering. So while not apparent in
the data shown, superradiant scattering may, in fact, be occurring in the evolution of the massless
scalar perturbations. Finally, Figure 4.18 displays the normalized energy density at t = 53.98.
Results presented in section 4.3.3 show a superradiant scattering peak for s = 1 electromagnetic
perturbations at this time (cf. Figures 4.29 and 4.30).

spacetime. It is known there are no stable circular orbits and just a single unstable circular orbit at r = 3M whose
equation in the equatorial plane is

∂φ

∂t
=

„

r − 2M

r3

«1/2

. (4.164)

The period in coordinate time of a unstable circular photon orbit in M = 5 Schwarzschild spacetime is therefore√
330π ' 163.24.
13In fact, a comparison of the normalized energy densities reveals that a = 0 and a = M evolutions are morpho-

logically nearly identical.
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Figure 4.15: The glory effect and orbiting resonances for a = M = 5, mΦ = 0.0 scalar perturba-
tions. The figure displays the normalized energy density in a sequence of steps. The
directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the
first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π,
and the corners of the domain are labelled with their (r, θ) ordinate values. The
amplitude is scaled linearly, while the scale of the colour gradient is logarithmic.
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Figure 4.16: The glory effect and orbiting resonances for a = M = 5, mΦ = 0.0 scalar per-
turbations at late time. The figure displays the normalized energy density at a
final step of the evolution. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range
5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled
with their (r, θ) ordinate values. The amplitude is again scaled linearly and
the colour gradient logarithmically. An MPEG animation showing orbiting res-
onance through normalized energy density for the period 0 ≤ t . 108 is avail-
able at http://$WWW/People/petryk/animations/2.mpeg where $WWW is currently
laplace.physics.ubc.ca .

As discussed in section 4.1, setting the scalar perturbation mass to nonzero values may permit
mode trapping in the minimum of the effective gravitational potential. The details depend on the
specific mode, and the magnitude of the perturbation mass, mΦ, relative to the mass of the black
hole, M . Specifically, Figures 4.5 and 4.7 demonstrate that l = 5 can be the only trapped mode
of perturbation mass mΦ = 0.3 in a spacetime with a = 0 and M = 5. From equation (4.10) it
can be deduced that, for r ≤ 50, all modes with l < 5 experience only a potential well centered
within the event horizon. The only well for modes l > 5 is again within the event horizon, but
now additional scattering is observed because of a local maximum in the potential near r = 3M .
Comparing with Figures 4.3, 4.6 and 4.8 it is clear that, for a given spacetime, trapping of low l
modes occurs for smaller values of mΦ, and trapping of higher l modes takes place for larger mΦ.
Furthermore, if mΦ is sufficiently large, all lower l modes are expected to experience only a deep
potential well and therefore fall into the black hole. Figure 4.19 displays the integrated normalized
energy density for mΦ = 0.0, 0.3, 0.6, 1.2, and 2.4 massive scalar perturbations in an a = M = 5
Kerr spacetime. mΦ = 0.3 perturbations experience the greatest trapping and persist longest on
the computational domain, while the mΦ = 2.4 perturbation total energy decays most rapidly. At
late time, t ≈ 200, the total energy of mΦ = 0.6 perturbations most closely matches that of the
mΦ = 0.0 perturbations. Superradiant scattering peaks are not observed for any of these cases,



CHAPTER 4. CHARGED SCALAR ACCRETION 100

Figure 4.17: Integrated normalized energy density for massless scalar perturbations. Plotted is
log(T ), the logarithm of the total energy contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed line represents data
for a/M = 0/5 = 0 and the dotted line data for a/M = 5/5 = 1. The decay rate
of integrated energy is approximately a power law at late time. A local maximum
signalling superradiant scattering is not observable for either evolution. Black hole
angular momentum effectively decreases the overall decay rate of these massless
scalar perturbations. Note the decrease in time of this quantity results from the
energy flux across surfaces r = 5 and r = 50, and thus out of the computational
domain.
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Figure 4.18: Normalized energy density at t = 53.98 for a = M = 5, mΦ = 0.0 scalar pertur-
bations. It is at this time that superradiant scattering peaks are seen for electro-
magnetic perturbations (cf. Figures 4.29 and 4.30), but here there is no evidence
of superradiance for the massless scalar perturbations. The directions of coordinate
vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown, the computational domain
covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the (r, θ) ordinate values at the
domain corners are provided. The amplitude is again scaled linearly and the colour
gradient logarithmically.
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but this test is again sufficient but not necessary for superradiance.
The detailed structure of massive scalar perturbation evolution in a = M = 5 Kerr spacetime

is displayed for mΦ = 0.3 in Figures 4.20 and 4.21, and for mΦ = 2.4 in Figure 4.22. Figures
4.20 and 4.21 reveal a rather detailed (normalized) energy density distribution as the mΦ = 0.3
perturbations evolve on the computational domain. While the evolution markedly different from
that of mΦ = 0.0, there is still some evidence of orbiting resonances very near the excision surface
at r = 5, but it is not possible to provide a reasonable estimate for either the resonance orbit
period or their attenuation. However, the perturbations now persist for a extended period of time
in the vicinity of the black hole. Furthermore, there is some evidence of additional energy density
concentration along the axis of black hole rotation. Meanwhile, Figure 4.22 shows how themΦ = 2.4
scalar perturbations remain localized throughout evolution as they become tidally distorted and
consumed by the black hole within a relatively short period of time. The evolution of mΦ = 1.2
perturbations (not displayed) are very much similar in these respects. Finally, as expected. the
effect of black hole angular momentum are small for (s = 0) scalar perturbations. Morphologically,
the a = 0 and a = M evolutions are nearly identical for mΦ = 0.3 and also for mΦ = 2.4. Figures
4.23 and 4.24 compare a = 0 and a = M integrated normalized energy densities for the respective
mΦ = 0.3 and mΦ = 2.4 evolutions. The results again show little difference in the total energy
within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π as a function of time between a = 0 and a = M
spacetimes. The approximation of total integrated energy, T , to a power law of form

log(T ) ∼ −kt (4.166)

is worse than for the massless perturbations. However, if a power law is assumed at late time, the
decay constant would be k ≈ 5× 10−3 for mΦ = 0.3 perturbations, and k ≈ 7× 10−2 for mΦ = 2.4
perturbations. The lower decay rate for mΦ perturbations results from mode trapping about a
local potential minimum, and the increased decay rate for mΦ = 2.4 perturbations derives from
the rapid infall of perturbations in a steeper potential well. These results differ from the case of
(s = 1) electromagnetic perturbations presented below.
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Figure 4.19: Integrated normalized energy density for massive scalar perturbations. Plotted is
log(T ), the logarithm of the total energy contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π, as a function of coordinate time t. All data is for the a/M = 5/5 = 1
Kerr spacetime. The dashed red line is for mΦ = 2.4, the dotted red line is for
mΦ = 1.2, the dashed blue line is mΦ = 0.6, the dotted blue line is mΦ = 0.0, and
the dashed black line is mΦ = 0.3. Clearly, mΦ = 0.3 perturbations experience the
greatest trapping and persist longest on the computational domain. In none of the
cases is a local maximum signalling superradiant scattering apparent. The decrease
in time of this quantity results from the energy flux across surfaces r = 5 and r = 50,
and thus out of the computational domain.
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Figure 4.20: Mode trapping and orbiting resonances for a = M = 5, mΦ = 0.3 scalar per-
turbations. The figure displays the normalized energy density evolution in a
sequence of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude is again scaled linearly and the colour gradient logarithmi-
cally. An MPEG animation of the evolution over the period 0 ≤ t . 108 is avail-
able at http://$WWW/People/petryk/animations/3.mpeg where $WWW is currently
laplace.physics.ubc.ca .
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Figure 4.21: Mode trapping and orbiting resonances for a = M = 5, mΦ = 0.3 scalar pertur-
bations at late time. The figure displays the normalized energy density evolution
in a sequence of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are again shown, the computational domain again covers the range
5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their
(r, θ) ordinate values. The amplitude is again scaled linearly and the colour gradient
logarithmically.
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Figure 4.22: Localization, tidal distortion, and rapid decay of mΦ = 2.4 scalar perturbations
in a = M = 5 Kerr spacetime. The figure displays the normalized energy density
evolution in a sequence of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤ r ≤
50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ)
ordinate values. The amplitude is again scaled linearly and the colour gradient
logarithmically. An MPEG animation of the evolution over the period 0 ≤ t .
108 is available at http://$WWW/People/petryk/animations/4.mpeg where $WWW

is currently laplace.physics.ubc.ca .
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Figure 4.23: Integrated normalized energy density for mΦ = 0.3 scalar perturbations. Plotted is
log(T ), the logarithm of the total energy contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed line represents data
for a/M = 0/5 = 0 and the dotted line data for a/M = 5/5 = 1. Black hole angular
momentum decreases the overall decay rate for these massive scalar perturbations.
The decrease in time of this quantity results from the energy flux across surfaces
r = 5 and r = 50, and thus out of the computational domain.

4.3.3 Maxwell Equation Dynamics: Orbiting Resonances and
Superradiance for s = 1 Perturbations

With initial data again specified according to section 4.3.1, I evolve s = 1 perturbations on a Kerr
spacetime. The black hole mass is again set to M = 5, and the angular momentum per unit mass
is chosen somewhere in the range a = 0 through a = M . The computational domain again covers
radial coordinate range 5 ≤ r ≤ 50 and angular coordinates 0 ≤ θ ≤ π. The computational domain
has J = 401 points radially and K = 201 points in the θ angular direction and numerical evolutions
span the range of coordinate time 0 ≤ t . 200. In terms of physical fields, the chosen initial data
amounts to an everywhere vanishing electric field and a non-vanishing nontrivial magnetic field
at t = 0. For example, in the case a = M , the initial magnetic field components are distributed
as shown in Figure 4.25. The resulting energy density distribution is shown in the first frame of
Figure 4.28. While the electric field components are initially vanishing, their time derivatives—and
also those of the magnetic field components—are not, implying nontrivial evolution.
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Figure 4.24: Integrated normalized energy density for mΦ = 2.4 scalar perturbations. Plotted is
log(T ), the logarithm of the total energy contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed line represents data
for a/M = 0/5 = 0 and the dotted line data for a/M = 5/5 = 1. Black hole angular
momentum has little effect on the evolution of these massive scalar perturbations.
Again, decreases in time of this quantity result from the energy flux across surfaces
r = 5 and r = 50, and thus out of the computational domain.
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Figure 4.25: Initial magnetic field distribution for a = M = 5, electromagnetic perturbations.
(a) displays Br, (b) displays Bθ, and (c) shows Bφ. The directions of coordinate
vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in (a). The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude and colour gradient are
both scaled linearly.
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For evolutions a = 0 through a = M , electromagnetic perturbations clearly display the glory ef-
fect and orbiting resonances. Figure 4.26 displays the normalized energy density within 5 ≤ r ≤ 50,
0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π by a sequence of steps from the evolution beginning at t = 0 and lead-
ing to a final step at t = 77.11 shown in Figure 4.27. Strong gravitational interaction is clearly
manifest in the form of orbiting resonances. Similar to the case of massless scalar perturbations,
the resonance orbit period is ≈ 70t, corresponding to an orbital frequency more than twice that
the unstable circular photon orbit at r = 3M (cf. equation (4.164) and related discussion). Fur-
thermore, the attenuation between successive orbits is again ∼ 10−1. While an effect akin to
mode trapping is not expected for electromagnetic perturbations, superradiant scattering could be
present, depending on the initial data and value of angular momentum parameter a. The maximum
superradiant amplification is expected to be on the order of four percent in an a = M spacetime.
Figure 4.28 displays the integrated normalized energy density within the computational domain
for 0 ≤ t . 200 for a = 0, 0.8M and a = M . Clearly, the addition of black hole angular momentum
has a measurable effect on the evolution of electromagnetic perturbations. At late time the total
integrated energy, T , can be roughly approximated by the power law

log(T ) ∼ −kt , (4.167)

where the decay constant is k ≈ 1 × 10−2. Generally, the decay constant decreases with in-
creasing black hole angular momentum. However, the total integrated energies are nearly iden-
tical for all a ≥ 0.998. Figure 4.29 displays the integrated normalized energy densities for a =
0, 0.8M, 0.98M, 0.998M and a = M for 47.5 ≤ t ≤ 57.5. The local maxima of the integrated energy
densities for a = 0.8M, 0.98M, 0.998M and a = M at t = 53.98 are signals of superradiant scat-
tering. From the data I deduce a lower estimate on the superradiant amplification in the amount
of ≈ 0.05% for a = 0.8M , ≈ 1.3% for a = 0.98M and ≈ 1.6% for a ≥ 0.998M . Observe how
the largest value measured here is ≈ 1/3 the maximal value of 4.4% calculated in the study of
s = 1 perturbations by Teukolsky and Press [141]. Again, since perturbations are flowing out of
the computational domain at the r = 50 outer boundary, a better estimate for the total superra-
diant amplification would also incorporate the energy flux through that surface. The superradiant
amplification could thus be a couple percent larger than given by these lower estimates. For ref-
erence, Figure 4.30 displays the normalized energy density at the maximum of the superradiant
scattering peak for the a = M spacetime perturbations. The concentration of energy density in
the plane θ = π/2 within the ergosphere near the excision surface is markedly different from the
case of scalar perturbations at t = 53.98 as depicted in Figure 4.18. Apart from the resonance
and superradiant scattering amplitudes, the energy densities are quite similar for electromagnetic
perturbation evolutions in a = 0, 0.8M, 0.98M and 0.998M ≤ a ≤M spacetimes.
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Figure 4.26: The glory effect and orbiting resonances for a = M = 5, electromagnetic perturba-
tions. The figure displays the normalized energy density in a sequence of steps. The
directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the
first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π,
and the corners of the domain are labelled with their (r, θ) ordinate values. The
amplitude is scaled linearly, while the scale of the colour gradient is logarithmic.
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Figure 4.27: The glory effect and orbiting resonances for a = M = 5, electromagnetic pertur-
bations at late time. The figure displays the normalized energy density at a final
step of the evolution. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordi-
nate values. The amplitude is again scaled linearly and the colour gradient log-
arithmically. An MPEG animation showing orbiting resonance through normal-
ized energy density for the s = 1 perturbations over period 0 ≤ t . 108 is avail-
able at http://$WWW/People/petryk/animations/5.mpeg where $WWW is currently
laplace.physics.ubc.ca .

For an understanding of the magnetic and electric field dynamics, I compose the products BaB
a

and EaE
a for the a = M = 5 spacetime evolution. Figure 4.31 displays the square of the magnetic

field at times t = 0, 19.28, 38.55, 53.98, 57.83 and t = 77.11. Similarly, Figure 4.32 displays the
square of the electric field at t = 0, 19.28, 38.55, 53.98, 57.83 and t = 77.11. Observe that while
the BaB

a is essentially zero in the equatorial plane θ = π/2 outside the ergoregion, the quantity
EaE

a is not. This indicates that the energy density outside the ergosphere about the equatorial
disk is carried predominantly by the electric field. Furthermore, the magnetic field amplitude is
substantially smaller than the electric field amplitude along the axis of symmetry where θ = 0 or
θ = π. However, note that, in curved spacetime, EaE

a and BaB
a are merely proportional to the

contributions from electric and magnetic fields. The relationship between these squares and the
energy density is only made an equality through inclusion of multiplicative factors that include
metric components. Therefore, the sum of squares 1

4 (EaE
a +BaB

a) is not generally a conserved
quantity. The identification between this specific function and a conserved density can only be
made in the exceptional case of flat spacetime. Furthermore, Figure 4.33 plots the integrated
squares over the computational domain,

B2 ≡
∫ 2π

φ=0

∫ π

θ=0

∫ 50

r=5

BaB
a

√
grr

(
g2

trfφφ − gtφftφgrr

)

g2
tr

drdθdφ , (4.168)
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Figure 4.28: Integrated normalized energy density for electromagnetic perturbations in M = 5
Kerr spacetime. Plotted is log(T ), the logarithm of the total energy contained within
5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The
dashed red line represents data for a/M = 0, the dotted red line data for a/M = 0.8,
and the dashed black line data for a/M = 1. Clearly, black hole angular momentum
decreases the overall decay rate of electromagnetic perturbations. Any decrease in
time of the energy results from the flux across surfaces r = 5 and r = 50, and thus
out of the computational domain.
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Figure 4.29: Integrated normalized energy density for electromagnetic perturbations in M = 5
Kerr spacetime. Plotted is log(T ), the logarithm of the total energy contained within
5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The
dashed red line represents data for a/M = 0, the dotted red line data for a/M = 0.8,
the dashed blue line data for a/M = 0.98, the dotted blue line (nearly coincident
with the dashed black line) data for a/M = 0.998, and the dashed black line data
for a/M = 1. The peaks in integrated energy densities at t = 53.98 for a ≥ 0.8M
are a mark of superradiant scattering.
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Figure 4.30: Normalized energy density at the superradiant scattering peak time t = 53.98 for
electromagnetic perturbations in an a = M = 5 Kerr spacetime. The directions of
coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown, the computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the (r, θ) ordinate values
at the domain corners are provided. The amplitude is scaled linearly and the colour
gradient logarithmically. A concentration of energy density in the plane θ = π/2
within the ergosphere near the excision surface is the manifestation of superradiant
scattering.
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and

E2 ≡
∫ 2π

φ=0

∫ π

θ=0

∫ 50

r=5

EaE
a

√
grr

(
g2

trfφφ − gtφftφgrr

)

g2
tr

drdθdφ . (4.169)

After an initial period of oscillation where magnetic fields convert to electric fields, and vice-versa,
the integrated amplitudes become closely matched. At late time, the decay rates can be roughly
approximated by the power laws

log(B2) ∼ −kt , (4.170)

and
log(E2) ∼ −kt , (4.171)

where k ≈ 1 × 10−2 in both (4.170) and (4.171). Finally, except for the lack of superradiant
amplification and even smaller BaB

a contribution along the axis of symmetry, evolution of BaB
a

and EaE
a are very similar in the a = 0 and a = M spacetimes. The integrated densities B2 and

E2 are also similar in the cases a = 0 and a = M .
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Figure 4.31: BaB
a for a = M = 5, electromagnetic perturbations. The figure displays the square

of the magnetic field in a sequence of steps including the superradiant scattering
peak at t = 53.98. The computational domain covers the range 5 ≤ r ≤ 50 and
0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude is scaled linearly, while the scale of the colour gradient is
logarithmic. The magnetic field amplitude is negligible outside the ergoregion in the
plane θ = π/2, and much smaller than the electric field along the axis of symmetry
where θ = 0 and θ = π (cf. Figure 4.32).
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Figure 4.32: EaE
a for a = M = 5, electromagnetic perturbations. The figure displays the square

of the electric field in a sequence of steps including the superradiant scattering peak
at t = 53.98. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0)
are shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude is scaled linearly, while the scale of the colour gradient is
logarithmic. The electric field amplitude is substantially larger than the magnetic
field amplitude along the axis of black hole rotation (cf. Figure 4.31).
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Figure 4.33: Integrated squares of electric and magnetic fields in a = M = 5 Kerr spacetime.
Plotted are log(B2) and log(E2), the logarithm of the integrated squares contained
within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time
t. The dashed black line represents log(B2), and the dotted black line log(E2).
Initially, the field amplitudes undergo substantial oscillation, but the decay of in-
tegrated electric and magnetic amplitudes become closely matched at intermediate
and late time.

The effects of black hole rotation are more strongly manifest in the evolution of electromagnetic
angular momentum. The angular momentum density for electromagnetic perturbations is given by
equation (4.115). Figure 4.34 displays the evolution for a = M in a sequence of steps, beginning at
t = 0, and leading to the final displayed step at t = 77.11 in Figure 4.35.14 Meanwhile, Figure 4.37
shows the evolution sequence for a = 0, leading to the final displayed frame in Figure 4.38. Observe
how the a = M density has much larger amplitude and steeper gradients than the a = 0 data.
Furthermore, Figures 4.36 and 4.39 respectively display the angular momentum densities at the
superradiant scattering peak time t = 53.98 for a = M and a = 0. It is there evident how strongly
the electromagnetic perturbation angular momentum is affected by the black hole rotation. Finally,
Figure 4.40 shows the angular momentum density integrated over the computational domain as
a function of time for the M = 5 spacetimes with a = 0, a = 0.8M and a = M . Also, Figure
4.41 shows the integrated angular momentum for a = 0, 0.8M, 0.98M, 0.998M and a = M for
47.5 ≤ t ≤ 57.5. Notice that, while highly variable for a ≥ 0.8M spacetimes, the total angular

14This nontrivial evolution of electromagnetic perturbation angular momentum introduces an interesting possibility
for black hole formation. Namely, not only can black holes be formed from pure electromagnetic radiation, but such
black holes can also carry angular momentum. This makes it possible to generically study black hole angular
momentum scaling in critical phenomena at the threshold of black hole formation in both axial symmetry and in
four dimensional spacetimes without symmetries.
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momentum, S, tends towards S = 0.
In the standard picture of superradiant scattering, amplification of incident perturbations oc-

curs at the expense of black hole rotational energy, and therefore at the expense of black hole
angular momentum [151], [152], [153], [5], [101], [124], [137], [138] and [141]. A net flux of angular
momentum should thus be observed from a black hole during superradiant scattering events. Fig-
ure 4.36 shows there is very large angular momentum density in the region of the event horizon
and ergosphere, and negligible angular momentum density at the r = 50 outer boundary, when
t = 53.98 in the a = M = 5 Kerr spacetime. Meanwhile, Figure 4.39 similarly shows negligible
angular momentum density at the r = 50 domain boundary, and a small (but not insignificant)
density near the event horizon at t = 53.98 in the a = 0, M = 5 spacetime. Any substantial changes
of total angular momentum in these spacetimes around t = 53.98 will then be due to flux to or
from the black hole itself. Figures 4.40 and 4.41 show marked increases in total angular momentum
for the 0.8 ≤ a/M ≤ 1, M = 5 spacetimes around t = 53.98, but insignificant change in angular
momentum for the a = 0, M = 5 spacetime around the same period. But t = 53.98 is precisely the
time when total electromagnetic energy within r = 50 in the 0.8 ≤ a/M ≤ 1, M = 5 spacetimes
show their largest increase in value (cf. Figure 4.29). Then, according to the standard picture, the
marked increases of electromagnetic angular momentum around t = 53.98 in these spacetimes are
the direct result of superradiant amplification drawn from the rotation of the black hole itself.
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Figure 4.34: Angular momentum density for electromagnetic perturbations in a = M = 5 Kerr
spacetime. The figure displays angular momentum density density in a sequence of
steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude and colour gradient are both scaled linearly.
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Figure 4.35: Angular momentum density for electromagnetic perturbations at late time in a =
M = 5 Kerr spacetime. The figure displays angular momentum density density at a
final step of the evolution. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude and colour gradient are again scaled linearly.
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Figure 4.36: Angular momentum density for electromagnetic perturbations at superradiant scat-
tering peak time t = 53.98 in a = M = 5 Kerr spacetime. The directions of co-
ordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown, the computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude and colour gradient are
again scaled linearly.
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Figure 4.37: Angular momentum density for electromagnetic perturbations in a = 0, M = 5 Kerr
spacetime. The figure displays angular momentum density density in a sequence of
steps. Notice the general decay in electromagnetic angular momentum relative to
that of the case a = M . The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled
with their (r, θ) ordinate values. The amplitude and colour gradient are both scaled
linearly.
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Figure 4.38: Angular momentum density for electromagnetic perturbations at late time in a = 0,
M = 5 Kerr spacetime. The figure displays angular momentum density density at a
final step of the evolution. Notice how the angular momentum density distribution
here differs from that of the case a = M . The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown, the computational domain covers
the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled
with their (r, θ) ordinate values. The amplitude and colour gradient are again scaled
linearly.

4.3.4 Massless Maxwell-Klein-Gordon Equation Dynamics I: Orbiting
Resonances, Charge Separation and Dynamo-Like Behaviour for
e = 0.6 Electromagnetically Coupled s = 0 and s = 1 Perturbations

I again specify initial data according to section 4.3.1, but here I evolvemΦ = 0.0 electromagnetically
coupled s = 0 and s = 1 perturbations on a Kerr spacetime by specifying nonzero charge coupling
constant e. The black hole mass is set to M = 5, and the angular momentum per unit mass
is again chosen somewhere in the range a = 0 through a = M . As before, the computational
domain covers radial coordinate range 5 ≤ r ≤ 50 and angular coordinates 0 ≤ θ ≤ π, but now
resolutional requirements demand a computational domain with J = 801 radial points andK = 401
points in the θ angular direction. Because of the computational demands, these calculations were
performed in parallel across 64 processors with processor overlap regions being 3 grid points wide.
The numerical evolutions again span the range of coordinate time 0 ≤ t . 200. Since I choose
the charge coupling parameter e = 0.6 in a following analysis of charged massive scalar fields, I
focus discussion mostly on the e = 0.6 case but later compare these results to the evolution of both
e < 0.6 and e > 0.6 coupling parameter data. In terms of physical electromagnetic fields, the chosen
initial data again amounts to an everywhere vanishing electric field and a non-vanishing nontrivial
magnetic field at t = 0. For the case a = M , the initial magnetic field components are distributed
as shown in previous Figure 4.25. However, the coupling between scalar and electromagnetic fields
now gives rise to a nontrivial four-current distribution at initial time. The nonlinear dynamics are
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Figure 4.39: Angular momentum density for electromagnetic perturbations at t = 53.98 in a = 0,
M = 5 Kerr spacetime. The density distribution has significantly smaller gradients
than in the case a = M The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and
θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude and colour gradient are again scaled linearly.
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Figure 4.40: Integrated angular momentum density for electromagnetic perturbations in M = 5
Kerr spacetime. Plotted is S, the total angular momentum contained within 5 ≤
r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed
red line represents data for a/M = 0, the dotted red line data for a/M = 0.8, and
the dashed black line data for a/M = 1. Clearly, perturbation angular momentum
is highly variable in rotating black hole spacetimes, but tends towards S = 0 at late
time.
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Figure 4.41: Integrated angular momentum density for electromagnetic perturbations in M = 5
Kerr spacetime. Plotted is S, the total angular momentum contained within 5 ≤
r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed
red line represents data for a/M = 0, the dotted red line data for a/M = 0.8, the
dashed blue line data for a/M = 0.98, the dotted blue line (nearly coincident with
the dashed black line) data for a/M = 0.998, and the dashed black line data for
a/M = 1. The differences between a = 0 and a > 0 data are significant.
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rather detailed as discussed below. In addition to orbiting resonances, I find the electromagnetically
coupled fields display both charge separation and dynamo-like behaviour.

Starting with e = 0.6, a = M = 5 initial data, the total normalized energy within the compu-
tational domain is displayed as a sequence of steps starting at t = 0 in Figure 4.42 with a final
displayed time at t = 77.11 as shown in Figure 4.43. Gravitational interaction in the form of
orbiting resonances are again observed, and the resonance period is again ≈ 70t, corresponding to
an orbital frequency more than twice that the unstable circular photon orbit at r = 3M (cf. equa-
tion (4.164) and related discussion). Furthermore, the attenuation between the first two successive
orbits is again ∼ 10−1. Mode trapping is not apparent and neither is superradiant scattering15.
Figure 4.44 shows the total normalized energy within the computational domain for 0 ≤ t . 150
for a = 0, 0.8M and a = M spacetimes.16 It is there apparent how black hole angular momentum
decreases the decay rate of electromagnetically coupled perturbations. Furthermore, at late time,
the decay of perturbations in the a = M spacetime can be approximated as the power law

log(T ) ∼ −kt , (4.172)

with decay constant k ≈ 1 × 10−2, similar to the cases of s = 1 and massless s = 0 perturbations.
The evolution of energy densities are otherwise similar in the a = 0, 0.8M and a = M spacetimes.

15Again, while this test does not compensate for flux lost through the outer boundary r = 50, some superradiant
amplification could still be present

16While the evolution was extended to t ≈ 200, a very slowly growing instability is manifest some time after
t = 175 at r = 50 for cases a = 0.8M and a = M . I therefore limit examination to the shorter time interval.
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Figure 4.42: The glory effect and orbiting resonances for a = M = 5, mΦ = 0.0, e = 0.6 coupled
perturbations. The figure displays the total normalized energy density in a sequence
of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude is scaled linearly, while the scale of the colour gradient is
logarithmic.
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Figure 4.43: The glory effect and orbiting resonances for a = M = 5, mΦ = 0.0, e = 0.6 coupled
perturbations at late time. The figure displays the total normalized energy density
at a final step of the evolution. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown, the computational domain covers the range 5 ≤
r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ)
ordinate values. The amplitude is again scaled linearly and the colour gradient
logarithmically.

According to equations (4.109) through (4.113), the total conserved energy density can be
decomposed into two terms independent of couping parameter e plus one dependent on e. The
e-independent terms are the energy density of purely scalar contributions, ρT (Φ), and the energy
density of purely electromagnetic field contributions, ρT (A). The e-dependent term, ρT (ΦA), couples
the scalar and electromagnetic fields. While the total

ρT = ρT (Φ) + ρT (A) + ρT (ΦA) (4.173)

is a conserved quantity, the individual components are not. In fact, the coupling term ρT (ΦA)

isn’t even strictly positive in flat spacetime. Figures 4.45. 4.46, and 4.47 respectively depict
sequences of evolution of ρT (Φ), ρT (A) and ρT (ΦA). Observe how the purely scalar contribution is the
dominant contributor for the displayed phase of evolution. Also note how purely electromagnetic
contributions increase rapidly at very early time and then remain fairly large in amplitude for
the remaining evolution. Furthermore, the coupling term ρT (ΦA) is small in amplitude throughout
evolution, except along θ = 0 and θ = π at the time when perturbations first scatter off the steep
gravitational potential near the black hole event horizon. Figure 4.48 displays the total normalized
energy contained in the computational domain, T , and also the three components T (Φ), T (A),
and T (ΦA) contributing to the total. It is there apparent that T (Φ) is the dominant contributor
until t ≈ 90, after which T (A) dominates. It is also clear that T (ΦA) is sometimes positive, and at
other times negative. Finally, there appears to be a strong correlation between T (Φ) and T (ΦA)
during the period 20 . t . 40, corresponding to the first perturbation scattering from the steep
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Figure 4.44: Integrated normalized energy density for e = 0.6 coupled massless perturbations
in M = 5 Kerr spacetime. Plotted is log(T ), the logarithm of the total energy
contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate
time t. The dashed red line represents data for a/M = 0, the dotted red line data for
a/M = 0.8, and the dashed black line data for a/M = 1. Clearly, black hole angular
momentum decreases the overall decay rate of electromagnetic perturbations. Any
decrease in time of the energy results from the flux across surfaces r = 5 and r = 50,
and thus out of the computational domain.
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gravitational potential. The correlation between the electromagnetic component T (A) and T (ΦA)
appears to be rather weak during this event.
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Figure 4.45: Evolution of the scalar contribution to the total energy for a = M = 5, mΦ = 0.0,
e = 0.6 coupled perturbations. The figure displays the normalized scalar contri-
bution to the energy density in a sequence of steps. The directions of coordinate
vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The com-
putational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of
the domain are labelled with their (r, θ) ordinate values. The amplitude is scaled
linearly, while the scale of the colour gradient is logarithmic.
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Figure 4.46: Evolution of the electromagnetic contribution to the total energy for a = M = 5,
mΦ = 0.0, e = 0.6 coupled perturbations. The figure displays the normalized
electromagnetic contribution to the energy density in a sequence of steps. The
directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the
first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π,
and the corners of the domain are labelled with their (r, θ) ordinate values. The
amplitude is scaled linearly, while the scale of the colour gradient is logarithmic.
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Figure 4.47: Evolution of the coupling terms contributing to the total energy for a = M = 5,
mΦ = 0.0, e = 0.6 perturbations. The figure displays the normalized coupling
contribution to the energy in a sequence of steps. The directions of coordinate
vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The
computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners
of the domain are labelled with their (r, θ) ordinate values. The amplitude is scaled
linearly, while the scale of the colour gradient is logarithmic.



CHAPTER 4. CHARGED SCALAR ACCRETION 137

Figure 4.48: Decomposition of integrated normalized energy density for e = 0.6 coupled massless
perturbations in a = M = 5 Kerr spacetime. Plotted are the total energy and
contributions to the total contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as
a function of coordinate time t. The dotted black line represents the total normalized
energy, the dashed black line represents the normalized scalar field contribution, the
dotted red line is the normalized electromagnetic contribution and the dashed red
line the normalized contribution from electromagnetic coupling terms.

I again analyze the magnetic and electric field dynamics through analysis of BaB
a and EaE

a.
Figure 4.49 displays BaB

a, while Figure 4.50 shows EaE
a. As in the case of pure electromagnetic

perturbations, the magnetic field norm is substantially smaller than that of the electric field in the
equatorial plane (θ = π/2) and along the axis of symmetry (θ = 0 and θ = π). The integrals of
these norms are displayed in Figure 4.51. After undergoing substantial change at early time, these
integrated amplitudes become comparable and very roughly decay according to

log(B2) ∼ −kt , (4.174)

and
log(E2) ∼ −kt , (4.175)

where k ≈ 1×10−2 similar to the case of pure electromagnetic perturbations. Finally, the evolution
of BaB

a and EaE
a are qualitatively very similar in both a = 0 and a = M spacetimes.
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Figure 4.49: BaB
a for a = M = 5, e = 0.6 coupled perturbations. The figure displays the square

of the magnetic field in a sequence of steps. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude is scaled linearly, while
the scale of the colour gradient is logarithmic. The magnetic field amplitude is
negligible outside the ergoregion in the plane θ = π/2.
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Figure 4.50: EaE
a for a = M = 5, e = 0.6 coupled perturbations. The figure displays the square

of the electric field in a sequence of steps. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude is scaled linearly, while
the scale of the colour gradient is logarithmic.
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Figure 4.51: Integrated squares of electric and magnetic fields in a = M = 5 Kerr spacetime for
e = 0.6 coupled perturbations. Plotted are log(B2) and log(E2), the logarithm of
the integrated squares contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as
a function of coordinate time t. The dashed black line represents log(B2), and the
dotted black line log(E2). Initially, the field amplitudes undergo substantial change,
but the decay of integrated electric and magnetic amplitudes become comparable
at later time.

Before analyzing the physics of charge separation and dynamo-like behaviour unique to electro-
magnetically coupled s = 0 and s = 1 perturbations I now include discussion of angular momentum
density evolution. I display the conserved angular momentum density in the sequence of steps shown
in Figure 4.52. Similar to the case of purely electromagnetic perturbations, the chosen initial data
is for zero net the angular momentum at all point in the computational domain. However, the
distribution becomes nontrivial in short order as shown. Furthermore, as seen in the case of un-
coupled electromagnetic perturbations, the distribution becomes sharply peaked in the ergoregion
at intermediate time before evolving to a somewhat less dynamic scenario. Also observe that the
local angular momentum density amplitudes are enhanced by an order of magnitude over those of
the uncoupled electromagnetic perturbations. This effect is clearly due to the addition of charge
coupling. Furthermore, in Figure 4.53, I display the same evolution sequence in a = 0 spacetime.
There it is clear that the black hole rotation amplifies the angular momentum density amplitude.
This is again similar to the situation observed for uncoupled electromagnetic perturbations. To
conclude, I display the integrated angular momentum density for a = 0, 0.8M and a = M space-
times in Figure 4.54. It is there evident that the total angular momentum is especially variable for
a ≥ 0.8M spacetimes during the evolutionary period 40 . t . 70.
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Figure 4.52: Angular momentum density for a = M = 5, e = 0.6 coupled perturbations in a
sequence of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼
(0, 0, 1, 0) are shown in the first frame. The computational domain covers the range
5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their
(r, θ) ordinate values. The amplitude and colour gradient are both scaled linearly.
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Figure 4.53: Angular momentum density for a = 0, e = 0.6 coupled perturbations in a sequence
of steps. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values. The amplitude and colour gradient are both scaled linearly.
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Figure 4.54: Integrated angular momentum density for e = 0.6 coupled massless perturbations
in M = 5 Kerr spacetime. Plotted is S, the total angular momentum contained
within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate
time t. The dashed red line represents data for a/M = 0, the dotted red line data
for a/M = 0.8, and the dashed black line data for a/M = 1. The total angular
momentum is especially variable for a ≥ 0.8M spacetimes during 40 . t . 70.

In this subsection I have so far discussed the dynamics of energy and angular momentum for the
coupled s = 0 and s = 1 perturbations on Kerr spacetime. It is fair to say that, while quantitatively
different, the energy and angular momentum dynamics are in many ways similar to those of un-
coupled perturbations previously discussed. Because the electromagnetically coupled perturbations
carry charge, two physically unique features appear in the field dynamics—the separation of electric
charge and dynamo-like behaviour of electric current. The evolution of electric charge density in
a = M = 5 spacetime is displayed as a sequence in Figure 4.55. There it is seen how an everywhere
zero net charge density quickly evolves into regions of separated net positive and negative charge.
Note that this process is not particular to rotating black hole spacetimes. For comparison, I display
the analogous sequence for a = 0, M = 5 spacetime in Figure 4.56. The early dynamics of ρQ are
nearly identical for a = M and a = 0, and only significantly deviate in magnitude after the initial
scattering from the steep gravitational potential. For further comparison I plot the total charge
contained in the computational domain, Q, for a = 0, 0.8M and a = M spacetimes in Figure 4.57,
where it is observed how closely the total charges agree at early time for all black hole angular
momenta. In addition, observe how the choice of initial data prefers to transfer positive charge
through the event horizon and outer computational boundary for 40 . t . 50 and transfer negative
charge for 70 . t . 100.
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Figure 4.55: Charge density showing separation in the a = M = 5 spacetime for e = 0.6 pertur-
bations. Both amplitude and colour gradient are scaled linearly. The directions of
coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the
corners of the domain are labelled with their (r, θ) ordinate values.
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Figure 4.56: Charge density showing separation in the a = 0, M = 5 spacetime for e = 0.6
perturbations. The amplitude and colour gradient are again scaled linearly. The
directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the
first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π,
and the corners of the domain are labelled with their (r, θ) ordinate values.
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Figure 4.57: Integrated charge density for e = 0.6 coupled massless perturbations in M = 5 Kerr
spacetime. Plotted is Q, the total charge contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed red line represents
data for a/M = 0, the dotted red line data for a/M = 0.8, and the dashed black line
data for a/M = 1. The choice of initial data preferentially transfers positive charge
through the event horizon and outer computational boundary for 40 . t . 50 and
negative charge for 70 . t . 100.

As the coupled perturbations carrying charge and momentum display interesting dynamics, it
is also surmised the electric current should reveal behaviour worth studying. While the evolution
of ρQ encapsulates information regarding current components Jr and Jθ, it doesn’t completely
reveal the behaviour of the axial current component Jφ. For this reason I plot an evolutionary
sequence for Jφ in a = M = 5 Kerr spacetime in Figure 4.58. Most generally, I consider the
dynamo-like behaviour to be the dynamic interplay of electric current and electromagnetic field,
converting between kinetic and non-kinetic contributions of the system’s total energy. As there
is no outside mechanism to constrain the axial current of the coupled perturbations, they must
necessarily display dynamo-like behaviour. However, observe how Jφ undergoes directional reversal
throughout evolution. The choice of initial conditions clearly disallows a single persistent current
loop.17 Instead, the loop oscillates in a nontrivial manner lacking a regular period of oscillation.

17This behaviour can be simply explained as a manifestation of Faraday’s Law. Recall the differential form of
Faraday’s law in flat spacetime can be expressed

~∇× ~E +
∂ ~B

∂t
= 0 , (4.176)

which shows that a time dependent magnetic field induces an electric field. The electric field, then, will induce a
current (or change in current) in a direction to counteract the change in magnetic field. In the case examined here,
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The same is true for evolution in a = 0, M = 5 spacetime as shown in Figure 4.59. This is
substantiated in part by Figures 4.60 and 4.61 which respectively display the global maxima and
minima of Jφ for a = 0 and a = M spacetimes. While a = 0 perturbations have larger global
maxima at early time, these maxima quickly decay and the a = M becomes dominant. Especially
note how the maximum, max(Jφ), peaks during the period 20 . t . 50. Meanwhile, the global
minima, min(Jφ), evolve with comparable amplitude for early time until a = M perturbations begin
dominating when 40 . t . 80. The global maxima and minima were also analyzed for a = 0.8M
(not displayed) and were found to be qualitatively similar to those of the a = M spacetime. It can
therefore be concluded that while black hole angular momentum initially suppresses the evolution
of Jφ, it later acts to amplify this axial current density.

there is an axial current loop at initial time as shown in Figure 4.58. There is also a magnetic field at initial time,
whose square is shown in Figure 4.49. Note how this initial magnetic field distribution—the same as that studied
in section 4.3.3—has a nonzero time derivative. As this magnetic field changes in time it induces an electric field
as supported by results shown in Figures 4.50 and 4.51. Of course, the resulting induced change in current by the
electric field must be in the direction opposing the change in magnetic flux.
Now consider the scenario where a stationary charged disk generates a current loop around a black hole and persists
indefinitely unless acted on by an external agent. If an electromagnetic wave passes through part of the loop,
a current fluctuation will then be induced in order to oppose the change in magnetic flux enclosed by the loop.
And so it is by this mechanism that one could imagine electromagnetic radiation destabilizing a stationary charged
accretion flow in the spacetime of a black hole. Note there was no appeal to a property unique to black holes in this
destabilization mechanism, and to the argument should also hold for other gravitating celestial objects like stars.
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Figure 4.58: Displayed is the axial current, Jφ, oscillation in a = M = 5 Kerr spacetime for
e = 0.6 coupled perturbations. Both amplitude and colour gradient are scaled
linearly. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values.
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Figure 4.59: Displayed is the axial current, Jφ, oscillating in a = 0, M = 5 Kerr spacetime
for e = 0.6 coupled perturbations. Both amplitude and colour gradient are scaled
linearly. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordinate
values.
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Figure 4.60: Global maxima of Jφ in the computational domain, max(Jφ), as a function of t for
e = 0.6 coupled massless perturbations in M = 5 Kerr spacetime. The dotted black
line represents data for a/M = 0 and the dashed black line data for a/M = 1.

To gain additional insight on the nature of charge and current in this model, consider the ratios
ρQ/e and Ja/e. From equation (4.108), the first of the ratios is

ρQ

e
= i

g2
tr

(g2
trfφφ − gtφftφgrr)

(Φ∗ΠΦ − ΦΠ∗
Φ) , (4.177)

and may be interpreted as a conserved scalar field density. However, recall that charge density can
be both positive and negative. The proper interpretation of ρQ/e is therefore the density of the
scalar field carrying charge with sign e/|e|. Negative values of ρQ/e simply indicate the scalar field
is carrying charge of opposite sign at those locations. Furthermore, comparing ρQ of (4.108) to
ρS(ΦA) from (4.116) obtains

ρQ = − 2

Aφ
ρS(ΦA) , (4.178)

revealing the connection between charge density and the angular momentum contribution from the
coupling of scalar and electromagnetic fields. Meanwhile, (4.93) and (4.94) obtain the quantities

Jr

e
= −i (Φ∗Φr − ΦΦ∗

r) − 2eΦΦ∗Ar (4.179)

and
Jθ

e
= −i (Φ∗Φθ − ΦΦ∗

θ) − 2eΦΦ∗Aθ , (4.180)
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Figure 4.61: Global minima of Jφ in the computational domain, min(Jφ), as a function of t for
e = 0.6 coupled massless perturbations in M = 5 Kerr spacetime. The dotted black
line represents data for a/M = 0 and the dashed black line data for a/M = 1.
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which represent scalar field velocities in the r and θ coordinate directions. Now, from (4.95),

Jφ

e
= −2eΦΦ∗Aφ , (4.181)

which represents a scalar field velocity in the axial direction—specifically, the axial velocity of
scalar field carrying charge of sign e/|e|.

From (4.56), the quantity ΠΦ appearing in (4.177) is

ΠΦ = na√−g (∇aΦ − ieAaΦ) , (4.182)

where, from (4.73),
√
−g =

g2
trfφφ − gtφftφgrr

g2
tr

. (4.183)

Substituting (4.182) and (4.183) into (4.177) and taking the limit e→ 0 obtains

lim
e→0

ρQ

e
= −nai (Φ∗∇aΦ − Φ∇aΦ∗) . (4.184)

Similarly, taking the e→ 0 limits of (4.179)–(4.181) yields

lim
e→0

Jr

e
= −i (Φ∗Φr − ΦΦ∗

r) , (4.185)

lim
e→0

Jθ

e
= −i (Φ∗Φθ − ΦΦ∗

θ) , (4.186)

and

lim
e→0

Jφ

e
= 0 . (4.187)

Observe how, consistent with the assumptions of axial symmetry, the scalar field velocity in the
axial direction vanishes in the limit e → 0. Furthermore, the relationship between the Noether
current of a (massless and uncharged) complex scalar field,

Ja = −i (Φ∗∇aΦ − Φ∇aΦ∗) , (4.188)

and the quantities appearing in (4.184)–(4.187) is clear.
Of course, ρQ, Jr, Jθ and Jφ are observer dependent quantities. As far as that goes, so are Ea,

Ba, ρT , and ρS . But it is well known from both special and general relativity that densities and
electromagnetic quantities are dependent on the frame in which they are measured. This discussion
concludes subsection 4.3.4.

4.3.5 Massless Maxwell-Klein-Gordon Equation Dynamics II:
Comparing Electromagnetically Coupled s = 0 and s = 1
Perturbations With Different Values of Parameter e

Having examined the effects of charge coupling e = 0.6 in the massless Maxwell-Klein-Gordon
system for different values of the black hole angular momentum parameter a, I now investigate
how changing e alters the observed dynamics in a = M = 5 Kerr spacetime. Specifically, I
investigate e = 0.0, 0.3, 0.6, 1.2 and e = 2.4. The computational domain again spans 5 ≤ r ≤ 50
and 0 ≤ θ ≤ π, and the initial data is specified as in the preceding subsection. For e = 0.0, 0.3
and e = 0.6 I use a finite difference grid with resolution J = 801 radial points and K = 401
angular points. This provides an accuracy to within ≈ 1% before the perturbations first cross the
ergosphere and then the excision surface at r = 5. For e = 1.2 a resolution of J = 1601 radial
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points and K = 801 angular points is used to provide the same level of accuracy. For e = 2.4, a
resolution of at least J = 3201 radial and K = 1601 angular points is required before this order
of accuracy is achieved.18 The computational requirements are thus very large for e = 1.2 and
e = 2.4, and so I compute the evolution just past the first excision surface crossing for these two
coupling parameter values.19 Finally, the calculations for 0.0 ≤ e ≤ 1.2 are performed in parallel
across 64 processors with processor overlap regions 3 grid points wide, and the calculations for
e = 2.4 are performed across 256 processors with overlap regions 3 points wide.

While computational demands have restricted the length of high e evolutions, I have complete
data for e = 0.0, 0.3, and e = 0.6 over 0 ≤ t . 150 for the a = M = 5 Kerr spacetime. The data
for e = 0.0 are essentially the sum of results from sections 4.3.2 and 4.3.3. Furthermore, the case
e = 0.6 has already been discussed in section 4.3.4. While the results for e = 0.3 should display
behaviour between those of e = 0.0 and e = 0.6, I quantify the similarities and differences through
the total normalized energy, total angular momentum and charge contained in the computational
domain. Figure 4.62 displays the energy, Figure 4.63 the angular momentum, and Figure 4.64
the charge. While proportionately greater energy persists over time for for e = 0.3 and e = 0.6
than for e = 0.0, there is reasonably close agreement between the cases e = 0.3 and e = 0.6.
While the differences are small, it can still be argued that addition of modest charge coupling

18The need for higher accuracy when e is large can be inferred from equation of motion (4.50),

∇a∇aΦ − 2ie(∇aΦ)Aa − e2ΦAaAa − ieΦ∇aAa − m 2
Φ Φ = 0 . (4.189)

For simplicity, consider solutions of this equation in a flat spacetime with one spatial dimension and one temporal
dimension. Points in this spacetime are designated by the value of spatial coordinate x and the value of temporal
coordinate t. Furthermore, consider solutions of equation (4.189) of the form

Φ = aΦ exp i(kx − ωt) , (4.190)

where aΦ is the amplitude, k is the wavenumber and ω is the solution frequency. When e = mΦ = 0, equation
(4.189) becomes

∇a∇aΦ = 0 . (4.191)

The dispersion relation obtained by substituting (4.190) into (4.191) is simply

ω2 = k2 . (4.192)

When e = 0 and mΦ 6= 0, equation (4.189) becomes

∇a∇aΦ − m 2
Φ Φ = 0 . (4.193)

Assuming (4.193) has solutions of the form (4.190), the dispersion relation becomes

ω2 = k2 + m2
Φ . (4.194)

This shows large values for mΦ result in correspondingly large values of ω for a given wavenumber k. Numerically,
this implies a need for higher resolution to obtain a solution with the same accuracy as in the case mΦ = 0. Similarly,
the need for high resolution can be inferred when mΦ = 0 and e 6= 0 is large. Using the Lorentz gauge condition
∇aAa = 0 and assuming mΦ = 0, equation (4.189) becomes

∇a∇aΦ − 2ie(∇aΦ)Aa − e2AaAaΦ = 0 . (4.195)

Solutions (4.190) then obtain a dispersion relation

ω2 + 2eAtω = k2 + 2eArk + e2AaAa . (4.196)

Comparing with (4.193) and (4.194), the quantity
`

e2AaAa
´1/2

plays a role similar to that of a t and r dependent
scalar field mass. Furthermore, it is clear from (4.196) that increasing e correspondingly increases the solution
frequency ω for a given wavenumber k. This, in turn, suggests the need for higher resolution to numerically obtain
the same solution accuracy as in the case e = 0.

19Finally, while adaptive mesh refinement is not clearly beneficial for the evolution of e ≤ 0.6 perturbations
from the specified initial conditions on the given computational domain (as discussed in preceding section 4.2.6),
cases with sufficiently large coupling may benefit from the technique. Specifically, my results demonstrate how (at
least for the early phase of evolution) a relatively high resolution is required in a proportionately small region of
the computational domain for cases such as e = 2.4. The utility of adaptive mesh refinement was, however, not
investigated in any more detail.
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Figure 4.62: Total normalized energy for the massless electromagnetically coupled perturbations
in a = M = 5 Kerr spacetime. The dashed red line represents data for e = 0.0, the
dotted red line data for e = 0.3 and the dashed black line data for e = 0.6. The
decay rates of charged perturbations are smaller than for the case e = 0.0. Any
decrease in time of this quantity results from the energy flux across surfaces r = 5
and r = 50, and thus out of the computational domain.

decreases the overall decay rate of total perturbation energy.20 Meanwhile, note that only the
s = 1 component of perturbations contributes to the total angular momentum of the e = 0.0 data.
However, an additional coupling term contributes with the introduction of nonzero e. It is clear
from Figure 4.63 how the addition of electromagnetic coupling increases the amplitude of angular
momentum remaining in the computational domain as evolution progresses. Furthermore, the
maximum amplitude of this total angular momentum increases with parameter e. Finally, while
the case e = 0.0 has zero charge density, I still display the e = 0.0 data along with those of e = 0.3
and e = 0.6 in Figure 4.64. The charge remaining in the computational domain varies in time,
and the difference between the cases is more significantly affected by parameter e than by black
hole angular momentum a as discussed in section 4.3.4. Also note that it cannot be determined
in advance whether net positive of negative charge will preferentially leave the domain. Rather,
the details must be determined through numerical evolution. Overall, the effect of changing e is
notable over the period of evolution.

20It is not possible to definitively conclude what trends in decay rate will arise with increased electromagnetic
coupling parameter without further computation. From the data of Figure 4.62 it is clear that energy decay rates
are not ordered according to the value of e. A similar trend was observed in the massive uncharged perturbation
decay rates of Figure 4.19, where the value mΦ = 0.3 gave rise to mode trapping, and mΦ ≥ 1.2 resulted in rapid
energy decay by infall onto the black hole. It is possible that the behaviour displayed in Figure 4.62 is the beginning
of a similar trend with the electromagnetic coupling parameter.
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Figure 4.63: Total angular momentum for the massless electromagnetically coupled perturbations
in a = M = 5 Kerr spacetime. The dashed red line represents data for e = 0.0, the
dotted red line data for e = 0.3 and the dashed black line data for e = 0.6. The total
angular momenta are more dynamic for charged perturbations than for e = 0.0.
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Figure 4.64: Total charge for the massless electromagnetically coupled perturbations in a = M =
5 Kerr spacetime. The dashed red line represents data for e = 0.0, the dotted red
line data for e = 0.3 and the dashed black line data for e = 0.6.
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Investigating the evolution of high e perturbations it is further apparent that dynamics of large
e fields are much richer than those with small e. Figure 4.65 displays the total normalized energy
density of e = 2.4 in a sequence of steps from t = 0 through t = 16.06.21 To emphasize, I provide
an enlarged view of time step t = 16.06 in Figure 4.66. Comparing with the results of sections
4.3.2, 4.3.3 and 4.3.4 it is clear how the morphology changes and the density gradient increases
with charge coupling. There is also a tendency is for density amplitudes to grow with increasing
e. Furthermore, notice how early evolution of the e = 2.4 data would suggest perturbations with
large coupling are likely to persist in the computational domain for an extended period of time.
That is, the rate at which large e perturbations are likely to decay—either by passing through
the r = 5 excision surface or escaping through the r = 50 outer boundary—is probably smaller
than for small or vanishing e. This, in turn, suggests the possibility of an effect similar to mode
trapping for massless electromagnetically coupled perturbations. However, the origins of such a
phenomenon would have to be investigated by evolving the fields in spacetimes with differing black
hole mass and angular momentum. The rich dynamics are also manifest in quantities like the
angular momentum density of Figures 4.67 and 4.68, and the charge density of Figures 4.69 and
4.70. Again, comparing with previous results it is clear how the dynamics are enriched as both the
density gradients and amplitudes increase with e.

21The evolutionary dynamics for e = 0.3 lie between those of e = 0.0 and e = 0.6, and the dynamics of e = 1.2 lie
between those of e = 0.6 and e = 2.4. Neither e = 0.3 nor e = 1.2 are displayed.
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Figure 4.65: Displayed is the total normalized energy density in a = M = 5 Kerr spacetime for
e = 2.4 massless perturbations for the early phase of evolution. Amplitude is scaled
linearly and the colour gradient logarithmically. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.66: Displayed is a closer view of the total normalized energy density at t = 16.06 in
a = M = 5 Kerr spacetime for e = 2.4 massless perturbations. Amplitude is again
scaled linearly and the colour gradient logarithmically. The computational domain
and coordinate vectors would be the same as those shown in Figure 4.65.
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Figure 4.67: Displayed is the total angular momentum density in a = M = 5 Kerr spacetime
for e = 2.4 massless perturbations for the early phase of evolution. Both amplitude
and colour gradient are scaled linearly. The directions of coordinate vectors ra ∼
(0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.68: Displayed is a closer view of the total angular momentum density at t = 16.06 in
a = M = 5 Kerr spacetime for e = 2.4 massless perturbations. Amplitude and
colour gradient are both scaled linearly. The computational domain and coordinate
vectors would be the same as those shown in Figure 4.67.
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Figure 4.69: Displayed is the charge density in a = M = 5 Kerr spacetime for e = 2.4 massless
perturbations for the early phase of evolution. Both amplitude and colour gradient
are scaled linearly. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼
(0, 0, 1, 0) are shown in the first frame. The computational domain covers the range
5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their
(r, θ) ordinate values.
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Figure 4.70: Displayed is a closer view of the charge density at t = 16.06 in a = M = 5 Kerr
spacetime for e = 2.4 massless perturbations. Amplitude and colour gradient are
again scaled linearly, and the computational domain and coordinate vectors would
be the same as those shown in Figure 4.69.

4.3.6 Massive Charged Maxwell-Klein-Gordon Equation Dynamics:
Collimation, Orbiting Resonances and Decay of mΦ = 0.3, e = 0.6
Electromagnetically Coupled s = 0 and s = 1 Perturbations

Now that I have examined massless coupled and uncoupled s = 0 and s = 1 perturbations in
sufficient detail, I am in a position to examine the physics of massive coupled perturbations in M =
5 Kerr spacetime. To summarize preceding results, massless s = 0 perturbations display the effect
of orbiting resonance, while massive s = 0 perturbations display mode trapping. Furthermore, for
the valuemΦ = 0.3 which displays the strongest trapping, the s = 0 perturbations appear to display
preferential scattering along the axis of black hole rotation. While s = 1 perturbations also exhibit
orbiting resonance, they do not display either trapping or preferential scattering in the spacetime.
However, there is evidence in the form of total energy increase and angular momentum flux from the
black hole to support superradiant scattering of the s = 1 perturbations. Finally, while massless
electromagnetically coupled s = 0 and s = 1 perturbations display orbiting resonance, charge
separation, and dynamo-like behaviour, neither trapping, preferential scattering, nor superradiant
amplification are in evidence from analysis of the choice e = 0.6.

I now demonstrate how a choice of nonzero mass and charge coupling parameter together lead to
new dynamics. The natural choice for mass parameter is mΦ = 0.3—since that is the value at which
mode trapping is greatest (for the given initial conditions), it is hypothesized the choice will provide
a substantial period over which the perturbations will persist and interact electromagnetically in the
black hole spacetime. The choice for charge coupling parameter is not as obvious. While values as
large as e = 2.4 may be desired, the resulting intricate dynamics would require very high resolution
and correspondingly large computational resources. However, the intermediate choice e = 0.6
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has demonstrated sufficient coupling for interesting electromagnetic effects while requiring modest
finite difference grid resolution. I therefore compute the evolution for mΦ = 0.3 perturbations
with e = 0.6 on M = 5 Kerr spacetimes of rotation a = 0, 0.8M and a = M . The computational
domain spans the coordinate range 5 ≤ r ≤ 50, 0 ≤ θ ≤ π, and the period 0 ≤ t . 200. The data
is computed in parallel across 64 processors with overlap regions 3 grid points wide. The finite
difference grid itself has J = 801 radial and K = 401 angular points, providing sufficient resolution
to maintain an accuracy of ≈ 1% until perturbations first cross the ergosphere.

Examining first the total normalized energy density of Figures 4.71 and 4.72, it is apparent
that evolution in the a = M = 5 spacetime displays behaviour different from that seen in the other
choices formΦ and e. Except for the casemΦ = 0.3, there was previously no evidence for preferential
scattering along the axis of black hole rotation. In the present case, addition of charge coupling
results in somewhat different focusing of the energy density and greater collimation. To understand
contributions to the observed dynamics, I also display the normalized scalar energy density, ρT (Φ)

(Figures 4.73 and 4.74), and the electromagnetic contribution, ρT (A) (Figures 4.75 and 4.76).
For completeness, I also display the corresponding evolutionary sequence for ρT (ΦA) (see Figures
4.77 and 4.78). From ρT (Φ) and ρT (A) it is apparent how the scalar component accounts for the
greatest contribution to the collimated energy density. I then conclude that while electromagnetic
coupling has an effect on the collimation of energy, it does not seem to be more significant in this
regard than the effect of massive mode scattering from the black hole potential. One case where
electromagnetism could have a profound influence is in the collimation of large mΦ scalar fields
that would otherwise not reflect off the spacetime potential barrier. This hypothesis will have be
be tested with future computation. Finally, in Figure 4.79 I display the total normalized energy in
the computational domain, T , along with individual contributions T (Φ), T (A) and T (ΦA). It is
there obvious that T (Φ) is the dominant component throughout evolution. T (A) is initially very
small, but quickly increases by orders of magnitude at early time. During this phase both T (Φ) and
T (ΦA) decrease sharply. Afterwards, T (A) remains large, and T (ΦA) increases at the expense of
T (Φ). After t = 20 the changes in each of the components are less dramatic. Again, T (ΦA) takes
on both positive and negative values during evolution. Before proceeding, note also the presence
of orbiting resonances as displayed in the data, and notice how ρT (A) is the principal contributor.
As in the case of massless e = 0.6 perturbations, the period between the first two orbits is ≈ 70t
and the attenuation is ∼ 10−1. Again, the orbital period here corresponds to a frequency more
than twice that of unstable circular photon orbits at r = 3M (cf. equation (4.164) and related
discussion).
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Figure 4.71: Displayed is the total normalized energy density in a = M = 5 Kerr spacetime
for e = 0.6, mΦ = 0.3 perturbations. The amplitude is scaled linearly and the
colour gradient is scaled logarithmically. The directions of coordinate vectors ra ∼
(0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.72: Displayed is the total normalized energy density at t = 77.11 and t = 154.22 in
a = M = 5 Kerr spacetime for e = 0.6, mΦ = 0.3 perturbations. The ampli-
tude is scaled linearly and the colour gradient is scaled logarithmically. The di-
rections of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in
the first frame. The computational domain covers the range 5 ≤ r ≤ 50 and
0 ≤ θ ≤ π, and the corners of the domain are labelled with their (r, θ) ordi-
nate values. An MPEG animation showing evolution of normalized energy den-
sity for e = 0.6, mΦ = 0.3 perturbations over the period 0 ≤ t . 154 is avail-
able at http://$WWW/People/petryk/animations/6.mpeg where $WWW is currently
laplace.physics.ubc.ca .
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Figure 4.73: Displayed is the normalized scalar energy density in a = M = 5 Kerr spacetime
for e = 0.6, mΦ = 0.3 perturbations. The amplitude is scaled linearly and the
colour gradient is scaled logarithmically. The directions of coordinate vectors ra ∼
(0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.74: Displayed is the normalized scalar energy density at t = 77.11 and t = 154.22 in
a = M = 5 Kerr spacetime for e = 0.6, mΦ = 0.3 perturbations. The amplitude is
scaled linearly and the colour gradient is scaled logarithmically. The directions of
coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the
corners of the domain are labelled with their (r, θ) ordinate values.
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Figure 4.75: Displayed is the normalized electromagnetic energy density in a = M = 5 Kerr
spacetime for e = 0.6, mΦ = 0.3 perturbations. The amplitude is scaled linearly and
the colour gradient is scaled logarithmically. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.76: Displayed is the normalized electromagnetic energy density at t = 77.11 and t =
154.22 in a = M = 5 Kerr spacetime for e = 0.6, mΦ = 0.3 perturbations. The
amplitude is scaled linearly and the colour gradient is scaled logarithmically. The
directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the
first frame. The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π,
and the corners of the domain are labelled with their (r, θ) ordinate values.
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Figure 4.77: Displayed is the normalized coupling energy density in a = M = 5 Kerr spacetime
for e = 0.6, mΦ = 0.3 perturbations. The amplitude is scaled linearly and the
colour gradient is scaled logarithmically. The directions of coordinate vectors ra ∼
(0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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To determine how much effect black hole rotation has on collimation I also evolve the mΦ = 0.3,
e = 0.6 perturbations in M = 5 Kerr spacetimes with a = 0 and a = 0.8M . The results are nearly
identical in all respects to the case a = M . I simply display the total normalized energy density
at t = 77.11 for a = 0 in Figure 4.80. To further quantify similarities I plot the total normalized
energy, T , contained in the computational domain for 0 ≤ t . 200 for a = 0, 0.8M and a = M in
Figure 4.81. It is there seen that black hole angular momentum has a rather small effect in the
evolution of the coupled massive perturbations. However, while the differences are small, it can
still be seen that black hole rotation decreases the perturbation energy decay rate at intermediate
and late time. At late time, this decay rate can be approximated with the power law

log(T ) ∼ −kt , (4.197)

with the decay constant k ≈ 6 × 10−3. The proximity of this value to k ≈ 5 × 10−3 measured for
uncoupled mΦ = 0.3 perturbations in a = M = 5 Kerr spacetime further supports the conclusion
that massive scalar effects have a dominant influence in the dynamics.

Detailed analysis of the remaining conserved quantities (angular momentum and charge) and
axial current component are not especially illuminating since their behaviour can be largely deduced
from the results of preceding sections. It is almost sufficient to state they evolve in a nontrivial
and morphologically unique manner for e = 0.6, mΦ = 0.3 perturbations. For completeness, I
provide just a few steps of each evolution. Figure 4.82 depicts the angular momentum density
at t = 0, 77.11 and t = 154.22 for black hole parameter values a = M = 5. As in the case of
massless electromagnetically coupled perturbations, the initial angular momentum density is zero
everywhere, but quickly evolves in a rather detailed manner. The complexity of its dynamics lies
somewhere between those of massless perturbations with e = 0.6 and those with e = 2.4 (cf. Figures
4.52, 4.67 and 4.68). At both intermediate and late time there is noticeable correlation between the
angular momentum and orbiting resonances seen in the energy density distributions of Figure 4.72.
To analyze the effects of black hole rotation I have also evolved perturbations on the a = 0 and
a = 0.8M spacetimes. As in the case of massless e = 0.6 perturbations, comparison reveals the black
hole rotation has a noticeable effect on the evolution. Figure 4.83 shows the angular momentum
density at t = 77.11 in a = 0, M = 5 spacetime. Comparing with Figure 4.82, it is evident that
black hole rotation dramatically amplifies the density and its gradients. This is especially true
in the ergoregion and surrounding spacetime at intermediate times near t = 77.11. For further
analysis I display the total integrated angular momentum in Figure 4.84 for the period 0 ≤ t . 200
for a = 0, 0.8M and a = M Kerr spacetimes. Also similar to the massless e = 0.6 solutions is the
high variability of total angular momentum over an intermediate phase of the evolution (cf. Figure
4.54). In the present case, this variability peaks during 50 . t . 80 when the electromagnetic
component is largely concentrated in the ergoregion (cf. Figure 4.76). Thus, the total angular
momentum is strongly affected by black hole angular momentum, predominantly associated with
the electromagnetic perturbations, and not dramatically altered by simply increasing mΦ from zero
to mΦ = 0.3.
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Figure 4.78: Displayed is the normalized coupling energy density at t = 77.11 in a = M = 5 Kerr
spacetime for e = 0.6, mΦ = 0.3 perturbations. The amplitude is scaled linearly and
the colour gradient is scaled logarithmically. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.79: Decomposition of integrated normalized energy density for mΦ = 0.3, e = 0.6 per-
turbations in a = M = 5 Kerr spacetime. Plotted are the total energy and contri-
butions to the total contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a
function of coordinate time t. The dotted black line represents the total normalized
energy, the dashed black line represents the normalized scalar field contribution, the
dotted red line is the normalized electromagnetic contribution and the dashed red
line the normalized contribution from coupling terms.
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Figure 4.80: Displayed is the normalized total energy density at t = 77.11 in a = 0, M = 5 Kerr
spacetime for e = 0.6, mΦ = 0.3 perturbations. Observe how closely the a = 0 data
matches that of a = M shown in Figure 4.72. The amplitude is scaled linearly and
the colour gradient is scaled logarithmically. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values.
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Figure 4.81: Integrated normalized energy density for mΦ = 0.3, e = 0.6 perturbations in M = 5
Kerr spacetime. Plotted is log(T ), the logarithm of the total energy contained
within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate
time t. The dashed red line represents data for a/M = 0, the dotted red line
data for a/M = 0.8, and the dashed black line data for a/M = 1. Observe how
black hole angular momentum decreases the overall decay rate of electromagnetic
perturbations. Again, the decrease of energy over time results from the flux across
surfaces r = 5 and r = 50, and thus out of the computational domain.
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Figure 4.82: Angular momentum density at t = 0, 77.11, 154.22 for e = 0.6, mΦ = 0.3 per-
turbations in a = M = 5 Kerr spacetime. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude and colour gradient are
both scaled linearly. An MPEG animation showing evolution over 0 ≤ t . 154 is
available at http://$WWW/People/petryk/animations/7.mpeg where $WWW is cur-
rently laplace.physics.ubc.ca .
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Figure 4.83: Angular momentum density at t = 77.11 for e = 0.6, mΦ = 0.3 perturbations in
a = 0, M = 5 Kerr spacetime. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled
with their (r, θ) ordinate values. The amplitude and colour gradient are both scaled
linearly. Observe how small these angular momentum density gradients are in com-
parison to those at t = 77.11 in a = M Kerr spacetime as shown in Figure 4.82.

Examining the charge density depicted in Figure 4.85 for time steps t = 0, 77.11 and t =
154.22 for the e = 0.6, mΦ = 0.3 perturbations in a = M = 5 spacetime, I observe nontrivial
evolution beginning from a zero net charge density initial data profile and leading to dynamic
charge separation for all t > 0. While somewhat more intricate than the corresponding evolution
of massless e = 0.6 perturbations (cf. Figure 4.55), the dynamics are certainly not as rich as those
of massless e = 2.4 perturbations (cf. Figures 4.69 and 4.70). It therefore appears that addition of
a nonzero mass parameter has a significant effect on the details of the evolution of charge density.
Comparing with the t = 77.11 time step of e = 0.6, mΦ = 0.3 perturbation evolution in a = 0,
M = 5 spacetime as shown in Figure 4.86, it is clear that while slightly different in detail, the
degree of charge separation is comparable in rotating and nonrotating black hole backgrounds.
The comparison is further investigated in Figure 4.87 where I display the total charge integrated
over the computational domain for 0 ≤ t . 200 in a = 0, 0.8M and a = M backgrounds. This
figure shows how the total charge is in very close agreement for each of the spacetimes throughout
evolution. It is thus obvious that while a modest change in the value of mΦ has a substantial
effect on charge separation, the evolution of charge density from the given initial conditions is only
slightly dependent on black hole angular momentum for e = 0.6 perturbations (cf. Figures 4.55,
4.56 and 4.57).
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Figure 4.84: Integrated angular momentum density for e = 0.6, mΦ = 0.3 perturbations in
M = 5 Kerr spacetime. Plotted is S, the total angular momentum contained within
5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate time t.
The dashed red line represents data for a/M = 0, the dotted red line data for
a/M = 0.8, and the dashed black line data for a/M = 1. Clearly, perturbation
angular momentum is especially variable in rotating black hole spacetimes over
50 . t . 80, but tends towards S = 0 at late time.
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Figure 4.85: Charge density at t = 0, 77.11, 154.22 for e = 0.6, mΦ = 0.3 perturbations in
a = M = 5 Kerr spacetime. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are la-
belled with their (r, θ) ordinate values. The amplitude and colour gradient are both
scaled linearly. An MPEG animation showing evolution over 0 ≤ t . 154 is avail-
able at http://$WWW/People/petryk/animations/8.mpeg where $WWW is currently
laplace.physics.ubc.ca .
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Figure 4.86: Charge density at t = 77.11 for e = 0.6, mΦ = 0.3 perturbations in a = 0, M = 5
Kerr spacetime. The directions of coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼
(0, 0, 1, 0) are shown in the first frame. The computational domain covers the range
5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled with their
(r, θ) ordinate values. The amplitude and colour gradient are both scaled linearly.
Comparing with Figure 4.85, it is clear that charge density distributions at t = 77.11
are affected by the value of black hole rotation parameter a, but not very strongly.

As could have been deduced from the preceding study of angular momentum evolution—and also
from earlier investigation of angular momentum for the massless e = 0.6 perturbations—the effects
of black hole rotation on the axial component of current, Jφ, are significant. Figure 4.88 displays
Jφ at t = 0, 77.11 and t = 154.22 for the e = 0.6, mΦ = 0.3 perturbations in a = M = 5 spacetime.
From a relatively simple profile at t = 0, the axial component evolves in a nontrivial manner. The
current oscillates in direction and amplitude, indicating dynamo-like behaviour. Furthermore, the
distribution displays large amplitude and steep gradients at t = 77.11 before relaxing at late time.
As shown in Figure 4.82, the angular momentum density of the e = 0.6, mΦ = 0.3 perturbations
also evolved from a simple distribution at t = 0 to a state with steep gradients in the ergoregion
at t = 77.11 before settling down to some degree at late time. To determine the effects of black
hole rotation on the axial component of the current, I evolve the e = 0.6, mΦ = 0.3 perturbations
evolved in an a = 0, M = 5 Kerr spacetime. The distribution of Jφ at t = 77.11 is displayed
in Figure 4.89. Comparing the small amplitudes and gradients of Jφ at t = 77.11 for the a = 0,
M = 5 spacetime to the profile of Jφ at t = 77.11 for the a = M = 5 Kerr spacetime of Figure
4.82 it is clear that black hole rotation leads to significant amplification of Jφ in the ergoregion and
surrounding space. To examine the effects of black hole rotation in more detail, I display the global
maxima of Jφ evolved in a = 0 and a = M spacetimes in Figure 4.90. The corresponding global
minima are shown in Figure 4.91. As in the data of massless e = 0.6 perturbations (cf. Figures
4.61 and 4.60), max(Jφ) for a = M dominates over that of a = 0 after an early phase of evolution.
The same is observed in the development of min(Jφ). Therefore, while black hole rotation initially
suppresses Jφ, its effect is to amplify the axial component of current after t ≈ 20.
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Figure 4.87: Integrated charge density for e = 0.6, mΦ = 0.3 perturbations in M = 5 Kerr
spacetime. Plotted is Q, the total charge contained within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π, as a function of coordinate time t. The dashed red line represents
data for a/M = 0, the dotted red line data for a/M = 0.8, and the dashed black
line data for a/M = 1.
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Figure 4.88: Axial current component, Jφ, at t = 0, 77.11, 154.22 for e = 0.6, mΦ = 0.3 per-
turbations in a = M = 5 Kerr spacetime. The directions of coordinate vectors
ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational
domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain
are labelled with their (r, θ) ordinate values. The amplitude and colour gradient are
both scaled linearly. An MPEG animation showing evolution over 0 ≤ t . 154 is
available at http://$WWW/People/petryk/animations/9.mpeg where $WWW is cur-
rently laplace.physics.ubc.ca .
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Figure 4.89: Axial current component, Jφ, at t = 77.11 for e = 0.6, mΦ = 0.3 perturbations in
a = 0, M = 5 Kerr spacetime. The directions of coordinate vectors ra ∼ (0, 1, 0, 0)
and θa ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the corners of the domain are labelled
with their (r, θ) ordinate values. The amplitude and colour gradient are both scaled
linearly. Observe how small the amplitude and gradients are when compared to
those at t = 77.11 in a = M Kerr spacetime shown in Figure 4.88.

Before concluding discussion of the results, a brief analysis of electric and magnetic field am-
plitudes is in order. Again, the details can be deduced from preceding results. As in the case of
massless e = 0.6 perturbations, the magnetic field square, BaB

a, is very small in the equatorial
plane (θ = π/2) and also along the axis of black hole rotation (θ = 0 and θ = π) as depicted in
Figure 4.92. Meanwhile, Figure 4.93 shows how the electric field square EaE

a begins evolution
from a state of zero initial amplitude and displays significant amplitude along both the axis of
rotation and equatorial plane at later time. The integrals of the magnetic and electric field norms
(respectively B2 and E2) are shown in Figure 4.94. After an initial phase of rapid change the
amplitudes take on comparable magnitudes. Also note how the most significant increases in B2

and E2 take place well before time t ≈ 40 at which collimation of energy density becomes apparent
(cf. Figures 4.71 and 4.72). This suggests electromagnetic fields likely play a secondary role in
collimating the perturbations along the axis of black hole rotation (θ = 0 and θ = π). Also note
how the late time decay of B2 and E2 can be approximated by

log(B2) ∼ −kt , (4.198)

and
log(E2) ∼ −kt , (4.199)

where k ≈ 1 × 10−2. This decay rate is comparable to those for the massless cases with e = 0.0
and e = 0.6 (cf. Figures 4.33 and 4.51). Finally, the evolution of BaB

a, EaE
a, B2 and E2 in the

a = 0 spacetime (figures not provided) are qualitatively similar to those in the a = M black hole
spacetime.
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Figure 4.90: Global maxima of Jφ in the computational domain, max(Jφ), as a function of t for
e = 0.6 coupled massive perturbations in M = 5 Kerr spacetime. The dotted black
line represents data for a/M = 0 and the dashed black line data for a/M = 1. The
global maximum value of Jφ for a/M = 1 spacetime is substantially larger than
those of a/M = 0 spacetime at intermediate and late time, providing evidence that
black hole rotation amplifies the axial current.
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Figure 4.91: Global minima of Jφ in the computational domain, min(Jφ), as a function of t for
e = 0.6 coupled massive perturbations in M = 5 Kerr spacetime. The dotted black
line represents data for a/M = 0 and the dashed black line data for a/M = 1. The
global minimum value of Jφ for a/M = 1 spacetime is substantially larger than those
of a/M = 0 spacetime at intermediate and late time, providing further evidence that
black hole rotation amplifies the axial component of the electric current.
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Figure 4.92: The figure displays the square of the magnetic field, BaB
a, at t = 0, 77.11, 154.22 for

e = 0.6, mΦ = 0.3 perturbations in a = M = 5 Kerr spacetime. The directions of
coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the
corners of the domain are labelled with their (r, θ) ordinate values. The amplitude is
scaled linearly, while the colour gradient is logarithmic. Observe how the magnetic
field square is relatively small in the equatorial plane (θ = π/2) and along the axis
of black hole rotation (θ = 0 and θ = π).
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Figure 4.93: The figure displays the square of the electric field, EaE
a, at t = 0, 77.11, 154.22 for

e = 0.6, mΦ = 0.3 perturbations in a = M = 5 Kerr spacetime. The directions of
coordinate vectors ra ∼ (0, 1, 0, 0) and θa ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 5 ≤ r ≤ 50 and 0 ≤ θ ≤ π, and the
corners of the domain are labelled with their (r, θ) ordinate values. The amplitude is
scaled linearly, while the colour gradient is logarithmic. Note how the electric field
square in the equatorial plane (θ = π/2) and along the axis of black hole rotation
(θ = 0 and θ = π) are comparable to the square along other surfaces of constant θ.
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Figure 4.94: Plotted are log(B2) and log(E2), the logarithm of the integrated squares contained
within 5 ≤ r ≤ 50, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, as a function of coordinate
time t. The results are for e = 0.6, mΦ = 0.3 perturbations in a = M = 5
Kerr spacetime. The dashed black line represents log(B2), and the dotted black
line log(E2). Initially, the field amplitudes undergo substantial oscillation, but the
decay of integrated electric and magnetic amplitudes become closely matched at
intermediate and late time.

4.3.7 Convergence of Conserved Quantities

I examine the convergence and accuracy of my code by examining the evolution of e = 0.6, mΦ = 0.3
perturbations (initial data specified as above) in the a = M = 5 spacetime. As discussed, the
implemented solution scheme incorporates second-order finite difference methods, and the results
I have presented are typically accurate to ≈ 1% over the period 0 ≤ t . 12—the time at which
perturbations begin crossing the excision surface at r = 5—as demonstrated by the invariance of
conserved quantities over this period. The conserved quantity values are expected to vary after
t ≈ 10 as perturbations cross the ergosphere and then flow out of the computational domain at
the r = 5 excision surface. After t ≈ 17 there will be additional change as they also begin flowing
through the r = 50 outer boundary. Figures 4.95, 4.96 and 4.97 respectively display the total
normalized energy, total angular momentum and total charge within the computational domain
5 ≤ r ≤ 50, 0 ≤ θ ≤ π over the period 0 ≤ t ≤ 10 for three levels of grid resolution. The lowest
resolution grid has J = 801 radial points and K = 401 angular points, the intermediate resolution
grid has J = 1601 radial points and K = 801 angular points, and the grid with highest resolution
has J = 3201 radial and K = 1601 angular points. All data was computed in parallel across 64
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Figure 4.95: Convergence of total normalized energy, T , for e = 0.6, mΦ = 0.3 perturbations
in a = M = 5 Kerr spacetime. The dashed red line represents data for a finite
difference grid with J = 801 radial points and K = 401 angular points, the dotted
red line represents data for a grid with J = 1601 radial and K = 801 angular
points, and the dashed black line represents data for a grid with J = 3201 radial
and K = 1601 angular points.

processors. Clearly, the conserved quantities display convergence.22 Furthermore, the convergence
factor, time averaged over the period 0 . t . 24, is C ≈ 7.7 for the total normalized energy, C ≈ 3.7
for the total angular momentum and C ≈ 8.6 for the total charge of the system. This is somewhat
better than the C ' 4 I would expect for a completely centered second-order convergent scheme.
However, some deviation is expected, as the operators I use near the computational boundaries are
not completely centered. At any rate, the convergence factors may still approach values closer to
4 as resolution is further increased.

While the second-order convergence of a conserved density implies the second order convergence
of its integral (providing the numerical integration scheme is itself at least second-order), it may
still be useful to display the convergence factor for the density itself. I calculate the convergence
factors for the total angular momentum density ρS , the total energy density ρT and the charge
density ρQ as displayed in Figure 4.98. It is there shown how the convergence factors for energy
density and charge remain near C ' 4 for the evolution. However, while still convergent, the
result is not as good for the angular momentum density. Averaged over time, C ≈ 4.9 for the
energy density, C ≈ 4.1 for the angular momentum density and C ≈ 5.0 for the charge density.

22Convergent invariance of conserved quantities indicates I am numerically approximating the true solutions of the
system. Technically, it is then not necessary to perform independent residual evaluations as discussed in Appendix
C. I can for this reason justifiably omit independent residual testing of the code.
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Figure 4.96: Convergence of total angular momentum, S, for e = 0.6, mΦ = 0.3 perturbations
in a = M = 5 Kerr spacetime. The dashed red line represents data for a finite
difference grid with J = 801 radial points and K = 401 angular points, the dotted
red line represents data for a grid with J = 1601 radial and K = 801 angular
points, and the dashed black line represents data for a grid with J = 3201 radial
and K = 1601 angular points.
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Figure 4.97: Convergence of total charge, Q, for e = 0.6, mΦ = 0.3 perturbations in a = M = 5
Kerr spacetime. The dashed red line represents data for a finite difference grid with
J = 801 radial points and K = 401 angular points, the dotted red line represents
data for a grid with J = 1601 radial and K = 801 angular points, and the dashed
black line represents data for a grid with J = 3201 radial and K = 1601 angular
points.
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Figure 4.98: Convergence factors for energy density (dashed red line), angular momentum density
(dotted red line) and charge density (dashed black line) for e = 0.6, mΦ = 0.3
perturbations in a = M = 5 Kerr spacetime. The convergence factors are based
on a comparison of functions evolved on finite difference grids with J = 801 radial
points and K = 401 angular points, J = 1601 radial and K = 801 angular points,
and J = 3201 radial and K = 1601 angular points.

Again, deviations from the expected value of C ' 4 are likely due to points near the computational
boundary where non-centered operators are employed. Since, given the initial conditions, at least
some amount of perturbation should evolve to the computational domain boundaries by t ≈ 24,
convergence testing over the period 0 . t . 24 should be adequate. To verify the results, testing
over a longer period of evolution could be performed at a later date.

4.3.8 Independent Residual Testing Dynamical Variables

Having shown convergence of conserved quantities over the period 0 . t . 24, further validation
of the code is provided by independent residual testing as described in Appendix D. Recall that
a properly implemented finite difference scheme will not only be convergent, but also drive the
residual

rh ≡ Lhũh − fh (4.200)

to zero, where Lh is the discretized difference operator, fh is the discretized source function, and
ũh is the approximate solution obtained by the scheme. In an independent residual test a second
(independent) discretization L̃h is applied to the approximate solution, and it is verified whether
the residual-like quantity

r̃h ≡ L̃hũh − fh (4.201)
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approaches zero as the scale of discretization h approaches zero. If it does, then quantity ũh has
been verified a true approximation of the solution u to differential equation

Lu− f = 0 . (4.202)

In obtaining solutions presented in this chapter, equations of motion for Φ, Ar, Aθ and Aφ are
discretized using the Crank-Nicholson scheme with centered spatial derivatives when rmin + ∆r ≤
r ≤ rmax − ∆r and 2∆θ ≤ θ ≤ π − 2∆θ. Approximate solutions of auxiliary variables Φr, Φθ,
Arr, Aθr, Aφr, Arθ, Aθθ and Aφθ are thus obtained. A suitable independent residual test then
involves substituting the approximate solutions into respective equations (4.75), (4.76), (4.84),
(4.85), (4.86), (4.87), (4.88) and (4.89), where partial derivatives in time and space are replaced by
independent difference approximations. Formally, if u = u(t, r, θ) represents an auxiliary variable
and R = R(t, r, θ) the operand on the right hand side of differential equation

u̇ = ∂rR , (4.203)

then a suitable independent difference approximation for (4.203) is

1

2

(
u(t+ ∆t, r + ∆r, θ) − u(t− ∆t, r + ∆r, θ)

2∆t
+
u(t+ ∆t, r, θ) − u(t− ∆t, r, θ)

2∆t

)

=
R(t, r + ∆r, θ) −R(t, r, θ)

∆r
, (4.204)

where a leap-frog style centered difference scheme is used to approximate the derivative in t, and
the difference scheme approximating the derivative in r is centered about the virtual spatial point
r+ 1

2∆r in analogy to Crank-Nicholson. Observe how the left hand side of (4.204) has been averaged
in space between r and r + ∆r so that it too is centered about virtual point r + 1

2∆r. Similarly, a
suitable independent difference approximation for

u̇ = ∂θR , (4.205)

is

1

2

(
u(t+ ∆t, r, θ + ∆θ) − u(t− ∆t, r, θ + ∆θ)

2∆t
+
u(t+ ∆t, r, θ) − u(t− ∆t, r, θ)

2∆t

)

=
R(t, r, θ + ∆θ) −R(t, r, θ)

∆θ
, (4.206)

which is now centered about the virtual point θ+ 1
2∆θ. Rewriting (4.205) and (4.206) in the form

(4.201), and substituting in approximate solutions ũ and R̃, I thus compute independent residuals
from the equations for Ȧrr, Ȧrθ, Ȧθr, Ȧθθ, Ȧφr, Ȧφθ, Φ̇r and Φ̇θ, and then calculate the l2 norms
||r̃h||2. The independent residuals are computed in parallel across 64 processors on difference
meshes of J = 210 radial and K = 101 angular points, J = 401 radial and K = 201 angular points,
J = 801 radial and K = 401 angular points, and J = 1601 radial and K = 801 angular points.
Figure 4.99 displays ||r̃h||2 from the equations Ȧrr, Ȧθr and Ȧφr at three subsequent resolutions.

Similarly, Figure 4.100 displays ||r̃h||2 from the equations for Φ̇th at three different subsequent levels
of resolution. The decrease of ||r̃h||2 with h is proof the solutions obtained are true approximations
of the system of differential equations.

4.3.9 Testing The Sommerfeld Boundary Condition

The Sommerfeld boundary condition is only approximate for the fields evolved in my computations.
A test of its suitability is therefore required, especially for the case when the fields have both nonzero
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Figure 4.99: Independent residual norms ||r̃h||2 from the equation (4.84) for Ȧrr, equation (4.85)
for Ȧθr and equation (4.86) for Ȧφr. Frame (a) represents the independent residual

norm associated with Ȧrr, frame (b) the independent residual norm associated with
Ȧθr, and (c) represents the same for Ȧφr. The r̃h have been computed for difference
grids with J = 401 radial and K = 201 angular points (dashed red line), J = 801
radial and K = 401 angular points (dotted red line), and J = 1601 radial and
K = 801 angular points (dashed black line). As expected of a correctly implemented
scheme, the independent residual norm decreases with increased resolution.
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Figure 4.100: Independent residual norms ||r̃h||2 from equation (4.76) for Φ̇θ. Recall that Φ =
φ1+iφ2, and so Φ̇θ = φ̇1θ +iφ̇2θ. Frame (a) displays the independent residual norm
associated with φ̇1θ while frame (b) displays the same for φ̇2θ. Note the logarithmic
scaling of the vertical axes. The r̃h have been computed for difference grids with
J = 201 radial and K = 101 angular points (dashed red line), J = 401 radial and
K = 201 angular points (dotted red line), and J = 801 radial and K = 401 angular
points (dashed black line). The decrease in ||r̃h||2 with h provides evidence the
numerical implementation is correct.
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mass and electromagnetic coupling parameters. I test this suitability by comparing the results of
evolution for mΦ = 0.3, e = 0.6 perturbations in a = M = 5 Kerr spacetime on a finite difference
grid with resolution and initial conditions identical to these used in above, but now covering the
larger computational domain 5 ≤ r ≤ 95, 0 ≤ θ ≤ π. The grid of this larger computational domain
is therefore composed of J = 1601 radial and K = 401 angular points. I again compute across 64
processors, but division of the computational domain across processors now differs from that used
for the smaller grid.23

In detail, comparison is through the relative errors of conserved quantities. For example, the
relative error of energy density, δρT /ρT , is given by

δρT /ρT =
||ρ̃T − ρT ||2

||ρ̃T ||2
, (4.207)

where ρ̃T is the solution for energy density on the large computational domain, and || · ||2 represents
the l2 norm. While the solution ρ̃T is treated as exact, it is known to deviate from the ideal solution
after perturbations evolve to its boundary. This is because the approximate Sommerfeld condition
is also applied on the larger computational domain. For this reason, calculation of δρT /ρT should be
limited to the period 0 ≤ t . 65. However, I extend calculation to 0 ≤ t ≤ 77.11 for good measure.
I similarly calculate relative errors for the angular momentum density, δρS/ρS, and charge density,
δρQ/ρQ. The results are displayed in Figure 4.101. It is there apparent how relative errors of all
three conserved densities are on the order of a percent. Considering that these densities are known
to be conserved to ≈ 1% for the early stages of evolution, the Sommerfeld boundary condition has
produced surprisingly good results. So while only approximate, the Sommerfeld condition is likely
sufficient for the results presented above. While a quantitatively better approximation is desirable,
I have not implemented one for the evolution of Maxwell-Klein-Gordon fields on Kerr spacetime.
However, a different treatment is included in Appendix D, where I provide results on Minkowski
spacetime for comparison.

An alternate test (the one I use in Appendix D) is through the error of the integrated conserved
densities. For example, the error in total normalized energy, δT , is given by

δT = ||T̃ − T ||2 , (4.208)

where T is the total charge in the smaller computational domain, T̃ is that in the large domain,
and || · ||2 again represents the l2 norm. T and T̃ are obtained through integration over a common
region of space. I again calculate this quantity over the period 0 ≤ t ≤ 77.11. The result is
displayed in Figure 4.102 along with the analogous errors for angular momentum (δS) and charge
(δQ). Comparing these results with the relative errors presented above, it is apparent how the
true quality of the boundary condition is obfuscated by the amplitudes of the functions under
considered.

23This comparison will therefore also test whether parallel distribution between the processors has a significant
influence on the computed results.
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Figure 4.101: Displayed are the relative errors for energy density (δρT /ρT , dashed red line),
angular momentum density (δρS/ρS , dotted red line), and charge density (δρQ/ρQ,
dashed black line) for e = 0.6, mΦ = 0.3 perturbations in a = M = 5 Kerr
spacetime. The relative errors are based on the comparison of functions evolved
on domains covering ranges 5 ≤ r ≤ 50 and 5 ≤ r ≤ 95.
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Figure 4.102: Displayed are the errors for normalized integrated energy (δT , dashed red line),
integrated angular momentum (δS, dotted red line) and integrated charge (δQ,
dashed black line) of e = 0.6, mΦ = 0.3 perturbations in a = M = 5 Kerr
spacetime. The errors are based on the comparison of functions evolved on domains
covering ranges 5 ≤ r ≤ 50 and 5 ≤ r ≤ 95.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

I have thus investigated critical solutions for massive charged scalar fields and the detailed evolu-
tionary dynamics of Maxwell-Klein-Gordon perturbations on a Kerr spacetime background. The
studies were numerical, based on finite difference techniques, and have made use of adaptive mesh
refinement and parallel computation.

In Chapter 3, I have obtained the critical solutions at black hole threshold for massive charged
scalar fields in spherical symmetry. For the case of sufficiently small mass parameter, the solutions
are discretely self-similar and exhibit Type II scaling in both the black hole mass and charge.
When the mass parameter is sufficiently large, a new critical solution is obtained. In this case it
is periodic and resembles a perturbed charged boson star. These new periodic solutions exhibit
behaviour typical of Type I phenomena, and their lifetimes exhibit a well-defined scaling relation.

In Chapter 4, I have studied Maxwell-Klein-Gordon perturbations on a Kerr spacetime back-
ground and have discovered that: (1) gravitational interaction effects are strongly manifest as
orbiting resonances for weakly coupled perturbations; (2) massive Klein-Gordon perturbations dis-
play mode trapping and a tendency for scattering along the axis of symmetry for intermediate mass
parameter values, but are quickly overcome by attraction to the black hole when the values are
large; (3) there is evidence for superradiant scattering of purely electromagnetic perturbations in
rotating black hole spacetimes; (4) electromagnetic coupling introduces the phenomena of charge
separation and dynamo-like behaviour; (5) the complexity of the observed dynamics tends to in-
crease with charge coupling parameter and black hole rotation; and finally, (6) there is strong
evidence for energy collimation along the axis of rotation for an appropriate choice of mass and
charge coupling parameters, but it is not clear that either rotational or electromagnetic effects
are the strongest contributors to this phenomenon. For comparison, Appendix D provides results
for the dynamics of Maxwell-Klein-Gordon fields in Minkowski spacetime. That appendix also
describes the utility of Monotonically Increasingly Boosted coordinates in treating outer boundary
conditions during numerical evolution of the field equations.

In future study, it would be useful to complete the investigation of critical phenomena, specifi-
cally investigating the possibility of new solutions details with a sufficiently large charge coupling.
In particular, it would be interesting to see if Type I solutions can be obtained for the massless
Maxwell-Klein-Gordon system when e� 1. It would also be interesting to study critical phenom-
ena and compact object formation for a plasma-like matter (i.e., one where positive charge can
be associated with a distribution of energetic heavy particles and negative charge associated with
a corresponding distribution of light particles). The Einstein-Vlasov-Maxwell system (see [109],
[110], [111], [112], [113]) appears to be a good candidate and should be investigated in detail for
this purpose.

As well, the study of Maxwell-Klein-Gordon perturbations in axial symmetry should be ex-
tended to include evolution of the charged case when the mass parameter mΦ is very large—it
seems possible that electromagnetic interactions could balance or overcome the tendency for the
otherwise rapid plunge into the black hole. Furthermore, investigation should be extended to the
case with very large electromagnetic coupling parameter e where new physics like mode trapping
is likely to occur. It would also be worth investigating initial conditions more closely resembling
a stationary accretion disk. From such initial conditions it would then be possible to study the
possible destabilization of stationary disks through interaction with electromagnetic waves.

Finally, in light of the availability of gravitationally backreacting codes and computational
infrastructure, it is rather surprising that neither black hole formation nor critical gravitational
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collapse have been studied for pure electromagnetic radiation.1 The evolution of electromagnetic
radiation is not overly complicated and yet it carries a nontrivial angular momentum distribution.
The effects and scaling of angular momentum could thus be studied in general by this most realistic
of fields.

1The study of geons [147] and their formation is another exciting possibility for self-gravitating Maxwell field
simulation.
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APPENDIX A

GLOSSARY OF NOTATION

This appendix tabulates some notation used throughout the dissertation, if not explicitly defined
in the text.

notation definition

A ≡ B A defined to be B

A ⇒ B A implies B

A → B A approaches B

A ∈ B A is a member of B

{A} set of objects similar to A

|A| modulus of object A

||A|| arbitrary norm of object A

||A||2 l2 norm of object A

||A||∞ l∞ norm of object A

(Aa)m component m of vector Aa

(Aa)mn component mn of matrix Aa

TrA trace of matrix A

Ω n-dimensional domain Ω

∂Ω n− 1-dimensional boundary of domain Ω

Z the set of integers

Z
+ the set of positive integers

Table A.1: Mathematical miscellanea.

notation definition

T abc...
def... components of tensor T

T
a(bc)...
def... symmetrization of tensor T in components b and c

T abc...
d(ef)... symmetrization of tensor T in components e and f

T
a[bc]...
def... antisymmetrization of tensor T in components b and c

T abc...
d[ef ]... antisymmetrization of tensor T in components e and f

δa
b Kronecker delta where δa

b = 1 if a = b and δa
b = 0 if a 6= b

εabcd totally antisymmetric tensor of positive orientation where ε0123 = 1

Table A.2: Tensor notation.
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notation definition
∂

∂xg T
abc...
def... , ∂gT

abc...
def... T

abc...
def...,g partial derivative of tensor T abc...

def... with respect to coordinate xg

£AT
abc...
def... Lie derivative of tensor T abc...

def... along vector A

∇gT
abc...
def... , T

abc...
def...;g covariant derivative of tensor T abc...

def... with respect to coordinate xg

∇2 the Laplacian operator

Table A.3: Derivative notation.

notation definition

M n-dimensional manifold M
∂M n− 1-dimensional boundary of manifold M
(M, gab) n-dimensional manifold M with metric gab and Christoffel connection

Rabcd Riemann tensor

Rab Ricci tensor

R curvature scalar

Table A.4: Manifolds and Riemannian spaces.

notation definition

I
− past null infinity

I
+ future null infinity

i− past timelike infinity

i0 spatial infinity

i+ future timelike infinity

Table A.5: Causal structure of spacetime.
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APPENDIX B

DIFFERENCE AND DISCRETE OPERATORS

This appendix tabulates the FDAs and other discrete operators used in the dissertation.

B.1 Finite Difference Operators

This section tabulates the FDAs used in the thesis. In the tables below I use the same notation as
introduced in Appendix C, except now all difference operators are given for the case of two spatial
dimensions and one temporal dimension, and spacetime coordinates given by the ordered triple
(t, r, θ). That is, un

i,j labels a point in the finite difference mesh with ordinates (t, r, θ), un
i+1,j labels

a point with ordinates (t, r + ∆r, θ), et cetera. Furthermore, ri−1 and ri+1 respectively designate
coordinate values r − ∆r and r + ∆r. Also as before,

(
un

i,j

)
,r

designates the partial derivative of

u(t, r, θ) with respect to coordinate r and evaluated at (t, r, θ),
(
un

i,j

)
,rr

the second partial derivative

of u(t, r, θ) with respect to r at (t, r, θ), and so on. The special case is
(
u

n+ 1

2

i,j

)

,t
, which designates

the partial derivative of u(t, r, θ) with respect to t and is centered at the virtual time step t + 1
2 .

All the listed FDAs are 2-nd order accurate in grid spacings ∆r, ∆θ and time interval ∆t, and
approach the corresponding continuum limit PDE as grid spacings and time interval approach zero.

PDE FDA

(
un

i,j

)
,r

⇒
un

i+1,j−un
i−1,j

2∆r

(
un

i,j

)
,rr

⇒
un

i+1,j−2un
i,j+u

n
i−1,j

(∆r)2

(
un

i,j

)
,r2

⇒
un

i+1,j−un
i−1,j

r2i+1−r2i−1

(
un

i,j

)
,r3

⇒
un

i+1,j−un
i−1,j

r3i+1−r3i−1

(
un

i,j

)
,θ

⇒
un

i,j+1−un
i,j−1

2∆θ

(
un

i,j

)
,θθ

⇒
un

i,j+1−2un
i,j+u

n
i,j−1

(∆θ)2

(
un

i,j

)
,cos θ

⇒
un

i,j+1−un
i,j−1

cos θj+1−cos θj−1

(
un

i,j

)
,t

⇒
un+1

i,j −un−1
i,j

2∆t
(
u

n+ 1

2

i,j

)

,t
⇒

un+1
i,j −un

i,j

∆t

Table B.1: Centered difference operators.
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PDE FDA

(
un

i,j

)
,r

⇒
−un

i+2,j+4un
i+1,j−3un

i,j

2∆r

(
un

i,j

)
,θ

⇒
−un

i,j+2+4un
i,j+1−3un

i,j

2∆θ

Table B.2: Forward difference operators.

PDE FDA

(
un

i,j

)
,r

⇒
3un

i,j−4un
i−1,j+u

n
i−2,j

2∆r

(
un

i,j

)
,θ

⇒
3un

i,j−4un
i,j−1+u

n
i,j−2

2∆θ

Table B.3: Backward difference operators.

B.2 Other Discrete Operators

In this section of the appendix I list other discrete operators used in the finite difference schemes
of the dissertation.

B.2.1 Quadratic Fix Operators

Quadratic fix operators are used on functions in regions of the finite difference grid which correspond
to locations in space where those functions are known to be quadratic. Typically, these regions
will be at the point of spherical symmetry or along the line of axial symmetry. The quadratic fix
operators are derived from the Forwards and backwards difference operators for u,r or u,θ.

If a function is quadratic at the point of spherical symmetry, r = 0, then its first derivative is
known to vanish there. Using the forwards difference operator for u,r obtains the expression

0 = −un
i+2,j + 4un

i+1,j − 3un
i,j , (B.1)

which is used to update the value of the function at the point of spherical symmetry. When the
function is quadratic about the line of axial symmetry, the forwards and backwards difference forms
for u,θ are used to obtain the quadratic fix operators

0 = −un
i,j+2 + 4un

i,j+1 − 3un
i,j (B.2)

to be applied along axis when θ = 0, and

0 = 3un
i,j − 4un

i,j−1 + un
i,j−2 (B.3)

which is used to update points along θ = π. These results are tabulated below.
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quadratic fix operator

un
i,j = 1

3

(
−un

i+2,j + 4un
i+1,j

)

un
i,j = 1

3

(
−un

i,j+2 + 4un
i,j+1

)

un
i,j = 1

3

(
−4un

i,j−1 + un
i,j−2

)

Table B.4: Quadratic fix operators.

Alternately, it is sometimes useful to use the (B.1), (B.2) and (B.3) to update grid points
adjacent to the those at which the functions are known to be quadratic in coordinate θ. Under
these circumstances, the quadratic fix operators will be expressed as in Table B.5.

quadratic fix operator

un
i,j = 1

4

(
un

i,j+1 + 3un
i,j−1

)

un
i,j = 1

4

(
3un

i,j+1 + un
i,j−1

)

Table B.5: Adjacent quadratic fix operators.

B.2.2 Interpolation and Extrapolation Operators

For function un
i,j , the mth degree Lagrange polynomial in coordinate r, P n

m,r(r, θ), is

Pn
m,r(r, θ) ≡

m∑

i=1

Pn
i (r, θ), (B.4)

where

Pn
i (r, θ) ≡ un

i,j

m∏

l=1
l6=i

r − rl
ri − rl

. (B.5)

Similarly, the mth Lagrange polynomial in coordinate θ, P n
m,θ(r, θ), is

Pn
m,θ(r, θ) ≡

m∑

j=1

Pn
j (r, θ), (B.6)

where

Pn
j (r, θ) ≡ un

i,j

m∏

l=1
l6=j

θ − θl

θj − θl
. (B.7)

At times I use these Lagrange polynomials to update values of un
i,j from its values at neigh-

bouring points by extrapolating in coordinate r or interpolating in coordinate θ. Since high degree
Lagrange polynomials generally produce poor results when used as extrapolants, especially for
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points far from those upon which they are based, I use only the 2nd degree Polynomial to extrap-

olate for smaller r as per
un

i,j =
(
un

i+3,j − 3un
i+2,j + 3un

i+1,j

)
. (B.8)

Interpolation from Lagrange polynomials is, however, much more reliable. When I interpolate in
coordinate θ I use 3rd degree Lagrange polynomials. I alternately use the Lagrange polynomial in
a centered fashion as per

un
i,j =

(
−1

6
un

i,j+2 +
2

3
un

i,j+1 +
2

3
un

i,j−1 −
1

6
un

i,j−2

)
, (B.9)

and at other times in an off-center fashion as per

un
i,j =

(
1

4
un

i,j+3 − un
i,j+2 +

3

2
un

i,j+1 +
1

4
un

i,j−1

)
(B.10)

or

un
i,j =

(
1

4
un

i,j+1 +
3

2
un

i,j−1 − un
i,j−2 +

1

4
un

i,j−3

)
, (B.11)

depending on the distribution of available grid points. Finally note the time-averaging operator of
the Crank-Nicholson scheme

u
n+ 1

2

i,j =
1

2

(
un+1

i,j + un
i,j

)
(B.12)

is itself an interpolant based upon a 2nd degree Lagrange polynomial in temporal coordinate t.
These results are all summarized in Table B.6.

interpolation/extrapolation operator

un
i,j =

(
un

i+3,j − 3un
i+2,j + 3un

i+1,j

)

un
i,j =

(
− 1

6u
n
i,j+2 + 2

3u
n
i,j+1 + 2

3u
n
i,j−1 − 1

6u
n
i,j−2

)

un
i,j =

(
1
4u

n
i,j+3 − un

i,j+2 + 3
2u

n
i,j+1 + 1

4u
n
i,j−1

)

un
i,j =

(
1
4u

n
i,j+1 + 3

2u
n
i,j−1 − un

i,j−2 + 1
4u

n
i,j−3

)

u
n+ 1

2

i,j = 1
2

(
un+1

i,j + un
i,j

)

Table B.6: Interpolation and extrapolation operators.

B.2.3 Kreiss-Oliger Dissipation Operators

I designate the Kreiss-Oliger dissipation operator in coordinate r for an FDA acting on un
i,j by sru

n
i,j ,

the dissipation operator in coordinate θ by sθu
n
i,j , and dissipation operator in both coordinates r

and θ by srθu
n
i,j . The following table provides a listing of these operators.

dissipation operator

sru
n
i,j = εr

16

(
un

i−2,j − 4un
i−1,j + 6un

i,j − 4un
i+1,j + un

i+2,j

)

sθu
n
i,j = εθ

16

(
un

i,j−2 − 4un
i,j−1 + 6un

i,j − 4un
i,j+1 + un

i,j+2

)

srθu
n
i,j = εrθ

16

((
un

i−2,j − 4un
i−1,j + 6un

i,j − 4un
i+1,j + un

i+2,j

)

+
(
un

i,j−2 − 4un
i,j−1 + 6un

i,j − 4un
i,j+1 + un

i,j+2

))

Table B.7: Kreiss-Oliger dissipation operators.
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B.2.4 Integration Rules

The following table lists two integration rules for equally spaced abscissae. The second in the list
is the trapezoidal rule used in calculations presented throughout this dissertation.

integration rule

∫ rJ

ri
u(r)dr =

∑J
j=i uj∆r + O

(
(∆r)

2
)

∫ rJ

ri
u(r)dr =

∑J−1
j=i

(
1
2uj + 1

2uj+1

)
∆r + O

(
(∆r)

3
)

Table B.8: Integration rules for equally spaced abscissae.
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APPENDIX C

NUMERICS

C.1 Finite Difference Techniques and Approximations

Of the numerical techniques available, finite difference methods are chosen to solve the equations
of constraint and evolution presented in this thesis. Finite difference methods are well-established
and understood, and the notion of the finite difference approximation on which they are based is
simple and intuitive. This makes them a natural choice for numerical relativists, especially when
solving the systems similar to those in this thesis.1 Good references for the topics in this section are
[91], [103], [61], [134], along with the summary [30]. Furthermore, [21] and [22] are useful references
for finite difference techniques as applied to the equations of general relativity.

The key element of finite difference methods is the finite difference approximation (FDA).
Essentially, an FDA is what one obtains when a continuous differential equation is replaced with
a discrete difference equation. The discrete difference equation is based on the notion of a grid of
points at which functions are evaluated, and thus is an approximation to the continuum solution
one aims to solve. In the subsections that follow the concept of the FDA is discussed in the context
of consistency, accuracy, stability and convergence of a finite difference scheme. Another topic
covered is dissipation in finite difference methods, as it plays a vital role in the computation of
solutions to equations presented in later chapters.

C.1.1 Basic Definitions and Concepts

This dissertation considers FDAs to systems of partial differential equations (PDEs) on a mesh
or grid of spacing h, and will therefore be vitally interested in the behaviour of the FDAs and
their solution schemes in the continuum limit as the grid spacing tends to zero, h → 0. It is
expected that, for a correctly implemented finite difference scheme, the error of the approximation
to approach zero in the continuum limit. Following discussion will begin with the introduction of
some notation.

Let a differential equation be denoted by

Lu = f, (C.1)

where L is a difference operator, u is the unknown function to be solved, and f is some source

function. f will generally be a function of the variables on which u also depends. The discretized
operators, variables and functions will be denoted with a superscript h. The discretization of the
system (C.1) is thus denoted

Lhuh = fh, (C.2)

or
Lhuh − fh = 0. (C.3)

where Lh is the discretized difference operator, uh the discrete unknown function, and fh the
discretized source function. All functions of the discrete system are evaluated at points on the
finite difference mesh. If h is the only discretization scale in the problem the FDA is said to be

1Other commonly used methods are spectral and finite element, and they should be used where appropriate.
However, finite difference methods are typically simpler, especially when solving systems of equations with regular
domain boundaries, as is the case in this thesis.
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convergent if and only if
uh → u as h→ 0. (C.4)

For obvious reasons, all FDAs are desired to be convergent. The solution error, eh, of the FDA is
defined

eh ≡ u− uh. (C.5)

So if the FDA is convergent, then eh → 0 as h→ 0.
Another type of error in the subject of FDAs will now be developed. The truncation error, τ h,

of the FDA is given by
τh ≡ Lhu− fh. (C.6)

So while the solution error is a measure of how well the FDA solution approximates the solution of
the PDE, the truncation error is a measure of how closely the finite difference equation approximates
the PDE whose solutions are sought. Assume the FDA again has a single discretization scale h.
Then, if for the FDA

τh → 0 as h→ 0 (C.7)

holds, it is called consistent. Consistency is therefore required if the FDA is to be convergent. If,
furthermore,

lim
h→0

τh = O (hp) (C.8)

for positive integer p (i.e., p ∈ Z
+), then the FDA is said to be pth order accurate. A useful result

pertaining to FDA truncation errors is the observation that

τh = O (hp) . (C.9)

This was first noted in [133] and is based on the Richardson ansatz, that if an FDA is completely
centered2 and is based upon a mesh uniform in a single scale parameter h, then uh has the expansion

uh = u+ h2e2 + h4e4 + · · · (C.10)

in the limit as h→ 0, where e2, e4, ... are functions independent of h.3

Finally, the concept of the residual of an FDA is defined. The form (C.3) leads us to the
definition that if ũh is an approximation to the true solution uh of (C.3), then the residual of the
FDA, rh, is given by

rh ≡ Lhũh − fh. (C.12)

Essentially, the residual is the degree to which finite difference solutions fail to satisfy the FDA.
The aim therefore is to find a convergent process by which the residual of the FDA is driven to
zero.

C.1.2 Convergence Testing and Independent Residual Evaluation

From (C.10) the notion of the convergence test can be developed. Suppose an FDA is solved three
times, each time beginning from the same initial data set, but each time using a different grid
spacing. For the sake of argument, assume the grid spacings are h, 2h, and 4h. Furthermore,
assume the three finite difference grids overlap in the sense that the 4h grid points are subsets of
the 2h grid points, and that the 2h grid points are a subset of the h grid points. Finally, assume the
FDAs are completely centered, and that h, 2h and 4h are respectively the only scale parameters

2An FDA is said to be centered if Lh is symmetric about the grid point where uh is evaluated.
3If the scheme is not completely centered then (C.10) is modified as per

uh = u + he1 + h2e2 + · · · . (C.11)
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in the problem. Then investigating how solutions uh, u2h, and u4h differ provides information
about the convergence of the chosen FDA. The Richardson ansatz (C.10) for a completely centered
scheme then provides

uh = u+ h2e2 + h4e4 + · · · , (C.13)

u2h = u+ (2h)
2
e2 + (2h)

4
e4 + · · · , (C.14)

and
u4h = u+ (4h)2 e2 + (4h)4 e4 + · · · . (C.15)

Then for some suitable spatial norm || · || such as the l2 norm

||uh||2 =

(
J−1

J∑

i=1

(
uh

i

)2
) 1

2

, (C.16)

uh
i being the ith component of vector uh, a quantity called the convergence factor, C (t), is defined

C (t) ≡ ||u4h − u2h||
||u2h − uh|| , (C.17)

where argument t designates comparing uh, u2h and u4h at the same time, or step, in the evolution.
Using (C.13), (C.14) and (C.15), and providing the system is convergent, it should then observed

lim
h→0

C (t) = 4. (C.18)

A convergence test using discretizations h, 2h and 4h would then amount to verification that (C.18)
holds. Furthermore, having confirmed convergence of the FDA, the solution error between any two
discretizations can explicitly be calculated as per

u2h − uh =
(
u+ (2h)

2
e2 + (2h)

4
e4 + · · ·

)
−
(
u+ h2e2 + h4e4 + · · ·

)
= 3h2e2 + O

(
h4
)

(C.19)

or

u4h − u2h =
(
u+ (4h)

2
e2 + (4h)

4
e4 + · · ·

)
−
(
u+ (2h)

2
e2 + (2h)

4
e4 + · · ·

)
= 12h2e2 + O

(
h4
)
.

(C.20)
Suppose a convergence test has been performed as outlined above and find the finite difference

evolution is in fact converging to some continuum solution. The problem then to resolve is whether
the evolution is approaching the correct continuum solution. For example, it is entirely possible the
FDA is convergent, but incorrectly implemented, and so a closely related (but different) system is
now being solved. If the system possesses conservation laws, perhaps the best way to test whether
(C.1) is being correctly solved is to ensure the associated conserved quantities are converging to
constant values in the expected manner. In the absence of conservation laws, or simply to check
the FDA in another manner, an independent residual test can be used. This test is also based upon
the Richardson ansatz (C.10) for uh, but additionally upon the observation that for a pth order
FDA Lh of L, Lh can always be expanded in powers of the mesh spacing according to

Lh = L+ hpEp + O
(
h2p
)
, (C.21)

where Ep is a differential operator involving higher order derivatives in L. Then if L̃h is another
FDA for L, but this time is 2nd order, expression

L̃h = L+ h2Ẽ2 + O
(
h4
)

(C.22)



APPENDIX C. NUMERICS 221

is obtained, where Ẽ2 is another differential operator involving higher order derivatives in L. Since

uh = u+ h2e2 + O
(
h4
)
, (C.23)

applying L̃h to uh expression

L̃huh =
((
L+ h2Ẽ2 + O

(
h4
)) (

u+ h2e2 + O
(
h4
)))

= Lu+ O
(
h2
)

(C.24)

is obtained. It is then concluded L̃huh is of the form of a residual and converges to Lu as h→ 0.
Now suppose the solution scheme has been incorrectly implemented but convergence is still

observed as per
lim
h→0

C (t) = 4. (C.25)

The expansion of uh instead would have to be of form

uh = u+ e0 + h2e2 + O
(
h2
)
, (C.26)

and thus would have an O
(
h0
)

error, e0 being an independent function of h. Calculating L̃huh

now would yield

L̃huh =
((
L+ h2Ẽ2 + O

(
h4
)) (

u+ e0 + h2e2 + O
(
h2
)))

= Lu+ O
(
h0
)
, (C.27)

and so the independent residual, r̃h,
r̃h ≡ L̃huh (C.28)

would approach a finite value as h→ 0. Such a result would indicate that either the implementation
of the solution scheme, or the independent residual evaluation, is somehow flawed. Since this sort
of independent residual test is applied after the finite difference solution is obtained, it typically
adds negligible computational work overall.

C.1.3 Deriving Finite Difference Formulae

The basic element of a finite difference scheme is the FDA. FDAs for a PDE are obtained rather
simply using Taylor series expansions of the function u on the finite difference grid. It is now out-
lined how to obtain FDAs for PDEs in one spatial and one temporal dimension. The generalization
to greater than one spatial dimension is straightforward and so will be omitted from the discussion.
Finally, Appendix B tabulates all FDAs used in the dissertation, including all those derived in this
subsection.

Consider the finite difference grid shown in Figure C.1. Here, spacetime coordinates are given by
the ordered pair (t, r), grid spacing in the spatial dimension is characterized by a single parameter
∆r = h, and the temporal interval is characterized by parameter ∆t. Furthermore, grid points are
labelled by spatial indices ...i−1, i, i+1, ... and temporal indices ...n−1, n, n+1, .... The discretized
function uh at ordinates (t, r − ∆r) will be labelled un

i−1, at ordinates (t, r) by un
i , at (t, r + ∆r)

by un
i+1, at (t + ∆t, r) by un+1

i , and so on. The Taylor expansions of u(t, r − 2∆r), u(t, r − ∆r),
u(t, r) u(t, r + ∆r), and u(t, r + 2∆r) evaluated at (t, r) are thus

un
i−2 = un

i − 2∆r (un
i ),r +

1

2
(2∆r)

2
(un

i ),rr −
1

6
(2∆r)

3
(un

i ),rrr + O
(
(∆r)

4
)
, (C.29)

un
i−1 = un

i − ∆r (un
i ),r +

1

2
(∆r)

2
(un

i ),rr −
1

6
(∆r)

3
(un

i ),rrr + O
(
(∆r)

4
)
, (C.30)

un
i = un

i , (C.31)
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Figure C.1: A schematic representation of the finite difference grid in one spatial and one tem-
poral dimension. Spacetime coordinates are given by the ordered pair (t, r), grid
spacing in the spatial dimension is characterized by a single parameter ∆r, and the
temporal interval is characterized by parameter ∆t. Grid points are labelled by
spatial indices ...i− 1, i, i+ 1, ... and temporal indices ...n− 1, n, n+ 1, ....

un
i+1 = un

i + ∆r (un
i ),r +

1

2
(∆r)

2
(un

i ),rr +
1

6
(∆r)

3
(un

i ),rrr + O
(
(∆r)

4
)
, (C.32)

un
i+2 = un

i + 2∆r (un
i ),r +

1

2
(2∆r)

2
(un

i ),rr +
1

6
(2∆r)

3
(un

i ),rrr + O
(
(∆r)

4
)
, (C.33)

where subscript notation (un
i ),r designates the partial derivative of u(t, r) with respect to coordinate

r evaluated at point (t, r), (un
i ),rr the second partial derivative of u(t, r) with respect to r at (t, r),

and so on.
Then, as an example, to find the centered O

(
(∆r)

2
)

approximation for the FDA (un
i ),r, solve

the linear system of three equations (C.30), (C.31), (C.32). The solution in this case is simply

(un
i ),r =

un
i+1 − un

i−1

2∆r
+ O

(
(∆r)

2
)
. (C.34)

Using this technique, the centered O
(
(∆r)2

)
approximation for FDA (un

i ),rr could also be ob-

tained. It is given by

(un
i ),rr =

un
i+1 − 2un

i + un
i−1

(∆r)
2 + O

(
(∆r)

2
)
. (C.35)

Analogous expressions hold for FDAs involving derivatives of t. For example, the centered FDA
for the first derivative in time is

(un
i ),t =

un+1
i − un−1

i

2∆t
+ O

(
(∆t)2

)
. (C.36)
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Notice the similarity between these FDAs and a centered limit definition of the derivative,

∂u

∂r
≡ lim

∆r→0

u(r + ∆r) − u(r − ∆r)

2∆r
. (C.37)

As another example, consider the one-sided O
(
(∆r)

2
)

approximation for (un
i ),r which makes

use of un
i , un

i+1, and un
i+2. Solving (C.31), (C.32), and (C.33) obtains

(un
i ),r =

−un
i+2 + 4un

i+1 − 3un
i

2∆r
+ O

(
(∆r)2

)
. (C.38)

This so-called forwards difference operator allows me to evaluate (un
i ),r at the point on the finite

difference grid with smallest value of coordinate r. Similarly, the backwards difference operator for
(un

i ),r can be obtained by solving the system (C.29), (C.30) and (C.31). This operator allows me
to evaluate (un

i ),r at the largest value of coordinate r and has form

(un
i ),r =

un
i−2 − 4un

i−1 + 3un
i

2∆r
+ O

(
(∆r)

2
)
. (C.39)

C.1.4 The Leap-Frog and Crank-Nicholson Schemes

As an example PDE consider the advection equation

∂u

∂t
= v

∂u

∂r
, (C.40)

which represents the passive advection of scalar field u carried along by a flow of constant speed
v. Since later chapters of this dissertation deal almost exclusively with PDEs first order in both
time and space, the advection equation is a useful prototype. Using the results of the previous
subsection, this PDE could be represented with FDA

un+1
i − un−1

i

2∆t
+ O

(
(∆t)

2
)

= v

(
un

i+1 − un
i−1

2∆r

)
+ O

(
(∆r)

2
)
. (C.41)

The stencil of an FDA is defined as the discrete set of spacetime points on which the FDA depends.
Since this FDA employs values un−1

i , un
i−1, u

n
i+1 and un+1

i , it has a four-point stencil as represented
in Figure C.2. This scheme is known as leap-frog and is one of the more common finite difference
schemes used in solving PDEs. Since the value of u in the future, un+1

i , is determined entirely from
values of u in its past, this scheme is explicit. Being explicit, the value of un+1

i can be obtained in
a single step.

Instead of the leap-frog scheme, iterative Crank-Nicholson will be used to obtain the majority
of results presented in this dissertation. The principle reasons for this alternate choice are initial
data and stability. While the leap-frog scheme must be initialized with data from two time steps,
un

i−1, u
n
i+1 and un−1

i , the Crank-Nicholson scheme is initialized from values at a single time step,
un

i−1 and un
i+1. Second, the Crank-Nicholson scheme is known to be stable4 for a wide range of

FDAs, given grid spacing ∆r and temporal interval ∆t.
The Crank-Nicholson scheme is defined by modifying the temporal derivative operator to be

centered at the virtual time step t+ 1
2∆t. A straightforward derivation obtains

(
u

n+ 1

2

i

)

,t
=
un+1

i − un
i

∆t
+ O

(
(∆t)

2
)
, (C.42)

4The issue of stability of a solution scheme is briefly discussed in subsection C.1.5.
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Figure C.2: The four-point stencil of the leap-frog scheme for the advection equation. The stencil
is marked by dashed lines and circles. Grid points are labelled by spatial indices
...i − 1, i, i + 1, ... and temporal indices ...n − 1, n, n + 1, .... The scheme employs
values un−1

i , un
i−1, u

n
i+1 and un+1

i of function u. Spacetime coordinates are given by
the ordered pair (t, r), grid spacing in the spatial dimension is characterized by a
single parameter ∆r, and the temporal interval is characterized by parameter ∆t.
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Figure C.3: The four-point stencil of the Crank-Nicholson scheme for the advection equation.
The stencil is marked by dashed lines and circles, and is centered about the virtual
point marked with a dashed square. Grid points are labelled by spatial indices
...i − 1, i, i + 1, ... and temporal indices ...n − 1, n, n + 1, .... The scheme employs
values un

i−1, u
n
i+1, u

n+1
i−1 and un+1

i+1 of function u. Spacetime coordinates are given by
the ordered pair (t, r), grid spacing in the spatial dimension is characterized by a
single parameter ∆r, and the temporal interval is characterized by parameter ∆t.

where u
n+ 1

2

i designates the value of u centered spatially at point labelled i and temporally at a
virtual point between n and n+1. The expression of advection equation (C.40) as an FDA is then
accomplished by evaluating spatial derivatives at this intermediate time step through a temporal
average. The FDA thus becomes

un+1
i − un

i

∆t
+ O

(
(∆t)

2
)

=
v

2

(
un

i+1 − un
i−1

2∆r
+
un+1

i+1 − un+1
i−1

2∆r

)
+ O

(
(∆r)

2
)
. (C.43)

This scheme has a four-point stencil as displayed in Figure C.3. Since this scheme couples values at
the future time step, un+1

i−1 and un+1
i−1 , it is called implicit. Being implicit, values of u in the future

cannot be obtained in a single step. Rather, they must be obtained with an iterative procedure.

C.1.5 Stability

As mentioned in the previous subsection, one reason for choosing the implicit Crank-Nicholson
scheme is because it tends to minimize instabilities for many PDEs. Since a detailed discussion
of stability for finite difference schemes is beyond the scope of this dissertation, the conditions for
stability will not be explicitly calculated for the PDEs used in this thesis, but instead will introduce
the concept of stability at a heuristic level and mention an important result known as the CFL
condition. Technical aspects and detailed discussions of stability can be found in [91], [103], [61],
[134], and [30].
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It is entirely possible to correctly implement a finite difference scheme for a time dependent
problem, yet have the solutions plagued by floating point overflows at some point in the evolution.
Providing there are no instabilities in the PDE being solved, the overflow will be as a consequence
of the nature of the finite difference scheme itself—some schemes are inherently unstable for a given
class of problem while others can be conditionally unstable.

As an example, consider the previously discussed advection equation (C.40) with periodic
boundary conditions. A property of the advection equation is that a norm of the solution will
not change significantly in time. That is to say,

||u(t, r)|| ∼ ||u(t+ ∆t, r)|| ∼ ||u(t+ 2∆t, r)|| ∼ · · · . (C.44)

Equation (C.44) will be the working definition of stability. In fact, a system would be considered
stable even if solutions grew as a polynomial in ||u(t, r)||. However, exponential growth in the norm
is certainly considered unstable. If the FDA to the PDE exhibiting property (C.44) is convergent,
the discrete solution is expected to exhibit the analogous behaviour

||un
i || ∼ ||un+1

i || ∼ ||un+2
i || ∼ · · · . (C.45)

It would then be hoped solutions obtained from a scheme such as leap-frog,

un+1
i = v
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∆r

(
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i+1 − un
i−1

)
+ un−1

i + O
(
(∆t)

2
)

+ O
(
(∆r)

2
)
, (C.46)

would exhibit property (C.46). As it turns out, there are values of the Courant factor,

λ ≡ ∆t

∆r
, (C.47)

for which (C.45) is violated. In fact, (C.46) is unstable for all

λ >
1

|v| . (C.48)

Now, if instead of leap-frog, the Crank-Nicholson scheme

un+1
i =

v

4

∆t

∆r

(
un

i+1 − un
i−1 + un+1

i+1 − un+1
i−1

)
+ un

i + O
(
(∆t)2

)
+ O

(
(∆r)2

)
(C.49)

is implemented, stability will be observed for all values λ. It is in this sense that Crank-Nicholson
is considered unconditionally stable, in support of the previous claim that the Crank-Nicholson
scheme tends to result in an FDA with improved stability.

To obtain the preceding stability conditions one needs to consider more detailed study of the
heuristic stability condition, or alternately perform a von-Neumann stability analysis. Such analyses
become complicated for nontrivial (i.e., nonlinear) PDEs like those used in later chapters of this
thesis. The complexity of the analyses is further increased when nontrivial boundary conditions
beyond periodic or Dirichlet, typical in systems of interest to numerical relativity, are applied to
the PDEs. The reader is again referred to [91], [103], [61], [134], [30], [21] and [22].

In closing this discussion on the stability of finite difference schemes, it is worth mentioning one
important result extracted from the von-Neumann stability analysis of (C.46)—the CFL condition,
as derived by Courant, Friedrichs and Lewy in 1928. The condition is a statement that all λ > 1
are unstable for an explicit scheme, and carries the interpretation that the physical domain of
dependence of a PDE must be entirely contained within the numerical domain of dependence if
the scheme is to be stable. That is, Courant factor, λ, must be adjusted for the PDE under
consideration, and it must certainly be less than unity. Note that since an implicit scheme couples
values at the future time step, they do not possess similar interpretation for a single iteration.
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Figure C.4: The CFL condition for a stable leap-frog scheme. Grid points are labelled by spatial
indices ...i− 1, i, i+ 1, ... and temporal indices ...n− 1, n, n+ 1, .... Spacetime coor-
dinates are given by the ordered pair (t, r), grid spacing in the spatial dimension is
characterized by a single parameter ∆r, and the temporal interval is characterized
by parameter ∆t. The physical domain of dependence is shaded dark grey, while the
numerical domain of dependence is shaded light grey. Note the physical domain of
dependence is entirely contained by the numerical domain of dependence.

The CFL condition is represented pictorially for the leap-frog scheme of the advection equation in
Figure C.4.

C.1.6 Kreiss-Oliger Dissipation Operators

This section on finite difference techniques will now be ended with discussion of Kreiss-Oliger
dissipation operators. To start, note that the advection equation (C.40) admits normal mode
solutions

u(t, r) ∼ eik(r+vt) (C.50)

with wavenumber k, which do not change in time. The solutions thus are said to be non-dissipative.
Some FDAs possess similar non-dissipative character, while others do not. The leap-frog scheme
in particular is non-dissipative. The dissipative character of finite difference schemes is considered
because, especially for nonlinear PDEs, propagation and growth of high frequency components of
a difference solution can lead to instabilities. It is therefore advantageous to ensure the scheme
employs some form of dissipation to stabilize the solutions. The key point is to do so in a way that
affects only the high frequency components, thereby mimicking the behaviour of a low-pass filter.

Again revert to discussion of the leap frog-scheme (C.46). If (C.46) is modified as per

un+1
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∆r
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2
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2
)
,

(C.51)
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for adjustable parameter 0 ≤ ε < 1, the additional terms do not modify the truncation error
to leading order. The new scheme, does, however modify the amplification of modes with wave
number ξ ≡ k∆x to be

1 − ε sin4 ξ

2
. (C.52)

The addition of Kreiss-Oliger dissipation operator

− ε

16

(
un

i+2 − 4un
i+1 + 6un

i − 4un
i−1 + un

i−2

)
, (C.53)

to the scheme thus acts as a low-pass filter with relatively sharp cutoff as ξ → π.
For brevity, Kreiss-Oliger dissipation will not be discussed in more detail, but will note that since

it does not modify truncation error at second order, it can be safely employed for all second-order
accurate schemes. In particular, Kreiss-Oliger dissipation is used everywhere PDEs are solved
in this dissertation with the Crank-Nicholson scheme. solve are nonlinear, there is significant
likelihood that instability from high frequency modes would be an issue. Instead of explicitly
determining the conditions for stability of the chosen FDAs, an experimental approach as adopted
where some choice is made for λ < 1 and ε < 1 and evolve the system. If the solutions blow up then
λ and ε are adjusted until the system evolves in a stable manner. Once stability is achieved the
values of these adjustable parameters are left unchanged for future evolutions. The advantage to
using adjustable dissipation, as per Kreiss-Oliger, is that the amount of dissipation can be increased
to the desired amount without applying so much dissipation that physical (i.e., lower-frequency)
modes of the solution will be affected.

C.1.7 Iterative Solution Scheme for Evolutionary Equations

An explicit scheme such as leap-frog is soluble in a single step. Implicit schemes, however, couple
functions at adjacent spatial grid points at the future time step and must therefore be solved it-
eratively. The Crank-Nicholson scheme is an example. For demonstrative purposes, consider the
Crank-Nicholson scheme for advection equation (C.40) with the addition of Kreiss-Oliger dissipa-

tion. The O
(
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)
, O

(
(∆r)2

)
FDA is
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i for i = 1, (C.54)
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for 3 ≤ i ≤ J − 2, (C.56)
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i + un+1
i−2 − 4un+1

i−1 + 3un+1
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)
+ un

i for i = J, (C.58)

where the dissipation operator has been time averaged. The strategy of the iterative solution
scheme begins with a specification of initial data un

i for 1 ≤ i ≤ J , and an initial guess for un+1
i

where again 1 ≤ i ≤ J . (C.55) through (C.58) are then employed to obtain the first iterate of
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solution un+1
i . Designating the kth iterate of un+1

i as u
n+1(k)
i , a proper iterative scheme generates

a sequence of iterates u
n+1(0)
i , u

n+1(1)
i , u

n+1(2)
i , ..., u

n+1(k)
i , converging upon the solution un+1

i in
the limit k → ∞. Two issues need further discussion: (1) the initial guess; and (2) the generation
of the sequence of iterates. For evolutionary equations it is usually valid to assume the solution
undergoes little change between the nth and (n + 1)th time steps. So without prior knowledge of
the evolution, a reasonable choice is simply to use the values from the step in the immediate past
as an initial guess. That is,

u
n+1(0)
i = un

i , (C.59)

the iteration count of the past time step being omitted from the notation. This resolves the first
issue. The second item now warrants discussion.

In the most trivial scheme known as Jacobi iterative, the sequence of iterates is defined entirely
from values of the preceding iterate. However, it can be shown that faster convergence can be
obtained if the method uses the most recent iterates as they become available. This is the essence
of a Gauss-Seidel iterative scheme. For example, assuming the order of updates proceeds i =
3, ..., J − 2, the sequence of Gauss-Seidel iterates for equation (C.56) will be generated according
to
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(C.60)

While alternatives such as Newton’s method converge more rapidly, they typically require a more

accurate initial guess u
n+1(k)
i , and are somewhat more difficult to implement. Gauss-Seidel is found

to be a sufficient method and is used in obtaining all results presented in this thesis. This method
has been implemented using the Rapid Numerical Prototyping Language (RNPL) [94], [95], [96],
[97]. In brief, RNPL is a high-level language which can be used to handle many details common to
most numerical codes. For example, RNPL can be used to manage parameter fetching and memory
allocation, along with input, output and update routines, allowing the user to focus efforts on
aspects more interesting to physics and numerical relativity. After the user specifies (in the RNPL
syntax) parameter names and types, a coordinate system, grid structure, grid function names and
types, finite difference operators, evolutionary equations and an initialization scheme, RNPL can
be used to generate an essentially complete FORTAN or C code. In the case of an iterative scheme,
RNPL automatically implements Gauss-Seidel. The user thereby is saved from expending time on
everything except for those aspects of greatest interest to the typical numerical relativist. Refer
to [94], [95], [96], [97] for details and examples of RNPL’s capabilities and limitations. But one
important issue to note by design is RNPL’s lack of support for the solution schemes appropriate
to elliptic equations. Therefore, users are required to implement their own methods for solving
constraint equations.

C.2 Constraint Equations

Constraint conditions typically form systems consisting of a elliptic equation to be solved in a
domain with boundary conditions and sources in its interior. Boundary conditions are typically
Dirichlet (the boundary value of the unknown function is specified), Neumann (the normal deriva-
tive of the function is specified) or Robin (an algebraic equation is given which relates the value of
the unknown function to its normal derivative on the domain boundary). The canonical example
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of a constraint condition is the Poisson equation

∇2u = ρ, (C.61)

where ∇2 is the Laplacian operator, and u is to be solved on a domain Ω with specified source
function ρ and where conditions for u are given on the boundary ∂Ω. The Laplacian operator
is a second-order PDE in the spatial coordinates. For example, the flat space Laplacian on u in
spherical polar coordinates (r, θ, φ) is given by

∇2u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
. (C.62)

Finally, notice that the Poisson equation is linear in u. Depending on the symmetries involved, this
linearity in u results in an FDA which can be solved by direct or indirect methods as mentioned
below. [125] and [126] form the set of references for direct methods, and the primary set of references
for discussion of iterative methods also includes [150], [143] and [146].

C.2.1 The Poisson Equation in Spherical Symmetry

Restricting the system to spherical symmetry, u = u(r), (C.62) becomes
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. (C.63)

Then using the FDAs of subsection C.1.3, the derivatives in (C.62) can be expressed to 2nd order
accuracy using three-point stencils. Then, using the established notation, the one-dimensional
finite difference equation
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(C.64)

is obtained. Substituting (C.64) into (C.61) the elliptic to be solved becomes
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Then if coordinate r in the computational domain Ω ranges [r1, rJ ] over a grid of J points, (C.65)
forms a tridiagonal system linear in u in the interior of Ω. However, boundary conditions still need
to be specified before the full system can be solved. If the boundary conditions were Dirichlet at
both r = r1 and r = rJ , the complete system of equations would be

un
1 = bn1 , (C.66)
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i for 2 ≤ i ≤ J − 1, (C.67)

un
J = bnJ , (C.68)

where bn1 and bnJ are specified boundary values.
However, outside of cases where spacetime has been compactified so that computational bound-

aries correspond to spatial infinity, systems of interest to numerical relativity seldom possess con-
straints with Dirichlet boundary conditions. Neumann and Robin conditions are far more preva-
lent. For instance, where constraint equation (C.61) represents the Gauss’ law electromagnetic
constraint, outside of a localized charge distribution, the electric potential will possess a Coulom-
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bic dependence in spherical symmetry. This means the form of u will there be

u =
u−1

r
+ u0, (C.69)

where u−1 and u0 are constants. The choice of u0 amounts to choosing a convenient location for the
zero of the potential. Typically, u0 is chosen so that either u = 0 at r = 0 or u = 0 at r = ∞. Then
if r = rJ is external to sources, the choice u0 = 0 there amounts to setting the zero of potential at
r = ∞. Equation (C.69) then reduces to

u =
u−1

r
. (C.70)

Differentiating (C.70) with respect to r then yields

∂u

∂r
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r
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or, in finite difference form,
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where the backwards difference expression for the derivative has been used. Then solving (C.72)
for un

J−2 obtains
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which, substituted into (C.65) for i = J − 1 yields
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the boundary condition to be applied at r = rJ .
To obtain a realistic boundary condition at r = r1, notice that for a smooth spherically sym-

metric distribution, the charge density ρ will be expansible in powers of radial coordinate r near
r = 0 with even leading order. That is,

ρ = ρ0 + ρ2r
2 + ρ4r

4 + O
(
r6
)
, (C.75)

where ρ0, ρ2, and ρ4 are appropriately chosen constants. Integrating over ρ to find qencl, the
amount charge enclosed by a small sphere of radius R centered at r = 0 obtains
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Then, using (C.75) or (C.76), straightforward integration obtains the amplitude of the electric field,
E, at r = R as
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, (C.77)
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and the value of the electric potential, u, at r = R as

u = u0 −
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, (C.78)

where u0 is a constant of integration, chosen so that (C.70) and (C.78) agree at the outer boundary
of charge density ρ. However, it is not necessary to solve for u0. Instead, the required boundary
condition can be derived by simply by noting that u is an even function of r near r = 0, and
so its derivative with respect to r must vanish. Thus, using the 2nd order forwards difference
approximation, obtains
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Then, substituting (C.80) into (C.65) for i = 2 yields
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In summary, the complete system of equations has become
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The elliptic system is again linear and still can be written in tridiagonal matrix form, even with
nontrivial boundary conditions. However, while being able to rewrite the system in tridiagonal
form will simplify computations presented in later chapters, the key feature here is the linearity of
the system of equations. Being linear, direct solution schemes such as Gauss-Jordan elimination,
Gaussian elimination or LU decomposition can be applied to solve for unknowns un

i . Being elemen-
tary techniques and well documented in the literature, The reader is simply referred to [125] and
[126] for detailed discussion. Finally, it is sufficient to state that, after reducing the electromagnetic
constraint equation of Chapter 3 to linear tridiagonal form, it is solved using Gaussian elimination5

followed by back-substitution with routines provided by the LAPACK software suite [2].

5A common source of error with systems requiring many operations is the accumulation or roundoff errors. While
an elimination scheme will return a result under such circumstances, the solution will be incorrect by some degree,
as can be checked by substituting the result back into the original system. To correct this problem the iterative

improvement technique is used as outlined in [125], [126].
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C.2.2 The Poisson Equation in Axial Symmetry

Now consider the Poisson equation in axial symmetry. Being dependent on just the two coordinate
dimensions r and θ, it will be expressed
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= ∇2u = ρ. (C.85)

Off boundary, (C.85) can be written as the second order FDA
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(C.86)

the indices i for coordinate r being a member of the positive integer set {1, 2, · · · , J}, indices j for
θ being a member of {1, 2, · · · ,K}, the grid spacing in the direction of coordinate r being ∆r, and
spacing in the direction of θ being ∆θ. A comma-separated subscript notation has been adopted
for grid functions to avoid confusion in situations the likes of un

11,2. If the boundary conditions
(C.82) and (C.84) are assumed for coordinate direction r, and furthermore un

i,j is assumed to be
an even function in θ along the line of axial symmetry (θ = 0 and θ = π), the complete FDA can
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be expressed
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As displayed in Figure C.5, this FDA has a five-point stencil utilizing grid points un
i,j , u

n
i−1,j , u

n
i+1,j ,

un
i,j−1, and un

i,j+1 when 2 ≤ i ≤ J − 1 and 2 ≤ j ≤ K− 1. The stencils on boundary are two-point.
Stencils for boundary conditions (C.87) and (C.88) are respectively depicted in Figures C.6 and
C.7.

This system of equations is amenable to any of a number of different solution schemes. Since
it can be written in block tridiagonal form, it can be solved using line successive over-relaxation

(LSOR)6, which was a standard iterative method until the 1970s. Again, because it is well doc-

6Line successive over-relaxation is sometimes called successive line over-relaxation (SLOR) by other authors.



APPENDIX C. NUMERICS 235

PSfrag replacements

θ

r

∆θ

∆r

i − 1 i i + 1

j − 1

j

j + 1

Figure C.5: The five-point stencil of the second order FDA for the Poisson equation off boundary
in the two dimensions r and θ. The stencil is marked by dashed lines and circles. The
stencil center lies on the range of indices 2 ≤ i ≤ J−1 and 2 ≤ j ≤ K−1. The scheme
employs values un

i,j , u
n
i−1,j , u

n
i+1,j , u

n
i,j−1, and un

i,j+1 of function u. Coordinates
are given by the ordered pair (r, θ), grid spacing in direction r is characterized by
parameter ∆r and in direction θ by parameter ∆θ.
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Figure C.6: The two-point stencil of the second order FDA for the Poisson equation in the two
dimensions r and θ at boundary θ = 0. The stencil is marked by dashed lines and
circles. Stencil points cover the range of indices 1 ≤ i ≤ J and 1 ≤ j ≤ 2. The
scheme employs values un

i,1, and un
i,2 of function u. Grid spacing in direction θ is

characterized by parameter ∆θ.
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Figure C.7: The two-point stencil of the second order FDA for the Poisson equation in the two
dimensions r and θ at boundary r = 0. The stencil is marked by dashed lines and
circles. Stencil points cover the range of indices 1 ≤ i ≤ 2 and 2 ≤ j ≤ K − 1. The
scheme employs values un

1,j , and un
2,j of function u. Grid spacing in direction r is

characterized by parameter ∆r.
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umented in the literature, The reader deferred to standard texts such as [143] and [150] for the
details. In summary, the electromagnetic constraint equation in Chapter 4 is solved using LSOR
with zebra-stripe ordering and Chebyshev acceleration.7

Having concluded discussion of finite difference difference schemes for evolutionary and con-
straint equations, the topics of adaptive mesh refinement for hyperbolic equations and parallel
computation are now addressed, as they have played a crucial role in obtaining the results pre-
sented in this dissertation.

C.3 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is important for finite difference schemes whose solutions unfold
on a wide range of spatial and temporal scales. AMR solves resolutional problems associated with
finite computational resources when solving such systems by adding resolution where needed and
removing resolution when no longer required. AMR is especially important when resolution re-
quirements are not known a priori, as would be the case in discovering new phenomena numerically.

In this thesis AMR is employed rather than a nonuniform mesh scheme, thereby circumvent-
ing both the problem of complicated FDA stencils and the requirement of a priori knowledge on
resolution requirements during evolution. AMR is employed in both spherical symmetry and axial
symmetry. In spherical symmetry AMR is implemented using a version of the ad code, developed
by Choptuik [25], and first used in [23]. In axial symmetry AMR is implemented using the Parallel
Adaptive Mesh Refinement (PAMR) code developed by Pretorius [128], [129]. With both the ad
and PAMR codes, the user is provided the framework and utilities for AMR, but not the equations
of motion for the systems of interest. In both cases it is up to the user to derive the equations and
implement the associated FDAs.

Both ad and PAMR use an adaptive algorithm based on that of Berger and Oliger first in-
troduced in 1984 [7]. The Berger and Oliger (B&O for short) algorithm is designed for general
hyperbolic PDEs and based upon three key elements: (1) the AMR grid hierarchy; (2) a time step-
ping algorithm; and (3) dynamical regridding via relative solution error estimate. The modified
B&0 algorithm is now described through its three key elements.

C.3.1 The Grid Hierarchy

AMR is implemented through a hierarchy of grids of different resolutions but uniform in each grid
direction. Each level is assumed to be characterized by a single spatial discretization scale in each
of these directions.8 The mth level of the hierarchy, lm, is defined as the set of grids of resolution
hm. In the set of levels, {lm}, where m is a positive integer (i.e., m ∈ Z

+), l1 is the coarsest level,

7For many classes of problem, LSOR was eventually replaced with generally more efficient methods such as
multigrid [13]. However, due to the complexity of multigrid methods and issues pertaining to the choice restriction
and prolongation operators [125], [126], it can at times be difficult to code a convergent multigrid solver. This is
especially true for nonlinear equations or those with much stronger coupling in one coordinate direction than another.
When faced with the situation of either obtaining a solution with a somewhat inefficient solver or not obtaining a
solution at all, it is better to sacrifice efficiency. This is the approach adopted in obtaining results presented in this
dissertation. While a pointwise Gauss-Seidel multigrid scheme was implemented to solve the Poisson equation in
Kerr spacetime, the scheme displayed poor convergence for many choices of black hole parameters MBH and aBH.
It was subsequently suggested by Choptuik [32] that the poor convergence was likely because the chosen pointwise
relaxation scheme is an inadequate smoother for systems with a much stronger coupling in one coordinate direction
than another. In such cases it is preferable to use a line iterative method, as in the line Gauss-Seidel multigrid
algorithm implemented in [20]. Perhaps the first record of this issue were noted by Brandt in [13]. A complete
discussion of the problem can be found in [146]. However, since a free evolution is performed for the electromagnetic
variables, the Poisson equation needs to be solved just once during an evolution at the initial time step. Having
written a demonstrably robust and relatively efficient LSOR solver, it was not necessary to revisit the multigrid
problem. Implementing a line iterative multigrid scheme remains an avenue of future investigation.

8In the original B&O algorithm, grids could be nonuniform in a coordinate direction and thus characterized by
more than a single spatial discretization scale.
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l2 ≤ lm ≤ lf−1 are intermediate resolution levels, and lf is the level with the finest resolution.
Successive levels of resolution are related via

hm = σshm+1, (C.92)

where σs is called the spatial refinement ratio and has properties σs ∈ Z
+ and σs ≥ 2. Additionally

assume σs is the same in each coordinate direction and for all successive levels.9 A grid at level lm
is called a parent grid and a grid at lm+1 a child grid. A child grid must be entirely contained by
a parent grid. And finally, note that grids within a level may overlap.

The modified scheme used requires all grids to share the same coordinate system, and grid
directions to be aligned with the coordinate directions. In addition, this modified scheme requires
child grids be aligned so that, in their regions of overlap, all parent grid points are coincident with
child grid points.10 Finally, the modified algorithm assumes a single level l1 grid called the base

grid covers the entire computational domain. Figure C.8 displays a prototypical grid hierarchy for
the case lf = l3 and σs = 2.

The next two subsections describe, in sequence, the time stepping algorithm used to advance
solutions in the grid hierarchy, and the dynamical regridding procedure by which it is ensured
solutions are adequately resolved at each time step in the evolution.

C.3.2 The Time-Stepping Algorithm

The core of a B&O-type AMR scheme is a recursive time-stepping algorithm in which functions on
all parent grids are evolved before those on child grids. In this scheme, once functions on a parent
grid in level lm has been evolved into the future one time step ∆tm, the functions on child grids
of level lm+1 are evolved into the future up to the same time through a sequence of σt time steps,
where σt is the temporal refinement ratio with properties σt ∈ Z

+ and σt ≥ 2. A constant Courant
factor across the hierarchy can be maintained by demanding

∆tm = σt∆tm+1. (C.93)

This modified algorithm assumes σt is the same between each successive level.11 Note that in order
to ensure the CFL condition is satisfied, σt ≥ σs must be chosen.

Since functions update on parent grids before those on its children, values on the child grid
boundaries off those of the base grid can be obtained by interpolating from function values on the
parent grid. This avoids having to supply special conditions off the boundary of the base grid,
and allows evolution only with the interior finite difference equations and solution scheme. Also,
since the solution error of a function on the parent level near its child grid boundaries should be
comparable to that on the child grid itself near those boundaries, the procedure of interpolating
values on the child grid boundary from the parent grid solution will not result in increased solution
error at these locations. Finally, once all functions on child grids have been updated to the future
time step of their parents, the child grid function values are injected into the parent grids where
their points coincide. This final step ensures the most accurate solution is available on all grids at
all times.

C.3.3 Dynamical Regridding via Relative Solution Error

In B&O-type schemes, resolutional demands are periodically assessed and grids in the hierarchy
are appropriately modified. The procedure of modifying grids is known as regridding. The period

9Historically, in B&O the spatial refinement ratio between two successive levels could be non-integer and different
between different successive levels.

10The original B&O algorithm allows parent grids to be offset or rotated with respect to the children.
11As with the spatial refinement ratio, in the original B&O algorithm, the temporal refinement ratio between

successive levels could differ of be non-integer.



APPENDIX C. NUMERICS 240

Figure C.8: A schematic representation of the AMR grid hierarchy in two spatial dimensions.
Displayed are the base grid l1 (large circles), along with prototypical levels l2 (small
circles) and l3 (black dots) for the case σs = 2.
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between resolutional assessments should be small enough to track all features of the solution.
Since light speed, c = 1, is the upper limit of the speed at which information should propagate,
requirements should be assessed at least every c

λ = 1
λ time steps, as this is the time in which a

physical signal could spatially propagate a single grid point.
The key then is to set a criterion which determines when the resolutional requirements have

changed. The approach outlined in [7] is employed by tying regridding to relative solution error
estimates.12 In order to establish the measure, each grid, g, at level lm is first cloned and the clone
labelled gm. A second copy of g is then made and its number of grid points coarsened by factor
σs. The second copy is labelled gm−σs . The two new grids are evolved into the future until they
are next coincident in time. Then comparing a discrete unknown solution on cloned grid copy gm

to that on coarsened grid copy gm−σs at the first coincident time the core of the measure becomes
the relative solution error

ehm(u) =
(
uhm − uσshm

)
+ O (hp) , (C.94)

where uhm is the discrete solution on gm, uσshm is the solution on gm−σs , and p ∈ Z
+ again being

the order of the FD scheme. The criterion whether to regrid is then based on the magnitude of
an appropriate point-by-point norm of the relative solution errors of some set of grid functions on
each grid g. This point-by-point norm of the set of relative solution errors is denoted τg , and is
formally

τg =
∑

u

||ehm(u)||. (C.95)

This is a measure that can be used dynamically during the time stepping procedure.
Once τg has been calculated for all grids in the hierarchy, the information is passed to a clustering

algorithm. Essentially, the clustering algorithm begins by flagging points at which τg exceeds some
predefined tolerance. The sets of flagged points then form the regions where child grids gm+σs

are to be introduced. Conversely, the unflagged points (where τg falls below the tolerance value)
define regions where the grid structure is to be coarsened by elimination of grids gm. It is by this
method that the grid hierarchy is refined. For more detail on clustering algorithms, and related
topics of buffer zones and filling factors see [127] and [8]. Finally, after the grid points have been
appropriately clustered and the hierarchy refined, function values are transferred from the old
hierarchy to the new by appropriately interpolating grid functions from old parent grids, gm, to
new children, gm−σs , and conversely by injecting grid function values from eliminated children onto
their parent grids. This concludes discussion of the B&O-type AMR algorithms used in this thesis.
For additional details the reader is referred to [7] and [127].

C.4 Parallel Computing

Programs traditionally have been written for serial computation defined as the sequential execution
of an instruction set by a single central processing unit (CPU). Since the serial model allows just
a single one-instruction execution at any moment in time, large calculations inevitably suffer from
both both limited computer memory and long total execution time. The goal of an alternate com-
putational model, such as parallel computation, is to delay, if not eliminate, the user experiencing
the effects of these limitations. In the most basic form, the definition of parallel computing is the
simultaneous use of multiple computing resources to solve a problem. Where required, the PAMR
framework ([128], [129]) is adopted to parallelize codes used to obtain results for this dissertation.

12What has here been defined as the relative solution error historically has been referred to as the local truncation

error (cf. [7]).



APPENDIX C. NUMERICS 242

C.4.1 Parallel Program Design

PAMR provides support for managing load distribution and communication for codes dependent
on a grid structure, thus providing a degree of automation for programmers wanting to parallelize
finite difference codes. PAMR can divide a domain of grid points Ω with boundary ∂Ω into a
specified number of subdomains Ω1, Ω2,... Ωs with respective boundaries ∂Ω1, ∂Ω2,... ∂Ωs. Using
this option for domain decomposition, PAMR assigns the subdomains in a manner that contain,
as closely as possible, equal volumes of grid points with minimal area.13 In the case where s > 1,
PAMR attaches ghost regions of specified width to the interior subdomain grid boundaries. These
ghost regions allow points within adjacent grids to maintain their couplings. For example, assuming
the range of index i for coordinate ri on Ω is 1 ≤ i ≤ J , the centered three-point finite difference
stencil for FDA

(
un

i,j

)
,rr

=
un

i+1,j − un
i,j + un

i−1,j

(∆r)
2 (C.96)

requires addition of a single grid point in the direction parallel to coordinate ri for each subdomain
boundary having 2 ≤ i ≤ J − 1. An example grid decomposition is displayed in Figure C.9. Then,
after being supplied with a modest set of additional information, PAMR can be used to compile a
code for use on a set of s compute nodes, each subdomain being uniquely assigned to one of these
nodes.14

Providing the program is not partitioned between so many nodes that inter-node communication
becomes an execution bottleneck, considerable increase in performance can be obtained with a code
parallelized as above. This concludes discussion of numerical methodology as it pertains to the
work present in this dissertation.

13For AMR codes, PAMR can either partition each grid of each level into s subgrids and distribute them among
the s compute nodes, or partition the set of all grids into s subgrids for distribution across the s nodes. The efficiency
of either option will depend on the complete grid structure at a given time.

14Note that while PAMR uses domain decomposition, an alternate division is functional decomposition where the
objective is to equally partition the work among nodes based on the cost of each function within the program.
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Figure C.9: Schematic representation of domain decomposition. The global domain Ω is divided
into four subdomains Ω1, Ω2, Ω3 and Ω4. The boundaries ∂Ω1 ∂Ω2 ∂Ω3 ∂Ω4 are
indicated with arrows. Ghost regions of a single grid point have been added to
interior subdomain boundaries. Regions where two subdomains overlap is shaded
light grey, and regions where four subdomains overlap is dark grey. Each of the
subdomains contains an equal number of grid points, and is of minimal area.
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APPENDIX D

MIB COORDINATES

D.1 The Monotonically Increasingly Boosted (MIB)
Coordinate System

In this section I study boundary conditions for the massive electromagnetically coupled complex
scalar field in flat axial symmetry. Again I employ the metric signature (−,+,+,+) in accordance
with Hawking and Ellis [62] and Wald [145]. Ultimately, to study a long numerical evolution
of the electromagnetically coupled complex scalar field system on a finite coordinate domain, I
must properly impose conditions on the computational outer boundary. Many techniques have
been tried by others, but the most effective numerical treatment of the outer boundary on a finite
computational domain perhaps is through the use of numerical dissipation in conjunction with the
Monotonically Increasingly Boosted (MIB) coordinate system first introduced by Honda [77], and
later published in [78]. The MIB coordinate system leaves the interior of the computational grid
unchanged, but outwardly boosts the coordinates of points in an exterior region to approximately
the speed of light with respect to the interior. While the MIB coordinates work to effectively
freeze any radiation, numerical dissipation of the Kreiss-Oliger style can be added to quench this
radiation. The problem of solution contamination by reflections off an outer boundary is thereby
eliminated.

The Minkowski metric in the usual
(
t̃, ρ̃, φ̃, z̃

)
cylindrical coordinate system is summarized by

ds2 = −dt̃2 + dρ̃2 + ρ̃2dφ̃2 + dz̃2 . (D.1)

The axially symmetric MIB coordinate transformations employed in [77] and [78] are

t̃ = t , ρ̃ = ρ+ f(ρ)t , φ̃ = φ , z̃ = z + g(z)t , (D.2)

where f(ρ) is a monotonic function that interpolates between approximately 0 and 1 near a char-
acteristic cutoff ρc, and g(z) is a monotonic function that interpolates between approximately 0
and 1 near characteristic cutoff zc and between approximately 0 and −1 near characteristic cutoff
−zc. That is,

f(ρ) '
{

0 for ρ� ρc

1 for ρ� ρc

}
(D.3)

and

g(z) '





−1 for z � −zc

0 for −zc < z < zc

1 for z � zc



 . (D.4)
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In these MIB coordinates the metric becomes

ds2 = (−1 + f(ρ)2 + g(z)2)dt2

+2f(ρ)(1 + ∂ρf(ρ)t)dtdρ

+2g(z)(1 + ∂zg(z)t)dtdz

+(1 + ∂ρf(ρ)t)2dρ2

+(ρ+ f(ρ)t)2dφ2

+(1 + ∂zg(z)t)
2dz2 , (D.5)

or, in the language of the 3 + 1 formalism,

ds2 = (−α2 + γ2
ρρβ

ρ2 + γ2
zzβ

z2)dt2

+2γ2
ρρβ

ρdtdρ

+2γ2
zzβ

zdtdz

+γ2
ρρdρ

2

+γ2
φφdφ

2

+γ2
zzdz

2 , (D.6)

where

α(t, ρ) = 1 , βρ(t, ρ) =
f(ρ)

1 + ∂ρf(ρ)t
,

βz(t, z) =
g(z)

1 + ∂zg(z)t
, γρρ(t, ρ) = 1 + ∂ρf(ρ)t , (D.7)

γφφ(t, ρ) = ρ+ f(ρ)t , γzz(t, z) = 1 + ∂zg(z)t .

The unit-norm vector to spacelike hypersurfaces is

na = (1,−βρ, 0,−βz) , (D.8)

and the spatial metric is described by the hypersurface line element

dσ2 = γ2
ρρdρ

2 + γ2
φφdφ

2 + γ2
zzdz

2 . (D.9)

The timelike Killing vector field of Minkowski spacetime is now ta = na, sa
φ = (0, 0, 1, 0) is the

axial Killing vector field, and sa
z =

(
0, 0, 0, γ−1

zz

)
is the spacelike Killing vector field in the direction

of coordinate z. Furthermore, I make use of the same interpolating functions as in [77] and [78],

f(ρ) =
[1 + tanh ((ρ− ρc)/δρ)]

2
− [1 + tanh ((−ρc)/δρ)]

2
, (D.10)

g(z) =
tanh ((z − zc)/δz)

2
+

tanh ((z + zc)/δz)

2
, (D.11)

where parameters δρ and δz set the length scales over which interpolation takes place. The in-
terpolating functions f(ρ) and g(z) for this system are displayed in Figure D.1 and Figure D.2
respectively.

Clearly, the radially outgoing and ingoing null geodesics along z = 0 for spacetime metric (D.6)
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Figure D.1: MIB interpolating function f(ρ). The shaded region represents ρc ± δρ.

are given by

λρ
±(t, ρ) = −βρ ± α

γρρ
, (D.12)

while the axially outgoing and ingoing null geodesics along ρ = 0 are given by

λz
±(t, ρ) = −βz ± α

γzz
. (D.13)

The null geodesics with f(ρ) and g(z) given by (D.10) and (D.11) are displayed in Figure D.3
through Figure D.6 below. Observe that, as desired,

λρ
±(t, ρ) '

{
±1 for ρ� ρc

0 for ρ ' ρc

}
, (D.14)

and

λz
±(t, ρ) '






0 for z ' −zc

±1 for −zc < z < zc

0 for z ' zc




 . (D.15)
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Figure D.2: MIB interpolating function g(z). The shaded regions represent zc ± δz and −zc± δz.
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Figure D.3: Radially outgoing geodesic λρ
+(t, ρ) in the MIB coordinates at times t = 0, t = 1,

t = 10, and t = 100. The shaded region represents ρc ± δρ.
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Figure D.4: Radially ingoing geodesic λρ
−(t, ρ) in the MIB coordinates at times t = 0, t = 1,

t = 10, and t = 100. The shaded region represents ρc ± δρ.
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Figure D.5: Axially outgoing geodesic λz
+(t, z) in the MIB coordinates at times t = 0, t = 1,

t = 10, and t = 100. Shaded regions represent zc ± δz and −zc ± δz.
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Figure D.6: Axially ingoing geodesic λz
−(t, z) in the MIB coordinates at times t = 0, t = 1,

t = 10, and t = 100. Shaded regions represent zc ± δz and −zc ± δz.
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D.2 Equations of Motion

The system described by Lagrangian

LM =
√−g[−(∇aΦ − ieAaΦ)(∇aΦ∗ + ieAaΦ∗) − 1

4
F abFab −m 2

Φ Φ∗Φ] , (D.16)

yields equations of motion

∇a (∇aΦ − ieAaΦ) − ieAa (∇aΦ − ieAaΦ) −m 2
Φ Φ = 0 (D.17)

for complex scalar field Φ = Φ(t, ρ, z) (i.e., Φ = φ1+iφ2, where φ1 = φ1(t, ρ, z) and φ2 = φ2(t, ρ, z)),
and evolutionary equations

∇aFab − ie(Φ∗∇bΦ − Φ∇bΦ
∗) − 2e2ΦΦ∗Ab = 0 (D.18)

for four-vector potential Aa = Aa(t, ρ, z). The Lorentz gauge condition

∇aA
a = 0 (D.19)

can be used to evolve the temporal component At. I continue to used the established notation
where mΦ is the scalar field mass parameter, e the electromagnetic coupling parameter, the symbol
∗ denotes complex conjugation, and Fab is the antisymmetric electromagnetic field strength tensor.
Explicit calculation of (D.17), (D.18) and (D.19) for metric (D.5) obtains a fairly complicated set
of expressions.

Defining auxiliary variables,

ΠΦ(t, ρ, z) ≡ naγρργzz (∇aΦ − ieAaΦ) , (D.20)

Φρ(t, ρ, z) ≡ ∂ρΦ , (D.21)

Φz(t, ρ, z) ≡ ∂zΦ , (D.22)

and function
fφφ(t, ρ, z) ≡ γφφ

ρ
, (D.23)

equation (D.17) can be recast in the first-order form1

Π̇Φ = 2
1

fφφ

∂

∂(ρ2)

[
γφφ

(
βρΠΦ +

γzz

γρρ
(Φρ − ieAρΦ)

)]
+

∂

∂z

(
βzΠΦ +

γρρ

γzz
(Φz − ieAzΦ)

)

−ie
(
γzz

γρρ
(Φρ − ieAρΦ)Aρ +

γρρ

γzz
(Φz − ieAzΦ)Az − ΠΦ (At − βρAρ − βzAz)

−ieγρργzz

γ2
φφ

A2
φΦ

)
− γ̇φφ

γφφ
ΠΦ − γρργzzm

2
ΦΦ , (D.25)

Φ̇ρ =
∂

∂ρ

(
1

γρργzz
ΠΦ + ieAtΦ + βρ (Φρ − ieAρΦ) + βz (Φz − ieAzΦ)

)
, (D.26)

Φ̇z =
∂

∂z

(
1

γρργzz
ΠΦ + ieAtΦ + βρ (Φρ − ieAρΦ) + βz (Φz − ieAzΦ)

)
, (D.27)

1I use the chain rule
∂

∂ρ
= 2ρ

∂

∂ (ρ2)
(D.24)

to eliminate factors ρ−1 that would otherwise appear in expressions such as (D.25).
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Φ̇ =
1

γρργzz
ΠΦ + ieAtΦ + βρ (Φρ − ieAρΦ) + βz (Φz − ieAzΦ) , (D.28)

where the overdot, ,̇ again designates partial differentiation with respect to coordinate t. Similarly,
defining

Πρ(t, ρ, z) ≡ naγρργzz (∇aAρ −∇ρAa) ,

Πφ(t, ρ, z) ≡ naγρργzz (∇aAφ −∇φAa) ,

Πz(t, ρ, z) ≡ naγρργzz (∇aAz −∇zAa) , (D.29)

Atρ(t, ρ, z) ≡ ∂ρAt , (D.30)

Atz(t, ρ, z) ≡ ∂zAt , (D.31)

Aρz(t, ρ, z) ≡ ∂zAρ , (D.32)

Aφρ(t, ρ, z) ≡ ∂ρAφ , (D.33)

Aφz(t, ρ, z) ≡ ∂zAφ , (D.34)

Azρ(t, ρ, z) ≡ ∂ρAz , (D.35)

(D.18) can be rewritten

Π̇ρ = 2
1

fφφ

∂

∂(ρ2)
(γφφβ

ρΠρ) + Πρ
∂

∂ρ
(βρ) +

∂

∂z

(
βzΠρ +

γρρ

γzz
(Aρz −Azρ)

)
− γ̇φφ

γφφ
Πρ

+γρργzzJρ , (D.36)

Ȧρz =
∂

∂z

(
1

γρργzz
Πρ +Atρ − βz (Azρ −Aρz)

)
, (D.37)

Ȧρ =
1

γρργzz
Πρ +Atρ − βz (Azρ −Aρz) , (D.38)

Π̇φ = −2
γzz

γρρfφφ
Aφρ

∂

∂ (ρ2)
(γφφ) + γφφ

∂

∂ρ

(
1

γφφ
βρΠφ

)
+ γzz

∂

∂ρ

(
1

γρρ
Aφρ

)
+

∂

∂z

(
βzΠφ

+
γρρ

γzz
Aφz

)
+
γ̇φφ

γφφ
Πφ + γρργzzJφ , (D.39)

Ȧφρ =
∂

∂ρ

(
1

γρργzz
Πφ + βρAφρ + βzAφz

)
, (D.40)

Ȧφz =
∂

∂z

(
1

γρργzz
Πφ + βρAφρ + βzAφz

)
, (D.41)

Ȧφ =
1

γρργzz
Πφ + βρAφρ + βzAφz , (D.42)

Π̇z = 2
1

fφφ

∂

∂(ρ2)

[
γφφ

(
βρΠz +

γzz

γρρ
(Azρ −Aρz)

)]
+

∂

∂z
(βzΠz) + Πz

∂

∂z
(βz) − γ̇φφ

γφφ
Πz

+γρργzzJz , (D.43)
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Ȧzρ =
∂

∂ρ

(
1

γρργzz
Πz +Atz − βρ (Aρz −Azρ)

)
, (D.44)

Ȧz =
1

γρργzz
Πz +Atz − βρ (Aρz −Azρ) , (D.45)

where the conserved four-current, again defined

−Ja ≡ ie(Φ∗∇aΦ − Φ∇aΦ∗) + 2e2ΦΦ∗Aa , (D.46)

has spatial components

Jρ = −ie(Φ∗Φρ − ΦΦ∗
ρ) − 2e2ΦΦ∗Aρ , (D.47)

Jφ = −2e2ΦΦ∗Aφ , (D.48)

Jz = −ie(Φ∗Φz − ΦΦ∗
z) − 2e2ΦΦ∗Az . (D.49)

While (D.36), (D.39), (D.43) provide the equations of evolution of the spatial components of
Aa, the value of At at future time can be obtained either by solving the electromagnetic constraint,
or by solving the Lorentz gauge condition. Defining

Ωt(t, ρ, z) ≡ naγρργzzAa , (D.50)

the Lorentz gauge condition can be recast as

Ω̇t = 2
1

fφφ

∂

∂(ρ2)

(
γφφ

(
βρΩt +

γzz

γρρ
Aρ

))
+

∂

∂z

(
βzΩt +

γρρ

γzz
Az

)
− γ̇φφ

γφφ
Ωt , (D.51)

Atρ =
∂

∂ρ

(
1

γρργzz
Ωt + βρAρ + βzAz

)
, (D.52)

Atz =
∂

∂z

(
1

γρργzz
Ωt + βρAρ + βzAz

)
, (D.53)

At =
1

γρργzz
Ωt + βρAρ + βzAz . (D.54)

D.2.1 Physical and Conserved Quantities

While the preceding equations of motion have been written in terms of the four-vector potential Aa,
the physical fields are themselves the electric field Ea and the magnetic field Ba. For an observer
moving with four-velocity na, the measured electric field components are

Eρ = − 1

γρργzz
Πρ , (D.55)

Eφ = − 1

γρργzz
Πφ , (D.56)

Ez = − 1

γρργzz
Πz , (D.57)
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while the observed magnetic field is

Bρ = − γρρ

γφφγzz
Aφz , (D.58)

Bφ =
γφφ

γρργzz
(Aρz −Azρ) , (D.59)

Bz =
γzz

γρργφφ
Aφρ . (D.60)

The temporal component of the current four-vector is

Jt = −ie
(
− 1

γρργzz
(Φ∗ΠΦ − ΦΠ∗

Φ) + βρ
(
Φ∗Φρ − ΦΦ∗

ρ

)
+ βz (Φ∗Φz − ΦΦ∗

z)

)

−2e2 (βρΦΦ∗Aρ + βzΦΦ∗Az) , (D.61)

and the observed charge density is

ρQ = −ie 1

γρργzz
(Φ∗ΠΦ − ΦΠ∗

Φ) . (D.62)

The stress-energy tensor for the system described by (D.16) is

Tab =
1

2
(∇aΦ∇bΦ

∗ + ∇bΦ∇aΦ∗) − 1

2
ie [(Φ∇bΦ

∗ − Φ∗∇bΦ)Aa + (Φ∇aΦ∗ − Φ∗∇aΦ)Ab]

+e2ΦΦ∗AaAb +
1

2
FacFbdg

cd − 1

2
gab[(∇cΦ − ieAcΦ)(∇cΦ∗ + ieAcΦ∗) +

1

4
F cdFcd

+m 2
Φ Φ∗Φ] . (D.63)

Contracting Tab with na = (1,−βρ, 0,−βz) and ta = na yields the conserved energy density

ρT = ρT (Φ) + ρT (A) + ρT (ΦA) , (D.64)

ρT (Φ) being the contribution from scalar field terms, ρT (A) the contribution from electromagnetic
field variable terms, and ρT (ΦA) being the contribution from terms involving the electromagnetic
interaction of Φ and Aa. Explicitly,

ρT (Φ) = e2
(

1

2
(βρ)

2
A2

ρ + βρβzAρAz − βρAρAt +
1

2
(βz)

2
A2

z − βzAzAt +
1

2
A2

t

)
ΦΦ∗

− ie

2

1

γρργzz
(βρAρ + βzAz −At) (ΦΠ∗

Φ − Φ∗ΠΦ) +
1

2
m2

ΦΦΦ∗ +
1

2

1

γ2
ρρ

ΦρΦ
∗
ρ

+
1

2

1

γ2
zz

ΦzΦ
∗
z +

1

2

1

γ2
ρργ

2
zz

ΠΦΠ∗
Φ , (D.65)

ρT (A) =
1

4

1

γ2
ρργ

2
zz

A2
ρz − 1

2

1

γ2
ρργ

2
zz

AρzAzρ +
1

4

1

γ2
ρργ

2
φφ

A2
φρ +

1

4

1

γ2
φφγ

2
zz

A2
φz +

1

4

1

γ2
ρργ

2
zz

A2
zρ

+
1

4

1

γ4
ρργ

2
zz

Π2
ρ +

1

4

1

γ2
ρργ

2
φφγ

2
zz

Π2
φ +

1

4

1

γ2
ρργ

4
zz

Π2
z , (D.66)
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and

ρT (ΦA) = e2

[
1

2

(
1

γ2
ρρ

− (βρ)
2

)
A2

ρ − βρβzAρAz + βρAρAt +
1

2

1

γ2
φφ

A2
φ +

1

2

(
1

γ2
zz

− (βz)
2

)
A2

z

+βzAzAt −
1

2
A2

t

]
ΦΦ∗ − ie

2

(
Aρ

γ2
ρρ

(ΦΦ∗
ρ − Φ∗Φρ) +

Az

γ2
zz

(ΦΦ∗
z − Φ∗Φz)

− 1

γρργzz
(βρAρ + βzAz −At) (ΦΠ∗

Φ − Φ∗ΠΦ)

)
. (D.67)

Similarly, contracting Tab with na and sa
φ = (0, 0, 1, 0) yields the conserved angular momentum

density
ρSφ = ρSφ(A) + ρSφ(ΦA) , (D.68)

where

ρSφ(A) = −1

2

1

γ3
ρργzz

AφρΠρ − 1

2

1

γρργ3
zz

AφzΠz (D.69)

is the electromagnetic field contribution, and

ρSφ(ΦA) = − ie
2

Aφ

γρργzz
(ΦΠ∗

Φ − Φ∗ΠΦ) (D.70)

is from the coupling of scalar and electromagnetic fields. Finally, contracting Tab with na and
sa

z = (0, 0, 0, γ−1
zz ) yields the conserved momentum density in the direction of coordinate z,

ρSz = ρSz(Φ) + ρSz(A) + ρSz(ΦA) , (D.71)

where

ρSz(Φ) = − ie
2

1

γzz
(βρAρ + βzAz −At) (ΦΦ∗

z − Φ∗Φz) +
1

2

1

γρργ2
zz

(ΦzΠ
∗
Φ + Φ∗

zΠΦ) , (D.72)

ρSz(A) =
1

2

1

γ3
ρργ

2
zz

(Aρz −Azρ)Πρ +
1

2

1

γρργ2
φφγ

2
zz

AφzΠφ , (D.73)

and

ρSz(ΦA) =
ie

2

(
1

γzz
(βρAρ + βzAz −At)(ΦΦ∗

z − Φ∗Φz) −
Az

γρργ2
zz

(ΦΠ∗
Φ − Φ∗ΠΦ)

)
. (D.74)

From (2.104), the total charge

Q =

∫ ∞

z=−∞

∫ 2π

φ=0

∫ ∞

ρ=0

ρQ (γρργφφγzz) dρdφdz , (D.75)

from (2.108), the total energy

T =

∫ ∞

z=−∞

∫ 2π

φ=0

∫ ∞

ρ=0

ρT (γρργφφγzz) dρdφdz , (D.76)
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and from (2.109), the total angular momentum

Sφ =

∫ ∞

z=−∞

∫ 2π

φ=0

∫ ∞

ρ=0

ρSφ (γρργφφγzz) dρdφdz (D.77)

and total momentum in direction of coordinate z

Sz =

∫ ∞

z=−∞

∫ 2π

φ=0

∫ ∞

ρ=0

ρSz (γρργφφγzz) dρdφdz (D.78)

all will be constant.

D.2.2 Regularity, Boundary Conditions and Dissipation

From section 2.4 (cf. [6], [45]), regularity for the evolved functions requires Φ, Φz, ΠΦ, Aφ, Aφz ,
Πφ, Az , Πz , Jz , At, Atz, Ωt, Jφ, Eφ, Ez, Bφ, Bz, Jt, ρQ, ρT , ρSφ and ρSz be, to leading order,
even in ρ on axis (i.e., along ρ = 0). Furthermore, Aφ, Aφz , Πφ, Jφ, Eφ and Bφ must also vanish
on the axis of symmetry (i.e., they are at least quadratic in ρ on axis). Meanwhile, remaining
variables Φρ, Aρ, Aρz , Πρ, Jρ, Aφρ, Azρ, Atρ, Eρ and Bρ are on axis odd in ρ to leading order.
For the leading-order-even variables, I enforce regularity on grid points corresponding to ρ = 0 by
applying a quadratic fix as listed in Appendix C. Also, I apply interpolation in the direction of
ρ on the next-to-axis points using a 3rd order Lagrange interpolant as discussed in Appendix C.
The additional interpolation helps ensure smooth and stable evolution along ρ = 0. Variables Aφ,
Aφz, Πφ, Jφ, Eφ and Bφ are the exceptional cases. For them, I enforce regularity by setting their
values equal to zero on axis and imposing a quadratic fix on the next-to-axis points. Meanwhile,
regularity of the leading-order-odd variables is enforced by setting the functions equal to zero at
ρ = 0. As with the leading-order-even variables, I apply interpolation on the next-to-axis grid
points.

Because their counterparts in the massless electromagnetically uncoupled (i.e., e = 0) theory
can be expressed as wave equations, I could always apply the (approximate) Sommerfeld outgoing
radiation condition to Φ, Aρ, Aφ, Az and At. The condition would be applied on the outermost
grid points. The Sommerfeld condition for Φ would provide an algebraic equation for boundary
values of ΠΦ as well. Fields Eρ, Eφ and Ez similarly can be rewritten as a set of wave equations.
The Sommerfeld condition for the electric field components, in turn, could provide outer boundary
conditions for Πρ, Πφ and Πz. Meanwhile, backwards difference operators could be applied, as
appropriate, to Φρ, Φz, Aρz , Aφρ, Aφz, Azρ, Atρ and Atz , while variables Jρ, Jφ, Jz, Ωt, Eρ, Eφ,
Ez, Bρ, Bφ, Bz, Jt, ρQ, ρT , ρSφ and ρSz would require no special treatment.

However, by using the MIB coordinates in conjunction with Kreiss-Oliger dissipation, radiation
will be quenched before it propagates from the interior of the domain to the computational outer
boundary. Providing the boundary conditions are appropriate to the initial value problem, their
details should therefore be irrelevant. Thus, I choose to fix the boundary values of all the grid
functions to what they were at initial time. As numerical evolution demonstrates in following
sections, even such static boundary conditions work well in the MIB coordinate approach.

Kreiss-Oliger dissipation is applied as discussed in Appendix C. It is added to all functions
whose equations of motion explicitly involve partial derivatives with respect to temporal coordinate
t. They are Φ, Φρ, Φz, ΠΦ, Aρ, Aρz , Πρ, Aφ, Aφρ, Aφz, Πφ, Az, Azρ, Πz and Ωt. Dissipation in
both coordinate directions r and θ is applied throughout the bulk of the computational domain,
where at least two grid points distant from the boundaries ρ = 0, ρ = ρmax, z = zmin and z = zmax.
However, because the operator stencils are five points wide, dissipation in coordinate ρ alone is
applied z = zmin+∆z and z = zmax−∆z. Meanwhile, dissipation in coordinate z alone is applied at
ρ = ρmax−∆ρ. Formally, if u = u(t, ρ, z) is one of the functions whose equation contains an explicit
derivative in time, then, using the Crank-Nicholson scheme without dissipation, its expression will
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be
u(t+ ∆t, ρ, z) − u(t, ρ, z)

∆t
=

1

2
[R(t+ ∆t, ρ, z) +R(t, ρ, z)] , (D.79)

where the left hand side is—to O
(
(∆t)

2
)

accuracy—the time derivative of u centered between

times t and t + ∆t, and the right hand side represents—to O
(
(∆ρ)2

)
and O

(
(∆z)2

)
—all other

terms in the equation time averaged between steps t and t+ ∆t. Then, Kreiss-Oliger dissipation is
implemented by adding specific terms on the right hand side of equation (D.79). In this case,

u(t+ ∆t, ρ, z) − u(t, ρ, z)

∆t
=

1

2
[R(t+ ∆t, ρ, z) +R(t, ρ, z)]

+
1

2
[Dρ(t+ ∆t, ρ, z) +Dρ(t, ρ, z)]

+
1

2
[Dz(t+ ∆t, ρ, z) +Dz(t, ρ, z)] (D.80)

when 2∆ρ ≤ ρ ≤ ρmax − 2∆ρ and zmin + 2∆z ≤ z ≤ zmax − 2∆z,

u(t+ ∆t, ρ, z) − u(t, ρ, z)

∆t
=

1

2
[R(t+ ∆t, ρ, z) +R(t, ρ, z)]

+
1

2
[Dρ(t+ ∆t, ρ, z) +Dρ(t, ρ, z)] (D.81)

when 2∆ρ ≤ ρ ≤ ρmax − 2∆ρ and z = zmin + ∆z or z = zmax − ∆z, and

u(t+ ∆t, ρ, z) − u(t, ρ, z)

∆t
=

1

2
[R(t+ ∆t, ρ, z) +R(t, ρ, z)]

+
1

2
[Dz(t+ ∆t, ρ, z) +Dz(t, ρ, z)] (D.82)

when zmin + 2∆z ≤ z ≤ zmax − 2∆z and ρ = ρmax − ∆ρ, where

Dρ(t, ρ, z) = − ερ
16∆t

[u(t, ρ+ 2∆ρ, z)− 4u(t, ρ+ ∆ρ, z) + 6u(t, ρ, z)

−4u(t, ρ− ∆ρ, z) + u(t, ρ− 2∆ρ, z)] , (D.83)

Dz(t, ρ, z) = − εθ
16∆t

[u(t, ρ, z + 2∆z) − 4u(t, ρ, z + ∆z) + 6u(t, ρ, z)

−4u(t, ρ, z − ∆z) + u(t, ρ, z − 2∆z)] , (D.84)

and 0 ≤ ερ < 1 and 0 ≤ εz < 1 are adjustable parameters. I use values ερ = 0.5 and εz = 0.5 for
the adjustable dissipation parameters in directions ρ and z, respectively. Using a Courant factor

λ =
∆t√

1
2 ((∆ρ)2 + (∆z)2)

' 0.25 , (D.85)

this system of equations evolves stably under the Crank-Nicholson iterative solution scheme.
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D.3 Results

D.3.1 Initial Data

Again, the initial value problem for the Maxwell-Klein-Gordon system in a spacetime background
requires specification of all the variables in a manner consistent with regularity and gauge condi-
tions, and satisfying the electromagnetic constraint equation

DaEa = ρQ , (D.86)

where Da is the spatial covariant derivative operator, and ρQ, is, according to equation (D.62),

ρQ = −ie 1

γρργzz
(Φ∗ΠΦ − ΦΠ∗

Φ) . (D.87)

Following the procedure of section 2.2.1, I again decompose Ea into its longitudinal and trans-
verse parts, respectively La and Ta, to obtain

Ea = La + Ta . (D.88)

Then introducing the scalar potential, U = U(r, θ), as per

DaU = La , (D.89)

(D.86) becomes
DaDaU = DaEa = ρQ , (D.90)

where the left hand side is explicitly

DaDaU =
1

γ3
ρργ

3
zz

[
2

fφφ
γρργ

3
zz(∂ρ2γφφ)(∂ρU) − (∂ργρρ)γ

3
zz(∂ρU) + γρργ

3
zz(∂ρρU)

−γ3
ρρ(∂zγzz)(∂zU) + γ3

ρργzz(∂zzU)

]
(D.91)

After solving (D.90) using the methods of Appendix C, I reconstruct the longitudinal electric field
components, which are, from (D.89),

Lρ = ∂ρU , (D.92)

Lz = ∂zU , (D.93)

Lφ = 0 . (D.94)

I then specify divergenceless components for the transverse component Ta. For simplicity, I again
choose

Tρ = 0 , (D.95)

Tz = 0 , (D.96)

Tφ = 0 . (D.97)



APPENDIX D. MIB COORDINATES 260

The completely reconstructed electric field at initial time is therefore

Eρ = ∂ρU , (D.98)

Ez = ∂zU , (D.99)

Eφ = 0 . (D.100)

Having solved for Ea, I then initialize Πρ, Πz and Πφ in accordance with (D.55), (D.56) and (D.57),
meaning

Πρ = −γρργzzEρ , (D.101)

Πφ = −γρργzzEφ , (D.102)

Πz = −γρργzzEz . (D.103)

Having satisfied the initial data constraint, I then freely specify the remaining variables in
accordance with their definitions and regularity conditions. For simplicity I again choose Gaussian
profiles for the complex components of Φ(t, ρ, z) = φ1(t, ρ, z)+iφ2(t, ρ, z), ΠΦ(t, ρ, z) = Π1(t, ρ, z)+
iΠ2(t, ρ, z), and the vector potential components Aa(t, r, θ).2 That is,

φ1(0, ρ, z) = a1 exp
(
−((ρ− ρ1)/δρ1)

2
)
exp

(
−((z − z1)/δz1)

2
)
, (D.104)

φ2(0, ρ, z) = a2 exp
(
−((ρ− ρ2)/δρ2)

2
)
exp

(
−((z − z2)/δz2)

2
)
, (D.105)

Π1(0, ρ, z) = a3 exp
(
−((ρ− ρ3)/δρ3)

2
)
exp

(
−((z − z3)/δz3)

2
)
, (D.106)

Π2(0, ρ, z) = a4 exp
(
−((ρ− ρ4)/δρ4)

2
)
exp

(
−((z − z4)/δz4)

2
)
, (D.107)

At(0, ρ, z) = ar exp
(
−((ρ− ρt)/δρt)

2
)
exp

(
−((z − zt)/δzt)

2
)
, (D.108)

Ar(0, ρ, z) = ar exp
(
−((ρ− ρρ)/δρρ)

2
)
exp

(
−((z − zρ)/δzρ)

2
)
, (D.109)

Aθ(0, ρ, z) = aθ exp
(
−((ρ− ρz)/δρz)

2
)
exp

(
−((z − zz)/δzz)

2
)
, (D.110)

Aφ(0, ρ, z) = aφ exp
(
−((ρ− ρφ)/δρφ)2

)
exp

(
−((z − zφ)/δzφ)2

)
, (D.111)

where a1, a2, a3, a4, at, aρ, az and aφ are constants setting the initial amplitudes, ρ1, ρ2, ρ3, ρ4,
ρt, ρρ, rz and ρφ determine the Gaussian peaks in the radial direction, z1, z2, z3, z4, zt, zρ, zz

and zφ determine the Gaussian peaks in the z coordinate direction, δρ1, δρ2, δρ3, δρ4, δρt, δρρ, δρz

and δρφ determine the Gaussian widths in coordinate ρ, and δz1, δz2, δz3, δz4, δzt, δzρ, δzz and δzφ

determine widths in z. Finally, all remaining variables are initialized according to the definitions
of section D.2.

D.3.2 Testing the Boundary Conditions

One of the principal reasons for studying evolution in the MIB coordinate system it to determine the
utility of these coordinates in treating outer boundary effects (in specific, reflections). As discussed,
grid points outside the MIB boosting region effectively propagate outwards at a rate approaching
the speed of light. Any fields reaching this boosted region will be spatially compressed relative to
the finite difference mesh. It is at that point that Kreiss-Oliger dissipation will quench these fields
as their high-frequency components (relative to the mesh) grow. In principle, the quenching should

2From equations (D.47) and (D.49), nonzero electric current components Jρ and Jz require e, Φ and Φ∗ to all
be nonzero. The condition for nonzero Jρ additionally requires that either Aρ, Φρ or Φ∗

ρ be nonzero. Similarly, the
condition for nonzero Jz additionally requires that either Az , Φz or Φ∗

z be nonzero. Clearly, the chosen initial data
(D.104)–(D.111) and (D.112)–(D.116) satisfies the nonzero conditions for both Jρ and Jz when e 6= 0. Therefore, it
can again be said charge separation begins at t = 0 for this specification of the Maxwell-Klein-Gordon system.



APPENDIX D. MIB COORDINATES 261

be sufficient to prevent any information from reaching the computational outer boundary.
To test the MIB system I evolve mΦ = 1.0, e = 1.0 Maxwell-Klein-Gordon fields in Minkowski

spacetime with spatial domain 0 ≤ ρ ≤ 3, −3 ≤ z ≤ 3 and compare the evolution to that on the
larger domain having standard cylindrical coordinate range 0 ≤ ρ̃ ≤ 6, −6 ≤ z̃ ≤ 6. The evolution
with smaller computational domain using MIB coordinates employs parameter values ρc = 2.50,
δρ = 0.10, zc = 2.50 and δz = 0.10, and contains J = 201 points in the ρ coordinate direction and
K = 401 points in the direction of z. The larger computational domain has the same resolution
and thus J̃ = 401 points in direction ρ̃ and K̃ = 801 points in direction z̃. Initial data is specified
as discussed above for the choice of values

a1 = a2 = a3 = a4 = at = aρ = az = aφ = 1.00 , (D.112)

ρ1 = ρ2 = ρ3 = ρ4 = ρt = ρρ = ρz = ρφ = 0.75 , (D.113)

z1 = z2 = z3 = z4 = zt = zρ = zz = zφ = 0.00 , (D.114)

δρ1 = δρ2 = δρ3 = δρ4 = δρt = δρρ = δρz = δρφ = 0.20 , (D.115)

δz1 = δz2 = δz3 = δz4 = δzt = δzρ = δzz = δzφ = 0.20 . (D.116)

The analogous choice is made for initial data on the standard cylindrical coordinate domain. Figure
D.7 shows the evolution of charge density ρQ in a sequence of steps for the MIB coordinate system.
Observe how the grid function is compressed and quenched in the boosting region, and how no signal
reaches the outer boundary of the computational domain. An appropriate comparison between
the MIB results and those of the larger computational domain is through the error of integrated
conserved quantities. For example, I compute the error of total charge, δQ, as per

δQ = ||Q̃−Q||2 , (D.117)

where Q is the total charge in the MIB domain, Q̃ is that in the large domain, and || · ||2 represents

the l2 norm. Q and Q̃ are obtained through integration over a common region of space. Because
of the location and growth of the boosting region I limit the region of integration to 0 ≤ ρ ≤ 1.5,
−1.5 ≤ z ≤ 1.5. I display these errors for total normalized energy (δT ), angular momentum (δS)
and charge (δQ) in Figures D.8, D.9, and D.10. To compare, these figures also display errors for the
same system but using approximate Sommerfeld condition on a domain 0 ≤ ρ̃ ≤ 3, −3 ≤ z̃ ≤ 3. It
is clear that MIB coordinates together with dissipation are as good as an approximate Sommerfeld
condition on the boundary. However, the useful spatial domain of the MIB system is effectively
reduced in size due to the boosting regions. The errors of the MIB system results will likely
drop significantly below those for the Sommerfeld condition when its interior (i.e., unboosted)
region is increased to a comparable size. Furthermore, the choice e = 1.0, mΦ = 1.0 provides
significantly stronger coupling than those used in following discussions of Maxwell-Klein-Gordon
fields in Minkowski spacetime. Testing on a larger computational domain with weaker coupling
would therefore be a useful future calculation.
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Figure D.7: MIB coordinates and dissipation acting on mΦ = 1.0, e = 1.0 Maxwell-Klein-Gordon
fields. The figure displays the charge density in a sequence of steps. The directions
of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 0 ≤ ρ ≤ 3 and −3 ≤ z ≤ 3, and the
corners of the domain are labelled with their (ρ, z) ordinate values. The amplitude
and colour gradient are both scaled linearly.
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Figure D.8: Displayed is the error in total normalized energy for e = 1.0, mΦ = 1.0 Maxwell-
Klein-Gordon fields in the MIB coordinate system (dashed black line), and in the
standard cylindrical coordinates using an approximate Sommerfeld boundary condi-
tion (dotted black line).

D.3.3 Maxwell-Klein-Gordon Fields on a Flat Background

Having shown that MIB coordinates are as good as (and likely better than) the approximate
Sommerfeld condition in treating the outer boundary of the computational domain, I now provide
results which compare the Maxwell-Klein-Gordon dynamics on flat spacetime to those of chapter
4. Here and below I use a computational domain spanning the coordinate range 0 ≤ ρ ≤ 90 and
−90 ≤ z ≤ 90, and containing 401 points in the direction of coordinate ρ and 801 points in the
direction of z. The relevant MIB coordinate parameters are ρc = 80, δρ = 4, zc = 80 and δz = 4.
Finally, I specify initial data according to the outlined procedure for the choice of parameter values

a1 = a2 = a3 = a4 = at = aρ = az = aφ = 1.0 , (D.118)

ρ1 = ρ2 = ρ3 = ρ4 = ρt = ρρ = ρz = ρφ = 25.0 , (D.119)

z1 = z2 = z3 = z4 = zt = zρ = zz = zφ = 0.0 , (D.120)

δρ1 = δρ2 = δρ3 = δρ4 = δρt = δρρ = δρz = δρφ = 5.0 , (D.121)

δz1 = δz2 = δz3 = δz4 = δzt = δzρ = δzz = δzφ = 5.0 . (D.122)

This provides initial conditions reasonably close to those used in evolving fields on the Kerr space-
time. To compare and contrast, it should be sufficient to present just the conserved quantities of
this system.
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Figure D.9: Displayed is the error in angular momentum for e = 1.0, mΦ = 1.0 Maxwell-Klein-
Gordon fields in the MIB coordinate system (dashed black line), and in the standard
cylindrical coordinates using an approximate Sommerfeld boundary condition (dot-
ted black line).
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Figure D.10: Displayed is the error in charge for e = 1.0, mΦ = 1.0 Maxwell-Klein-Gordon fields
in the MIB coordinate system (dashed black line), and in the standard cylindrical
coordinates using an approximate Sommerfeld boundary condition (dotted black
line).
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Dynamics of Klein-Gordon Fields in Minkowski Spacetime

Beginning with the massive electromagnetically uncoupled fields I find: (1) orbiting resonances and
other manifestations of gravitational interaction are never present; (2) the rate of field dissipation
from the computational domain always decreases with increasing mass parameter; and (3)mΦ = 0.3
fields strongly display scattering concentrated along the axis of symmetry. These three facts are
substantiated by simple comparison of the normalized energy densities shown in Figures D.11, D.12
and D.13, which respectively display the normalized energy densities for mΦ = 0.0. mΦ = 0.3 and
mΦ = 2.4 Klein-Gordon fields.
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Figure D.11: mΦ = 0.0, e = 0.0 Klein-Gordon field dynamics in flat spacetime in terms of the
normalized energy density. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and
za ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers the
range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the corners of the domain are labelled
with their (ρ, z) ordinate values. The amplitude is scaled linearly while the colour
gradient is scaled logarithmically.
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Figure D.12: mΦ = 0.3, e = 0.0 Klein-Gordon field dynamics in flat spacetime in terms of the
normalized energy density. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and
za ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers the
range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the corners of the domain are labelled
with their (ρ, z) ordinate values. The amplitude is scaled linearly while the colour
gradient is scaled logarithmically.
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Figure D.13: mΦ = 0.0, e = 2.4 Klein-Gordon field dynamics in flat spacetime in terms of the
normalized energy density. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and
za ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers the
range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the corners of the domain are labelled
with their (ρ, z) ordinate values. The amplitude is scaled linearly while the colour
gradient is scaled logarithmically.
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Dynamics of Maxwell Fields in Minkowski Spacetime

Examining the conserved energy and angular momentum densities, respectively displayed in Figures
D.14 and D.15, two facts are immediately clear: (1) effects resembling gravitational interaction are
not present in flat spacetime; and (2) the electromagnetic angular momentum displays nontrivial
evolution. The large amplitudes and steep gradients associated with scattering from the black
hole spacetime are absent from the energy density. Furthermore, while the evolution of angular
momentum density is nontrivial in Minkowski spacetime, the complexity observed in Kerr spacetime
evolution is absent.
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Figure D.14: Maxwell field dynamics in flat spacetime in terms of the normalized energy den-
sity. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0) are
shown in the first frame. The computational domain covers the range 0 ≤ ρ ≤ 90
and −90 ≤ z ≤ 90, and the corners of the domain are labelled with their (ρ, z)
ordinate values. The amplitude is scaled linearly while the colour gradient is scaled
logarithmically.
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Figure D.15: Angular momentum of the Maxwell fields in flat spacetime. The directions of
coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0) are shown in the first frame.
The computational domain covers the range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the
corners of the domain are labelled with their (ρ, z) ordinate values. The amplitude
and colour gradient are both scaled linearly.
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Dynamics of e = 0.6, mΦ = 0.0 Maxwell-Klein-Gordon Fields in Minkowski Spacetime

The conserved densities show that massless e = 0.6 Maxwell-Klein-Gordon fields in flat space: (1)
do not display effects in any way resembling gravitational interaction; (2) have nontrivial angular
momentum evolution; and (3) generically display charge separation. The normalized energy density
of Figure D.16, angular momentum density of Figure D.17 and charge density of Figure D.18 provide
the required evidence. The large amplitudes and steep gradients associated with scattering from the
black hole spacetime are absent, and while the evolution of angular momentum density is nontrivial,
the complexity observed in Kerr spacetime evolution is absent in flatspace. Furthermore, while
gravitational effects are absent, the charge separation exhibited in flat space is still quite complex.
Finally, from the evolution of angular momentum and charge density, dynamo-like behaviour can
be deduced. It is sufficient to state this physics is manifest in the evolution of angular current Jφ

(figures not provided).
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Figure D.16: Massless e = 0.6 Maxwell-Klein-Gordon field dynamics in flat spacetime in terms of
the normalized energy density. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0)
and za ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the corners of the domain are labelled
with their (ρ, z) ordinate values. The amplitude is scaled linearly while the colour
gradient is scaled logarithmically.
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Figure D.17: Angular momentum of the massless e = 0.6 Maxwell-Klein-Gordon fields in flat
spacetime. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0)
are shown in the first frame. The computational domain covers the range 0 ≤ ρ ≤ 90
and −90 ≤ z ≤ 90, and the corners of the domain are labelled with their (ρ, z)
ordinate values. The amplitude and colour gradient are both scaled linearly.



APPENDIX D. MIB COORDINATES 276

PSfrag replacements

ρa

za

(0, 90)

(0, −90)

(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

Figure D.18: Angular momentum of the massless e = 0.6 Maxwell-Klein-Gordon fields in flat
spacetime. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0)
are shown in the first frame. The computational domain covers the range 0 ≤ ρ ≤ 90
and −90 ≤ z ≤ 90, and the corners of the domain are labelled with their (ρ, z)
ordinate values. The amplitude and colour gradient are both scaled linearly.
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Dynamics of e = 0.6, mΦ = 0.3 Maxwell-Klein-Gordon Fields in Minkowski Spacetime

Finally, four facts can be stated for mΦ = 0.3, e = 0.6 (massive electromagnetically coupled)
Maxwell-Klein-Gordon field dynamics in flat space: (1) effects resembling gravitational interaction
are never observed; (2) there is only a slight preference for scattering along the axis of symmetry;
(3) the evolution of angular momentum is again nontrivial; and (4) charge separation is again a
generic feature of evolution. Figure D.19 displays the normalized energy density in support of the
first two facts. Notice that while a slight collimation of energy along the axis is present, it is far
less than observed for the scattering in M = 5 Kerr spacetime. The angular momentum density is
presented in Figure D.20. While its evolution is again nontrivial, it here displays amplitudes and
gradients far less than for the equivalent evolution in Kerr spacetime. While the amplitudes and
gradients of charge density separation are comparable to those on the black hole background, Figure
D.21 shows no evidence for morphology typical of the orbital effects seen on the curved spacetime
calculations. Finally, as in the case of massless e = 0.6 evolution, the presence of dynamo-like
behaviour can be deduced. This physics is again manifest in the evolution of angular current Jφ

(figures not provided).



APPENDIX D. MIB COORDINATES 278

PSfrag replacements

ρa

za

(0, 90)

(0, −90)

(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

PSfrag replacements

ρa

za

(0, 90)
(0, −90)
(90, 90)

Figure D.19: mΦ = 0.3 e = 0.6 Maxwell-Klein-Gordon field dynamics in flat spacetime in terms of
the normalized energy density. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0)
and za ∼ (0, 0, 1, 0) are shown in the first frame. The computational domain covers
the range 0 ≤ ρ ≤ 90 and −90 ≤ z ≤ 90, and the corners of the domain are labelled
with their (ρ, z) ordinate values. The amplitude is scaled linearly while the colour
gradient is scaled logarithmically.
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Figure D.20: Angular momentum of the mΦ = 0.3, e = 0.6 Maxwell-Klein-Gordon fields in flat
spacetime. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0)
are shown in the first frame. The computational domain covers the range 0 ≤ ρ ≤ 90
and −90 ≤ z ≤ 90, and the corners of the domain are labelled with their (ρ, z)
ordinate values. The amplitude and colour gradient are both scaled linearly.
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Figure D.21: Angular momentum of the mΦ = 0.3, e = 0.6 Maxwell-Klein-Gordon fields in flat
spacetime. The directions of coordinate vectors ρa ∼ (0, 1, 0, 0) and za ∼ (0, 0, 1, 0)
are shown in the first frame. The computational domain covers the range 0 ≤ ρ ≤ 90
and −90 ≤ z ≤ 90, and the corners of the domain are labelled with their (ρ, z)
ordinate values. The amplitude and colour gradient are both scaled linearly.
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Figure D.22: Convergence of total normalized energy, T , for e = 0.6, mΦ = 0.3 fields in the MIB
flat spacetime. The dashed red line represents data for a finite difference grid with
J = 101 points in direction ρ and K = 201 points in direction z, the dotted red
line represents data for a grid with J = 201 points in ρ and K = 401 points in z,
and the dashed black line represents data for a grid with J = 401 points in ρ and
K = 801 in z.

D.3.4 Convergence of Conserved Quantities

In concluding this appendix I provide evidence that the MIB coordinate code is both convergent
and accurate. This is done by displaying convergence of the total energy, T , angular momentum,
S and charge Q for mΦ = 0.3, e = 0.6 perturbations. Figure D.22 shows the convergence of
energy, Figure D.23 the convergence of angular momentum, and Figure D.24 displays the results
for charge. In each of the figures I show the total integrated quantity contained within coordinate
range 0 ≤ ρ ≤ 50, −50 ≤ z ≤ 50 for the period 0 ≤ t ≤ 25. I use the reduced spatial domain
because of the location and growth of the coordinate boosting regions, and a reduced period because
fields will propagate past the reduced spatial domain at later times. The comparison is between
grids with J = 101 points in ρ and K = 201 points in z, J = 201 points in ρ and K = 401 points
in z, and J = 401 points in direction ρ and K = 801 in the direction of z. Based on the results of
total energy conservation, the results for the massive charged fields are typically accurate to ≈ 2%
over the period 0 ≤ t ≤ 25 on the grid with 401× 801 points. Finally, the convergence factor, time
averaged over the displayed period, is C ≈ 3.7 for the total energy, C ≈ 3.1 for angular momentum
and C ≈ 5.1 for the total charge of the system.
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Figure D.23: Convergence of total angular momentum, S, for e = 0.6, mΦ = 0.3 fields in the
MIB flat spacetime. The dashed red line represents data for a finite difference grid
with J = 101 points in direction ρ and K = 201 points in direction z, the dotted
red line represents data for a grid with J = 201 points in ρ and K = 401 points
in z, and the dashed black line represents data for a grid with J = 401 points in ρ
and K = 801 in z.
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Figure D.24: Convergence of total charge, Q, for e = 0.6, mΦ = 0.3 fields in the MIB flat
spacetime. The dashed red line represents data for a finite difference grid with
J = 101 points in direction ρ and K = 201 points in direction z, the dotted red
line represents data for a grid with J = 201 points in ρ and K = 401 points in z,
and the dashed black line represents data for a grid with J = 401 points in ρ and
K = 801 in z.


