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c© Ignacio (Iñaki) Olabarrieta, 2004



In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the
University of British Columbia, I agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of this thesis for scholarly purposes
may be granted by the head of my department or by his or her representatives. It is understood
that copying or publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

Department of Physics and Astronomy

The University Of British Columbia
Vancouver, Canada

Date



Abstract ii

Abstract

In this thesis I consider three different projects in numerical relativity. The first one is a study

of the spherically-symmetric collapse of a scalar field with a potential that mimics the inclusion

of angular momentum. This work has been carried out in collaboration with M. W. Choptuik,

W. Unruh and J. Ventrella. In this study we found a new family of type II critical solutions which

are discretely self similar.

The second project involves work I did in another collaboration with M. W. Choptuik, L. Lehner,

R. Petryk, F. Pretorius and H. Villegas. Here we study the dynamical evolution of 5-dimensional

generalizations of black holes, called black strings, which are known to be unstable to sufficiently

long-wavelength perturbations along the string direction. Not only have we been able to dynami-

cally trigger the instability, explicitly verifying the results from perturbation theory, we have been

able to evolve for sufficiently long times to observe that the system goes through a phase (not

necessarily the final end-state) that resembles a series of black holes connected by a thin black

string.

The third and most extensive part of this thesis is a study of ideal fluids fully coupled to gravity,

both in spherical symmetry and in axisymmetry. In this project we have cast both the dynamic

and equilibrium equations for general relativistic hydrodynamics in the 2+1+1 formalism and in a

way that is tailor-made for the use of high resolution shock capturing methods. In addition, our

implementation, for the case of no rotation, is able to evolve discontinuous data and has proven to

be convergent. Unfortunately our implementation currently has too much numerical dissipation,

and suggests that the use of adaptive methods may be very helpful in achieving long term evolution

of star-like configurations.
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Chapter 1

Introduction

Strong, dynamical gravity plays a crucial role in many interesting astrophysical systems. Especially

when the strength of gravity becomes such that the typical length scale, R, of the system is

comparable to the gravitational length scale, LG = GM/c2, defined by the mass, M , of the system,

(G and c are, respectively, Newton’s constant, and the speed of light in vacuum) or typical velocities

are comparable to c, Newtonian gravity fails to completely describe the dynamics of the system. In

such cases Einstein’s theory of gravitation—general relativity—gives a more accurate description.

Some examples of these astrophysical systems are supernovae explosions, neutron stars (including

pulsars), and black holes.

In Einstein’s theory of gravitation the effects of gravity are encapsulated in a Lorentzian metric

tensor, gαβ, defined on a differentiable manifold. This manifold is identified with the region of

the universe (i.e. space and time) in which we are interested. This metric tensor tells us how

distances and times change from point to point in the manifold and this translates directly to how

one measures distances and times in the physical spacetime. The theory provides equations that

the metric tensor satisfies, known as the Einstein field equations:

Gαβ =
8πG

c4
Tαβ. (1.1)

Gαβ is known as the Einstein tensor and, in general, is a very complicated function of the metric

gαβ as well as its first and second spatial and temporal derivatives. Specifically

Gαβ = Rαβ − 1

2
gαβR , (1.2)

where Rαβ is the Ricci tensor and R = Tr[Rαβ ] is the Ricci scalar (Tr denotes the trace). On the

right hand side of equation (1.1) we have the stress-energy tensor, Tαβ , which describes the matter

content in our spacetime.

The tensor form of the Einstein equations hide their great complexity when written out explic-

itly in a specific coordinate system. In general they are 10 coupled, non-linear, time-dependent

partial differential equations, which for most cases, particularly those of astrophysical interest, are

amenable only to numerical solution. Additionally, these equations are invariant under general

diffeomorphisms. This invariance is associated with the coordinate invariance or covariance of the
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physical theory. In general we need to fix the coordinate system in some way. This frequently

involves solving some extra partial differential equations.

The purpose of this thesis is to numerically evolve these equations for three different situations,

focusing on the case in which Tαβ is the stress-energy tensor associated with a perfect fluid so that

we must solve the equations of general relativistic hydrodynamics along with Einstein’s equations.

Spacetimes containing scalar fields as well as vacuum solutions are also considered.

In particular in Chap. 2, we discuss a new family of critical solutions that has been discovered

in collaboration with M. Choptuik, W. Unruh and J. Ventrella. These results were found for a

massless scalar field in spherical symmetry with a potential that tries to mimic the effects of angular

momentum. I played a leading role in almost all phases of this project.

In Chap. 3, we discuss the main results of a collaboration with M. Choptuik, L. Lehner,

R. Petryk, F. Pretorius and H. Villegas in which the instability of a black string, a five dimensional

extension to a black hole, was studied dynamically [18]. I focus on the parts of the computations

for which I was responsible; this involved solving the initial data constraints and developing some

tools for analysis of the physics of the solutions.

In the last part of the thesis, Chaps. 4 and 5, we discuss our efforts to study the evolution of

a perfect fluid in axisymmetric spacetimes. The equations for the fluid and the geometry in the

so-called 2+1+1 formalism are presented and our numerical implementation of a computer code to

solve the system is explained in detail.

The remainder of this introductory chapter is organized as follows. First, in Sec. 1.1, we discuss

one way to cast equations (1.1) in a way that is appropriate for their solution as an initial-value

(dynamical) problem. This formalism is the one used in Chaps. 2, 3, and 4, and it is a crucial

part of the formalism used in Chap. 5. Then, in Sec. 1.2, we briefly introduce the topic of critical

phenomena in gravitational collapse. A short introduction to black holes and black strings in 5

dimensions follows. In Sec. 1.4, an introduction to, and a summary of, previous work in relativistic

hydrodynamics is given. We conclude with a brief summary of the results of the thesis in Sec. 1.5.

In the remainder of the thesis we choose units such that G = c = 1, we adopt the Einstein

summation convention for tensor-component indices, and we use the signature {−,+,+,+} for the

metric tensor gαβ . Greek/lower-case latin/upper-case latin indices are 4-dimensional (spacetime),

3-dimensional (spatial) and 2-dimensional (spatial) tensor-component indices, respectively. Indices

involving letters from the beginning of each alphabet, i.e. α, β, γ,..., a, b, c,... and A, B, C are

generally abstract tensor indices, while those involving letters near the middle of each alphabet,

i.e. µ, ν, ξ,..., i, j, k,... and I , J , K,... generally refer to tensor components taken with respect to

some specific coordinate system.
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1.1 3+1 Decomposition

In this section we discuss a way of rewriting equations (1.1) in a form tailor-made for the study

of their evolution. There are many people who have worked on the problem of decomposing

these equations: [3], [10], [71] and [115] describe some of the main efforts. Here we follow York’s

development [115], which gives a “3+1” decomposition of the field equations (1.1), and a set of

first-order-in-time equations for dynamical variables describing the geometry. Our goals are to

choose the values of the free fields defined at an instant of time (constant-t spacelike hypersurface),

and to find the solution of the geometry and the matter for the whole subsequent spacetime (future

or past development of the initial data). In this decomposition of equations (1.1), it is also possible

to identify which geometric fields are to be freely chosen at the initial time—this is a non-trivial

issue due to the existence of the constraints (described below).

Since we want to set initial data at a constant-t hypersurface, it is natural to foliate the space-

time with spacelike hypersurfaces of constant time. This foliation will produce a decomposition

of equations (1.1) into equations constraining dynamical quantities intrinsic to each hypersurface,

and equations that tell us how to propagate these dynamical variables from hypersurface to hyper-

surface.

One way of defining the foliation is by introducing a scalar field t with the following property:

the level sets defined by this scalar field, i.e. surfaces of constant t, must be spacelike hypersurfaces,

meaning that any vector field defined on the hypersurfaces is spacelike. For now, we will assume

that these hypersurfaces cover all of the spacetime (or at least the region of interest) and that they

are free of (physical) singularities. Associated with t is the (locally) closed one form, Ωα, given by

Ωα = ∇αt. (1.3)

Since the slices are spacelike, Ωα is timelike, and we can therefore write the square of its norm as

gαβΩαΩβ = − 1

α2
, (1.4)

where α is a positive function1. Notice that the distance (actually the proper time) between

hypersurfaces labelled by t and t+ dt, as measured by observers moving orthogonally to the slices,

is αdt. For this reason, α, is usually called the lapse function. It is useful to define the normalized

one-form, ωα

ωα = αΩα, (1.5)

and the unit normal vector, nα

nα = −gαβωβ, (1.6)

1Those not familiar with tensor analysis should not confuse the α function with the α index.
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where the sign has been chosen so that nα is future-directed. Using this definition the metric, γαβ ,

induced in the spacelike hypersurface can be written as

γαβ = gαβ + nαnβ . (1.7)

γαβ is a purely spatial tensor, i.e. it has no component along nα:

γαβn
β = gαβn

β + nαnβn
β = nα − nα = 0, (1.8)

where we have used the fact that nαn
α = −1. It is also important to note that the mixed form

γα
β = δα

β + nαnβ, (1.9)

is the projection operator onto the spatial hypersurfaces. Associated with the Riemannian met-

ric (1.7) there is a 3-metric-compatible covariant derivative, Da, satisfying

Daγbc = 0 (1.10)

that can also be defined via projection of the spacetime covariant derivative, ∇α. For example for

a spatial vector, V α, we have

DδV
γ = γα

δγ
γ

β∇αV
β . (1.11)

Using Da, we can calculate the 3-dimensional curvature (3)Rabcd, 3-dimensional Ricci tensor (3)Rab,

and 3-dimensional Ricci scalar (3)R. These quantities describe the internal geometry of each hyper-

surface; in addition, we need a description of how the metric γab changes from slice to slice. This

information is encoded in the (symmetric) extrinsic curvature tensor, Kab, which can be defined

by:

Kab = −1

2
Lnαγab. (1.12)

Here Lnα is the Lie derivative along the unit vector field normal to the hypersurface and the factor

of −1/2 is a matter of convention. It is worth noticing that Kab is a purely spatial tensor, since

Lnα commutes with the projection operator (1.9).

Now we have all the elements needed to proceed with the 3+1 decomposition of (1.1). Specifi-

cally, we consider the following projections of the field equations:

nαnβGαβ = 8πnαnβTαβ, (1.13)

γa
αnβG

αβ = 8πγa
αnβT

αβ, (1.14)

γα
aγ

β
bGαβ = 8πγα

aγ
β

bTαβ. (1.15)

It is relatively straightforward to show that

nαnβGαβ =
1

2

[
(3)R+ (Ka

a)
2 −KabK

ab
]
, (1.16)
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and

γa
αnβG

αβ = Db

(
Kab − γabKc

c

)
. (1.17)

We can now write equations (1.13) and (1.14) as

1

2

[
(3)R+ (Kc

c)
2 −KabK

ab
]

= 8πρ, (1.18)

Da

(
Kab − γabKc

c

)
= 8πjb, (1.19)

where we have made use of the following definitions for the projections of the stress energy tensor:

ρ ≡ nαnβTαβ , (1.20)

ja ≡ γa
αnβT

αβ. (1.21)

Physically, these quantities are the energy and momentum densities, respectively, that time-like

observers moving normally to the hypersurfaces would observe.

Note that equations (1.18) and (1.19) only involve spatial tensors and spatial derivatives of such

tensors. These equations need to be satisfied by the 3-metric, γab, the extrinsic curvature, Kab,

and the matter densities, ρ and ja, on every hypersurface. In particular, they need to be satisfied

at the initial time and thus they constrain the initial data. This implies that not every metric

function γab and every component of Kab (12 values in total) are freely specifiable, but that they

need to be chosen in such a way that the constraint equations are obeyed. Equation (1.18) is called

the Hamiltonian constraint, while (1.19) are usually called the momentum constraints.

To develop the other 6 field equations, equations (1.15), it is useful to use a time derivative

operator, LNα , where Nα is a vector field dual to the one form Ωα, meaning that ΩαN
α = 1. It

is important to note that this vector field is unique only up to reparametrization of the (spatial)

coordinates in each hypersurface. In particular, any vector field tα = (∂/∂t)
α

= Nα + βα =

αnα + βα, such that βαnα = 0, satisfies Ωαt
α = 1 (see Fig. 1.1). We will hereafter assume that

we have adopted a so-called “3+1” coordinate system adapted to some such vector field, tα, as

illustrated in Fig. 1.1. Since βα is a spatial vector, we have β0 = 0 in such a coordinate system.

The vector field βα encodes the diffeomorphism invariance within the hypersurfaces and, more

geometrically, describes the shifting in the spatial coordinates from hypersurface to hypersurface

relative to normal propagation (see Fig. 1.1). Hence βα is known as the shift vector. In terms of

LNα , the extrinsic curvature tensor can be written as:

Kab = − 1

2α
LNαγab = − 1

2α
(Ltαγab −Lβaγab) , (1.22)

which implies

Kab = − 1

2α

(
∂γab

∂t
−Dbβa −Daβb

)
. (1.23)
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Figure 1.1: 3 + 1 decomposition of the spacetime. The distance (proper time) along the direction

of the unit normal vector, nµ, between hypersurfaces labelled by t and t+ dt is given

by αdt. Note that βi and dxi are purely spatial vectors defined on the tangent space of

the hypersurface at event (t, xi). In general, in order to move to an event with the same

spatial coordinates, xi, on hypersurface t + dt, i.e. in order to move along the vector

field (∂/∂t)µ, we have to shift by an amount βidt on the future spatial hypersurface

relative to normal propagation. The distance between events with coordinates (t, xi)

and (t + dt, xi + dxi) is ds and can be calculated by the “Pythagorean theorem” for

Lorentzian geometry.
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After some algebra, we can write equations (1.15) as

LtµKab = LβaKab −DaDbα+ α

{
(3)Rab − 2KacK

c
b +KabK

c
c − 8π

[
Sab −

1

2
γab (Sc

c + ρ)

]}
,

(1.24)

where Sab ≡ γα
aγ

β
bTαβ , known as the spatial stress tensor, is the total spatial projection of

the stress energy tensor onto the hypersurface. Equations (1.18), (1.19) and (1.24) complete the

decomposition of equations (1.1).

Let us stress that we have: (a) kinematical variables, the lapse and the shift, that encode the

coordinate freedom of the theory and that must be specified in some fashion; (b) dynamical vari-

ables, γab, K
a

b, which, loosely speaking, encode the physical information describing the geometry

of spacetime.

The 3+1 decomposition of the 4-dimensional line-element can be expressed using the

4-dimensional Lorentzian version of the Pythagorean theorem (as described in [71]). Specifi-

cally, the square of the spacetime displacement, ds2, between events with coordinates (t, xi) and

(t+ dt, xi + dxi) can be written as (see Fig. 1.1)

ds2 = −(αdt)2 + γij(dx
i + βidt)(dxj + βjdt)

= −(α2 + βiβ
i)dt2 + 2γijβ

idtdxj + γijdx
idxj . (1.25)

An important note is that since only a maximum of 6 of the 10 (second-order) Einstein equations

are independent of each other, we have considerable freedom in choosing which specific equations to

solve during a dynamical evolution. The initial data for the geometry and matter must always be

chosen to satisfy the constraint equations (1.18–1.19), but the evolution equations (1.24), together

with the contracted Bianchi identities, Gαβ
;α = 0, then guarantee that the constraints are satisfied

at any future or past time. This property of the continuum system of equations is in general lost

once the system is discretized; at best the numerical solution only satisfies the unused equations at

the truncation order of the approximation. Checking the convergence properties of the residuals of

these unused equations thus gives us a very strong check of the validity of our solutions.

1.2 Critical Phenomena

The discovery of critical phenomena in gravitational collapse was reported by Choptuik in [17]. He

studied the spherically-symmetric collapse to black holes2 of a massless scalar field, φ, minimally

2Black holes are described in more detail in section 1.3, at this point they can be viewed as regions of spacetime

in which even light is trapped and cannot escape to infinity.
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coupled to gravity. The Lagrangian for this problem is given by

L =
R

16π
− 1

2
φ;αφ

;α, (1.26)

where R is the Ricci scalar (the usual Lagrangian for gravity). At that time, it was already known

that, under the same symmetry assumptions, the dynamical evolution of weak configurations of

scalar field leads to dispersal of the scalar field to infinity, resulting in Minkowski-like spacetimes

[24], and that configurations of sufficiently strongly self-gravitating scalar field give rise to black

hole formation [25]. Choptuik’s work was the first systematic study of the intermediate regime. In

order to study the transition to black hole formation, the initial data were parametrized by a single

parameter, p, such that for high parameter values black holes were formed, while for low values,

dispersal was the end state. An example of such a parameter is the initial amplitude of the scalar

field. At the threshold of black hole formation, p = p?, interesting and unexpected results were

found.

First of all, as we approach p? from above, the mass of the black hole that is obtained tends to

zero following a power law:

MBH = C (p− p?)γ , (1.27)

where MBH is the mass of the black hole, C is a constant of proportionality and γ ≈ 0.37 is a

universal exponent independent of the specific family of initial data used in the calculation. We

note that scaling of dimensionful quantities is also seen if the critical solution is approached from

below (subcritical) rather that from above.

Moreover, for values of p close to p?, the solutions in the strong field regime approach—at least

for some finite time and in some finite region of space—a solution called the critical solution, which

is universal in the following sense. There exist coordinates (τ, ρ) in which the critical solutions

obtained using different families of initial data all take the same form. In [17] so-called polar-areal

coordinates, leading to a line-element

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + r2dΩ2, (1.28)

were used to perform the evolutions, with t measuring central proper time. The relationship

between these coordinates and (τ, ρ) is given by:

τ ≡ ln (t? − t) + κ, (1.29)

ρ ≡ ln r + κ, (1.30)

with t? and κ depending on the family of initial data used to construct the solution. Not only was

the critical solution found to be universal, it also showed an echoing behaviour. This means that in
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the critical regime, any dimensionless function, Z, constructed from the solution has the following

symmetry:

Z (τ − ∆, ρ− ∆) = Z (τ, ρ) , (1.31)

where, for the scalar field, the period ∆ ≈ 3.4 is obviously also a universal parameter since all the

features of the solution are universal when written in (τ, ρ) coordinates. The transformation given

by (1.31) amounts to a discrete rescaling of the original coordinates (t, r), and solutions with this

rescaling invariance are thus said to be discretely self similar (DSS).

The critical solution is unstable, essentially by construction: small deviations from the precise

value p = p? lead to complete dispersal of the field, or to the formation of a black hole. Soon after

the publication of [17], similar behaviour was observed in the collapse of axisymmetric gravitational

waves [1] and, crucially, in spherically symmetric collapse of perfect fluid with a so-called radiation

equation of state [29]. In this last work Evans conjectured that perturbation theory about the

continuously self-similar solution that appeared at the black hole threshold for fluid collapse might

provide insight into some of the phenomenology that had been observed.

Work along precisely these lines was carried out with great success by Koike et al [53] who

made the key observation that the “sharpness” of the empirically measured mass scaling law (1.27)

for fluid collapse (as well as for the original scalar collapse), strongly suggested that the critical

solution, had only a single unstable mode. From this assumption, and using a mathematical devel-

opment precisely analogous to that used in the standard treatment of statistical mechanical critical

phenomena, it follows that the mass-scaling exponent is simply the reciprocal of the Lyapunov

exponent associated with the unstable mode. In follow up work, Gundlach [40] was able to show

that this picture also held for the more difficult to treat case of the massless scalar field.

Similar behaviour has been found in the collapse to black hole formation for many other types

of matter. In general, different matter models behave in two qualitatively different ways at the

threshold of black hole formation. In contrast to the massless scalar case, it has been found that

the smallest black hole formed for some matter models is non-zero. In analogy with statistical

mechanical critical phenomena (first and second order phase transitions) this sort of transition is

dubbed “type I”, whereas a transition characterized by (1.27) is called “type II”.

Type I critical solutions exhibit a fundamental length scale; it is this scale that determines the

minimum value for the mass of the black hole above threshold. On the other hand, type II critical

solutions are generically scale invariant. More specifically, type I critical solutions are usually static

or periodic, while type II are self similar, or discretely self similar.

Although many matter models have been investigated in spherical symmetry (see [43] for a

recent review) very little is known about critical phenomena in less symmetric systems. So far,
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only two systems have been investigated: axisymmetric vacuum, studying the collapse to black hole

formation of gravitational waves [1]; and the collapse of a scalar field in axisymmetry [20], [21]. The

calculations described in Chap. 2 represent an attempt to investigate the possible effects of angular

momentum on critical collapse via an effective potential for a scalar field in spherical symmetry.

1.3 Black Holes and Black Strings

The Einstein field equations (1.1) allow for black hole solutions. For example in spherical symmetry

the well-known Schwarzschild metric

ds2 = gµνdx
µdxν = −

(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2, (1.32)

is the unique vacuum solution (apart from flat spacetime, which is not a regular limit of Schwarzschild

as M → 0) of the field equations. The region of the spacetime with r < 2M cannot communicate

with infinity, i.e. no physical trajectory (timelike or null curve) originating from r < 2M can prop-

agate to r → ∞ (nor to r > 2M for that matter), and the region r < 2M is thus known as a black

hole.

In order to describe black holes, it helps to draw diagrams of the corresponding spacetimes that

preserve causal structure and which compactify the spacetimes, so that various types of infinity lie

at finite coordinate distance. These sorts of pictures are called Penrose diagrams. Figure 1.2 shows

one such diagram for the Schwarzschild solution (1.32). Note that each point in the bulk of the

diagram represents a 2-sphere manifold of specific radius and that light rays (null geodesics) travel

along straight lines inclined at 45◦. This diagram has many features worthy of discussion. Starting

with the boundary, at the right-most edge of the plot there is a point called i0 which represents

spacelike infinity and which is the locus where all outgoing spacelike geodesics end. In addition,

the point on top, labelled by i+, corresponds to future timelike infinity and is where future-directed

timelike geodesics in region I terminate (i− corresponds to past timelike infinity and is where past-

directed timelike geodesics end). The line joining i+ with i0 is future null infinity, denoted by I+,

and is the place where null, future-directed, geodesics originating in region I terminate (likewise,

past null infinity, I−, is the line connecting i0 with i−). If a timelike geodesic is within bulk region

II it does not end at i+ but instead ends at the dotted line labelled r = 0 (the same happens for

null geodesics within region II, they also cannot reach I+). The dotted line corresponds to r = 0

in (1.32) and is, in fact, a physical (crushing) singularity of the spacetime, where the spacetime

curvature goes to infinity. The observation that, starting in region II, no timelike or null geodesic

can propagate into region I suggests that region II is a black hole. Its boundary is called an event

horizon.
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Figure 1.2: Penrose diagram of a spherically symmetric black hole. Note that light rays travel at 45

degree angles in this diagram. Region II (shaded) is causally disconnected from I+ and

thus lies within a black hole. The boundary of the black hole is called the event horizon.

Plotted lines running approximately vertically (horizontally) correspond, in region I,

to lines with constant coordinate r (t). We also note that the diagram shown is only

half of the full Penrose diagram for the maximally extended Schwarzschild solution,

see [71].
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There are a whole family of spacetimes (Kerr-Newman solutions) with similar characteristics to

Schwarzschild, and that can be characterized by just a few parameters (specifically

three —mass, angular momentum and charge). These spacetimes are believed to be the end-

states of the evolution of sufficiently massive stars. At the end of the evolution of a massive star

(larger than about 10 M�) its structure resembles an onion, with layers of different materials

with increasing atomic number towards its centre. The inner most core is composed of iron which

is maximally bound with respect to the nuclear force, and hence cannot undergo thermonuclear

burning. This core grows from the burning of the outer layers of silicon and sulphur, and when

its mass becomes of the order of 1.5 M�, its pressure cannot counteract the gravitational pull

and it collapses. This process releases titanic amounts of energy that are carried out to the outer

regions of the star mainly by neutrinos. A highly energetic shock is produced that moves outwards

through the envelope. This shock energizes the outer region which undergoes a violent explosion—a

supernova—which expels all of the outer layers of the original star. The remnant of this process is

a very compact object of a few kilometres radius and, at most, several solar masses. In particular,

if the mass of the remnant exceeds about 3M�3, even degeneracy pressure cannot hold the star

up against gravitational collapse [89] and a black hole, whose mass will again be a few M�, will

form. Although there is not yet unequivocal observational evidence for this type of black hole,

many candidates have been found in binary systems—for an inventory see [82].

There is also evidence for more massive black holes. Studies of microlensing events and “ultra-

luminous” X-ray sources, among others, have provided some hints about the possible existence of

black holes with intermediate masses [105], i.e. those with masses between a few solar masses and

a few million. Moreover, there are strong indications that super massive black holes, with masses

in the range 106 − 109M� or greater, can be found in most galactic centres. See [26] and [35] for

discussion of the evidence for such a black hole at the centre of the Milky Way galaxy.

It is a very well known result that black holes in 4 dimensions (3 spacelike, 1 timelike) are stable

solutions in general relativity [14]. This means that small perturbations around the solutions tend

to die off, and to be radiated away in the form of gravitational radiation. Although this is a very

well established result in 4 dimensions, very little is known about the behaviour of solutions with

event horizons in a 5-dimensional spacetime (we consider here 4 spatial and 1 temporal dimension).

Gregory and Laflamme [37], [38] showed, using linear stability analysis, that at least some classes of

black hole solutions in 5 dimensions—those known as black strings, and which have the structure “4-

D black hole” × “a line”—are unstable under long wavelength perturbations in the “line” (string)

dimension.

Given that small perturbations of these solutions tend to grow, a natural question arises: what is

3For some models with differential rotation the upper limit can exceed 4M� [5].



Chapter 1. Introduction 13

the end state of the evolution of the perturbed black string? There are some arguments supporting

the idea that the state will involve some kind of bifurcation of the original solution [37], [38]. Were

this true, it would represent a violation of Penrose’s cosmic censorship conjecture, generalized to

5 dimensions, which posits that singularities of the type discussed above should generically be

hidden from external view by event horizons. On the other hand an argument has been published

by Horowitz and Maeda [48] suggesting that bifurcation cannot occur in finite time.

In order to study the end stage of the perturbed black string, numerical calculations have been

performed [18]. In Chap. 3 we summarize the main results found in that collaborative effort,

focusing on the numerical solution of the 5-dimensional analogue of the constraint equations (1.18-

1.19).

1.4 Relativistic Hydrodynamics

Following [110], we can define a perfect fluid such that in local comoving coordinates the fluid is

isotropic. In particular, assuming that the spacetime is Minkowskian (flat), we can write

T tt = ρH, T xx = T yy = T zz = P, (1.33)

where ρH is the proper energy density and P is the hydrostatic pressure. The first generalization

of these stress tensor components will be for the case where each fluid element has an arbitrary

spatial velocity, vi, with respect to some fixed (lab) frame. This can be achieved via a general

boost (spacetime rotation), resulting in

T µν = (ρH + P )uµuν + Pηµν . (1.34)

Here uµ is the fluid 4-velocity, satisfying uµuµ = −1, and ηµν = diag [−1, 1, 1, 1]. Note that the

equations for the conservation of energy and momentum can be written as T µν
,µ = 0, and that

this divergence involves an ordinary derivative since we are in flat spacetime. In order to extend

this expression to a generally curved manifold we need only replace the Minkowskian metric by

the general Lorentzian metric of the spacetime and partial derivatives with covariant derivatives.

Thus, in a general curved spacetime, the stress energy tensor for a perfect fluid is

T µν = (ρH + P )uµuν + Pgµν (1.35)

with (local) conservation of energy and momentum expressed by

(T µν);µ = 0. (1.36)

Note that this expression is in accordance with the Einstein equations (1.1) since (Gµν);µ = 0 by the

Bianchi identities. In addition to this conservation law, a fluid can satisfy additional conservation
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laws depending on its composition. In the current case we will assume conservation of particle

number (baryon number), which is expressed as

(Jµ);µ = 0, (1.37)

where Jµ is the current associated with the particles; i.e.

Jµ = ρ0u
µ, (1.38)

with ρ0 the rest mass density. As usual, in addition to these equations, we need to specify an

equation of state for the fluid that relates the pressure to the energy densities.

We also note that the above form for the perfect fluid stress-energy excludes the possibility

of thermal or viscous effects—in other words we neglect all the non-adiabatic effects in the fluid

(apart from shocks). The proper general relativistic incorporation of such terms is still a matter of

open research [72].

In the strong gravity regime, the pressure and stresses are typically so large that we cannot

assume the fluid is incompressible. In addition, for highly relativistic configurations, the pressure

contributions to the stress tensor can be of the same order as those from the energy density. This

makes general relativistic fluids behave very differently from the type of fluids that we encounter

in everyday life, where stress energy tensors are dominated by the rest mass density of the fluid,

where the assumption of incompressibility is often a very good one, and where characteristic three

velocities satisfy v � 1. General relativistic hydrodynamics (hereafter simply relativistic hydrody-

namics, or relativistic hydro) involves the solution of equations (1.36)–(1.37) coupled to equations

(1.1). There has been quite a lot of work in relativistic hydrodynamics because it is a good model

for a lot of astrophysical systems, and is reasonably tractable computationally. A good review of

the work and the methods that have been and are being used to study relativistic hydro can be

found in [30]. Here we only briefly touch on some of the main efforts.

May & White:

The field started with the pioneering work of May and White [68], [69] who studied the collapse

of a perfect fluid in spherical symmetry. In order to study the collapse they adopted Lagrangian

coordinates (i.e. coordinates comoving with the fluid). This approach was very successful but, due

to its Lagrangian nature, it is difficult to generalize to less symmetric spacetimes (for example,

axisymmetric solutions) because the matter may follow complicated paths which can “tangle” the

coordinates. May and White used a numerical approach based on finite difference approximations,

which involves replacement of the derivatives in the equations with finite difference quotients.

In order to deal with the shocks that generically arise during the collapse of perfect fluids, the
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continuum equations were modified to include terms that mimic viscosity [108]. The addition of

this artificial viscosity tends to smooth out discontinuities over many finite-difference grid zones.

This method of solution has also been used by other authors in order to investigate supernovae

explosions [98], and neutron star collapse [70], all in spherical symmetry.

Wilson formulation:

Wilson developed one of the first Eulerian formulations for relativistic hydrodynamics that saw use

in numerical work [111]. His approach involved writing the fluid equations (1.36–1.37) as a set of

advection equations, i.e. equations of the type:

∂Qi

∂t
+
∂Qiv

j

∂xj
= Si, (1.39)

where vj is again the fluid 3-velocity with respect to the lab (Eulerian) frame. The formulation

included the definition of appropriate variables, {Qi(t, x
j)}, that allowed the fluid equations to be

cast in this specific form. Note that in general Si has terms involving the pressure gradients which

are treated as sources. The original implementation of this formalism [111] was used to study the

accretion of perfect fluid on to a rotating black hole. This was a “background calculation” in which

the fluid’s self-gravity was assumed to be negligible, so that the curved geometry acted on the

fluid, but not vice versa. Wilson’s numerical implementation was again based on finite differences,

using so-called upwind derivatives for stability as well as artificial viscosity in regions with shocks.

This formulation has been used extensively. Some of the systems that have been simulated using it

include stellar core collapse [112], axisymmetric stellar core collapse [85], [28], [95], and coalescence

of binary neutron stars using the conformally-flat approximation for the geometry [113].

Nakamura formulation:

For the research described in Chap. 4 and especially Chap. 5, it is of crucial importance to review

the work due to Nakamura and collaborators [63], [74], [75], [76], [92]. Nakamura and his co-workers

used the so-called 2+1+1 formalism for the geometry and the fluid equations. This formalism is

a variant of the 3+1 decomposition described in Sec. 1.1 and is designed for use with spacetimes

having an axial Killing vector field (i.e. axisymmetric spacetimes). The formalism was originally

developed for the Einstein equations by Geroch [34] and was extended for hydrodynamics by

Maeda et al. [63]. In this approach the field equations (and the spacetime) are first decomposed

with respect to the axial Killing vector field. The decomposition is very similar in spirit to a

Kaluza-Klein reduction, in which effective matter fields and equations of motion are produced in

the quotient 3-dimensional spacetime. After this initial decomposition is complete, the resultant

3-dimensional spacetime is decomposed using an analogue of the 3+1 approach (now, however, it

is a 2+1 decomposition, which accounts for the name “2+1+1”).
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Nakamura’s numerical implementation of the 2+1+1 equations also used finite difference

methods—largely paralleling Wilson’s approach—and artificial viscosity to treat shocks. The main

application studied was the collapse of axisymmetric stars, including stars with large values of an-

gular momentum. Their investigation showed that the collapsing star tends to form a ring structure

which, in the case of moderate values of angular momentum, is enclosed by an apparent horizon.

On the other hand, for initial stars that were sufficiently rapidly rotating, some evidence for the

formation of naked singularities was found [74].

Valencia Formulation:

An important property of the fluid equations that none of the above studies took full advantage of

is the fact that the hydrodynamical equations can be written in conservation law form (see App.

A):
∂Qi

∂t
+
∂F j

i

∂xj
= Si . (1.40)

Here, F j
i is the flux associated with Qi along the xj direction and, crucially, Si does not contain

any derivatives of the dynamical fluid variables. This was first exploited in the context of relativistic

hydrodynamics by the Valencia group in [66]. Casting the equations in the above form allows the

use of the Godunov approach (see [57], [58] for a summary of this and other so-called conservative

methods) which ensures the correct jumps in values of dynamical variables across discontinuities,

as well as the correct shock propagation speeds. (for these reasons such techniques are sometimes

called High Resolution Shock Capturing, or HRSC, methods). One advantage with respect to

formulations such as Wilson’s, is that HRSC methods do not require the use of artificial viscosity

for code stability, or to simulate extremely relativistic (v → c) flows. Some examples of calculations

are [91], [78], [31] and more recently [4]. In this thesis we will apply conservative methods to the

hydrodynamic equations, and finite difference methods to the geometric equations, both within the

2+1+1 formalism.

1.5 Summary of Results

In Chap. 2, we describe a new family of critical solutions resulting from the collapse of a massless

scalar field with a particular potential that mimics angular momentum in spherical symmetry.

These solutions are parametrized by an angular momentum coefficient, l. We have found that for

each value of l we obtain a different discretely self similar critical solution. We also find that ∆l

decreases approximately exponentially with increasing values of l and, in fact, approaches zero in

such a way that the critical solution appears to be periodic in the limit l → ∞. Moreover we have
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found scaling laws similar to (1.27) with l-dependent mass-scaling exponents, γl, that also decrease

with l.

In the collaborative work explained in Chap. 3 we have been able to check, by dynamical evolu-

tion of black strings, the results found using perturbative methods by Gregory and Laflamme [37].

Not only have we directly verified that long thin black strings are unstable to perturbations along

the string dimension, we have seen some indications that the spacetime evolves to a state (not

necessarily the end-state) which can be described as a series of black holes connected by thin black

strings. Unfortunately the code crashes at late times due to a coordinate pathology. We are thus

unable to make any statements concerning the ultimate end-state of the evolution, since, at the

time of the crash, the spacetime is still highly dynamical.

Chap. 4 describes a spherically symmetric code for relativistic hydro whose purpose is to test

the formalisms and algorithms, both at the continuum and discrete levels, subsequently used in

the axisymmetric case. We have seen that, in our coordinate system (which is the natural restric-

tion to spherical symmetry of the one used in the axisymmetric code), the standard conservation

variables used in the Valencia formalism [91] must be be modified in order to get a well-posed set

of geometric constraint equations. In addition, we have found that the Roe approximation used in

the computation of numerical fluxes results in a scheme that is too dissipative, at least for grids

with constant resolution, to maintain long term evolution of stationary solutions in our chosen

coordinate system.

In the concluding chapter, we present the equations for relativistic hydrodynamics written in

the 2+1+1 formalism and in a way which is amenable for treatment using HRSC methods. The

equations for rotational, hydrostatic equilibrium, along with an integrability condition, are also

expressed in the same formalism. Finally, we describe our numerical implementation for the case of

no rotation. At the current time this code is both too dissipative and too unstable to be able to use

it for the study of the long term evolution of stationary solutions. However, we can evolve certain

configurations of discontinuous data, and can also demonstrate that the code exhibits second order

convergence for situations where the hydrodynamical flow remains smooth.
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Chapter 2

Scalar Field Collapse with Angular

Momentum

2.1 Introduction

In this chapter we explain the main results of a new study of critical phenomena in gravitational

collapse. The work that we present here is the result of a collaboration with M. Choptuik, W. Unruh

and J. Ventrella. As described in Sec. 1.2, most studies of black hole critical phenomena (or

related phenomena in other sets of nonlinear evolution equations) to date have been performed

assuming spherical symmetry as a simplifying assumption (exceptions are [1], [62] and more recently

[20], [21]). This simplification has been adopted in most cases because accurate simulation of Type

II critical solutions—which exhibit structure at all scales due to their self-similar nature—requires

great computational resources. Since spherically symmetric spacetimes do not allow for angular

momentum, very little is currently known about the role of angular momentum in critical collapse.

For a few cases, most notably the Type II solutions found in spherically symmetric collapse of a

massless scalar field [33], or certain types of perfect fluid [41], [42], perturbative calculations about

the spherical critical solutions suggest that all non-spherical modes, including those contributing

to net angular momentum, are damped as one approaches criticality. In particular in [33], [41] and

[42] using second order perturbation theory it was found that the angular momentum of the black

holes produced has the following dependence as a function of the critical parameter p:

~LBH = ~L0 [ln(p− p?)] (p− p?)
µ
, (2.1)

where ~L0 [ln(p− p?)] is some quasi-periodic function that is family-dependent and µ ≈ 0.76 is

a universal scaling exponent which is larger than the corresponding γ (scaling exponent for the

black hole mass in (1.27)). These calculations thus suggest that, at least for small deviations from

spherical symmetry, the resulting solutions at the verge of black hole formation should remain

spherically symmetric in non-symmetric collapse. We also note that an axisymmetric numerical

relativity code is currently being developed [21] to study non-perturbatively some effects of angular
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momentum in the critical collapse of a scalar field.

Here a different approach is taken. Maintaining spherical symmetry, the equations of motion for

a massless scalar field are modified by effective terms which mock up some of the effects of angular

momentum. As described below, the procedure amounts to performing an angular average over

the matter field variables—similar to what is done in [88], [81] and [107]—and results in an entire

family of models, parameterized by a principal angular “quantum number”, l (we will generally

restrict l to take on non-negative integer values, although real-valued l’s are also formally possible).

We note that since the models remain spherically symmetric, we cannot use them to address the

validity of the perturbative calculations mentioned above (e.g. equation (2.1)). Nonetheless, we

find interesting results that may shed some light on the effects of angular momentum near the

black hole threshold.

Some of the main results that have been found are as follows. First, each value of the angular

momentum parameter l, apparently defines a distinct critical solution. For l < 10, these solutions

are found to be discretely self similar, with values of the echoing exponent ∆l (see (1.31) and the

accompanying discussion) that rapidly decrease (approximately exponentially) as l increases. As a

result, for large values of l, and for the time scales for which we are able to dynamically evolve near

criticality, the threshold solutions become approximately periodic. In addition, and as expected for

Type II solutions, we find that for l < 7 the masses of the black holes formed follow power laws

of the type (1.27). As with the echoing exponents, for increasing values of l it is found that the

mass-scaling exponent, γl, rapidly decreases, again approximately exponentially in l.

The remainder of this chapter is structured as follows. In the following section we describe the

recipe used to calculate the effective equations of motion, along with the regularity and boundary

conditions imposed in the solution of these equations. In Sec. 2.3 we briefly describe the numerical

code, the way the solutions have been analyzed, and then provide a summary of the results obtained

for varying values of l.

2.2 Equations of Motion

2.2.1 Equations

In order to derive equations of motion, scalar fields of the following form are considered:

Ψm
l (t, r, θ, φ) = ψ(t, r)Θm

l (θ, φ), m = −l,−l+ 1, · · · , l − 1, l (2.2)

where Θm
l (θ, φ) are normalized real eigenfunctions of the angular part of the flatspace Laplacian

with eigenvalue l(l+1), and the index m labels the 2l+1 distinct orthonormal eigenfunctions for a
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given value of l1. By construction, the scalar fields Ψm
l , are not, in general, spherically symmetric

and we therefore do not study their collapse directly. Instead, our strategy is find effective equations

for the single (t, r)-dependent quantity ψ(t, r). To do so, for a specific value of l, we consider the

stress-energy tensors, T (lm)
ab, for the 2l+ 1 fields Ψm

l :

T (lm)
ab =

1

8π

[
∇aΨm

l ∇bΨ
m
l − 1

2
gab(∇cΨm

l ∇cΨ
m
l )

]
, (2.3)

where gab is the metric of the spacetime, ∇a is the metric-compatible covariant derivative and the

non-standard factor of 1/(8π) has been introduced to cancel the one in (1.1). Again by construction,

the sum of these stress tensors

T (l)
ab =

∑

m

T (lm)
ab , (2.4)

is spherically symmetric and thus depends only on ψ(t, r), l, and the metric gab. The net result

of this procedure is equivalent to performing an angle average over the individual stress energy

tensors T (l)
ab and then summing them, i.e. to computing

T (l)
ab =

∑

m

〈T (lm)
ab〉 (2.5)

where

〈f (θ, φ)〉 =
1

4π

∫
f(θ, φ) sin (θ) dθdφ. (2.6)

We can now compute the effective equation of motion for the field, ψ(t, r), by demanding that

the divergence of the total stress energy tensor is zero:

gac∇cT (l)
ab = 0 . (2.7)

The equations for the geometric variables are determined from the 3 + 1 decomposition of the

Einstein field equations explained in Sec. 1.1. For the current study we adopt Schwarzschild-like

(polar-areal) coordinates, in which the metric (1.25) takes the form:

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.8)

Here α(t, r) is the lapse function and a(t, r) is the only non-trivial component of the 3-metric

γij (both α and a are positive functions). Using this metric, the non zero components of the

1Note that, in general, Θm

l
(θ, φ) will not be eigenfunctions of the azimuthal rotation operator (∂/∂φ), since they

are real.
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stress-energy tensor for a general value of l are

T (l)t
t = − (2l+ 1)

8π

[
1

a2

(
Π2 + Φ2

)
+ l(l + 1)

ψ2

r2

]
, (2.9)

T (l)t
r = − (2l+ 1)

8π

2

aα
Π Φ, (2.10)

T (l)r
r =

(2l + 1)

8π

[
1

a2

(
Π2 + Φ2

)
− l(l+ 1)

ψ2

r2

]
, (2.11)

T (l)θ
θ = T (l)φ

φ =
(2l + 1)

8πa2

(
Π2 − Φ2

)
, (2.12)

and the stress-energy trace is

T (l) ≡ T (l)i
i =

(2l+ 1)

8π

[
2

a2

(
Π2 − Φ2

)
− 2l(l+ 1)

ψ2

r2

]
. (2.13)

In the above expressions, we have made use of the auxiliary variables, Φ and Π, defined as follows:

Φ (t, r) =
∂ψ

∂r
, (2.14)

Π (t, r) =
a

α

∂ψ

∂t
. (2.15)

The dynamical equations of motion for these fields, which follow from the definition of Φ as well

as the wave equation for ψ (which in turn can be derived from the vanishing of the divergence of

the total stress tensor (2.7)) are then:

∂Φ

∂t
=

∂

∂r

(α
a

Π
)
, (2.16)

∂Π

∂t
=

1

r2
∂

∂r

(
r2
α

a
Φ
)
− l(l+ 1)aα

ψ

r2
. (2.17)

Note that the dependence of these equations on l is only through the last term in equation (2.17)

which is proportional to l(l + 1)/r2. This term can be thought of as the field-theoretic extension

of an analogous term due to the angular momentum potential, l2/r2, in the 1-dimensional reduced

problem of a particle moving in a central potential.

As mentioned above, equations for the geometric variables result from the 3 + 1 decomposition

of the field equations presented in Sec. 1.1, as well as from our choice of coordinates. Specifically,

we have the following:

1

a

∂a

∂r
=

(2l + 1)

2
r

(
Π2 + Φ2 + l(l + 1)

a2

r2
ψ2

)
− a2 − 1

2r
, (2.18)

1

α

∂α

∂r
=

(2l + 1)

2
r

(
Π2 + Φ2 − l(l + 1)

a2

r2
ψ2

)
+
a2 − 1

2r
, (2.19)

∂a

∂t
= (2l + 1)rαΠΦ. (2.20)
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Equation (2.18) is the Hamiltonian constraint (1.18), which is used to determine the 3-metric

component, a. Similarly, the slicing condition (2.19) fixes the lapse function α at each instant of

time, and is often known as the polar slicing condition. It can be derived from the demand that

Tr (Kab) = Kr
r+Kθ

θ+Kφ
φ = Kr

r for all times. The Hamiltonian constraint and slicing condition,

with appropriate regularity and boundary conditions, completely fix the geometric variables in this

coordinate system. Equation (2.20) is an extra equation derived from the definition of Kr
r and

the momentum constraint (1.19). In our numerical solutions, it is used as a gauge of the accuracy

of our simulations, as well as to provide a replacement for the Hamiltonian constraint in certain

strong field instances where the numerical constraint solver fails. In addition, we compute the mass

aspect function, M(t, r),

M(t, r) =
r

2

(
1 − 1

a2

)
, (2.21)

which serves as a valuable diagnostic quantity in our simulations. The value of this function as r →
∞ agrees with the ADM mass (Arnowitt-Deser-Misner mass [3]), and more generally, in a vacuum

region of spacetime, measures the amount of (gravitating) mass contained within the 2-sphere of

radius r at time t. Moreover, 2M(t, r)/r is useful since its value approaches 1 when a trapped surface

is produced and hence (modulo cosmic censorship), a black hole would form in the spacetime being

constructed. We note that, as is the case with the usual Schwarzschild coordinates for a spherically

symmetric black hole, polar-areal coordinates cannot penetrate apparent horizons, and in fact

become singular as they come “close to” black-hole regions of spacetime, where 2M(t, r)/r → 1.

This fact does not present a problem in the study of critical behaviour in our models, since the

critical solutions per se have maxr [2M(t, r)/r] bounded away from 1.

2.2.2 Regularity and Boundary Conditions

In addition to the above equations of motion, appropriate regularity and boundary conditions are

needed. At the origin, r = 0, regularity and elementary flatness implies the following expansions:

lim
r→0

a(t, r) = 1 + r2a2(t) +O(r4), (2.22)

lim
r→0

α(t, r) = α0(t) + r2α2(t) +O(r4), (2.23)

lim
r→0

ψ(t, r) = rlψl(t) + rl+2ψl+2(t) +O(rl+4). (2.24)
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This leads to the following boundary conditions:

a(t, 0) = 1, (2.25)

∂a

∂r
(t, 0) = 0, (2.26)

∂α

∂r
(t, 0) = 0, (2.27)

ψ(t, 0) = O(rl), (2.28)

Π(t, 0) = O(rl), (2.29)

Φ(t, 0) =





O(rl−1) for l ≥ 1,

O(r) for l = 0.
(2.30)

In the continuum, our equations of motion are to be solved as a pure Cauchy problem, on the

domain t ≥ 0, r ≥ 0, with boundary conditions at spatial infinity given by asymptotic flatness

(i.e. that the matter fields vanish, and that the metric becomes that of Minkowski spacetime, as

r → ∞). Computationally, we solve an approximation to this problem on a finite spatial domain

0 ≤ r ≤ rmax, where rmax is some arbitrary outer radius chosen sufficiently large that we are

confident that the numerical results do not depend significantly on its precise value. At the outer

boundary, then, the following condition for α is imposed:

α(t, rmax) a(t, rmax) = 1. (2.31)

This can be viewed as simply providing a convenient normalization for α, since given a solution, α, of

the slicing equation (2.19), kα is also a solution, where k is an arbitrary positive constant. We note

that although we have used (2.31) in order to perform the calculations, a different normalization

convention—i.e. a different, and time dependent, choice of k—has been used in order to perform

the analysis of the solutions. Specifically, in the analysis we have used central proper time T (t)

defined by:

T (t) =

∫ t

0

α(t̃, 0) dt̃ . (2.32)

This definition of time has a natural geometrical interpretation since r = 0 is invariantly defined

by the symmetry of the spacetime. For the scalar field variables, Π and Φ, approximate outgoing-

radiation boundary conditions (Sommerfeld conditions) are used:

∂Φ

∂t
(t, rmax) +

∂Φ

∂r
(t, rmax) +

Φ(t, rmax)

rmax
= 0, (2.33)

∂Π

∂t
(t, rmax) +

∂Π

∂r
(t, rmax) +

Π(t, rmax)

rmax
= 0. (2.34)

An important point in the derivation of the equations of motion is the fact that the eigenfuctions

in (2.2) are discrete and the allowable values of l are only non-negative integers. Once the equations
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are obtained we have relaxed that constraint and have allowed l to take non-negative real values (the

physical interpretation of such solutions, if any, is open for discussion). The solutions corresponding

to non-integer values of l would have some degree of irregularity at the origin depending on the

particular value of l chosen. This implies that only some finite number of derivatives with respect

to r will be defined at r = 0. In our particular numerical implementation, which assumes that

second derivatives of the variables are defined, we have been able to study the evolution of these

systems as long as l > 3.

2.3 Results

2.3.1 Numerics

We solve equations (2.16), (2.17) for the scalar field gradients, equations (2.18), (2.19) for the

geometry, and use (2.14) to reconstruct the field ψ. The system is approximated using second

order centred finite difference techniques, and coded using RNPL [65]. Numerical dissipation of

the Kreiss-Oliger [52] variety was included to damp high frequency modes, and it should be noted

that this particular type of dissipation is added at sub-truncation error order, so does not effect

the overall accuracy of the scheme as the mesh spacing tends to 0. For the current computations,

the damping terms were most useful in regularizing the truncation error estimation procedure that

occurs when adaptive mesh refinement (AMR) techniques are used. It was also crucial to impose

the correct leading-order regularity conditions close to the origin, r = 0 (equations (2.29)–(2.30))

to keep the solution regular during the evolutions.

Most of the simulations were done on a fixed uniform spatial grid rj = (j−1)∆r, j = 1, 2, · · · , J ,

J = 1 + rmax/∆r with a typical number of grid points J = 1025, and typical rmax = 100. In this

grid we define discrete values {ψj}, {Φj}, {Πj} and discrete values of the geometric fields. The

regularity conditions are imposed on the dynamical variables by:

Π1 =





4/3Π2 − 1/3Π3 for l = 0,

0 for l ≥ 1,
(2.35)

Π2 = Π3/2
2(l−1) for l ≥ 2, (2.36)

Φ1 =





4/3Φ2 − 1/3Φ3 for l = 1,

0 for l 6= 1,
(2.37)

Φ2 =





Φ3/2 for l = 2,

Φ3/2
2(l−2) for l > 2.

(2.38)

These have been calculated using the regularity conditions (2.29–2.30) and the finite difference
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approximation for the first derivative with respect to rq (q taking values 1, l−1 and l−2) at r = 0:

df

drq
≈ (2−q − 2q) f1 + 2qf2 − 2−qf3

(2q − 1)∆rq
. (2.39)

For small values of the angular momentum parameter—specifically for l ≤ 2—an AMR algorithm

based on that described in [17] was used.

2.3.2 Families of Initial Data

Our study involved the evolution of 6 different one parameter families of initial data, each defined

by an initial profile ψ(0, r) as listed in Table 2.1, with specific values of the parameters appearing

in the profile definitions as given in Table 2.2. In addition to ψ(0, r) we need to provide Π(0, r)

Family Form of initial data, ψ(0, r) p

(a) A exp
(
−(r − r0)

2/σ2
)

A

(b) −2A (r − r0)/σ
2 exp

(
−(r − r0)

2/σ2
)

A

(c) Ar2 (atan(r − r0) − atan(r − r0 − σ)) A

Table 2.1: Families of initial data and the parameter p that is tuned to generate a critical solution.

to complete the specification of the initial data. In all cases we chose Π(0, r) to produce an

approximately in-going pulse at the initial time:

Π(0, r) = Φ(0, r) =
∂ψ

∂r
(0, r). (2.40)

Initial Data Family Parameters

1 (a) r0 = 70.0, σ = 5.00

2 (b) r0 = 70.0, σ = 5.00

3 (c) r0 = 70.0, σ = 5.00

4 (a) r0 = 40.0, σ = 10.0

5 (a) r0 = 40.0, σ = 5.00

6 (a) r0 = 70.0, σ = 10.0

Table 2.2: Initial data used in our investigations. The family label is explained in Table 2.1.

As previously mentioned, all of the initial data families listed in Table 2.1 have a single free

parameter, p, and, as is the usual case in studies of black hole critical phenomena, for any given

family we observe two different final states in the evolution, depending on the value of p. For values
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of p > p? the maximum value of 2M(t, r)/r approaches 1 implying that an apparent horizon is about

to form. On the other hand if p < p? the scalar field completely disperses, and leaves (essentially)

flat spacetime in its wake. The solution that arises as p→ p? then represents the threshold of black

hole formation and, by definition, is the critical solution. We note that these critical solutions are

not t → ∞ end-states of evolution; rather they persist for only a finite amount of time, and, in

fact, are unstable, heuristically representing an infinitely fine-tuned balance between dispersal and

gravitational collapse.

2.3.3 Analysis

We have calculated p? for the different families of initial data described above, and for different

values of l, via bisection (binary search), tuning p in each case to a typical precision of (p− p?) /p ≈
10−15 (which is close to machine precision using 8-byte real floating point arithmetic).

As in the case for l = 0 (where the equations of motion reduce to those for a single, non-

interacting massless scalar field, as studied in [17]), the critical solutions for values of l ≤ 9.5 are

apparently discretely self similar (DSS). As discussed in the introductory chapter, DSS spacetimes

are scale-periodic, meaning that any non-dimensional quantity, Z, obeys the following equation for

some specific values of the parameters ∆ and T ?:

Z ((T − T ?), r) = Z
(
en∆(T − T ?), en∆r

)
, (2.41)

where T is central proper time as defined by (2.32), and T ? is the “accumulation time” of the

self-similar solution. Note that this is the same scaling invariance as (1.31) but written in the

original coordinates given by (2.8). In (2.41) the integer n denotes the echo number. We also note

that due to the discrete ψ → −ψ invariance that is exhibited both by the equations of motion as

well as the critical solutions themselves, if ∆ is the echoing exponent for which formula (2.41) is

satisfied with Z(T, r) ≡ ψ(T, r), then the geometric quantities a(T, r), α(T, r), 2M(T, r)/r obey

(2.41) with an echoing exponent ∆/2.

In order to extract ∆ from our simulations, we use the observation that certain geometric

quantities will achieve (locally) extremal values on the spatial domain at discrete central proper

times Tn given by

Tn − T ? = (T0 − T ?) en∆/2. (2.42)

where T0 is the time at which one starts counting the echoes. Specifically, ∆ and T ? have been com-

puted by a least squares fit for the times Tn at which maxr [2M(t, r)/r] achieves a local maximum

in time, i.e. by minimizing:

χ2 =

N∑

n=1

[
Tn − T0e

n∆/2 + T ?
(
en∆/2 − 1

)]2
. (2.43)
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2.3.4 Results

Table 2.3 summarizes the values of ∆l we have estimated using this procedure; the data are also

graphed in Fig. 2.1. Again, note that the reported values for ∆l have been calculated using central

proper time T instead of proper time at infinity (the parameterization used in the numerical

evolutions per se). Also the reported uncertainties have been estimated from the deviations in the

∆l values computed across the the six different families of initial data. The first entry in Table 2.3

(l = 0) corresponds to the original case studied in [17]. The second one (l = 1) is apparently the

same solution found for the self-gravitating collapse of an SO(3) non-linear σ model, assuming a

hedgehog ansatz [50], [61]. The remainder of the solutions (for the other values of l) are, to the

best of our knowledge, new.

As was also discussed in the introduction, systems exhibiting type II critical behaviour, where

the critical solution is self-similar, generally also exhibit power-law scaling of dimensionful quantities

in near-critical evolutions. For example, we can expect the black hole mass, MBH, to scale as

MBH = C (p− p?)
γl (2.44)

for super-critical evolutions as p → p?. Here C is a constant that depends on the family of initial

data while γl is a universal exponent for each value of l, i.e. independent of the specific initial data

family used to generate the critical solution. We have observed such scaling in at least some of our

computations, but, following Garfinkle and Duncan [32] have found it more convenient to extract

γl by monitoring the maximum value of the trace of the stress tensor, T , which, from the Einstein

equations, is proportional to the maximum value of the Ricci curvature. On dimensional grounds

T (defined by (2.13)) and R should both scale with an exponent −2γ. This technique has the

advantage of being more precise than a strategy based directly on (2.44) since we can calculate the

trace of the stress-energy more accurately than the mass of the black hole formed, and can perform

the computation using sub-critical evolutions, where the gradients of field variables generally do

not become as large as those in the super-critical cases. The values of γl as a function of l are listed

in Table 2.3 and are plotted in Fig. 2.2.

As is characteristic of type-II critical solutions exhibiting discrete self-similarity, 2M(t, r)/r

oscillates at higher frequencies and on smaller spatial scales during the course of an evolution in

the critical regime. As has already been noted, as l increases, the echoing exponent ∆l decreases

rapidly. In addition, we observe that the maximum and minimum values between which the spatial

maximum of 2M(t, r)/r oscillates increase with l (see Fig. 2.3) indicating that the critical solutions

are becoming increasingly relativistic as the angular momentum barrier becomes more pronounced.

The amplitude of the oscillations between these extremal values decreases since minr [2M(t, r)/r]

increases more rapidly than maxr [2M(t, r)/r] (see Fig. 2.3).



Chapter 2. Scalar Field Collapse with Angular Momentum 28

Figure 2.1: Values of log10 (∆l) versus l. In this figure we can see that ∆l decreases almost

exponentially with l. The different lines represent different families of initial data.

Assuming universality, the differences between the values calculated for the different

families provides one measure of error in our determination of ∆l.
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Figure 2.2: Values of log10 (γl) versus l, where γl is the scaling exponent defined by (2.44). As for

the case of the echoing exponent, ∆l, γl also decreases approximately exponentially

with l. We note that due to lack of numerical accuracy we only can reliably compute

γl for l ≤ 6.5
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Figure 2.3: maxt {maxr [2M(t, r)/r]} in the critical regime as a function of l (solid line) and the

same for mint {maxr [2M(t, r)/r]} (dashed line). We see how the maximum and min-

imum increase with l. On the other hand the amplitude of oscillation, given by their

difference, apparently tends to zero with increasing l.
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Figure 2.4: Values of log10 (T ?
l ) versus l. T ?

l is the “accumulation time” defined by equation (2.41)

for a parameter l measured using central proper time. The accumulation time increases

almost exponentially showing an increase in the stability of the critical solution as l

increases.
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Empirically, we have also found that, as we increase l within a family of initial data, although

∆l → 0 and T ?
l → ∞ (see Fig. 2.4), the product T ?

l ∆l appears to asymptote to a finite value. Note

that ostensibly this product is family dependent (see Fig. 2.5), but that all DSS type-II critical

solutions are universal only up to a global scale transformation (r, t) → (kr, kt), with k an arbitrary

positive constant.

Choosing k = k(l) for each of the families so that maxr [2M(t, r)/r] is attained at some fiducial

radius r0, and considering the case l = 10, we find that the normalized asymptotic oscillation

frequency, f0, defined by

f0 = r0/(T
?∆) = 4.35± 0.01 (2.45)

agrees for all families to better than 1%. Again, the quoted uncertainty is estimated from the

variation of f0 across the different families of initial data. We note that for l = 10 the near-

critical solution stays at an near-constant radial position; our spatial resolution is not enough to

resolve the small changes associated with the extremely small value of ∆l. The radial location of

maxr [2M(t, r)/r] in this regime is the value of r0 that we have used in (2.45).

We also note that the observation that f0 is apparently well-defined and unique (up to the usual

rescalings associated with type-II critical solutions), is consistent with the empirical observation

that as l increases, the critical solution becomes ever closer to a periodic solution. In particular,

for a periodic solution we have ∆ → 0, and then

Tn − T ? = (T0 − T ?) en∆ ≈ (T0 − T ?) (1 + n∆) ≈ − (T ?∆) n− T ?, (2.46)

where T0 represents the loosely defined time demarking the onset of the critical regime (and whose

precise value is clearly irrelevant in the limit T ? → ∞) which implies that the maximal value is

attained at times Tn:

Tn = − (T ?∆) n. (2.47)

As shown in Figs. 2.6 and 2.7, from our simulations for l = 10, we cannot ascertain whether the

solution is discretely self similar with ∆l very small (< 0.0002), or periodic with period τ = T ?∆.

Naively at least, we expect that for l > 10, distinguishing between discrete self similarity and

periodicity would become even more difficult. However, it is worth noticing that for l = 20 we

have not yet seen evidence for (almost)-periodicity, with period T ?∆, but have instead seen a more

complicated structure near criticality that is not yet understood.

2.4 Conclusions

In this chapter we have discussed the results for a model that tries to incorporate some of the effects

of angular momentum in the context of critical gravitational collapse. A new family of spherically-
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Figure 2.5: T ?
l ∆l as a function of l. The fact that these products remain finite as T ?

l → ∞ and

∆l → 0 is evidence that the critical solutions tend to a periodic solution in the limit

l → ∞.
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Figure 2.6: Fit of the times Tn at which maxr [2M(t, r)/r] reaches its maximum in time (denoted

by triangles and scale on the left) assuming a periodic ansatz. Initial data family (1)

was used with angular momentum parameter l = 10. We also plot the residuals of each

data point with respect to the best fit (denoted by pentagons and a scale on the right)
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Figure 2.7: Fit of the times Tn at which maxr [2M(t, r)/r] reaches its maximum in time (triangles

and scale on the left) assuming a self-similar ansatz. Initial data family (1) was used

with angular momentum parameter l = 10. Again, we also plot the residuals of each

data point with respect to the best fit (pentagons and scale on the right). Notice that

the errors in the fit are of the same order as the errors to a fit assuming periodicity

(Fig. 2.6), indicating that from our numerical results we are unable to distinguish

between the two types of solutions for l ≥ 10.
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symmetric critical solutions, (black hole threshold solutions) labelled by an angular momentum

parameter, l, have been found. These solutions have similar properties to those for the l = 0 case

originally studied in [17]: specifically, the solutions exhibit discrete self similarity, and have scaling

laws for the values of dimensionful quantities in evolutions close to criticality. We have calculated

the l-dependence of the echoing exponents ∆l, and the mass-scaling exponents γl, finding that both

decrease rapidly with increasing l, (at least up to l ≈ 10). Moreover, we have argued that as l

increases, the critical solution approaches a periodic solution.

As we explained in the introduction, we expect that γl = 1/λl where λl is the Lyapunov

exponent associated with the single unstable mode of the critical solution for angular momentum

parameter l. Therefore since γl → 0 with increasing l, we apparently have λl → ∞. This has the

interpretation of increased stability of the critical solution for increasing l, i.e. the period of time

that a solution can remain close to criticality (for a fixed amount of fine tuning) increases with l,

this can be observed by the increase in T ?
l (see Fig. 2.4). We believe that this can be interpreted

as an effect of the angular momentum barrier which (partially) stabilizes the collapse against black

hole formation.
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l ∆l γl

0 3.43 ± 0.05 0.376 ± 0.003

1 0.460 ± 0.002 0.119 ± 0.001

2 0.119 ± 0.003 0.0453 ± 0.0002

3 0.039 ± 0.001 0.020 ± 0.001

3.5 0.0224 ± 0.0009 0.0127 ± 0.0008

4 0.0132 ± 0.0008 0.0082 ± 0.0008

4.5 0.0077 ± 0.0007 0.0052 ± 0.0006

5 0.0044 ± 0.0007 0.0033 ± 0.0005

5.5 0.0026 ± 0.0006 0.0020 ± 0.0005

6 0.0015 ± 0.0005 0.0013 ± 0.0005

6.5 0.0009 ± 0.0005 0.0008 ± 0.0005

7 0.0006 ± 0.0004 -

7.5 0.0004 ± 0.0004 -

8 0.0003 ± 0.0004 -

8.5 0.0002 ± 0.0003 -

9 0.0002 ± 0.0002 -

9.5 0.0002 ± 0.0003 -

Table 2.3: Summary of the properties of the critical solutions computed for different values of l.

Note that both the echoing exponents, ∆l, and the mass scaling exponents, γl, rapidly

decrease as l increases. Quoted errors have been estimated from the variation in values

computed across the different families of initial data. Values of ∆l have been calculated

using central proper time T normalization of the lapse function, which is the natural

normalization for type-II critical behaviour. For l > 6.5 we have not been able to

calculate γl due to lack of numerical precision. Note that the l = 0 data agree with the

original values calculated in [17], and that the l = 1 data agree with values calculated

in [61] and [50] using models of completely different origin.
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Chapter 3

Instability of a Black String

3.1 Introduction

This chapter describes a 5-dimensional problem (4 space plus 1 time dimensions) which involves the

dynamical evolution of a perturbed black string. This work was a joint effort with M. Choptuik,

L. Lehner, R. Petryk, F. Pretorius and H. Villegas [18]. As mentioned in the introduction, the

unperturbed solution (originally proposed by Myers and Perry [73]) has the structure “4-D black

hole” × “a line”, hence the nomenclature “black string”. Gregory and Laflamme [37] proved that

black strings are unstable against long wavelength perturbations in the string dimension. Our work

tries to answer the natural question that arises: What is the end state of the evolution of such an

instability?

In [37] it was conjectured, using entropy considerations, that unstable black strings fragment

producing spatially periodic black hole solutions of the type described in [7]. This process will

produce a naked singularity and hence violate (4+1 dimensional) cosmic censorship [47]. However

this analysis, which is based on the linearization of the equations around the black string solution,

stops being valid once the perturbation grows sufficiently. More recently, Horowitz and Maeda have

argued that this proposed bifurcation of the event horizon cannot be achieved in finite time [48].

Moreover they conjectured that the system is likely to evolve to a new stationary solution which

is not invariant under translations along the string direction. Following this reasoning, Wiseman

solved the equations for equilibrium [114] and found new non-translationally symmetric solutions.

The ADM masses, (see [3] for definition of ADM mass) of these solutions are larger than the

maximum mass for an unstable black string at the same compactification length, which would

appear to rule them out as candidate end-states. In [18] we adopt a different approach, in order

to investigate the end state, we dynamically trigger the instability and analyze the subsequent

evolution of the spacetime.

The organization of this chapter is as follows. In Sec. 3.2 we describe the form of the black

string solution, define the coordinates that we use for the evolution, and define the form of the

perturbation. In Sec. 3.3, we then explain the specifics of the numerical integration of the equations
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of motion for the model, paying special attention to the solution of the constraint equations, and

the construction of an approximate event horizon finder, which represent my chief contributions to

the collaborative effort. Finally, in Sec. 3.4, we summarize the results that were obtained from the

study.

3.2 Equations

The solution studied by Gregory and Laflamme [37] was first constructed by Myers and Perry [73]

and describes a 5-dimensional vacuum configuration with an event horizon. With a specific choice

of coordinates—called ingoing Eddington-Finkelstein coordinates—the 5-dimensional line element

for the solution takes the form

ds2 = − (1 − 2M/r) dt2 + 4M/rdrdt + (1 + 2M/r) dr2 + dz2 + r2dΩ2, (3.1)

where M is the mass of the black string, z is the so-called string dimension, and dΩ2 = dθ2 +

sin2 θdφ2 is the metric of a unit 2-sphere.

Note that the solution is z-invariant, so that the metric coefficients do not depend on the string

dimension and that, paralleling the 4-dimensional Schwarzschild case, we can identify r = 2M with

the radius of the black string. In what follows we assume that the string dimension is periodic,

or in more mathematical terms, that it has S1 topology, i.e. that z = 0 and z = L are identified,

for some constant L. Physically, this choice of topology is not crucial (so long as L is chosen

sufficiently large to admit the Gregory-Laflamme instability) but computationally, the choice allows

us to sidestep any issues associated with imposing approximate boundary conditions in the string

direction. We also note that the solution is spherically symmetric in the sense that (∂/∂θ)
α

and

(∂/∂φ)
α

are Killing vector fields. Gregory and Laflamme found that the above solution is unstable

to certain z-dependent perturbations. Specifically, they found that perturbations with wavelengths,

λz, sufficiently large compared to the string radius grow exponentially. We also note that there is

some evidence that black strings could have one or more additional unstable modes that preserve

the z translational symmetry [104], but if this is the case, then the numerical results discussed

below would suggest that such modes grow more slowly than those that break the symmetry.

In order to determine equations of motion for the dynamical evolution of a perturbed black

string, we use the decomposition technique summarized in Sec. 1.1, but adapted for a 5-dimensional

spacetime (so that we have a 4+1 decomposition). In addition, to minimize computational com-

plexity and cost, we retain the spherical symmetry of (3.1), but allow the metric to have both t-

and z-dependence in addition to the original r-dependence. Thus, we write the spacetime metric
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as

ds2 =
(
−α2 + hABβ

AβB
)
dt2 + 2hABβ

AdxBdt+ hABdx
AdxB + hΩdΩ

2, (3.2)

where the indices A and B range over the coordinates {r, z}, and the metric functions α, βA, hAB

and hΩ now generally depend on t, r and z. Our choice of the usual angular coordinates {φ, θ},
adapted to the spherical symmetry amounts to fixing 2 of the 5 degrees of coordinate freedom that

we have in this problem. The three remaining degrees of freedom are fixed by choosing the lapse

function, α, and the two non-trivial components of the shift vector, βA. For all times, we choose α

and βz to be those associated with the static black string (3.1):

α = (1 + 2M/r)
−1/2

, βz = 0. (3.3)

The last coordinate choice is used to maintain the condition [hΩ/r
2](t, r) = [hΩ/r

2](0, r) for all

times. This produces the following algebraic constraint on the shift vector component βr:

βr =
2αKθθ

hΩ,r
. (3.4)

The main motivation for choosing this particular gauge is to have well behaved coordinates that

allow us to penetrate the horizon (as in [93] and [55]). This is crucial for our use of techniques

that excise the region of the spacetime containing the singularity. We want to point out that a

preliminary approach that fixed βr to its black-string value for all times gave rise to coordinate

singularities. In particular the radial position of the apparent horizon showed significant variation,

approaching zero at late times. In order to decrease this variation, and in the spirit of the so called

“horizon-locking” [93] coordinates we chose condition (3.4).

The field equations for our model are natural extensions of the 3+1 equations, summarized in

Sec. 1.1, for the case of vacuum (vanishing stress-energy tensor). Specifically, the equations we

need to solve are

H ≡ (4)R+K2 −KijK
ij = 0, (3.5)

Mi ≡ DjKi
j −DiK = 0, (3.6)

∂hij

∂t
= −2αKij +Djβi +Diβj , (3.7)

∂Kij

∂t
= α

(
(4)Rij +KKij

)
− 2αKikK

k
j −DiDjα

+Diβ
kKkj +Djβ

kKki + βkDkKij + αF k
iF

m
jhkmH, (3.8)

where F k
i = −2δk

rδ
r
i. Note that in the last equation, equation (3.8), the Hamiltonian con-

straint (1.18) has been added, and that this addition changes the structure of the principal parts

of the differential operators involved in the equations. This has been done on the grounds that the
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equations thus modified have better stability properties than the “bare” equations (see [51], [96],

and [56] for reviews).

In order to efficiently study the non-linear dynamics resulting from the Gregory-Laflamme insta-

bility, we find it convenient to be able to macroscopically “perturb” the black string solution (3.1).

We do so by altering hΩ from its black string form. More specifically, at the initial time we set

hΩ

r2
(0, r, z) = 1 +A sin

(
z
2πq

L

)
e−(r−r0)

2/δ2

. (3.9)

Here, A is a measure of the strength of the perturbation—in particular, for A = 0 the perturbation

vanishes and we recover the black string solution—and q is an integer that controls the spatial

frequency in the z-direction. To complete the specification of the initial data for our evolutions, we

set all remaining metric components, hab and Kab—except for hrr, Krr and Kθθ—to their black-

string values. The values of hrr, Krr and Kθθ are then determined from the constraint equations

as described in more detail below.

3.3 Numerical Implementation

In this project we chose to perform free evolution, meaning that the constraint equations are only

solved at the initial time. One motivation for this choice is that the solution of the Hamiltonian

and momentum constraints, which are generally elliptic in nature, is computationally more costly

than solving equations of evolution type. This is particularly the case when one wants to imple-

ment the numerical solution on massively parallel, distributed memory machines; parallelization

of single-grid, finite-differenced evolution equations is straightforward, while parallel treatment of

elliptic equations (or other equations with “long-range interactions”), may need to be quite intri-

cate. Having solved the constraints at the initial time, we then follow the standard practice in

numerical relativity of computing the residuals associated with the discrete constraints as time

progresses as one measure of the error in the solution. Here we are exploiting the property that the

evolution equations preserve the constraints at the continuum level, and that this property should

be preserved by our discrete scheme—to the order of truncation error—provided that the scheme

is stable [16].

3.3.1 Evolution

In our numerical implementation we fix the mass of the unperturbed black string to one, i.e.

M = 1. A second order finite-difference, Crank-Nicholson treatment for the evolution equations

is used, with the resulting algebraic equations for the update values solved using an iterative
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process. This process consists of a constant number of iterations (3) and can be viewed as a

specific predictor-corrector scheme for the evolved variables [100].

We discretize on a uniform grid, using coordinates (x, z) where x = r/ (1 + r). Note that since

x = 1 corresponds to r = ∞, we can actually set boundary conditions at i0 (see Figure 1.2). This

compactification of the radial coordinate proved crucial to the efficacy of our scheme; our compu-

tations done on a grid with finite range of the radial coordinate, r ≤ 0 ≤ rmax, with the sort of

approximate outgoing conditions often used in numerical relativity, lead to spurious results (includ-

ing indications of time-independent, z-dependent solutions) which exhibited significant dependence

on the specific value of rmax chosen. The use of numerical dissipation of the Kreiss-Oliger form [52]

was also essential to the stability of our numerical scheme, and was particularly important in two

regions of the computational domain: close to the horizon of the black hole, as well as for x → 1

(i.e. close to i0), where the lack of spatial resolution caused outgoing disturbances to ultimately

be represented near the Nyquist limit. In this latter case, the Kreiss-Oliger dissipation provides

a natural and effective mechanism for “annihilating” the outgoing radiation while minimizing the

amount of artificial reflection back into the interior of the computational domain.

Another important aspect of our implementation is the use of black hole excision [101]. As is

the case for the 4-dimensional black hole discussed in Sec. 1.3, at r = 0 the black-string spacetime is

singular: not only do some curvature terms go to infinity there, some of the metric coefficients blow-

up as well. Dealing with such infinities numerically would seem to be fairly hopeless with current

techniques, so to circumvent this problem, some region interior to the black string is excised from

the computational domain. At the excision surface we do not need to set boundary conditions (this

assumes that the time-locus of the interior boundary is either null or spacelike), and in practice we

simply use a finite difference approximation of the evolution equations that employs appropriate

one-sided difference formulae. The reason that this can work in principle is due to the fact that

the interior of a black hole (or black string) by definition cannot influence the exterior, as discussed

in Sec. 1.3. Now, for excision to work in practice, the excision surface needs to be chosen to be

inside the event horizon. However, the event horizon is a globally defined structure—it cannot be

located without knowledge of the entire spacetime. On the other hand the apparent horizon (the

outer most marginally trapped surface) can be computed from quantities that are defined at a given

instant of time and, assuming cosmic censorship, lies inside the event horizon [47]. In practice then,

we locate the apparent horizon periodically and ensure that we are excising within this surface,

and thus within the event horizon. The algorithm for locating the apparent horizon is described

in detail in [18] and consists of a flow method that corrects the radius of an initial guess for the

apparent horizon until the surface has an expansion below some specific tolerance. Specifically, if

the radius of the apparent horizon is given by r = R (z), the function R(z) is corrected at every
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iteration by

Rn+1 = Rn − θ+∆τ (3.10)

where Rn+1 [Rn] is the value of R(z) at iteration n + 1 [n], θ+ is the outward null expansion at

iteration n and ∆τ is the time-step for the evolution of the flow.

As a final note, following the development of a stable, convergent serial (single processor) code,

we constructed a parallel version using the CACTUS Computational Toolkit [11].

3.3.2 Determination of initial data: solving the constraints

As described previously, once the components of hAB and Kab that we have deemed to be freely

specifiable are given at t = 0, we solve (3.5)–(3.6) for the initial values of the remaining geometric

variables, hrr, Krr and Kθθ. This solution proceeds by iteration—each pass is comprised of three

distinct stages, each of which involves the solution of one of the constraints for the appropriate

geometric quantity (i.e. one of hrr,Krr,Kθ,θ) treating all other quantities, including the other

two constrained functions, as fixed. This process is iterated until the `2–norm (RMS value) of

the residuals of all the equations falls below a certain tolerance. To initialize the iteration, we

assign (unperturbed) black-string values to hrr, Krr and Kθθ. At least for the weak perturbations

(small A’s in equation (3.9)) considered in our study, this initialization is good enough to yield

convergence for the iterative process.

We now describe this iterative solution process—in particular, the solution of each individual

constraint equation—in more detail. The constraint equations are discretized on a uniform grid of

points {xi, zj} with xi = (i − 1)∆x, i = 1, ..., Nx, and zj = (j − 1)∆z, j = 1, ..., Nz. The mesh

spacings in the x and z directions are ∆x ≡ xi+1 − xi = 1/(2(Nx − 1)) and ∆z ≡ zj+1 − zj =

L/(Nz −1) respectively. We typically excise the region x ≤ 1/2, corresponding to r ≤M , from the

computational domain, i.e. the range of our coordinates is such that x1 = 1/2, xNx = 1, z1 = 0

and zNz = L. We first consider the Hamiltonian constraint (3.5), which in our coordinate system

can be viewed as an equation for hrr, and which has the form:

F1
∂hrr

∂x
+ F2hrr

∂2hrr

∂z2
+ F3hrr

∂hrr

∂z
+ F4

(
∂hrr

∂z

)2

+ F5 (hrr)
2

+ F6hrr = 0 . (3.11)

Here, the Fm, m = 1, . . . , 6, are functions that generally depend on all of the metric and extrinsic

curvature components and their derivatives except hrr (and its derivatives). We discretize this

equation to second order in the mesh spacings using a difference approximation centered at the
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points (xi+1/2, zj). The resulting algebraic equations can be written as follows:

(F1)i+1/2,j

[hrr]i+1,j − [hrr]i,j
∆x

+

(F2)i+1/2,j

1

2
([hrr]i+1,j + [hrr]i,j)

1

2

[
[hrr]i,j+1 − 2[hrr]i,j + [hrr]i,j−1

∆z2
+

[hrr]i+1,j+1 − 2[hrr]i+1,j + [hrr]i+1,j−1

∆z2

]
+

(F3)i+1/2,j

1

2
([hrr]i+1,j + [hrr]i,j)

1

2

[
[hrr]i+1,j+1 − [hrr]i+1,j−1

2∆z
+

[hrr]i,j+1 − [hrr]i,j−1

2∆z

]
+

(F4)i+1/2,j

[
1

2

(
[hrr]i+1,j+1 − [hrr]i+1,j−1

2∆z
+

[hrr]i,j+1 − [hrr]i,j−1

2∆z

)]2
+

(F5)i+1/2,j

[
1

2
([hrr]i+1,j + [hrr]i,j)

]2
+ (F6)i+1/2,j

[
1

2
([hrr]i+1,j + [hrr]i,j)

]
= 0. (3.12)

Here (Fm)i+1/2,j are second order approximations of the functions Fm at points
(
xi+1/2, yj

)
. As-

suming the values [hrr]i,j , j = 1, 2, · · ·Nz are known, the above system can be viewed as a set of Nz

non-linear algebraic equations for Nz unknowns [hrr]i+1,j , j = 1, 2, · · ·NZ . We can solve this non-

linear set of equations using an Nz-dimensional Newton-Raphson method. Note that we thus solve

the equations “line-by-line” in xi, starting at the inner boundary, i = 1, which is chosen well within

the horizon of the string (as mentioned above, typically at r = M which amounts to x1 = 1/2),

and where the boundary values, [hrr]1,j , j = 1, . . .Nz, are chosen to be those corresponding to an

unperturbed black string. Also note that the algebraic systems obtained in the linearization of

(4.38) are: (a) tridiagonal, due to the nearest-neighbor character of our second order finite differ-

ence approximations; and (b) cyclic, because of the imposed periodicity in the z-direction. These

linear systems can be solved efficiently (in O(Nz) time) using a cyclic tridiagonal linear solver [86].

We now turn attention to the r component of the momentum constraint (3.6), Mr = 0, which

is viewed as an equation for kθθ = Kθθ/α (the factor of α is introduced to more readily maintain

regularity at spatial infinity). In terms of this function, Mr = 0 can be written as

G1
∂kθθ

∂x
+G2kθθ +G3 = 0, (3.13)

where, again, the functions Gm, m = 1, 2, 3, do not depend on kθθ or its derivatives. Note that

this equation does not contain any z-derivatives of kθθ and thus, for any value of z, is an ordinary

differential equation in x, which is moreover first order in x. We discretize (3.13) using

(G1)i+1/2,j

[kθθ]i+1,j − [kθθ]i,j
∆x

+ (G2)i+1/2,j

1

2
([kθθ]i+1,j + [kθθ]i,j) + (G3)i+1/2,j = 0, (3.14)

which is a second order approximation centred at the point (xi+1/2, zj). For any value of zj , and

assuming that the values [kθθ]i+1,j are known, the above algebraic equations can be solved for
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[kθθ]i,j . The boundary conditions [kθθ]Nx,j , j = 1, . . .Nz, at x = 1 (i0) are again fixed to their

(unperturbed) black string values.

The last constraint equation, Mz = 0, is considered to be an equation for krr = r2Krr/α (again,

the scaling of the extrinsic curvature component by r2/α is motivated by regularity considerations

at x = 1):

H1
∂krr

∂z
+H2krr +H3 = 0. (3.15)

Once more, the functions Hm, m = 1, 2, 3, do not involve krr or its derivatives. This equation has

the same structure as (3.13), but with the roles of x and z reversed, so that we now have, for any

value of x, an ODE in z that we must solve. The second-order discretization used in this case is

centred at points (xi, zj+1/2):

(H1)i,j+1/2

[krr]i,j+1 − [krr]i,j
∆z

+ (H2)i,j+1/2

1

2
([krr]i,j+1 + [krr]i,j) + (H3)i,j+1/2 = 0. (3.16)

In order to solve these equations, we again set the boundary conditions [krr]i,1, i = 1, . . .Nx to

their black string values computed at z = zmin, then solve for increasing values of j.

3.3.3 Finding Event Horizons

As explained before, it is not possible to calculate the intersection of an event horizon with a given

spacelike slice of a spacetime without knowledge of the entire spacetime. Specifically, in order

to locate an event horizon one must determine the causal past of future null infinity, which in

effect means determining the origin of all null geodesics that reach I+. Any region of spacetime

not contained in the causal past of I+ (i.e. the “exterior universe”) lies within a black hole, by

definition, and the surfaces separating black hole interiors from the exterior universe are the event

horizons.

For the purposes of the black string calculations, it is interesting to attempt to study the actual

dynamics of the event horizon—i.e. the time history of the intersection of the event horizon with

our spacelike hypersurfaces, so a method that provides a good approximation to the location of

the event horizon is needed. Here we describe one technique that we have used, following [49], to

do just that. The method involves approximating the location of the boundary of the causal past

of some r = constant surface by following radial null rays.

We first derive equations for certain null rays in our spacetime. In particular, an appropriate

Lagrangian for radial rays (i.e. no motion in the z direction) in our coordinate system is

L = (−α2 + hrrβ
r2) (t′)

2
+ 2hrrβ

rt′r′ + hrr (r′)
2
, (3.17)

where the prime denotes differentiation with respect to some affine parameter λ. Since we are

interested in null trajectories, we set L = 0. The equation for the radial position of the null rays



Chapter 3. Instability of a Black String 46

is then

ṙ = ± α√
hrr

− βr ≡ R(t, r, z), (3.18)

where the plus [minus] sign corresponds to outgoing [ingoing] null rays respectively. Note that

this equation is expressed in terms of derivatives with respect to the coordinate time t, which are

denoted by an overdot. Once the evolution of the spacetime has been calculated, equation (3.18)

for the outgoing case is integrated backwards in time, for all values of zj , with initial conditions

r = r0 at the maximum time tmax achieved in the evolution. We chose r0 to be outside the horizon

and close to x = 1, as an approximation to I+, or inside the horizon and close to the excision

surface. In both cases, at least for our spacetimes, the evolution backwards in time accumulates at

the event horizon. The integration is done using a second order Runge-Kutta scheme. Specifically,

for a ray with constant coordinate zj , in order to calculate rn (the radial position at time tn)

from the value rn+1 (the radial position at time tn+1) with tn = tn+1 − ∆t we use the following

approximation:

k1 = −∆tR(tn+1, rn+1, z), (3.19)

k2 = −∆tR(tn+1 − 1/2∆t, rn+1 + 1/2k1, z), (3.20)

rn = rn+1 + k2. (3.21)

Here, R is defined by the right hand side of equation (3.18). In order to calculate R(tn+1, rn+1, z)

and R(tn+1, rn+1, z) we need to determine values of α, βr and hrr at those coordinate positions.

Since the functional form of α is specified a priori, we can use that closed-form specification for the

needed lapse values. In order to calculate the required values of βr and hrr, we use second-order

(bi-linear) interpolation in the (xi, zj) mesh.

Notice that integration of the equations of motion for the rays backwards in time does not give

us all of the causal past of r = r0, but only the part of the past that can be reached by purely radial

rays. However, we believe that for the spacetimes that we have computed, and particularly since

the event horizon is an attractor with respect to backwards integration, tracking these rays allows

us to rather accurately locate the horizon. For related discussions of approximate event horizon

location in the axisymmetric, four-dimensional case, see [12], [49],[60]. Finally, we should point out

that the technique of backwards integration is absolutely crucial to the accuracy and efficiency of

this strategy—forward integration of outgoing null rays becomes an increasingly ill-posed problem

(especially at the numerical level) for rays emanating from regions closer and closer to the event

horizon.
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3.4 Results

Our code was thoroughly tested and showed second order convergence in the mesh spacings as

expected. In particular, second order convergence of independent discretizations of the equations

of motion was demonstrated, as was second order convergence of the discrete constraint equation

residuals. This provides a stringent test of the correctness of our implementation.

All of the calculations performed in this study have initial data as defined by (3.9) with specific

parameter values A = 0.1, q = 1, r0 = 2.5 and δr = 0.5. Using these parameters, we have been

able to recover the main perturbative results found by Gregory and Laflamme [37]. Specifically,

we found a critical value Lc for the string length which is within 2% of the value reported by

Gubser [39], Lc ≈ 14.3M . Fig. 3.1 shows the maximum, Rmax, and minimum, Rmin, values of the

areal radius of the the apparent horizon, as well as the following parameter defined in [39]:

λ ≡ 1

2

(
Rmax

Rmin
− 1

)
. (3.22)

In the figure one can see that for a string length marginally larger than the critical value, Lc,

the apparent horizon gets increasingly distorted as the evolution proceeds, i.e. the maximum value

of the areal radius grows while the minimum decreases. On the other hand, for a value of L slightly

smaller than Lc, the evolution is evidently (physically) stable.

In order to most efficiently study the non-linear regime in an attempt to determine the ultimate

fate of an unstable black string, we want to have the instability growing as fast as possible. We thus

decided to study configurations with a string length L = 1.4Lc since perturbation theory predicts

that the fastest growing mode has a wavelength close to that value [37].

In Fig. 3.2 we show sequences of embedding diagrams illustrating the evolution of the apparent

horizon for a calculation with L = 1.4Lc. In this diagram angular dimensions have been suppressed,

and new coordinates (r̄, z̄) are used so that the coordinate distance along the curve corresponds to

proper distance along the apparent horizon. From these plots, we can get some sense of how the

perturbation grows, and how there are indications that the late-time solution may be approaching

a series of black holes connected by thin black strings.

Unfortunately our code crashes soon after the last frame shown in Fig. 3.2 (and such crashes

are generic in our late time evolutions of unstable black strings) . Thus we cannot conclude that

this chain of black holes connected with a thin black strings is truly indicative of the final state,

not least since the spacetime is still highly time-dependent at the time of the crash. Investigation

of the behavior of the dynamical variables as t → tcrash indicates that the break-down is due

to a coordinate pathology. First, we find that tcrash is not significantly dependent on the mesh

spacings ∆x and and ∆z. This suggests that a numerical instability is not responsible for the
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Figure 3.1: Values of the maximum, Rmax, and minimum, Rmin, areal radius of the apparent

horizon as a function of coordinate time for two values of the string length. This

calculation has been done for a black string with M = 1. The dotted line corresponds

to a string length larger than the critical value, L = 1.03Lc: one can clearly see the

increase of Rmax and decrease of Rmin as a function of time. The continuous line

corresponds to a string length smaller than the critical value, L = 0.975Lc. In this case

the evolution is stable and the small temporal variations observed can be understood

in terms of a combination of numerical errors and the “relaxation” of the black string

from a slightly excited state induced by the perturbation.
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Figure 3.2: This figure shows snapshots of the apparent horizon, computed in coordinates such

that coordinate length of the curve corresponds to proper length along the apparent

horizon, and where the two angular dimensions have been suppressed. Note that the

figure extends for two periods in z (i.e. the z-span is 2L = 2.8Lc), and that the portion

of the curve plotted for negative values of r̄ is included only for better visualization of

the horizon dynamics.
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crash. Second, curvature scalars are calculated, and they appear to remain finite at all events of

the evolution indicating that no physical singularity is produced within the computational domain.

Finally, to this point in the analysis, only the dynamics of the apparent horizon, and not the

event horizon, has been considered. However, Fig. 3.3 shows a comparison of results computed using

the approximate event-horizon-locator described in Sec. 3.3.3, and those from apparent horizon

location. For the event horizon location, outgoing null rays are traced back in time from 3 different

“initial” (actually final) surfaces. Two of these surfaces are defined by r1 = 10, r2 = 4 and lie

outside the apparent horizon, while the third is 5 grid points (in our numerical coordinate xi )

away from the excision surface and inside the position of the apparent horizon. The figure shows

how quickly the null surfaces traced backwards from the initial cylinders converge to one another,

as well as to the apparent horizon. This indicates that the apparent horizon is indeed a good

approximation to the intersection of the event horizon with a given spacelike hypersurface in the

spacetimes we have constructed.
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Figure 3.3: Plots of the apparent horizon (labeled AH) and estimates of the event horizon location

(C1, C2 and C3) in coordinate space (in contrast to the embedding coordinates used

in Fig. 3.2). Here, the C1 (C2) curve marks the evolution of the outgoing radial null

rays for the final t = 164 surface with r0 = 10 (r0 = 4). C3 denotes the evolution of

outgoing radial null rays, emanating from a surface just inside the apparent horizon at

t = 164. Thus, moving backwards in time, these curves should asymptote towards the

event horizon of the spacetime. These plots suggest that for most of the evolution (at

least), the apparent horizon is an excellent approximation to the event horizon.
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Chapter 4

General Relativistic

Hydrodynamics in Spherical

Symmetry

4.1 Introduction

In this chapter we describe the code we have developed for solving the fully coupled equations of

general relativistic hydrodynamics in spherical symmetry.

From the pioneering work of May and White [68] to more recent codes using HRSC methods,

such as that described in Noble’s thesis [79], there have been many different implementations

of spherically symmetric general relativistic hydrodynamics that have been used to study a wide

variety of problems. These problems include supernova explosions [68], [98], the structure of neutron

stars [91], and critical collapse [78], [46], [79]. Overall, these studies have been very successful and

many results have been obtained. We view our development of yet another spherically symmetric

relativistic code as a logical first step towards our ultimate goal of studying axisymmetric self-

gravitating hydrodynamics. The spherically symmetric code serves two main roles: (a) it allows

us to experiment with the same formalism, and numerical schemes, as well as the same type of

coordinates used in the axisymmetric case, within the context of a much simpler model; and (b)

it provides us with the means of computing “benchmark” results that can be used to test and

calibrate an axisymmetric code, provided that spherically symmetric initial data is evolved by

the latter. In the spirit of (a), the code has proven to be quite useful since it has allowed us to

identify an appropriate set of variables describing the state of the fluid, so that geometric constraint

equations actually have solutions in the strong-field regime. We note that existence of solutions is

not always guaranteed for the case of non-linear elliptic equations, as emphasized by York [115] for

the particular case of the constraints of general relativity.

The remainder of this chapter is organized as follows. In Sec. 4.2 and using the 3 + 1 decom-



Chapter 4. General Relativistic Hydrodynamics in Spherical Symmetry 53

position explained in Sec. 1.1, we discuss the equations that determine the geometry, as well as

the Valencia formalism for the treatment of the fluid variables (see Sec. 1.4 and App. A). In the

following section, we detail the numerical approach used to solve the equations, focusing on the

HRSC method and finite-volume discretization used for the hydrodynamics. In 4.4.1 we explain

the problem we encountered using a standard approach to solve the geometric constraint equations

to determine initial data, and describe how this problem was resolved through the introduction of

new dynamical variables for the fluid. Finally, in Sec. 4.4, we summarize some of the tests that

have been performed in order to check the reliability of our numerical implementation.

4.2 Model/Equations

As discussed in Sec. 1.4 a perfect fluid has a stress energy tensor of the form

T µν = ρ0hu
µuν + Pgµν , (4.1)

where ρ0 is the rest mass density, h is the specific enthalpy, P is the pressure and uµ is the fluid

four velocity. Note that the specific enthalpy h can be written in terms of the specific internal

energy, ε, as h = 1 + ε+ P/ρ0.

For this study, we choose so-called maximal/isotropic coordinates in which the spherically sym-

metric, time dependent metric takes the 3+1 form

ds2 =
[
−α(t, r)2 + ψ(t, r)4β(t, r)2

]
dt2 + 2ψ4βdtdr + ψ4

[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (4.2)

As in our study of scalar collapse in Chap. 2, we adopt angular coordinates θ and φ that are adapted

to the spherical symmetry. The radial coordinate, r, is fixed by demanding that the 3-metric be

conformally flat, and the time slicing is fixed by requiring that the slices be maximal, which means

that the trace of the extrinsic curvature vanishes

Tr [Kij ] = Ki
i = Kr

r +Kθ
θ +Kφ

φ = Kr
r + 2Kθ

θ = 0. (4.3)

As we will see, this last relation provides an equation for the lapse function that must be solved on

each slice as the evolution proceeds. We choose this specific gauge since it is the natural restriction

to spherical symmetry of the coordinates used in our axisymmetric implementation, which in turn

are based on the coordinates used in [19].
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Following [30], and references within, we now introduce hydrodynamic variables as follows

D = ρ0W, (4.4)

Sr = ρ0hW
2vr, (4.5)

E = ρ0hW
2 − P, (4.6)

τ = E −D, (4.7)

vr =
ur

αu0
+
β

α
, (4.8)

W = αut = (1 − vrv
r)

−1/2
. (4.9)

We note that the definitions of D, Sr and τ are motivated by our desire to cast the fluid equa-

tions into conservation form, as briefly described in Sec. 1.4. Moreover, in our adopted system of

coordinates, it is convenient to rescale these variables by an appropriate power of ψ (as we explain

in more detail in Sec. 4.4.1). In particular, we will use rescaled variables D̃ = ψ6D, S̃r = ψ6Sr,

τ̃ = ψ6τ and P̃ = ψ6P .

Using the 3+1 formalism outlined in Sec. 1.1, we now derive the equations that will determine

the geometric variables. Due to our restriction to spherical symmetry, as well as to our choice of

coordinates, we can implement a fully-constrained evolution—wherein all geometric quantities are

determined at all times either from the coordinate conditions themselves, or from the constraint

equations—and we choose to do so.

Given the form of the metric (4.2), and the demand that Ki
i = 0, the Hamiltonian con-

straint (1.18) can be written as

ψ′′ +
2

r
ψ′ +

3

16
Kr

r
2ψ5 + 2π

(
τ̃ + D̃

)

ψ
= 0, (4.10)

while the r component of the momentum constraint gives

(Kr
r)

′
+ 3

(
rψ2

)′

rψ2
Kr

r − 8π
S̃r

ψ6
= 0. (4.11)

In addition, the coordinate conditions give us two more equations. First, the slicing condition,

derived from the demand that (4.3) hold for all t is

1

r2ψ2

[(
r2ψ2

)
α′
]′ −


3

2
ψ4 (Kr

r)
2
+ 4π

(
D̃ + τ̃ + 3P̃

)

ψ2
+ 4π

S̃2
r

ψ6
(
τ̃ + D̃ + P̃

)


α = 0, (4.12)

and fixes the lapse at each time. Second, the requirement that the equations for γ̇rr and γ̇θθ/r
2

(which in the 3+1 approach follow immediately from the definition of the extrinsic curvature
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components (1.23)) be equal, so that conformal 3-flatness is preserved in time, provides the following

ODE (ordinary differential equation) for the single non-trivial shift vector component, β ≡ βr:

2

3

r

α

(
β

r

)′

= Kr
r. (4.13)

These complete the set of geometric equations needed to perform the evolution. In addition, we

have an evolution equation for the conformal factor which, again, follows from the definition of the

extrinsic curvature component, Kr
r:

ψ̇ = −α
2
ψKr

r + ψ′β +
1

2
ψβ′. (4.14)

The hydrodynamical equations can be calculated from local conservation of the fluid stress

tensor

(T µν);µ = 0, (4.15)

as well as local conservation of the particle number

(Jµ);µ = 0. (4.16)

Again, given our restriction to spherical symmetry, two independent equations can be derived

from (4.15)

1√−g
∂

∂t

(√
h

ψ6
S̃r

)
+

1√−g
∂

∂r

{√−g
ψ6

[
S̃r

(
vr − β

α

)
+ P̃

]}
=

1

ψ6






6P̃ + 2

S̃r
2

ψ4
(
τ̃ + D̃ + P̃

)


 ψ

′

ψ
+ S̃r

β′

α
−
(
τ̃ + D̃

) α′

α
+ 2

P̃

r



 , (4.17)

1√−g
∂

∂t

(√
h

ψ6
τ̃

)
+

1√−g
∂

∂r

{√−g
ψ6

[
τ̃

(
vr − β

α

)
+ P̃ vr

]}
=

1

ψ6



− S̃r

ψ4

α′

α
− 2P̃

β′

α
+


3P̃ +

S̃2
r

ψ4
(
τ̃ + D̃ + P̃

)


Kr

r + 2
P̃β

rα



 . (4.18)

Here g is the determinant of the metric (4.2), so that
√−g = αψ6r2 sin θ. Equations (4.17)

and (4.18) represent local conservation of momentum and energy, respectively. From the particle

conservation equation (4.16) we get

1√−g
∂

∂t

(√
h

ψ6
D̃

)
+

1√−g
∂

∂r

{√−g
ψ6

[
D̃

(
vr − β

α

)]}
= 0. (4.19)

In summary, the complete set of differential hydrodynamical equations that is discretized in
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Sec. 2.3.1 is

1

αr2
∂

∂t

(
r2D̃

)
+

1

αr2
∂

∂r

{
αr2

[
D̃

(
vr − β

α

)]}
= 0, (4.20)

1

αr2
∂

∂t

(
r2S̃r

)
+

1

αr2
∂

∂r

{
αr2

[
S̃r

(
vr − β

α

)
+ P̃

]}
=


6P̃ + 2

S̃r
2

ψ4
(
τ̃ + D̃ + P̃

)


 ψ

′

ψ
+ S̃r

β′

α
−
(
τ̃ + D̃

) α′

α
+ 2

P̃

r
, (4.21)

1

αr2
∂

∂t

(
r2τ̃
)

+
1

αr2
∂

∂r

{
αr2

[
τ̃

(
vr − β

α

)
+ P̃ vr

]}
=

− S̃r

ψ4

α′

α
− 2P̃

β′

α
+


3P̃ +

S̃2
r

ψ4
(
τ̃ + D̃ + P̃

)


Kr

r + 2
P̃ β

rα
. (4.22)

As usual, the above differential equations need to be supplemented with regularity and boundary

conditions. At r = 0 the following regularity conditions are imposed:

ψ′ (t, 0) = 0, (4.23)

α′ (t, 0) = 0, (4.24)

Kr
r (t, 0) = 0, (4.25)

β (t, 0) = 0, (4.26)

D′ (t, 0) = 0, (4.27)

Sr (t, 0) = 0, (4.28)

τ ′ (t, 0) = 0. (4.29)

As was the case for our study of scalar collapse, we will approximately solve our equations of motion

on a spatially finite computational domain, 0 ≤ r ≤ rmax. For the geometric variables, we impose

boundary conditions based on the requirement that spacetime be asymptotically flat in the limit

r → ∞, and that our time slices be labelled so that coordinate time coincides with proper time at

infinity. Specifically, we must then have

lim
r→∞

ψ(t, r) = 1 +
A(t)

r
+O(r−2), (4.30)

lim
r→∞

α(t, r) = 1 +
B(t)

r
+O(r−2), (4.31)

lim
r→∞

β(t, r) =
C(t)

r
+O(r−2), (4.32)

where A(t), B(t), C(t) are general functions of time (which in practice are not independent of each

other). Following standard practice in numerical relativity [116], these fall off conditions (4.30–4.32)
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can be expressed as the following mixed (or Robin) boundary conditions,

∂ψ

∂r
+

(ψ − 1)

r
= O(r−3) ≈ 0 , (4.33)

∂α

∂r
+

(α− 1)

r
= O(r−3) ≈ 0 , (4.34)

∂β

∂r
+

β

r
= O(r−3) ≈ 0 , (4.35)

which are independent of the particular form of the functions A(t), B(t), C(t). This technique

allows us to implement (4.30–4.32) using (4.33–4.35) without previous knowledge of these functions.

Alternatively, we also have used the following outer boundary condition for α(t, r):

lim
r→∞

α(t, r) =
1 −M(t, r)/(2r)

1 +M(t, r)/(2r)
, (4.36)

whereM(t, r) = 2r(ψ(t, r)−1). This value corresponds to the value of the lapse for the Schwarzschild

solution written in isotropic coordinates.

For the fluid, we use boundary conditions based on the demand that the flow be purely outgoing

at the boundary. We approximate this condition by assuming that the derivative of the conservation

variables is zero at and beyond the boundary of the computational domain. At the discrete level we

implement this condition using ghost cells, see Fig. 4.1, where we copy the values of the ghost-cell

conservation variables from the last physical cell.

The hydrodynamical equations derived above do not completely fix the evolution of the fluid;

we must close the set of equations by specifying a functional relationship between the pressure on

one hand, and the energy and particle densities on the other; i.e. we must fix an equation of state.

In this thesis we restrict attention to the so-called ideal fluid equation of state (EOS)

P = (Γ − 1) ρ0ε, (4.37)

where Γ is the adiabatic index that will be taken to be a constant in the range (1, 2]. This

choice of equation of state, which is an extension of P = (kB/m)ρ0T (kB being the Boltzmann

constant) see [13] and [99], admits stationary solutions (in contrast to the ultrarelativistic EOS,

P = (Γ − 1)ρH , for example). This is a key feature which makes it a popular choice in relativistic

hydrodynamics [30].

In ending this section, we reemphasize that we have introduced so-called conservative variables

q = {D,S, τ}, in order to cast the fluid equations in conservation law form, i.e. in the form

of (1.40). In particular, the conservative variables are in no sense independent of the primitive

variables, p = {ρ0, v
r, P} (or equivalently {ρ0, v

r, ε}), but rather are functionally related to the

primitive quantities via equations (4.4)–(4.9).
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FFF q qq F q
Nr−1Nr−2 Nr−1Nr−2 Nr Nr Nr+1 Nr+1

Figure 4.1: In this diagram we show the cells near the boundary of the computational domain

in our numerical scheme. The squares denote the discrete values for the conservation

variables and the crosses denote the values of the fluxes. We approximate the outflow

boundary condition using ghost cells (shaded on the figure): the values of the conser-

vation variables in the ghost cells are identical to the values in the last physical cell.

4.3 Numerics

We now describe the algorithm used to solve the coupled system of equations presented in the

previous section. We have already noted that due to the symmetry of the problem and to our

choice of coordinates, the geometric variables on a given hypersurface Σt can be calculated without

resort to equations of evolutionary type, assuming that the values of the hydrodynamical variables

are known at that time. In order to calculate the solution on a future hypersurface, Σt+∆t, we

adopt an iterative process. The iteration consists of the following main steps:

1. Make an initial estimate for the geometric variables
{
Gi

n+1
}

at time t+ ∆t.

2. Treating the advanced values of the geometric variables as known quantities, evolve the fluid

equations to get estimates of the fluid fields
{
Qj

n+1
}

at t+ ∆t.

3. Treating the advanced values of the fluid variables as known quantities, solve the constraint

equations to correct the values of
{
Gi

n+1
}
.

Here
{
Gi

n+1, i = 1, 2, 3
}

= {α, β, ψ} and
{
Qj

n+1, j = 1, 2, 3
}

=
{
D̃, S̃r, τ̃

}
, and are evaluated at

the advanced discrete time, t = t + ∆t. The two last steps are repeated until the `2 norm of the
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difference between the values of the fluid variables from two successive iterations is below some

tolerance (typically 10−10).

In the remainder of this section, we first discuss the numerical solution of the geometric equa-

tions (4.10–4.13), and then the numerical treatment of the hydrodynamical equations (4.17–4.19).

The geometric equations (which are all ordinary differential equations in r) are solved using second

order finite difference techniques. The fluid equations, on the other hand, are solved using a finite

volume approach first developed by Godunov [36], which exploits the fact that the equations are

written in conservation law form.

4.3.1 Geometric Equations

We first note that, in accord with our 3+1 decomposition of the Einstein equations, neither of the

constraint equations (4.10) nor (4.11) involves the lapse function, α or the shift vector component,

β (the “kinematical” gravitational variables). Thus, to solve for the geometric variables, we first

view the constraints as a system of 2 coupled ODEs for the quantities ψ and Kr
r, then solve that

system iteratively, as described below. Once ψ and Kr
r have been determined, (4.12) and (4.13)

can be solved for α and β, respectively.

In order to finite-difference the geometric equations, we introduce a uniform spatial grid

{r1, r2, ..., ri, ..., rNr}, where ri+1 = ri + ∆r, ∆r is the constant mesh spacing, r1 = rmin = 0, and

rNr = rmax is the outer boundary of the computational domain. Adopting the usual finite difference

notation fi ≡ f(ri), we use the following second-order (O(∆r2)) finite difference approximation of

the constraint equations

−3ψ1 + 4ψ2 − ψ3

2∆r
= 0, (4.38)

ψi+1 − 2ψi + ψi−1

∆r2
+

2

ri

ψi+1 − ψi−1

∆r
+

3

16
(Kr

r)i
2ψi

5 + 2π
(Di + τi)

ψi
= 0, i = 2, ..., Nr − 1,

ψNr − 1

rNr

+
3ψNr − 4ψNr−1 + ψNr−2

2∆r
= 0,

K1 = 0, (4.39)

(Kr
r)i+1 − (Kr

r)i

∆r
+ 6

ri+1ψ
2
i+1 − riψ

2
i

∆r
(
ri+1ψ2

i+1 + riψ2
i

) 1

2

[
(Kr

r)i+1 + (Kr
r)i

]

−8πSri+1/2 = 0, i = 1, ..., Nr − 1.

These two sets of equations are solved iteratively by first updating the ψi, i = 1, 2, · · · , Nr, as-

suming the (Kr
r)i , i = 1, 2, · · · , Nr are known, then updating the (Kr

r)i assuming the ψi are

known. Fixing the values (Kr
r)i, equations (4.38) comprise a non-linear system for the unknowns
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ψi. This system is solved using a (global) Nr-dimensional Newton-Raphson method, where at

each Newton step all Nr values ψi are simultaneously updated. Each of these updates requires

the solution of a tridiagonal linear system, which is accomplished using a standard LAPACK

routine [2]. In the second stage of the constraint-iteration, given the boundary (regularity) condi-

tion (4.25), equations (4.39) are solved using a pointwise Newton method for each of the unknowns

(Kr
r)i+1 , i = 1, 2, · · ·Nr − 1.

We note that it would be possible to implement a scheme whereby both systems (4.38) and

(4.39) are solved simultaneously using a global Newton iteration. The banded systems (bandwidth

∼ 6) that would need to be solved at each Newton step could still be solved in O(Nr) time.

However, we have not explored this option.

The slicing condition is treated using a second order discretization similar to that used for the

Hamiltonian constraint:

−3α1 + 4α2 − α3

2∆r
= 0, (4.40)

3

ψ2
i

(αi+1 − αi) r
2
i+1/2ψ

2
i+1/2 − (αi − αi−1) r

2
i−1/2ψ

2
i−1/2

∆r
(
r3i+1/2 − r3i−1/2

) −

[
3

2
ψ4

i (Kr
r)

2
i + 4πψ4

i (Di + τi + 3Pi) + 4π
(Sr)

2
i

(τi +Di + Pi)

]
αi = 0, i = 2, ..., Nr − 1,

αNr −
1 −MNr/(2rNr)

1 +MNr/(2rNr)
= 0,

whereMNr = 2 (ψNr − 1) rNr . For the bulk equations we have discretized the expression
(
1/r2

)
∂/∂r

as 3∂/∂(r3). This is a particular instance of a standard technique in numerical relativity (originally

due to Evans [28]) whereby terms of the form df(r)/dr with f(r) ∼ rp as r → 0, and for some

integer p > 1, are rewritten as p rp−1(d/d(rp))f(r), and then differenced. This approach generally

leads to improved behaviour of numerical solutions near r = 0, since the difference scheme is, by

construction, consistent with the leading order regularity behaviour of the differentiated function.

Equations (4.40) comprise a linear tridiagonal system for the αi which can again be solved using

a standard LAPACK routine. Note that the discrete outer boundary condition used here derives

from (4.36).

Finally, we need to discretize equation (4.13) for the shift vector component β. This is done

by first introducing a new variable w ≡ β/r, with discrete representation wi. In terms of w,

second-order discretization of equation (4.13) results in

w1 = 0,

wi+1 − wi

∆r
− 3

4

[
αi+1 (Kr

r)i+1

ri+1
+
αi (Kr

r)i

ri

]
= 0, i = 1, ..., Nr − 1. (4.41)
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We solve these equations in two stages, first integrating with an arbitrary boundary (initial) con-

dition to give a set of provisional values, w̃i, then correcting the w̃i to produce final values wi that

satisfy the true boundary condition. Specifically, we set w̃1 = 0, and integrate outwards. We then

set

wi = w̃i + k, (4.42)

where k is a constant value chosen so that

wNr − wNr−1

∆r
+ 2

wNr + wNr−1

(rNr + rNr−1)
= 0. (4.43)

This outer boundary condition is derived from (4.35) and the definition of w. Finally, we compute

the values of the shift component using βi = wiri.

4.3.2 Hydrodynamic Equations

Treatment of the fluid equations in the discrete domain requires special care. As we have already

discussed, the hydrodynamic equations will quite generically develop discontinuities, even if the

initial conditions are smooth. In order to handle such discontinuities numerically we have adopted

a finite-volume approach, using Roe’s approximation for computation of the numerical fluxes. For

discussions of these methods in general see [57], [58], for their application to special relativistic

hydro see [67], and for the general relativistic case see [30]. Our approach produces a solver of so-

called Godunov type, involving the solution of a Riemann problem at the spatial boundary of each

of the discrete volume elements (cells). As we have previously noted (Sec. 1.4), Godunov methods

are applicable to any set of hyperbolic evolution equations that has been written in conservation

law form. In particular, our fluid equations (4.20)-(4.22) can be written as

1

αr2
∂

∂t

(
r2q
)

+
1

αr2
∂

∂r

(
αr2F

)
= S. (4.44)

Here q, F , S are 3-dimensional vectors of dynamical variables, fluxes and sources, respectively:

q =
[
D̃, S̃r, τ̃

]
, (4.45)

F =

[
D̃

(
vr − β

α

)
, S̃r

(
vr − β

α

)
+ P̃ , τ̃

(
vr − β

α

)
+ P̃ vr

]
, (4.46)

S =


0,



6P̃ + 2

S̃2
r(

τ̃ + D̃ + P̃
)




ψ′

ψ
+ S̃r

β′

α
−
(
τ̃ + P̃

) α′

α
+ 2

P̃

r
,

− S̃r

ψ4

α′

α
− 2P̃

β′

α
+



3P̃ +

S̃r
2

(
τ̃ + D̃ + P̃

)



Kr

r + 2
P̃β

rα


 . (4.47)
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In addition we define a vector of primitive variables

p = [ρ0, v
r, P ] (4.48)

which can be used to specify the state of the fluid and that we call primitive variables. These

variables, related to q by (4.4-4.9), are useful in order to compute the fluxes F .

In our finite-volume approach, we discretize the spacetime region bounded by the hyper-

surfaces Σt and Σt+∆t with a set of uniform-size rectangular cells
{
C

n+1/2
i+1/2

}
having vertices

{
tn, tn+1, ri, ri+1

}
, see Fig. 4.2.

r

t

t

t

n

n+1

n+2

C n+1/2

∆

∆t

r

r r
r i+1/2

i i+1

r i+3/2
i+2

i+1/2

Figure 4.2: Detail of one of the control volumes C
n+1/2
i+1/2 used in order to discretize the hydrody-

namic equations of motion. Note that the vertices of the cells correspond to locations

(tn, ri), (tn, ri+1), (tn+1, ri) etc., and are the locations at which the discrete geometric

variables are defined.

In practice, the cell vertices are the locations at which the geometric variables (which satisfy

finite difference equations) are defined.

Integrating these equations over any control volume, C
n+1/2
i+1/2 , we get

∫

C
n+1/2

i+1/2

∂

∂t

(
r2q
)
drdt +

∫

C
n+1/2

i+1/2

∂

∂r

(
αr2F

)
drdt =

∫

C
n+1/2

i+1/2

Sαr2drdt, (4.49)

where we have used dC
n+1/2
i+1/2 = αr2drdt for the infinitesimal 2-volume element associated with the

cell C
n+1/2
i+1/2 . Note that this is not the usual volume element,

√−g = αr2ψ6, associated with the

metric (4.2), because a factor of ψ6 has been absorbed in the source terms S through our definition

of the new variables D̃, S̃r
r, etc.
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Using standard integral theorems this last equation can be expressed as

(
q̄n+1

i+1/2r
2
i+1/2∆r − q̄n

i+1/2r
2
i+1/2∆r

)
+

(
F̂

n+1/2

i+1 α
n+1/2
i+1 r2i+1∆t− F̂

n+1/2

i α
n+1/2
i r2i ∆t

)
= S̃

n+1/2

i+1/2 α
n+1/2
i+1/2 r

2
i+1/2∆t∆r, (4.50)

where q̄n
i+1/2, F̂

n+1/2

i , and S̃
n+1/2

i+1/2 —which are the fundamental discrete hydrodynamical variables—

are defined by

q̄n
i+1/2 ≡ 1

r2i+1/2∆r

∫ ri+1

ri

q(tn, r) r2 dr, (4.51)

F̂
n+1/2

i ≡ 1

α
n+1/2
i ∆t

∫ tn+1

tn

F (t, ri) α dt, (4.52)

S̃
n+1/2

i+1/2 ≡ 1

α
n+1/2
i+1/2 r

2
i+1/2∆t∆r

∫ tn+1

tn

∫ ri+1

ri

S(t, r) α r2 dtdr. (4.53)

Eqns. (4.50), along with the above definitions, comprise the basic discretization adopted for eqns.

(4.44).

We now schematically write eqns. (4.50) in the following way:

q̄n+1
i+1/2 = q̄n

i+1/2 + ∆tG
n+1/2
i+1/2 , (4.54)

where

G
n+1/2
i+1/2 = ∆t


−

(
α

n+1/2
i+1 r2i+1F̂

n+1/2

i+1 − α
n+1/2
i r2i F̂

n+1/2

i

)

r2i+1/2∆r
+ S̃

n+1/2

i+1/2 α
n+1/2
i+1/2


 . (4.55)

Note that F̂
n+1/2

i and S̃
n+1/2

i+1/2 depend on the fluid quantities at both the advanced and retarded

discrete times, tn+1 and tn, respectively. In order to approximate the fluxes, F̂
n+1/2

i , we use Roe’s

approximation [90], which is given by

F̂ i =
1

2

(
F
(
p̃R
)

+ F
(
p̃L
)
−
∑

|λα|ωαηα

)
. (4.56)

We will explain in detail below the calculation of the different elements that appear in this last

expression. For the time being, we note that λn and ηn are the eigenvalues and right eigenvectors,

respectively, of the velocity matrix V = ∂F /∂q. F (p̃R), F (p̃L) are computed from equation (4.46)

using approximations p̃R and p̃L for the primitive variables. In fact, p̃R and p̃L are approximations

to the primitive variables at the same spatial location—the location of the cell interface, r = ri—

but are computed using values defined either to the right or to the left, respectively, of the interface.

The process of computing approximations at the cell interfaces is known as reconstruction. In our

case we use a “minmod slope limiter” type [106] of reconstruction which results in equations (4.61)
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and (4.62) for p̃L and p̃R. We note that that the calculation of the primitive variables, p, from

the conservative variables, q, is not completely trivial due to the non-linear algebraic relationship

between the two sets of quantities. The specific method that we use to compute p(q) is also

explained below.

Expression (4.56) results in a second order (in space) approximation for the fluxes, that holds

in regions of smooth flow, and away from any extrema of the functions being reconstructed. On

the other hand, computation of the source term, S̃
n+1/2

i+1/2 , using the values q̄n
i+1/2 yields only a first

order (in time) approximation. To maintain overall second order accuracy in the cell size (again,

in regions of smooth flow and away from any maxima in q̄), we decompose the time step into two

sub-steps:

q̄
n+1/2
i+1/2 = q̄n

i+1/2 +
∆t

2
Gn

i+1/2 , (4.57)

q̄n+1
i+1/2 = q̄n

i+1/2 + ∆tG
n+1/2
i+1/2 . (4.58)

Gn
i+1/2 corresponds to expression (4.55) evaluated using F̂

n

i , S̃
n

i+1/2 and αn
i , while G

n+1/2
i+1/2 is com-

puted using F̂
n+1/2

i , S̃
n+1/2

i+1/2 and α
n+1/2
i (an interpolation of the lapse function at the half time

step). F̂
n+1/2

i and S̃
n+1/2

i+1/2 are calculated from the conservative variables obtained from (4.57) and

their corresponding primitive variables. This completes the description of the basic update scheme

for the fluid variables q̄n+1
i+1/2.

We conclude with two additional remarks concerning our numerical scheme. First, we note that

the flux for the S̃r equation (4.46) is actually split into two distinct pieces, one that contains a term

that goes as 2P̃ /r, and the second that absorbs the remaining terms. The first term is manifestly

divergent as r → 0 and directly cancels with the analogous term appearing in the source of (4.47).

Second, we observe that difference quotients such as
(
αi+1r

2
i+1Fi+1 − αir

2
i Fi

)

r2i+1/2∆r
, (4.59)

which appear in Gi+1/2 (see (4.55)) are rewritten in the following way

3
(
αi+1r

2
i+1Fi+1 − αir

2
i Fi

)

r3i+1 − r3i
, (4.60)

in the same spirit as for the finite difference case explained in the discussion of (4.40).

Calculation of the Roe flux

We now explain in more detail how to compute the different expressions appearing in formula (4.56).

Fig. 4.3 shows the main steps in the calculation of the Roe flux. The reconstructed values p̃R

and p̃L—from which the quantities F (p̃R) and F (p̃L) that appear in the Roe approximation are
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calculated—are computed using

p̃L
i+1/2 = p̄i + σi

(
ri+1/2 − ri

)
, (4.61)

p̃R
i+1/2 = p̄i+1 + σi+1

(
ri+1/2 − ri+1

)
. (4.62)

in equation (4.46). Note that p̄i are the primitive values defined at the cell centres, their computa-

tion from the conservative variables is explained in detail in the next section. In equations (4.61)

and (4.62), σi is given by

σi = minmod
(
si−1/2, si+1/2

)
. (4.63)

with

si+1/2 =
p̄i+1 − p̄i

ri+1 − ri
. (4.64)

Finally the minmod function is defined by

minmod(a, b) =





0 if ab < 0

a if |a| < |b| and ab > 0

b if |a| > |b| and ab > 0.

(4.65)

Note that this function is used as a “slope-limiter” in order to decrease spurious oscillations that

may appear at discontinuities. If the two slopes σi and σi+1 have the same sign, then the one

with smaller absolute value is used to linearly reconstruct the fluid variables. On the other hand

if the slopes have differing signs (e.g. at an extremum), a first order reconstruction is performed,

i.e. the values of the fluid at the cell centre are assigned to the cell interface. At the extrema,

this produces a reduction of the accuracy of the overall scheme from second to first order in the

mesh spacing ∆r. This reconstruction procedure introduces a certain amount of dissipation in the

overall scheme [79]. We also note that this is by no means the only viable way of reconstructing;

for discussion of other approaches see [58] and [77].

We now explain in detail the characteristic structure of V , which is needed to compute the Roe

approximation for the numerical fluxes. The eigenvalues, λα, and right eigenvectors, ηα, of V are

(see [30])

λ0 = αvr − β, (4.66)

λ± =
α

1 − v2c2s

{
vr
(
1 − c2s

)
± cs

√
(1 − v2)

[
1

ψ4
(1 − v2c2s ) − vrvr (1 − c2s )

]}
− β, (4.67)

η0 =

( K
hW

, vr, 1− K
hW

)
, (4.68)

η± =
(
1, hWCr

±, hW Ãr
± − 1

)
, (4.69)
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Figure 4.3: This figure illustrates the main stages in the computation of the Roe approximation for

the numerical flux F̂ . First, in stage A, the primitive variables are computed from the

conservative variables at the location of each cell center. In stage B, two approximations

for the primitive variables are computed at each cell interface, one from values defined

at, or to the left of the interface (p̃L, equation (4.61)), and the other using values

defined at, or to the right of the interface (p̃R, equation (4.62)). Finally, using these

last approximations, the characteristic structures of V , F (p̃R) and F (p̃L) are calculated

in stage C, enabling the computation of the Roe fluxes, F̂ , using (4.56).
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where we have defined the following quantities:

K =
κ/ρ0

κ/ρ0 − c2s
, (4.70)

Cr
± = vr − Vr

±, (4.71)

Vr
± =

vr − Λr
±

1/ψ4 − vrΛr
±

, (4.72)

Ãr
± =

1/ψ4 − vrvr

1/ψ4 − vrΛr
±

, (4.73)

Λr
± = λ±/α+ β/α. (4.74)

In addition, we have introduced the sound speed, cs, in the above, defined by c2s = 1/h
(
χ+ P/ρ2

0κ
)
,

with χ = ∂P/∂ρ0 and κ = ∂P/∂ε. The particular values of the primitive variables used in order

to compute these characteristic fields are 1/2
(
pL + pR

)
.

The last ingredient we need in order to compute the Roe flux are the ωα; these are the jumps in

the characteristic variables associated with the local Riemann problem, and are implicitly defined

by

q̃R
i+1/2 − q̃L

i+1/2 =
∑

α

ωαηα. (4.75)

Here (q̃R, q̃L) are the values of the conservative variables, which are calculated from the recon-

structed primitive variables (p̃R, p̃L), using (4.61–4.62). We first reconstruct the primitive vari-

ables, then transform to conservative variables, since this approach leads to increased numerical

stability relative to direct reconstruction of the conservative variables [79].

Calculation of the primitive variables

The final piece of the algorithm for evolution of the discrete fluid quantities involves the calculation

of the primitive variables p = [ρ0, v, P ] from the conservative variables q =
[
D̃, S̃r, τ̃

]
. From the

definition of the conservative variables (4.4)–(4.9), as well as the relation h = 1 + ε+P/ρ0, we can

derive the following equation for the pressure

f(P ) = D (1 + ε)W + P
(
W 2 − 1

)
−D − τ = 0. (4.76)

Noting that W (P ) =
√
Z2/(Z2 − S2), where Z = (τ +D + P ), and assuming that the equation

of state can be cast in the form ε = ε (ρ0, P ) = (D/W,P ), we see that, for given values of D, Sr

and τ , (4.76) becomes a non-linear equation for P . Given a good initial guess for P , we can find a

solution to (4.76) using a Newton-Raphson method, for which we need to be able to compute the

derivative df(P )/dP ≡ f ′(P ). To this end, the following relations are useful:

W ′(P ) =
(
1 −W 2

)
/
√
Z2 − S2, (4.77)

ε′(P ) =
DW ′(P )

W 2

χ

κ
+

1

κ
. (4.78)
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Furthermore, in order to calculate (4.78) we use

ε′ =
∂ε

∂P

∣∣∣∣
D,τ,Si

=
∂ε

∂ρ0

∣∣∣∣
P

∂ρ0

∂P

∣∣∣∣
D,τ,Si

+
∂ε

∂P

∣∣∣∣
ρ0

= − D

W 2

∂W

∂P

∣∣∣∣
D,τ,Si

∂ε

∂ρ0

∣∣∣∣
P

+
∂ε

∂P

∣∣∣∣
ρ0

= − D

W 2

∂W

∂P

∣∣∣∣
D,τ,Si

(−1)
∂P

∂ρ0

∣∣∣∣
ε

/
∂P

∂ε

∣∣∣∣
ρ0

+
1

κ

=
D

W 2

∂W

∂P

∣∣∣∣
D,τ,Si

χ

κ
+

1

κ
. (4.79)

Collecting results, we have

f ′(P ) = D

[
1 + ε

(
D

W
,P

)]
W ′ +DW

[
W ′ D

W 2

χ

κ
+

1

κ

]
+W 2 − 1 + 2PWW ′. (4.80)

For the specific equation of state considered here, P = (Γ − 1) ρ0ε, we have

f ′(P ) = W ′

[
D + 2PW

Γ

Γ − 1

]
+W 2 Γ

Γ − 1
− 1. (4.81)

The following relations are also needed at various stages of the update algorithm:

ε =
PW

(Γ − 1)D
, (4.82)

κ = (Γ − 1)ρ0 = (Γ − 1)
D

W
, (4.83)

χ = (Γ − 1)ε =
PW

D
, (4.84)

c2s =
PWΓ (Γ − 1)

D (Γ − 1) + PWΓ
=

[
D

PWΓ
+

1

Γ − 1

]−1

. (4.85)

Once the pressure is calculated the rest of the primitive variables can be computed using:

vr =
Sr

τ +D + P
, (4.86)

vr =
1

ψ4
vr , (4.87)

ρ0 = D
√

1 − vrvr , (4.88)

ε =
P

(Γ − 1) ρ0
. (4.89)

The calculation vr using (4.86) can lead to non-physical velocities larger that 1. We note that in

order to avoid this problem, an alternative expression to compute vr, which ensures vr < 1, was

proposed in [78].
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4.4 Results

4.4.1 New Variables

As explained in Sec. 4.2, the variables, D̃, S̃r and τ̃ that we have introduced in order to write

the hydrodynamic equations in conservative form are not precisely those—D,Sr and τ—which are

proposed and used by other authors [66], [30]. Although use of either set allows us to write the

fluid equations in conservation law form, we will now argue that the set D̃, S̃r and τ̃ is a better

choice when viewed in the context of providing sources for the geometrical constraint equations.

Let us consider the initial data problem for our self-gravitating fluid. In spherical symmetry

the gravitational field has no dynamical degrees of freedom, and as a consequence the initial state

of the geometry is totally fixed by the state of the matter sources at t = 0.

Specifically (and strictly for simplicity of presentation), if we consider time symmetric initial

conditions (so that the resulting spacetime has a t → −t symmetry about t = 0), then the com-

plexity of the differential equations governing our model is considerably reduced. In particular, the

radial 3-velocity, vr, of the fluid must identically vanish, and this simplifies or eliminates many of

the terms in the constraints that involve the fluid variables. Time symmetry also implies that the

entire extrinsic curvature tensor vanishes, so the radial momentum constraint is trivially satisfied.

The only non-trivial constraint is the Hamiltonian constraint, which written in terms of D and τ

(Sr vanishes due to the time symmetry) takes the form

1

r2
∂r

(
r2∂rψ

)
+ 2π (D + τ)ψ5 = 0, (4.90)

with boundary conditions given by (4.33). Here we note that the operator acting on ψ is simply

the radial piece of the Laplacian written in spherical-polar coordinates, taking into account the

fact that ψ is spherically symmetric. Given the condition vr = 0, we can view D and τ as freely-

specifiable quantities that fix the initial state of the fluid. For the sake of concreteness, we consider

an initial profile for D given by a gaussian pulse

D(0, r) = A exp
[
− (r − r0)

2
/∆2

r

]
, (4.91)

and then compute τ(0, r), from the polytropic equation of state P = KρΓ
0 . This gives us the

condition that P (r) = D(r)Γ, so that τ(r, 0) = P (r)/(Γ − 1) = D(r)Γ/(Γ − 1).

We investigate the behaviour of solutions of (4.90) using the following shooting method. For

given values of A, r0 and ∆r, and adopting the notation ψ(r) ≡ ψ(0, r), we choose a trial value

for ψ(0) (the shooting parameter). Given the second initial condition, ψ′(0) = 0 (which follows

from regularity, and where a prime now denotes differentiation with respect to r), (4.90) can be

integrated radially outwards to some final radius r = rmax. The value ψ(0) is then iteratively



Chapter 4. General Relativistic Hydrodynamics in Spherical Symmetry 70

refined until the value ψ(rmax) satisfies the discrete boundary condition given in (4.38) to some

specified tolerance.

For sufficiently small values of the amplitude parameter, A, we encountered no problems in

finding solutions of (4.90) using this technique. However, for large values of A the situation was

quite different: in such cases, in fact, there seemed to be no values of ψ(0) that would produce

solutions of (4.90) satisfying the outer boundary condition, limr→∞ ψ(r) = 1. In Fig. 4.4 we show

the estimates, limr→∞ ψ(r;A) for various values of A, and for Γ = 1.8.

Figure 4.4: This figure plots estimated values of ψ(∞) as a function of the shooting parameter

ψ(0), for 10 different values of the amplitude A in the range 0.05 ≤ A ≤ 0.5 and spaced

by ∆A = 0.05. All calculations have been done with r0 = 0.5, ∆r = 0.1 (see (4.91)),

rmax = 1 and Γ = 1.8. ψ(∞) is estimated from the assumption that limr→∞ ψ(r) =

ψ(∞) + C/r. These results clearly suggest that above a certain threshold amplitude

(which in this case is approximately A ∼ 0.13), there are no solutions of (4.90) that

satisfy the outer boundary condition, limr→∞ ψ(r) = 1.

We note that the solutions plotted in Fig. 4.4 do not correspond to particularly large values of
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the conformal factor ψ(r), and that all solutions computed are smooth. We also note that the use

of continuation (or homotopic) processes, which use information about the solution for a parameter

value A as input (or initialization) for the solution for parameter value A + δA > A, did not help

matters. In addition, we verified that the failure to find solutions of (4.90) was not a consequence

of the discretization schemes used. In particular, we used several different solution methods and

several distinct discretizations and found the same results in all cases.

The results of the above experiment agree with an observation made by York [115], who analyzed

an equation similar to (4.90). York argues that in order for the full non-linear equation to have a

solution, the linearization of the equation with respect to ψ + δψ,

[
1

r2
∂r

(
r2∂r

)
+ 10π (D + τ)ψ4

]
δψ = −2πψ5 (δD + δτ) , (4.92)

must also have a solution. The claim is that, in general, the linearized equation will not have a

solution satisfying δψ → 0 as r → ∞. The reasoning that York follows involves analysis of the

homogeneous equation (i.e the linear equation without sources) which he shows does not satisfy

a maximum principle (as one generally wants for elliptic equations), but instead admits solutions

that tend to be oscillatory as r → ∞. York therefore concludes that the full equation will generally

have no solution satisfying the boundary conditions at infinity, when the analogue of D+τ is freely

specified.

The argument that the homogeneous equation does not have solutions that asymptotically tend

to zero (applied to our Hamiltonian constraint) is based on the fact that (D + τ)ψ4 is positive-

definite. The sign of this term can be changed by a suitable conformal rescaling of τ and D, i.e. by

choosing to freely specify conformally related functions D̃ and τ̃ defined by D̃ = Dψn and τ̃ = τψn

for some integer n > 1. In terms of these new variables the linearization of the Hamiltonian

constraint is

[
1

r2
∂r

(
r2∂r

)
+ 2π (5 − n)

(
D̃ + τ̃

)
ψ4−n

]
δψ = −2πψ5−n

(
δD̃ + δτ̃

)
. (4.93)

By York’s argument, if the second term on the left hand side of the above equation is negative-

definite, then the theory of elliptic equations tells us that the solution of the equation exists and

is unique. The choice n = 6 in our definitions of D̃ and τ̃ thus not only allows us to demonstrate

linear stability of the Hamiltonian constraint, it also absorbs the factor ψ6 that originates from

the determinant of the 4-metric, and which appears in the fluid equations of motion. (Here we

note that a factor of ψ6 was also introduced in the definitions of S̃r and P̃ in order to simplify the

equations of motion).
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4.4.2 Evolution of TOV solution

The Tolman-Oppenheimer-Volkoff (TOV) solutions [80], [102], and [103] are the static solutions of

the spherically symmetric equations of general relativistic hydrodynamics. These solutions were

initially studied by Tolman [102] and [103] and then generalized by Oppenheimer and Volkoff [80]

in order to describe neutron stars (stars supported against gravitational collapse by the degeneracy

of neutrons). To construct these solutions we adopt a polytropic equation of state

P = KρΓ
0 , (4.94)

which can be considered as an equation for non-interacting degenerate matter [94]. This equation

can be seen as a particular case of the ideal gas equation P = (Γ − 1) ρ0ε in the limit of zero

temperature [79].

Let us remind the reader that one of the main uses of the spherically symmetric code explained

in this chapter is as a calibrator of our axisymmetric implementation. Ultimately we want to

use the axisymmetric code to study the critical collapse of rotating stars. The corresponding

spherically symmetric problem is the critical collapse of perturbed TOV solutions, and was studied

by Noble [79]. Since the lifetimes of near critical solutions can grow without bound as the critical

limit is approached, it is thus crucial that we are able to evolve TOV solutions for long physical

times.

It is particularly convenient to compute TOV solutions in Schwarzschild-like coordinates (t̃, r̃),

where the time-independent, spherically-symmetric metric takes the form

ds2 = − exp (2φ(r̃)) dt̃2 +

(
1 − 2m(r̃)

r̃

)−1

dr̃2 + r̃2dΩ2 . (4.95)

Using the polytropic equation of state (4.94), the resulting equations for the metric coefficients and

pressure are

dm

dr̃
= 4πr̃2ρ, (4.96)

dφ

dr̃
= − 1

ρ+ P

dP

dr̃
, (4.97)

dP

dr̃
= − (ρ+ P )

(
m+ 4πr̃3P

)

r̃ (r̃ − 2m)
. (4.98)

The equations give rise to a continuous family of solutions which can be parametrized by the

central pressure P (0). Choosing a particular value for P (0), and with the additional initial con-

ditions m(0) = 0 (regularity) and φ(0) = 0 (normalization of time parameter to central proper

time), the set of ODEs (4.96) is integrated outwards from r̃ = 0 using the LSODA integration

package [84]. After the metric coefficients m(r̃), φ(r̃) and the pressure P (r̃) have been computed
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in the Schwarzschild-like coordinates, we must perform a coordinate transformation to the maxi-

mal/isotropic coordinates, (t, r), used in our evolution code.

Since the TOV solutions are static, we have t(t̃, r̃) = t̃ and r(t̃, r̃) = r(r̃). We can determine

r(r̃) by integrating

dr

dr̃
=

(
1 − 2m(r̃)

r̃

)−1/2
r

r̃
. (4.99)

This equation can be obtained by first comparing the angular parts of the two metrics, which yields

the relationship ψ4(r)r2 = r̃2, then comparing the radial parts,

(
1 − 2m(r̃)

r̃

)−1/2

dr̃ = ψ2(r)dr, (4.100)

and combining the two results.

We now discuss the integration of (4.99). Considering the limit r̃ → 0 of the equation, and

taking into account that m(r̃) ∼ O(r̃3) by regularity, we obtain the following equation valid for

r̃ → 0:
dr

dr̃
=
r

r̃
. (4.101)

Therefore the behaviour of r for small values of r̃ is given by r = Ar̃, with A a constant that will

be fixed by demanding that the solution tend to the Schwarzschild form as r → ∞. We thus first

integrate the following outwards from r = 0:

dr̃

dr
= 1, if r = 0, (4.102)

dr

dr̃
=

(
1 − 2m(r̃)

r̃

)−1/2
r

r̃
, otherwise, (4.103)

which amounts to choosing A = 1. Once this integration is complete, we rescale the solution, r(r̃),

so that it satisfies the correct asymptotic boundary condition by exploiting the fact that if r(r̃) is

a solution to (4.99), then kr(r̃) (with k constant) is also a solution. In particular, we set

r(r̃max) =
r̃max

2


1 − m(r̃max)

r̃max
+

√
1 − 2m(r̃max)

r̃max


 . (4.104)

This condition is computed by comparing the metric coefficients of Schwarzschild in the two coor-

dinate systems considered, i.e. by comparing

ds2 = −
(

1 − 2Ms

r

)
dt2 +

(
1 − 2Ms

r

)−1

dr2 + r2dΩ2, (4.105)

and ds2 = −
(

1 − 2Ms

r̃

)2(
1 +

Ms

2r̃

)−2

dt2 +

(
1 +

Ms

2r̃

)4 (
dr̃2 + r̃2dΩ2

)
, (4.106)

where Ms is the ADM mass of the star.
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Finally, we note that once r = r(r̃) is found, ψ(r) is calculated using

ψ(r) =

√
r̃

r
. (4.107)

As mentioned above, the different TOV solutions can be parametrized by the value of the

pressure at the centre of the star or, equivalently, by the central density. Fig. 4.5 shows plots of

solution curves for TOV initial conditions. Specifically, the left plot shows the ADM masses of

the stars obtained for Γ = 5/3 (which corresponds to a non-relativistic degenerate fermi gas) and

K = 1 as a function of the base-10 logarithm of the stellar radius (we note that the radius of the

star, r̃?, has been defined somewhat arbitrarily by P (r̃?) < 10−10). The right plot shows the ADM

mass as a function of the base-10 logarithm of the central density. Such plots have been calculated

by many authors [44], [79]. Our equilibrium curves qualitatively agree with the ones calculated

by [79], and we note that direct comparison is not possible since we are using a different coordinate

system.

Figure 4.5: These plots show solution curves for TOV initial conditions, computed with Γ = 5/3

and K = 1. The figure on the left plots the ADM mass of each star against the base-10

logarithm of its radius, r̃?. The plot on the right shows the ADM mass of the stars as a

function of the base-10 logarithm of the central density. In each case, the vertical line

indicates a transition between stable and unstable stars.

We now proceed to a discussion of typical results computed using our dynamical spherically

symmetric hydro code, using TOV configurations as initial data. First, in order to demonstrate
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convergence of our code, Fig. 4.6 shows the time evolution of the rescaled central pressure, P̃ (t, 0),

from calculations at three different mesh spacings (resolutions). The initial condition for each of

the three runs is a TOV solution with a central pressure P (0) = 0.002157, and calculated using a

polytropic equation of state with K = 0.1 and Γ = 5/3. In order to perform the evolution we choose

an integration domain with outer radius at rmax = 5 (approximately 8 times larger than the radius

of the star) which we discretize with Nr = 1025, 2049, 4097 points. Note that we use ∆t = λ∆r,

with λ = 0.2 held fixed as the spatial resolution is varied, so that each run is characterized by

a single discretization scale, ∆r. This figure provides evidence that the evolution is second order

accurate since the least-squares slope, m ∼ dP (t, 0)/dt, which should be zero in the continuum

limit, is apparently O(∆r2).

Although the code is convergent, it is also quite dissipative (a result of the particular Godunov

scheme that we are using), which leads to dispersal of the stars after some time (see Fig. 4.6). This

effect seems to be more acute in the current maximal/isotropic coordinates than in the polar/areal

coordinate system used, for example, in [79]. In order to decrease the amount of dissipation

introduced by the update algorithm, we replace the original equation for the numerical flux (4.56)

by

F̂ i =
1

2

(
F
(
pR
)

+ F
(
pL
))

− ε

2

∑
|λα|ωαηα, (4.108)

where ε is a tunable parameter. Fig. 4.7 shows the evolution of P̃ (t, 0) for different values of ε. Note

that for ε = 1 we recover the usual Roe approximation for the numerical flux, whereas for ε = 0

the discretization corresponds to a particular finite-difference approximation of the hydrodynamic

equations. From the figure we can see that a decrease in ε leads to a decrease in the slope of

dP̃ (t, 0)/dt, but that it also makes the solution increasingly irregular. It is thus evident that at

least some amount of the significant dissipativity exhibited by the code can be attributed to our

particular computation of the numerical flux.

In this chapter we have described a spherical symmetric code to solve the fully coupled equations

of general relativistic hydrodynamics. This implementation has not only served as a preliminary

step in the construction of the axisymmetric code described in the following chapter, it has allowed

us to identify a new set of dynamical variables
{
D̃, S̃r, τ̃

}
with which to describe the fluid. These

variables give rise to a well-posed elliptic problem for the constraint equations in the particular

coordinate system considered. Moreover, we have also learned that our numerical method is so

dissipative that we have difficulty achieving long-term evolution of static, stable, TOV solutions.

In order to solve this latter problem, a new numerical implementation that uses adaptive mesh

refinement—so that increased grid resolution can be automatically increased where needed—is

being developed. This too will be briefly discussed in the next chapter.
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Figure 4.6: This plot shows the evolution of the central value of the rescaled pressure, P̃ (t, 0), using

fixed initial data, and three separate finite-difference resolutions: Nr = 1025, 2049 and

4097, with λ = ∆t/∆r = 0.2. The initial data are computed with a polytropic equation

of state (K = 0.1 and Γ = 5/3) and a central pressure P (0) = 0.002157. The outer

boundary of the computational domain for these calculations is rmax = 5, which is

approximately 8 times larger than the radius of the star. We see clear evidence for

convergence in the sense that the temporal variation in P̃ (t, 0) decreases as the mesh

spacing decreases. More quantitatively, the slopes m0, m1, m2 (indicated in the figure

legend) are tending to zero quadratically in the mesh spacing, as expected for a second

order accurate code.
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Figure 4.7: This figure shows the evolution of the central value of the conformally rescaled pressure,

P̃ (t, 0), for a sequence of evolutions starting from the same TOV initial data (P (0) =

0.00046, Γ = 5/3 andK = 1), but using varying amounts of numerical flux (see (4.108)).

It is clear that addition of the numerical flux tends to make the code more dissipative

(and hence more stable), and that this in turn can have a significant influence on the

long-time evolution of the stars. It is also apparent that the numerical solution becomes

increasingly irregular as the numerical flux tends to zero (again, consistent with the

stabilizing property of the numerical flux).



Chapter 5. Axisymmetric Hydrodynamics 78

Chapter 5

Axisymmetric Hydrodynamics

5.1 Introduction

In this chapter we discuss a numerical code that evolves the hydrodynamic equations coupled to

the Einstein field equations in axisymmetry. This work makes use of a previously developed code

due to Choptuik, Hirschmann, Liebling and Pretorius [19] which solves the Einstein equations in

axisymmetry with an optional scalar field matter source. The code described in [19] implements

both fully- or partially-constrained evolution (i.e. at least some of the constraint equations are

resolved at each time step to fix certain geometric quantities), and has been used to investigate the

critical collapse of a massless scalar field in axisymmetry [20].

The work described here involved the following modifications to the existing code: (1) a perfect

fluid was incorporated as a source for the geometric evolution and constraint equations, and (2)

a routine to integrate the hydrodynamic equations, using an extension of the numerical method

described in the previous chapter was included.

This chapter is organized as follows. In Sec. 5.2, a brief introduction to the 2+1+1 formalism

is given; this includes a summary of the equations that are to be integrated. Our particular im-

plementation is restricted to the case without rotation around the axis of symmetry. Nevertheless,

because one of our long-term goals is the study of rotating configurations, we present, in Sec. 5.3,

the equilibrium equations for determining initial data describing a rotating star. This system of

equations has an integrability condition that we explain in some detail, following the treatment

of Bonazzola et al. [8], but recasting their development in the framework of the 2+1+1 approach.

Some explanation concerning the numerics is provided in Sec. 5.4. Finally, results, as well as future

plans, are summarized in Sec. 5.5.

5.2 2+1+1 Formalism

We begin with a brief summary of the 2+1+1 approach, and follow with a discussion of the

equations of motion that result from the application of this approach in the context of perfect-fluid-

containing spacetimes. The 2+1+1 formalism, originally introduced by R. Geroch [34], exploits
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the fact that, by definition, there is a (spatial) axial Killing vector field in any axisymmetric

spacetime. We remind the reader that the standard approach to numerical relativity involves the

3+1 decomposition summarized in Sec. 1.1, and used in previous chapters. The 3+1 approach

involves slicing the spacetime into constant-t spacelike hypersurfaces, and describes the 4-geometry

in terms of the 3-geometry intrinsic to each hypersurface, as well as how each slice is embedded in

the full spacetime. In the 2+1+1 approach, on the other hand, the spacetime is first decomposed on

hypersurfaces orthogonal to the axial Killing vector field, ξα. In the remaining quotient spacetime,

which has 2 spatial dimensions, as well as 1 temporal dimension, a space-plus-time (i.e. 2+1)

decomposition is then performed, in complete analogy to the usual 3+1 split. From the 2+1

perspective, the net effects of the initial decomposition with respect to the “symmetry dimension”

are the appearance of additional fields (relative to what one would have for regular 2+1 relativistic

gravity), and the appearance of additional source terms in the equations of motion. These fields

and source terms are analogous to those that arise in a Kaluza-Klein decomposition (see [83] for a

review of this type of decomposition).

We now define φ to be the coordinate associated with the axial symmetry, and denote the

Killing vector field by ξα = (∂/∂φ)
α
. Paralleling the development in Sec. 1.1, where we defined

the 3-dimensional spatial metric (1.7) induced on the spacelike hypersurfaces Σt, we now define the

3-dimensional space-time metric, γαβ ,

γαβ = gαβ − 1

s2
ξαξβ , (5.1)

induced on the 3-dimensional hypersurface orthogonal to ξα, where s = ξαξ
α is the norm of the

Killing field (by symmetry, we need consider only a single 3-dimensional hypersurface in this case).

We note that the relative minus sign between the two terms in the definition (5.1) is due to the fact

that ξα is spacelike. The mixed form of γαβ is the operator that projects onto the hypersurface:

γα
β = δα

β − 1

s2
ξαξβ , (5.2)

(We again remind the reader of our index conventions: 4-dimensional spacetime tensor indices are

denoted by greek letters, 3-dimensional ones are denoted by lower case latin characters, and finally

2-dimensional spatial ones are denoted with upper case latin letters.) We reemphasize that in this

case the metric on the three dimensional hypersurface is Lorentzian, not Riemannian, as is the case

for the standard 3 + 1 decomposition. Therefore the three dimensional indexes i, j, ... now take on

both spatial and temporal values.

The covariant derivative compatible with γαβ (γab) is denoted by Da, and can be defined via

projection of the 4-dimensional spacetime covariant derivative in the usual manner. Following [20]
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the 2+1+1 Einstein equations can be written as:

DaDas = −ωaω
a

2s3
− 8π

s

(
Tφφ − 1

2
Tα

α

)
, (5.3)

D[aωb] = 8πsεab
cTcφ , (5.4)

(3)Rab =
1

s
DaDbs+

1

2
s2ZacZb

c + 8π

(
Tαβγ

α
aγ

β
b −

1

2
γabTα

α

)
, (5.5)

where we have introduced the twist vector, ωα

ωα =
s2

2
εαβλσξ

βZλσ , (5.6)

and the antisymmetric tensor, Zαβ

Zαβ = ∂α

(
1

s2
ξβ

)
− ∂β

(
1

s2
ξα

)
. (5.7)

As can be easily verified from the definition (5.6), ωa/s
3 is divergence free:

Da
(ωa

s3

)
= 0. (5.8)

Let us point out at this point that if s ≡ 1, in analogy with Kaluza’s original work in reducing 4+1

dimensions to 3+1, ξa plays the role of a Maxwell field, and then Zab is simply an electromagnetic

field strength tensor.

Equation (5.3) can be viewed as an evolution equation for the scalar quantity s. Additionally,

two of the three equations (5.4) provide evolution equations for ωρ and ωz while the third is a

constraint on those components of the twist vector. Finally, the remaining 3-dimensional field

equations (5.5) are to be further decomposed using a space-plus-time split. Performing this split,

we can then write the spacetime metric as

ds2 =

(
−α2 +

1

s2
ξ2t +HIJβ

IβJ

)
dt2 + 2ξtdtdφ + s2dφ2 + 2

(
HIJβ

I +
1

s2
ξtξJ

)
dtdxJ

+2ξIdx
Idφ+

(
HIJ +

1

s2
ξIξJ

)
dxIdxJ , (5.9)

where HAB is the 2-dimensional spatial metric, α is the lapse function, and βA is the 2-dimensional

shift vector. In order to describe the perfect fluid, and in analogy with the spherically symmetric
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case discussed in Chap. 4, we define the following variables:

D = ρ0W, (5.10)

SA = ρ0hW
2vA, (5.11)

Sφ = ρ0hW
2vφ, (5.12)

E = ρ0hW
2 − P, (5.13)

τ = E −D, (5.14)

vA =
uA

αu0
+
βA

α
, (5.15)

vφ =
uφ

αu0
, vφ =

1

s2
uφ

αu0
, (5.16)

W = αu0 =
(
1 − vAvA − vφvφ

)−1/2
. (5.17)

In terms of these quantities the hydrodynamic equations take the form of conservation laws (see

section 5.2.2). Note the non-standard, and original to our work, definitions of vφ and vφ, which are

made in order to get equations adapted to the 2+1+1 formalism. We now have all of the necessary

elements needed to discuss the equations of motion for the geometric and hydrodynamic variables.

5.2.1 Geometry

We fix our spatial coordinates by demanding that the 2-metric HAB be conformally flat, so that

HIJ = ψ4 (t, ρ, z) fIJ , (5.18)

where fIJ = diag [1, 1] is the Euclidean metric in cylindrical coordinates (ρ, z). The time coordinate

is fixed by requiring that the trace of the three dimensional extrinsic curvature, (3)Ka
a, be zero,

and where we note that

(3)K = (3)Ki
i = −ni∂i (ln s) + (2)KI

I . (5.19)

Here, ni are the components of a unit vector field orthogonal to the constant-t spacelike hypersur-

faces. Equations (5.18-5.19), along with appropiate boundary conditions completely determine α

and βI and thus exhaust the 2+1+1 coordinate freedom.

In order to improve near-axis (ρ → 0) regularity of our numerical solutions, we introduce a

(roughly) dynamically conjugate pair of variables, σ̄ and Ω̄, defined as follows:

ρσ̄ = log

(
s

ρψ2

)
, (5.20)

ρΩ̄ = −2Kρ
ρ −Kz

z. (5.21)
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These are evolved in lieu of s and its dynamical conjugate. In addition, we make the following

definitions:

σ ≡ ρσ̄, (5.22)

ω̃t ≡ ωt√γ/ρ3, (5.23)

ω̃ρ ≡ ωρ/ρ
2, (5.24)

ω̃z ≡ ωz/ρ
3, (5.25)

D̃ ≡ ψ6D, (5.26)

S̃I ≡ ψ6SI , (5.27)

S̃φ ≡ ψ6Sφ, (5.28)

τ̃ ≡ ψ6τ, (5.29)

P̃ ≡ ψ6P. (5.30)

In the equations presented below, we generally use the variable σ in order to minimize the com-

plexity of expressions; the actual variable used in our numerical scheme, however, is σ̄.

The variables ω̃t, ω̃ρ and ω̃z were originally introduced in the study [21] of a complex scalar

field, Ψ(t, ρ, z, φ), endowed with angular momentum via an ansatz

Ψ(t, ρ, z, φ) = Φ(t, ρ, z)eimφ, (5.31)

for the specific case m = 1, i.e. with

Ψ(t, ρ, z, φ) = Φ(t, ρ, z)eiφ . (5.32)

The specific powers of ρ chosen in the definitions (5.23-5.25) facilitate the construction of finite

difference schemes whose solutions have good regularity properties. In particular, for the case of

ansatz (5.32), it can be shown that the leading order behavior of the twist components is

lim
ρ→0

ωt = ρ3f(t, z) +O(ρ5), (5.33)

lim
ρ→0

ωρ = ρ3g(t, z) +O(ρ4), (5.34)

lim
ρ→0

ωz = ρ4h(t, z) +O(ρ5). (5.35)

These expansions then imply that ω̃t, ω̃ρ and ω̃z are all O(ρ) as ρ → 0—this behavior is more

readily maintained in the finite difference domain than O(ρ2), O(ρ3) etc.

An important point is that these regularity conditions—again, derived for the case of coupling

to a scalar field with the ansatz (5.32)—are more stringent than the most general condition in the
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fluid case. Forcing the twist vector to have the above leading order behavior forces the angular

momentum to go to zero quadratically, i.e.:

lim
ρ→0

S̃φ = ρ2q(t, z) +O(ρ4), (5.36)

whereas in the general case we would have S̃φ = p(t, z)+O(ρ2). This restrictive condition is chosen

so that we can use equations which are as similar as possible to those described in [19], thereby

minimizing the number of required modifications of the code.

We also note that in (5.23) a factor of
√
γ, where γ is the determinant of the 3-metric, has been

factored out so that time derivatives of the lapse do not not appear in the equations of motion.

Finally, expressions (5.26-5.30) define conformally rescaled conservative variables, paralleling the

definitions made in the spherically symmetric case (see Sec. 4.4.1).

We can now summarize the equations for the geometry. We have two equations which are

derived from the momentum constraints, and which govern the shift vector components, βρ and

βz:

2

3
βρ

,ρρ + βρ
,zz +

1

3
βz

,ρz +
1

α

[
2

3

(
βz

,z − βρ
,ρ

)
α,ρ −

(
βz

,ρ + βρ
,z

)
α,z

]
+ σ,z

(
βρ

,z + βz
,ρ

)

+
1

ψ

[
4
(
βρ

,ρ − βz
,z − ραΩ̄

)
ψ,ρ + 6

(
βρ

,z + βz
,ρ

)
ψ,z

]
− 2

3
ρα
[
3Ω̄σ,ρ + Ω̄,ρ

]
− 8

3
αΩ̄

−16π
αS̃ρ

ψ6
− αρω̃ρω̃

t

ψ12e4σ
= 0, (5.37)

βz
,ρρ +

4

3
βz

,zz − 1

3
βρ

,ρz +
1

α

[
4

3

(
βρ

,ρ − βz
,z

)
α,z −

(
βz

,ρ + βρ
,z

)
α,ρ

]
+

1

ρ

(
βρ

,z + βz
,ρ

)
+ σ,ρ

(
βρ

,z + βz
,ρ

)

+
1

ψ

[
4
(
2βz

,z − 2βρ
,ρ − ραΩ̄

)
ψ,z + 6

(
βρ

,z + βz
,ρ

)
ψ,ρ

]
− 2

3
ρα
[
3Ω̄σ,z + Ω̄,z

]
+ 2

(
βz

,z − βρ
,ρ

)
σ,z

−16π
αS̃z

ψ6
− αρ2ω̃zω̃

t

ψ12e4σ
= 0. (5.38)

The Hamiltonian constraint provides an equation for ψ:

8

ψ

[
ψ,ρρ + ψ,zz +

1

ρ
ψ,ρ + ψ,zσ,z + ψ,ρσ,ρ

]
+ 2 (σ,ρ)

2
+ 2 (σ,z)

2
+

4

ρ
σ,ρ + 2σ,zz + 2σ,ρρ

+ψ4

{
2

3
ρ2Ω̄2 +

2

3

ρΩ̄

α

(
βρ

,ρ − βz
,z

)
+

1

α2

[
2

3

(
βz

,z

)2
+

2

3

(
βρ

,ρ

)2
+

1

2

(
βρ

,z

)2
+ βρ

,zβ
z
,ρ +

1

2

(
βz

,ρ

)2 − 4

3
βρ

,ρβ
z
,z

]}

+16π

(
τ̃ + D̃

)

ψ2
+
ω̃2

ρ + ρ̃2ω̃2
z

2e4σψ8
+

1

2

ρ2ω̃t2

ψ12e4σ
= 0, (5.39)
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The slicing condition, which fixes the lapse, α, is derived from (3)Ki
i = 0 and ∂/∂t

(
(3)Ki

i

)
= 0:

α,ρρ + α,zz + α,zσ,z + α,ρσ,ρ +
1

ρ
α,ρ +

2

ψ
(ψ,ρα,ρ + ψ,zα,z)

+ψ4

{
−2

3

[
ρ2Ω̄2α+

(
βρ

,ρ − βz
,z

)
ρΩ̄
]
+

1

α

[
−2

3

(
βρ

,ρ

)2 − 2

3

(
βz

,z

)2 − 1

2

(
βz

,ρ

)2 − 1

2

(
βρ

,z

)2 − βρ
,zβ

z
,ρ +

4

3
βρ

,ρβ
z
,z

]}

−4π
α

ψ2

(
τ̃ + 3P̃ + D̃

)
− 4π

α

ψ6


 S̃2

z + S̃2
ρ

τ̃ + D̃ + P̃
+

S̃2
φ

ρ2e2σ
(
τ̃ + D̃ + P̃

)


− α

2e4σψ8

(
ρ2ω̃2

z + ω̃2
ρ

)
= 0. (5.40)

The spatial components of the twist, ωA, satisfy the following constraint, calculated from (5.4):

3ρω̃z + ρ2ω̃z,ρ − ρω̃ρ,z + 16πS̃φe
σ = 0. (5.41)

In addition, the twist components satisfy the following evolution equations, also obtained from

(5.4):

ω̃ρ,t = 16π
eσβz

ρ
S̃φ +

(
ω̃z,ρβ

z + βz
,ρω̃z

)
ρ+ 3ω̃zβ

z + βρω̃ρ,ρ + βρ
,ρω̃ρ + 2

βρω̃ρ

ρ

+
1

ψ4


−16παeσ S̃φS̃z

ρ
(
τ̃ + D̃ + P̃

) −
(
ω̃t

,ρα+ ω̃tα,ρ

)
ρ− 3ω̃tα




+ 4
ψ,ρραω̃

t

ψ5
, (5.42)

ω̃z,t = −16π
eσβρ

ρ2
S̃φ + βz

,zω̃z + βzω̃z,z +
1

ρ

(
ω̃ρ,zβ

ρ + βρ
,zω̃ρ

)

+
1

ψ4


16π

S̃φS̃ραe
σ

ρ2
(
τ̃ + D̃ + P̃

) − ω̃t
,zα− ω̃tα,z


+ 4

ψ,zαω̃
t

ψ5
. (5.43)

Expression (5.8) provides an evolution equation for ω̃t:

ω̃t
,t = −2ω̃tαΩ̄ρ+ (−ω̃z,z + 3ω̃zσ,z)α− ω̃zα,z + 2βz

,zω̃
t + βzω̃t

,z + βρω̃t
,ρ

+
1

ρ

[
(3ω̃ρσ,ρ − ω̃ρ,ρ)α− ωρα,ρ + 3ω̃tβρ

]
+
ω̃ρα

ρ2
+

6ω̃zψ,zα

ψ
+ 6

ω̃ραψ,ρ

ρψ
. (5.44)

From the definition of Ω̄ we get an evolution equation for σ:

σ,t =
1

ρ

(
βρσ,ρρ+ βzσ,zρ− ρ2αΩ̄ − βρ

,ρρ+ βρ
)
. (5.45)

The evolution equation for Ω̄ is derived from (5.3):

Ω̄,t = βρΩ̄,ρ + βzΩ̄,z +
βρΩ̄

ρ
+

1

2

(
βρ

,z

)2 −
(
βz

,ρ

)2

ρα
− α

(σ,z)
2

+ σ,zz

ψ4ρ
− α,zσ,z + α,ρσ,ρ − α,ρρ

ρψ4
− α,ρ

ρ2ψ4

− 2
(σ,ρρ+ 1)α+ 2α,ρρ

ρ2ψ5
ψ,ρ − 2

σ,zαψ,z

ρψ5
+ 2

ψ,ρρα

ψ5ρ
− 6

α (ψ,ρ)
2

ρψ6
− α

2

2ω̃2
zρ

2 + ω̃2
ρ

ρe4σψ12
+
ω̃t2ρα

e4σψ16

+ 8π
α

ψ10


 S̃2

ρ

ρ
(
τ̃ + D̃ + P̃

) −
S̃2

φ

ρ3
(
τ̃ + D̃ + P̃

)
e2σ


 . (5.46)
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Finally, an evolution equation for the conformal factor ψ can be derived from (3)Ki
i = 0:

ψ,t = βρψ,ρ +
1

3
βρ

,ρψ + βzψ,z +
1

6
ψβz

,z +
1

6
ψραΩ̄. (5.47)

This completes the set of equations that we consider for the geometry. Note that not all the equa-

tions are independent of each other. In particular, equations (5.47) and (5.55) are both equations

which can be used to update ψ. In the case of fully constrained evolution we use (5.55) for that

purpose, while (5.47) is used in a partially constrained evolution.

5.2.2 Fluids

We now consider the axisymmetric hydrodynamic equations within the 2+1+1 formalism. As

usual, the equations governing the evolution of the fluid may be derived from the conservation laws

(1.36) and (1.37). Since we want to take advantage of HRSC methods (which have been proven

to be very successful in the study of relativistic hydrodynamics) we need to cast the equations in

conservation law form. In addition, the equations need to be adapted to the 2+1+1 decomposition

of the spacetime. Since the complete derivation of the equations is somewhat lengthy, we simply

state them here; details of the derivation are included in App. C.

∂

∂t

{
eσD̃

}
+

1

ρ

∂

∂ρ

{
αρeσD̃

[
vρ − βρ

α

]}
+

∂

∂z

{
αeσD̃

[
vz − βz

α

]}
= 0, (5.48)

∂

∂t
{eσ τ̃} +

1

ρ

∂

∂ρ

{
αρeσ

[
τ̃

(
vρ − βρ

α

)
+ P̃ vρ

]}
+

∂

∂z

{
αeσ

[
τ̃

(
vz − βz

α

)
+ P̃ vz

]}

=
Sτ̃

ρ
, (5.49)

∂

∂t

{
eσS̃A

}
+

1

ρ

∂

∂ρ

{
αρeσ

[
S̃A

(
vρ − βρ

α

)
+ P̃ δρ

A

]}
+

∂

∂z

{
αeσ

[
S̃A

(
vz − βz

α

)
+ P̃ δz

A

]}

=
SS̃A

ρ
, (5.50)

∂

∂t

{
eσS̃φ

}
+

1

ρ

∂

∂ρ

{
αρeσS̃φ

[
vρ − βρ

α

]}
+

∂

∂z

{
αeσS̃φ

[
vz − βz

α

]}
= 0. (5.51)
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In the above equations we have introduced the following source terms, noting that they do not

contain any explicit derivatives of the hydrodynamical variables:

Sτ̃ =



P̃ ρe

σ +
S̃2

φ

ψ4ρeσ
(
τ̃ + D̃ + P̃

)





[
2

ψ

(
−∂ψ
∂t

+ βρ ∂ψ

∂ρ
+ βz ∂ψ

∂z

)
− ∂σ

∂t
+ βρ ∂σ

∂ρ
+ βz ∂σ

∂z

]
+

1

3
ρeσ



P̃ −

(
S̃2

ρ − 2S̃2
z

)

(
τ̃ + D̃ + P̃

)
ψ4





(
−∂β

ρ

∂ρ
+
∂βz

∂z

)
− ρeσ

ψ4

(
S̃ρ
∂α

∂ρ
+ S̃z

∂α

∂z

)
+

ρeσ S̃ρS̃z

ψ4
(
τ̃ + D̃ + P̃

)
(
∂βρ

∂z
+
∂βz

∂ρ

)
+ P̃

[
−2

3
ρ2 Ω̄αeσ + βρeσ

]
− 1

3
ρ2αeσΩ̄

(
S̃2

ρ + S̃2
z

)

(
τ̃ + D̃ + P̃

)
ψ4

+

S̃φ

ψ4ρeσ
(
τ̃ + D̃ + P̃

)
[
S̃φ
βρ

ρ
+
αρe−σ

ψ6

(
−ρω̃zS̃ρ + ω̃ρS̃z

)]
, (5.52)

SS̃ρ
=





2αρeσ

(
τ̃ + D̃ + P̃

)
ψ5

[
S̃2

ρ + S̃2
z +

e−2σ

ρ2
S̃2

φ

]
+ 6

ραeσ

ψ
P̃




∂ψ

∂ρ
+




αe−σ

ρψ4

S̃2
φ(

τ̃ + D̃ + P̃
) + αρeσP̃




∂σ

∂ρ
− ρeσ

(
τ̃ + D̃

) ∂α
∂ρ

+

ρeσ

[
S̃ρ
∂βρ

∂ρ
+ S̃z

∂βz

∂ρ

]
+ P̃ αeσ +

α

ψ4ρeσ




e−σ

ψ6
ρ2 ω̃t S̃z(

τ̃ + D̃ + P̃
) +

1

ρ

S̃φ(
τ̃ + D̃ + P̃

) − ω̃z
ρ2

ψ2
e−σ



 S̃φ, (5.53)

SS̃z
=





2αρeσ

(
τ̃ + D̃ + P̃

)
ψ5

[
S̃2

ρ + S̃2
z +

e−2σ

ρ2
S̃2

φ

]
+ 6

ραeσ

ψ
P̃




∂ψ

∂z
+




αe−σ

ρψ4

S̃2
φ(

τ̃ + D̃ + P̃
) + αρeσP̃




∂σ

∂z
− ρeσ

(
τ̃ + D̃

) ∂α
∂z

+

ρeσ

[
S̃ρ
∂βρ

∂z
+ S̃z

∂βz

∂z

]
+

α

ψ4ρeσ



−e

−σ

ψ6
ρ2 ω̃t S̃ρ(

τ̃ + D̃ + P̃
) + ω̃ρ

ρ

ψ2
e−σ



 S̃φ. (5.54)

Exploiting the fact that the coupled Einstein/hydrodynamical field equations presented in this and

the previous section are over-determined due to the general covariance of the theory (equivalently

the existence of the constraint equations), we can perform a non-trivial check of their overall
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consistency. In particular we have demonstrated that the expression resulting from application of

(∂2
ρρ + ∂2

zz) to the right hand side of (5.47) coincides with the expression obtained by taking the

time derivative of the right hand side of the Hamiltonian constraint (5.55) written in the form

ψ,ρρ + ψ,zz =

−1

ρ
ψ,ρ − ψ,zσ,z − ψ,ρσ,ρ − ψ

8

{
2 (σ,ρ)

2 + 2 (σ,z)
2 +

4

ρ
σ,ρ + 2σ,zz + 2σ,ρρ

+ψ4

{
2

3
ρ2Ω̄2 +

2

3

ρΩ̄

α

(
βρ

,ρ − βz
,z

)
+

1

α2

[
2

3

(
βz

,z

)2
+

2

3

(
βρ

,ρ

)2
+

1

2

(
βρ

,z

)2
+ βρ

,zβ
z
,ρ +

1

2

(
βz

,ρ

)2 − 4

3
βρ

,ρβ
z
,z

]}

+16π

(
τ̃ + D̃

)

ψ2
+
ω̃2

ρ + ρ̃2ω̃2
z

2e4σψ8
+

1

2

ρ2ω̃t2

ψ12e4σ



 . (5.55)

Demonstration of the equivalence of the two expressions requires the use of most of the equations

of motion. The calculation was carried out using the algebraic manipulation program, Maple [64].

5.2.3 Boundary and Regularity conditions

In order to solve the differential equations presented in the previous section, we need to provide

boundary and regularity conditions. Here we restrict attention to the non-rotating case, since

we have yet to incorporate angular momentum into our code. The boundary conditions at the

outer edges of the (finite) computational domain are a combination of approximate Sommerfeld

conditions and relations that follow from asymptotic flatness. More specifically, quantities governed

by elliptic equations, i.e. α, ψ, βA, satisfy boundary conditions of the form (see [87])

f − f∞ + ρf,ρ + zf,z = 0, (5.56)

where ψ∞ = α∞ = 1 and βJ
∞ = 0. These conditions can be derived from the known large-r fall-off

of the metric components for the case of an asymptotically flat spacetime. The variables σ̄ and Ω̄,

which are radiative in nature, satisfy approximate Sommerfeld conditions at the outer boundary

of the computational domain, i.e. asymptotically these variables are assumed to be of the form

g = g(t − r)/r, where r ≡
√
ρ2 + z2. All of the dynamical fluid variables obey outflow boundary

conditions.

Near the z-axis, regularity dictates that α, ψ, βz, D̃, τ̃ and S̃z are even functions of ρ, which

implies that their first derivatives vanish at ρ = 0. On the other hand σ̄, βρ and S̃ρ are odd

functions and thus go to zero at least linearly in ρ as ρ→ 0.
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5.3 Initial Data for Rotating Stars

Although the particular implementation to solve the relativistic hydrodynamic equations presented

in this thesis does not allow for rotating configurations, one of our long-term goals is to study the

collapse of rotating stars. For that reason the equilibrium equations for self gravitating perfect

fluid configurations with non-trivial angular momentum are presented in this section. A good

introduction to this topic is the review paper by Stergioulas [97], where the basic formalism and

the main implementations to date are discussed. Here, we will derive the equilibrium equations

directly from the dynamical equations introduced in the Secs. 5.2.1 and 5.2.2. In addition to

assuming that the time derivatives of the metric and the fluid quantities vanish, we impose the

following conditions: βA = S̃A = Ω̄ = 0 = ω̃t = 0. These choices are made to eliminate any terms

that “source” time derivatives in the evolution equations. If upon setting the time derivatives of

the dynamical variables to be zero at the initial time, we find that the evolution equations imply

that the time derivatives vanish for all times, then the spacetime is stationary and our coordinates

are adapted to the time-translational symmetry, i.e. to the timelike Killing vector field. We thus

believe that by imposing the above conditions we have not restricted the type of axisymmetric

stationary solutions that can be obtained.

From (5.50) we then get the following two equations:

P̃,ρ =


 2e−2σS̃2

φ

ρ2ψ4
(
τ̃ + D̃ + P̃

) + 6P̃


 ψ,ρ

ψ
+

e−2σS̃2
φ

ρ2ψ4
(
τ̃ + D̃ + P̃

)σ,ρ

−
(
τ̃ + D̃ + P̃

) α,ρ

α
+

1

ψ4ρ2e2σ


 S̃2

φ

ρ
(
τ̃ + D̃ + P̃

) − ρ2e−σω̃z

ψ2
S̃φ


 , (5.57)

P̃,z =


 2e−2σS̃2

φ

ρ2ψ4
(
τ̃ + D̃ + P̃

) + 6P̃


 ψ,z

ψ
+

e−2σS̃2
φ

ρ2ψ4
(
τ̃ + D̃ + P̃

)σ,z

−
(
τ̃ + D̃ + P̃

) α,z

α
+

ω̃ρ

ρψ6e3σ
S̃φ. (5.58)

Equation (5.46) gives the following condition:

− (σ,z)
2 − σ,zz − σ,z

α,z

α
− σ,ρ

α,ρ

α
+
α,ρρ

α
− α,ρ

ρα
− 2

[(
σ,ρ +

1

ρ

)
+ 2

α,ρ

α

]
ψ,ρ

ψ
− 2σ,z

ψ,z

ψ

+2
ψ,ρρ

ψ
− 6

(
ψ,ρ

ψ

)2

− 1

2

2ω̃2
zρ

2 + ω̃2
ρ

e4σψ8
− 8π

S̃2
φ

ψ6ρ2
(
τ̃ + D̃ + P̃

)
e2σ

= 0. (5.59)
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The equation for the evolution of ω̃t (5.44), yields:

(−ω̃z,z + 3ω̃zσ,z)α− ω̃,zα,z +
1

ρ
[(3ω̃ρσ,ρ − ω̃ρ,ρ)α− ω̃ρα,ρ]

ω̃ρα

ρ2
+ 6α

[
ω̃z
ψ,z

ψ
+
ω̃ρ

ρ

ψ,ρ

ψ

]
= 0, (5.60)

while the constraint equation for ω̃A gives:

3ρω̃z + ρ2ω̃z,ρ − ρω̃ρ,z + 16πS̃φe
σ = 0. (5.61)

The Hamiltonian constraint,

8

ψ

[
ψ,ρρ + ψ,zz +

1

ρ
ψ,ρ + ψ,zσ,z + ψ,ρσ,ρ

]
+ 2 (σ,ρ)

2
+ 2 (σ,z)

2
+

4

ρ
σ,ρ + 2σ,zz + 2σ,ρρ

+16π

(
τ̃ + D̃

)

ψ2
+
ω̃2

ρ + ρ2ω̃2
z

2e4σψ8
= 0, (5.62)

and the slicing condition,

α,ρρ + α,zz + α,zσ,z + α,ρσ,ρ +
1

ρ
α,ρ +

2

ψ
(ψ,ρα,ρ + ψ,zα,z)

−4π
α

ψ2

(
τ̃ + 3P̃ + D̃

)
− 4π

α

ψ6

S̃2
φ

ρ2e2σ
(
τ̃ + D̃ + P̃

) − α

2e4σψ8

(
ρ2ω̃2

z + ω̃2
ρ

)
= 0 (5.63)

must also be satisfied. Equations (5.57-5.63) are the equations of general relativistic, hydrostatic

equilibrium for a rotating perfect fluid.

Following Stergioulas [97], we introduce a new function ω(ρ, z) such that ξµ = (s2, ω, 0, 0). We

note that since our coordinates are adapted to the timelike and axial Killing vector fields, this

function has an invariant geometric meaning. Specifically, if ηα is the timelike Killing vector field,

then we have

ξµη
µ = ξt = ω(ρ, z), (5.64)

where ω is a spacetime scalar. Moreover since ξt = gtφ—again by our choice of coordinates—ω(ρ, z)

is, asymptotically, proportional to the angular momentum of the spacetime.

In terms of this new function we can then write the spatial components of the twist vector as

ω̃ρ = −2ω3/2

ρα

(
ψ2eσ

√
ω

)

,z

= −ψ
2eσ

ρα

[
4ω
ψ,z

ψ
+ 2ωσ,z − ω,z

]
, (5.65)

ω̃z =
2ω3/2

ρ3α

(
ρψ2eσ

√
ω

)

,ρ

=
2ψ2eσ

ρ2α

[
ω

ρ
+ 2ω

ψ,ρ

ψ
+ ωσ,ρ − ω,ρ

2

]
. (5.66)

These expressions for the twist vector components automatically satisfy equation (5.60). They also
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yield an elliptic equation for ω that can be derived from (5.61):

ω,ρρ + ω,zz −
(
ραψ2eσ

)
,ρ

ραψ2eσ
ω,ρ −

(
αψ2eσ

)
,z

αψ2eσ
ω,z

−2
[
σ,ρρ + σ,zz + (σ,ρ)

2 + (σ,z)
2
]
ω − 4σ,ρ

ρ
ω + 2 [α,zσ,z + α,ρσ,ρ]

ω

α
+ 2

α,ρω

ρα

−4 [ψ,ρρ + ψ,zz + 2ψ,ρσ,ρ + 2ψ,zσ,z ]
ω

ψ
− 8

ψ,ρω

ρψ
+ 4 [ψ,ρα,ρ + ψ,zα,z]

ω

αψ

−4ω
(ψ,ρ)

2
+ (ψ,z)

2

ψ2
− 16π

αS̃φ

ψ2
= 0. (5.67)

Defining ω = uρ, where u is yet another function that satisfies limρ→0 u(ρ, z) = ρu1(z)+O(ρ3), we

get

u,ρρ + u,zz +

(
u

ρ

)

,ρ

−
(
αψ2eσ

)
,ρ

αψ2eσ

(ρu),ρ

ρ
−
(
αψ2eσ

)
,z

αψ2eσ
u,z − 2

[
σ,ρρ + σ,zz + (σ,ρ)

2
+ (σ,z)

2
]
u

−4

ρ
σ,ρu+ 2 [α,zσ,z + α,ρσ,ρ]

u

α
+ 2

α,ρ

α

u

ρ
− 4 [ψ,ρρ + ψ,zz + 2ψ,ρσ,ρ + 2ψ,zσ,z]

u

ψ
− 8

ψ,ρ

ψ

u

ρ

+4 [ψ,ρα,ρ + ψ,zα,z]
u

αψ
− 4

u

ψ2

[
(ψ,ρ)

2
+ (ψ,z)

2
]
− 16

αS̃φ

ρψ2
= 0. (5.68)

We now have a complete set of equilibrium equations. Naively, we might think that if we provide

the form of the angular momentum function S̃φ we could integrate equations (5.57), (5.58), (5.59),

(5.62), (5.63) and (5.68), and obtain an equilibrium configuration. In practice, however, not all

functions S̃φ would produce a solution. In the next section we investigate the possible forms for

the rotation function.

5.3.1 Integrability Condition

The equations presented in the previous section have an integrability condition. In particular we

have two equations that could be used to compute the pressure—namely (5.57) and (5.58). For our

system of equations to be consistent, it is clear that we must obtain the same result irrespective of

which of the two is used. This condition restricts the allowable functional form of S̃φ. In theory,

we should be able to obtain the appropriate integrability condition, i.e. the condition on S̃φ, by

demanding that the derivative with respect to z of the right hand side of (5.57) agrees with the

derivative with respect to ρ of the right hand side of (5.58). This specific procedure is somewhat

difficult to carry through, and has not proven to be very illuminating. Instead we will follow

Bonazzola et al. [8], but write their results in terms of the variables used in the other sections of

this chapter.

The four velocity for the case of a stationary star can be written as

uµ = (uφ,W/α, 0, 0), (5.69)
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where W is defined by equation (5.17) and α is the lapse function.

Starting from

uφ = gφµu
µ = ξt

W

α
+ s2uφ = W

Sφ

ρ0hW 2
, (5.70)

and assuming that ξt = ω (as was done previously), uφ can be expressed in terms of the conservative

variables as follows:

uφ =
1

s2

(
Sφ

ρ0hW
− ω

W

α

)
. (5.71)

Again, following [8], this allows us to define a quantity Ω? (not to be confused with Ω̄):

Ω? =
uφ

ut
=

1

s2

(
αSφ

ρ0hW 2
− ω

)
=

1

ρ2ψ4e2σ


 αS̃φ(

τ̃ + D̃ + P̃
) − ω


 . (5.72)

In terms of Ω?, equations (5.57) and (5.58) take the compact form

ψ6W 2

(
τ̃ + D̃ + P̃

)P,A = −α,A

α
+
W,A

W
− W 2S̃φ

α
(
τ̃ + D̃ + P̃

)Ω?
,A. (5.73)

The above expressions can be further simplified by taking into account the following relationship,

ψ6W 2

(
τ̃ + D̃ + P̃

) =
1

ρ0 (1 + ε) + P
=

1

ρ0h
=

1

ρH + P
, (5.74)

where we have used definitions (5.26-5.30) and the definition of ρH introduced in equation (1.33).

At least formally, we can define the following functions:

H =

∫
dP

ρH (P ) + P
, (5.75)

F = − W 2S̃φ

α
(
τ̃ + D̃ + P̃

) . (5.76)

This allows us to write (5.73) in the following compact form:

(H + lnα− lnW ),A = −F Ω?
,A. (5.77)

It is now easy to see that the demand that the mixed derivative of the left hand side of this

expression give the same answer independently of the order of differentiation can be expressed as

a condition on the variables appearing in the right hand side, namely

F,zΩ
?
,ρ −F,ρΩ

?
,z = 0. (5.78)

In [8] it is argued that the left hand side of (5.78) can be viewed as the Jacobian of the transfor-

mation between (ρ, z) to (F ,Ω?). The fact that the Jacobian is zero then implies that there exists

a function Φ that relates F and Ω?, i.e. that:

Φ (F ,Ω?) = 0. (5.79)

In this case two possibilities exist:
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• If Φ,F = 0, then Φ(Ω?) = 0 expresses the constancy of Ω?; this case is called rigid rotation.

• If Φ,F 6= 0, then there is a relationship between F and Φ that can be written as F = F (Ω?);

this case is called differential rotation.

In the case of differential rotation we can calculate the value of Ω? in different parts of the star by

fixing the form of F(Ω?) and then solving

F (Ω?) +
s2
(
s2Ω? + ω

)

α2s2 − (s2Ω? + ω)
2 = 0 (5.80)

for Ω?. In both cases (5.77) has a first integral. For the case of rigid rotation we have

H (ρ, z) + ln
( α
W

)
(ρ, z) = k, (5.81)

while for differential rotation the integral is

H (ρ, z) + ln
( α
W

)
(ρ, z) +

∫ Ω?(ρ,z)

Ω?
0

F(Ω?)dΩ? = k. (5.82)

In both instances k is a constant. Finally let us point out that the Newtonian limit (ρΩ? � 1) of

case (5.80) takes the form

F (Ω?) = −ρ2Ω?, (5.83)

which implies that Ω? = Ω?
(
ρ2
)
—hence the terminology “differential rotation”.

5.4 Numerics

In this section we briefly describe several aspects of our numerical implementation. We start with a

discussion of the treatment of the geometric equations, follow with a description of the integration

of the hydrodynamic equations, then end with a discussion of issues arising from the coupling of

the two systems of PDEs. To date we have only implemented the case of no rotation and therefore

will restrict attention to the case S̃φ = ω̃i = ξi = 0 for the remainder of the thesis. The code has

been implemented using RNPL (Rapid Numerical Prototyping Language) [65] with some specific

routines written in Fortran 77.

The numerical approximation used for the geometric equations is explained in detail in [19] and

[87]. It is based on second order centred finite difference approximations on a uniform grid in the

(ρ, z) plane. More specifically the geometry is computed on a grid of points (see Figure 5.1) denoted

by (ρi, zj) where i = 1, 2, ..., Nρ, j = 1, 2, .., Nz such that ρi+1 = ρi +∆ρ and zj+1 = zj +∆z. Here

∆ρ and ∆z constants and ρ1 = 0, ρNρ = ρmax and z1 = zmin, zNz = zmax. In practice, we always

compute with ρmax = −zmin = zmax, so that ∆z = ∆ρ = h (which implies Nz − 1 = 2(Nρ − 1)). In
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addition we choose a discrete time step ∆t = λh, where the so-called Courant factor λ—which must

generally satisfy λ < 1/
√

2 for stability of our numerical scheme—is held constant when we vary

the spatial discretization scale, keeping the initial data fixed. Thus, the entire numerical scheme

is characterized by the single discretization scale, h, which facilitates convergence testing of the

results. The fluid is solved using a finite volume approximation which considers finite difference

cells C
n+1/2
i+1/2 j+1/2 centred at (ρi+1/2, zj+1/2).

As we have discussed in Sec. 5.2.1, when we perform a fully constrained evolution the only

geometric evolution equations are those for σ and Ω̄, (5.45) and (5.46) respectively. These are

discretized using a Crank-Nicholson scheme and second order centred differences for the spatial

derivatives as in Chap. 2. We also again apply Kreiss-Oliger style dissipation [52] in order to damp

high frequency components which cannot be properly represented at any given resolution, and which

tend to result in instabilities in the code, especially near the z-axis. When we perform partially

constrained evolution, we update ψ using (5.47) rather than via the Hamiltonian constraint. This

evolution equation is also discretized using a Crank-Nicholson scheme.

Along with the evolution equations, discrete versions of the constraints (5.37-5.55) and the

slicing condition (5.40) must be solved at each time step. These equations, which we assume are

always elliptic, are discretized using second order centred finite difference approximations of the

spatial derivatives. The resulting discrete systems are solved using an FAS (Full Approximation

Storage) multigrid algorithm [9] to determine the advanced values of the discrete lapse and shift

components, and, in the case of fully constrained evolution, the discrete conformal factor. The

choice of multigrid is motivated by the fact that it is unique among general methods for the

solution of finite-differenced non-linear elliptic systems in being able to produce a solution in O(N)

time, where N is the number of points in the spatial discretization (N = NzNρ in our case).

Multigrid algorithms are based on the observation that the decades-old technique of relaxation,

while not a very efficient solver of discrete elliptic equations, is often a very efficient smoother of

the equations. In particular, for the purposes of illustration, we consider a (scalar) elliptic problem

written in the form

Lu = f , (5.84)

where L is some elliptic differential operator (possibly nonlinear), u is the continuum solution, and

f is a source function. (Note that u and f are functions of some number of independent variables;

the multigrid technique can be applied in any number of spatial dimensions. Also, although the

treatment of boundary conditions is an important issue, we will not consider it here since we

only wish to illustrate the key ideas underlying the method.) We discretize (5.84) at some grid
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resolution, h, as

Lhuh = fh . (5.85)

Here, Lh is the discrete (difference) operator that approximates L, while uh and fh are the discrete

solution and source, respectively. We note that at a given resolution, (5.85) will comprise N

algebraic equations, where N is the number of grid points, and that we will generally be able to

naturally associate one unknown (component of uh) and one equation with any given grid point.

We now consider the specific case of Gauss-Seidel relaxation, which, as with all relaxation

algorithms, proceeds iteratively. Each iteration, or relaxation sweep, consists of a visit to each grid

point (in some prescribed order), where the value of the discrete unknown associated with that

point is modified so that, instantaneously, its equation is satisfied. Denote by ũh the approximate

solution of (5.85) at any stage of the iteration (so that, assuming that the relaxation converges,

ũh → uh in the limit of an infinite number of sweeps). Then we define the residual, r̃h by

r̃h ≡ Lhũh − fh , (5.86)

and the solution error ẽh by

ẽh ≡ ũh − u. (5.87)

By the observation noted above, (Gauss-Seidel) relaxation is generally not very efficient at anni-

hilating r̃h and ẽh, but it is effective at smoothing (i.e. annihilating high frequency components)

those quantities. This brings us to another key ingredient of multigrid algorithms—from which

their name derives—and that is the use of a sequence of ever-coarser grids that are employed to

accelerate the solution process.

In particular, once the residual (5.86) has been sufficiently smoothed (this generally requires

only a few sweeps, typically 2-4), we can sensibly transfer the discrete problem to a coarser grid,

which, from considerations of optimal efficiency, as well as programming convenience, is almost

always characterized by a discretization scale 2h. Specifically, on the coarse grid we pose the

problem

L2hu2h = f2h + τ̃2h
h , (5.88)

where τ̃2h
h is computed from

τ̃2h
h ≡ L2hI2h

h ûh − I2h
h Lhûh , (5.89)

and I2h
h is a so-called restriction operator that transfers a fine grid function to the coarse grid. It

can be shown that τ̃2h
h is an estimate of the truncation error, τ 2h

h , of the solution of the coarse grid

discrete system L2hu2h = f2h relative to the fine grid problem (5.85). τ2h
h has the property that

the solution, û2h, of

L2hû2h = f2h + τ2h
h , (5.90)
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is precisely the solution of the fine grid problem (5.85), transferred to the coarse grid, i.e.

û2h = I2h
h uh . (5.91)

Thus, τ2h
h (and thus also the approximation τ̃ 2h

h ) corrects the right hand side of a coarse grid

problem, allowing—in principle—solutions with fine grid accuracy to be computed on the coarse

grid.

The coarse problem (5.88) is significantly less costly to solve than the original fine grid equa-

tions (5.85), since in d dimensions it involves N/2d unknowns. More importantly, however, we can

apply the above strategy recursively. That is, we perform relaxation sweeps of (5.88) until the

corresponding residuals and solution errors are smooth, then transfer to a grid with resolution 4h

etc., until we eventually are using a grid that has so few points, that actually solving the discrete

equations is very cheap, even if we use a direct method (i.e. simultaneous solution of all of the

algebraic equations) rather than relaxation.

Once the coarsest-level problem is solved, we begin to work our way back to the fine grid,

via a sequence of coarse-to-fine grid transfers. In particular, having (approximately) solved a 2h

problem, yielding ũ2h, we update the finer-grid unknown, ũh using

ũh := Ih
2h

(
ũ2h − I2h

h ũh
)

(5.92)

where Ih
2h is a so-called prolongation operator that transfers coarse grid functions to a fine grid.

After each of these updates, we again apply a few relaxation sweeps to (5.85) in order to kill any

high frequency components produced by the prolongation operation. Once we are back on the fine

grid, we will have completed what is known as a V -cycle, and will generally find that the norm

of the residuals and solution errors will have been reduced by some constant factor. Additional

V-cycles can then be applied as needed in order to drive the residual below some convergence

threshold.

This completes the description of the basic operation of a multigrid method. The particular

choice of restriction and propagation operators, and some other specifics of the algorithm used in

the axisymmetric code are explained in [19],[87].

We now move on to the hydrodynamic equations, (5.48-5.50), which are integrated via a finite

volume approximation similar to the one described in Chap. 4. Note that these equations are of

the type:
∂

∂t
(eσρq) s+

1

ρ

∂

∂ρ
(αρeσF ρ) +

∂

∂z
(αeσF z) = S. (5.93)

In order to derive a finite volume approximation, the equations are integrated over a control volume

defined by C
n+1/2
i+1/2 , j+1/2 ≡ (tn, tn+1) × (ρi, ρi+1) × (zj , zj+1), as shown in Fig. 5.1.
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In solving the hydrodynamical equations, we also decided to implement a generalization of the

HRSC method explained in Sec. 4.3.2. With this approach an approximate Riemann problem is

solved at each cell interface to find an expression for the numerical flux. More specifically, the two

fluxes F ρ and F z are evaluated via Roe approximations of the type given by expression (4.56). In

turn, the Roe fluxes depend on the characteristic structure of equations (5.48-5.50) as described

in App. D. The calculation of the fluid quantities at cell boundaries is performed using a one

dimensional minmod reconstruction, also described in 4.3.2.

∆

∆

z

z

ρ

ρ

(i+1, j)

(i+1, j+1/2)

(i+1, j+1)

(i, j) (i+1/2, j)

(i, j+1/2)

(i, j+1) (i+1/2, j+1)

(i+1/2, j+1/2)

Figure 5.1: This figure shows a detail of the projection onto the ρ-z plane of the finite-volume

(cell-based) grid used in the numerical solution of the coupled Einstein/hydrodynamical

equations in axisymmetry. Note that the fluid variables are computed at points denoted

by (i + 1/2, j + 1/2). The ρ fluxes are computed at a location (i, j + 1/2), and the z

fluxes at (i+1/2, j). Geometric variables, on the other hand, are computed at locations

labelled with open circles. In order to obtain values of the fluid variables at these last

locations, or to compute values of the geometric variables at the cell centres, second

order (bi-linear) interpolation is used.

As was the case in spherical symmetry, because of our choice of (topologically) cylindrical

coordinates, one of the fluid equations contains a term which is explicitly divergent as ρ approaches

zero. In particular one contribution to the ρ flux in (5.50), which governs Sρ, contains a term

P/ρ. This term is explicitly canceled, before discretization, by a corresponding term in the source
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of (5.50).

Finally, the way in which we perform the update of the coupled Einstein/hydrodynamical

variables to advance the discrete solution from time t to time t+ ∆t is as follows.

1. Initialize the values of the geometry and the fluid at t+∆t (advanced values) to the previously

computed values at time t (retarded values).

2. Improve the estimate of the advanced geometric variables governed by evolution equations

by performing a Crank-Nicholson iteration.

3. Improve the estimate of the advanced constrained geometric variables by performing a multi-

grid V-cycle on the system of constraint equations.

4. Improve the advanced fluid quantities, qn+1, using a two step method analogous to that

described in Sec. 4.3.2.

5. Repeat steps 2-4 until the the norm of the change in qn+1, the norm of the residual of the

constraints, and the norm of the residuals of the Crank-Nicholson iteration are below some

tolerance.

5.5 Results

In order to test the validity of our numerical implementation, we have performed various tests.

Setting all the metric coefficients to be those of Minkowski spacetime—namely α ≡ 1, βA ≡ 0,

σ̄ ≡ 0, ψ ≡ 1—we have tested the part of the code that solves the hydrodynamic equations.

Specifically, we have verified that the code is able to properly evolve discontinuous initial data,

with surfaces of discontinuity defined by ρ = const., z = const. or ρ + z = const. We note this

last case (oblique discontinuity) is particularly non-trivial, since our reconstruction to compute the

numerical fluxes is one-dimensional at each stage (i.e. at each time step reconstruction is performed

along lines of constant ρ and constant z independently).

In addition, convergence tests of smooth initial data have shown second order convergence (see

Fig. 5.2), in regions of the computational domain removed from the extrema of the fluid variables.

Due to the specifics of the reconstruction procedure explained in Sec. 4.3, the code is, as expected,

only first order accurate in the vicinity of local extrema of the solution.

Still restricting to the case of flat spacetime, we have been able to evolve more complicated

situations. One interesting scenario is the onset of a Kelvin-Helmholtz instability (Figs. 5.3 and

5.4). This type of instability occurs at a tangential discontinuity between two different states of

a fluid (or two different fluids) which are sliding parallel to the discontinuity [54]. An example
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Figure 5.2: Here we show `2 norms of the estimated solution errors computed at two different

levels of discretizations (mesh spacings h0 = 10/96 and h1 = h0/2 = 10/128). Time

development of the estimated errors is shown for the pressure, P̃i+1/2 j+1/2, on the left,

and for the conformal factor, ψij , on the right. The solution errors (at each level of

discretization) are themselves computed via subtraction of values calculated using two

discretization levels, i.e. as fk − fk+1, k = 0, 1, where fk is the solution computed

on a grid with cell spacing hk, and hk+1 = hk/2. For a second order scheme, these

differences should be quadratic in the mesh spacing, h, as h → 0, so that when we

reduce the grid spacing by 2, the differences should decrease by roughly a factor of

4. Thus, we multiply the `2 norm of the finer-grid error estimate by 4 to show more

explicitly that our code is second order convergent. We note that the results plotted here

came from the evolutions described in more detail in Fig. 5.5 and accompanying text.

We also note that at t ∼ 3 the pressure becomes discontinuous and we can no longer

expect P̃i+1/2 j+1/2 to be second order convergent. On the other hand, the conformal

factor ostensibly remains second-order convergent throughout the evolution (only the

early stages are depicted here), which is a manifestation of the facts that: (a) the

constraint equation, being elliptic, tends to smooth discontinuities in its sources; and

(b) (related) the gravitational field (particularly the spherical or monopole piece) tends

to be responsive to extended, rather than localized, distributions of matter/energy.

However, in principle, if we could go to the h→ 0 limit, we would necessarily find that

the conformal factor would only be twice differentiable at the locations of shocks, and

hence we would observe “loss of convergence” in the geometric variables as well.
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of this effect is the generation of waves on the surface of a body of water due to the wind. In

our case we have simulated the contact discontinuity (meaning that the pressure remains constant

across the discontinuity) of two coaxial cylinders of fluid. The fluid in the inner cylinder is initially

at rest with constant density DI , while the fluid in the inner cylinder is initially moving with a

uniform velocity in the z direction—parallel to the discontinuity—and has a constant density DO,

with DO < DI . (We have not simulated any situations where any of the fluid is rotating about the

symmetry axis). In order to excite the instability, we deform the initial contact discontinuity, so

that it has a small amount of curvature along the z-axis. Fig. 5.3 shows a schematic of the initial

setup.

Fig. 5.4 shows snapshots, from simulations using the same initial data, but two different reso-

lutions, during the evolution of the instability. For the specific case shown here, the initial speed

of the fluid is v = 1/2. The initial data has been specified using a polytropic equation of state

P = Kρ0
Γ (like the one used in 4.4.2), with Γ = 3/2 throughout the fluid, but with distinct values

of K chosen for the two cylinders. The initial values of D in the inner and outer cylinders are

DI = 1.0 and DO = 0.115 respectively. The limits of the computational domain are ρmax = 20,

zmin = −zmax = −10, and the two discretizations used to generate the results shown in Fig. 5.4

are ∆ρ = ∆z = 20/256 (top figure) and ∆ρ = ∆z = 20/512 (bottom figure) (for these particular

simulation we have not adopted the usual choice ρmax = zmax, explained in Sec. 5.4.) Full MPEG

animations of this simulation can be viewed at [109].

In the continuum limit, the fluid should become totally turbulent due to the lack of viscosity

in our hydrodynamical equations of motion. In practice, there is effective numerical viscosity, due

to the fact that the equations are always solved using a finite mesh spacing, but also since, as we

have seen in the spherically symmetric calculations, the Roe numerical flux adds dissipation. We

find, however, that as the discretization scale h is reduced, our simulations always tend to develop

features all of the way down to the particular mesh size being used.

We have also performed some evolutions of the hydrodynamic equations fully coupled to gravity.

Figs. 5.5 and 5.6 show results from the evolution of a weakly self-gravitating pulse of fluid. The

initial conditions in this case are time symmetric with initial distributions of D̃ and τ̃ given by

D̃(0, ρ, z) = AD exp
{
−
[
(ρ− 3)

2
+ z2

]}
, (5.94)

τ̃ (0, ρ, z) = Aτ exp
{
−
[
(ρ− 3)

2
+ z2

]}
, (5.95)

with AD = 1.0 × 10−2 and Aτ = 1.0 × 10−2. This implies that the initial fluid distribution is

toroidal in shape. For the runs described below, the computational domain had ρmax = 10.0,

zmax = −zmin = 10.0, Nρ = 96, Nz = 192, and we used an adiabatic index Γ = 3/2. The

initial maximum value of the pressure is P̃0 = 4.97 × 10−3. In Fig. 5.5 we can see that the



Chapter 5. Axisymmetric Hydrodynamics 100

ID

DO

v

Figure 5.3: Geometry of the system used to study the Kelvin-Helmholtz instability. Initially, the

system state describes two constant-density coaxial fluid cylinders, separated by a con-

tact discontinuity. The inner, more dense cylinder (with D = DI) of fluid starts at rest

in the lab frame, while the outer, less dense cylinder (with D = DO) has a uniform

velocity in the z-direction v (along the axis of symmetry). Although not shown in this

schematic, in order to trigger the instability the initial discontinuity is perturbed, and

is thus not everywhere parallel to the z-axis (or, therefore, to the velocity of the fluid

in the outer cylinder).
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Figure 5.4: This figure shows t = const. snapshots (zooming in close to the surface of discontinuity)

from simulations of the Kelvin-Helmholtz instability discussed in the text, starting from

the same initial conditions, but using two different resolutions: h = ∆r = ∆z = 20/256

(top) and h = ∆r = ∆z = 20/512 (bottom). Variations in the grey scale highlight

regions with different values of D (white to black, low to high density). We can see

how the dynamics is highly dependent on the cell spacing, h, which, among other things,

sets the amount of numerical viscosity in the discrete equations.
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pulse immediately begins to disperse due to hydrostatic pressure. A rough estimation of the

force density due to hydrostatic pressure gives P̃0/δ ≈ 5 × 10−3 where δ = 1 is the width of the

pulse given by (5.94) and (5.95). On the other hand the gravitational force can be estimated by

MP̃0/((Γ − 1)ρ2) ≈ 8 × 10−4 where the mass M is approximated using the spherical symmetric

formula M ≈ 2(ψ0 − 1), ρ ≈ 3 is the position of the centre of the pulse and ψ0 ≈ 1.1 is the initial

maximum of the conformal factor shown in Fig. 5.6. This calculation shows that the force due to

hydrostatic pressure is about an order of magnitude more important than the gravitational force

at the initial time.

The ingoing part of the fluid then propagates towards the axis and produces a shock wave— all

the variables describing the fluid become discontinuous—that subsequently propagates outwards.

For these initial conditions the fluid eventually completely disperses. Fig. 5.6 shows the evolution of

the conformal factor from the same simulation. Note that the self-gravitation of the fluid remains

very small throughout the evolution; for example, maxt,ρ,z ψ(t, ρ, z) ≈ 1.1, which is close to the

Minkowskian value, ψ ≡ 1.0, and which is attained at t = 0.

In Fig. 5.7 we show another time-symmetric simulation, with initial profiles for D̃ and τ̃ again

given by (5.94) and (5.95), but this time with AD = 5.0× 10−2 and Aτ = 5× 10−2, i.e. with initial

amplitudes for the dynamical variables that are 5 times larger than for the weak field simulation

just described (maxρ,z P̃ (0, ρ, z) = 2.5× 10−2).

Compared to the weak-field case, the evolution is now quite different. The first thing to notice

is that, with respect to coordinate time, the fluid evolution unfolds more slowly. This is probably

at least partly a coordinate effect, due to the spatio-temporal variation of the lapse function. For

example, the minimum value of the lapse at the initial time is minρ,z α(0, ρ, z) ≈ 0.8 while at

the end of the evolution we have minρ,z α(0, ρ, z) ≈ 0.3. The second thing that is apparent from

Fig. 5.7 is the fact that the fluid pulse does not spread out due to its pressure in this case. Rather,

the fluid is apparently compressed—producing a more compact configuration—and we believe that

this is a direct consequence of the self-gravitational interaction. At late stages in the evolution,

this concentrated configuration moves closer to the axis, again, probably due to gravitational self-

interaction. Shortly after the time shown in the final frame of the figure, the solver for the primitive

variables fails (produces unphysical values) and the evolution cannot proceed.

At the current time, the code is prone to numerical instabilities, tending to produce unphysical

negative pressures and speeds > 1 in many situations. We believe that at least some of these

problems are due to inadequate grid resolution. The maximum resolution that we can obtain is

currently constrained by the memory size of the computers on which we run the simulations, as well

as on the position of the outer boundaries of the computational domain. In particular, since the

boundary conditions explained in Sec. 5.2.3 are only valid for large values of r ∼
√
ρ2 + z2, if we do
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Figure 5.5: Time evolution of a weakly self-gravitating pulse of perfect fluid. Here, the initial

conditions are time symmetric (i.e. zero initial velocity), with initial profiles for D̃

and τ̃ given by (5.94)-(5.95). The computational domain extends from ρmin = 0 to

ρmax = 10 and from zmin = −10 to zmax = 10. The figure shows the time development

of the pressure P̃ (t, ρ, z) (z axis roughly horizontal in the plots) which has an initial

maximum amplitude P̃0 = 4.97 × 10−3. The evolution shows how the pulse initially

spreads out due to pressure forces. At t ≈ 5.0, the ingoing part of the pulse reaches

the axis of symmetry and subsequently “self-reflects”, producing a shock that marches

outwards, and which is most clearly visible in the t = 14.17 and t = 17.08 frames.
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Figure 5.6: This figure shows the time evolution of the conformal factor ψ(t, ρ, z) for the weakly

self-gravitating pulse described in the text (see also Fig. 5.5). The maximal value,

maxt,ρ,z ψ(t, ρ, z), is about 1.1 and occurs at the initial time. Note that towards the

end of the evolution, when the fluid is dispersing to large distances, the conformal

factor tends to its Minkowski value, ψ = 1.0.
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not set the boundaries at large enough distances, we can also get unphysical results. For example

the conformal factor, ψ(r, t) may actually start growing, rather than falling off, as r → rmax.

Figure 5.7: Evolution of a strongly self-gravitating pulse of fluid. Initial conditions are the same

as that for the evolution showed in Figs. 5.5 and 5.6 but with amplitude parameters

AD and Aτ two orders of magnitude larger than in the weak-field case. Note that the

vertical scale here is very different from that of Fig. 5.5; in particular, in this case,

maxρ,z P̃ (0, ρ, z) = 2.5 × 10−2. We can see how the pressure evolution in this case is

very different than that in the weak field simulation. Here the dynamics is apparently

dominated by gravity. Instead of dispersing due to its pressure, the fluid compresses as

a result of its self-gravity. At later times the torus of fluid collapses towards the axis,

and shortly thereafter the calculation of the primitive variables produces unphysical

results, and the simulation must be stopped.

Despite our concerns about inadequate resolution, and the memory limitations we encounter at

the current time when trying to compute at higher resolutions, we wish to stress that, ultimately,

additional memory alone is very unlikely to solve the problems we face. For example, one specific

long-term goal of this research is to study the critical gravitational collapse of perfect fluids in

axisymmetry, including the case of rotating fluids. As explained in Sec. 1.2, In the corresponding

spherically symmetric problem it was found that for certain choices of initial data families, the

critical solutions are self-similar (see Evans and Coleman [29] and Neilsen and Choptuik for the

study of the collapse of ultrarelativistic fluids, Hawke [46] for the collapse of the same type of
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fluids in cosmological settings, and Noble [79] for the critical study of the collapse of perfect fluids

and, in particular, critical behavior associated with TOV solutions). This strongly suggests that,

in the axisymmetric case, evolution of similar types of initial data will also generate structures

on all scales, accompanied by the development of large gradients in the dynamical variables. The

only plausible way of attacking this problem in a computationally efficient manner is through the

development of some sort of mesh refinement strategy to enable resolution to (locally) increase or

decrease as necessary.

To that end, we have begun the development of a spherical symmetric code that refines the

mesh adaptively as required. We are considering different possibilities for the mesh refinement cri-

terion. One possibility is to use a Richardson-type estimate (i.e. calculating differences of solutions

computed at resolutions hk and kk+1 = hk/2 as in the convergence tests discussed previously)

for the truncation (solution) error; when this estimate exceeds a specified threshold we refine the

mesh. This procedure has been used successfully by Hawke [46], in his study of relativistic fluids,

and by LeVeque in [59]. On the other hand, due to the non-analyticity of the solutions (and the

general non-smoothness of solutions computed using the HRSC methods employed in this thesis)

these estimates are not very accurate and tend to be numerically irregular. This has motivated us

to consider the correction to the numerical flux given by equation (4.56) as a measure of the need

for refinement. Specifically when the following function:

1

2

∑
|λα|ωαηα (5.96)

(the different quantities in the above expression are defined in Chap. 4) goes above threshold, we

refine. Our current implementation uses a global time step, ∆t, on all levels, fixed by the finest

level of spatial refinement: ∆t = λ∆rfinest. The global time-stepping procedure simplifies the

treatment of internal boundaries between grids with different mesh spacings, relative to methods

such as that proposed by Berger and Collela [6]. We also point out that we have found the use of

ENO (Essentially Non Oscillatory) [15] interpolation crucial in our initialization of (new) fine grid

values from coarse grid values.

We also plan to implement one or more approximations to the numerical flux, other than the

Roe approximation described above. We are especially interested in seeing whether the use of

an alternate solver helps with some of the strong-field problems that we have encountered in our

collapse calculations. In particular, we are considering the use of the Marquina approximation [22]

which has been compared with the Roe solver by Hawke [45]; Hawke found that the Marquina

method almost always performed better than the Roe one. Another place for improvement is the

reconstruction of the conservative variables at the cell interfaces, where we plan to implement

interpolations other than minmod.



Chapter 5. Axisymmetric Hydrodynamics 107

Finally, we have also tried to implement a finite-difference based algorithm to solve the equilib-

rium equations for rotating configurations, Sec. 5.3. Our first approach involved the use of multigrid

methods of the type described in Sec. 5.4. However, because of our inability to set proper regular-

ity conditions on the axis, this approach has not been successful. The fact that most of the codes

developed to date to find rotating equilibrium configurations are based on some kind of pseudo-

spectral method (see [97] and references within) has inspired us to adopt such a approach. With

a spectral technique, regularity conditions can be satisfied by choosing a set of basis (expansion)

functions with the appropriate regularity behavior. We plan on developing such an algorithm in

the near future.
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Chapter 6

Conclusions and Directions for

Future Research

In this thesis we have considered three different problems in numerical relativity. In these projects

we have studied self-gravitating dynamics of three distinct types of matter and/or energy: scalar

fields; vacuum gravitational energy; and perfect fluids. In two of the chapters, namely Chap. 2

and 4, we studied systems of equations that, due to our restriction to spherical symmetry, were

effectively 2-dimensional, i.e. where the dynamic variables depended on 1 spatial dimension as well

as time. In Chap. 3 and 5, on the other hand, the problems were effectively 3-dimensional, with

variables dependent on 2 spatial dimensions and time.

We also made use of 2 different formalisms that cast Einstein field equations in a form suitable

for treatment as a Cauchy problem: the so called 3+1 approach and the 2+1+1 formalism.

In terms of the numerical analysis, we employed a variety of discretization techniques and

solution algorithms in our studies. These included standard centred finite-difference approaches for

PDEs of evolution type (scalar and gravitational fields), Godunov/finite-volume/HRSC techniques

for the hydrodynamical evolution equations, and multigrid algorithms for the solution of discretized

elliptic equations arising from the Einstein constraints.

In the remainder of this chapter we summarize our main conclusions. Firstly, in Sec. 6.1, we

summarize the results of the collapse of scalar field with a particular potential, as described in

Chap. 2. A summary of results from the evolution of a 5-D black string, which we discussed in

Chap. 3 follows. Finally we conclude with some of our findings in relativistic hydro.

As a continuation of this thesis we plan to continue our numerical studies of the strong field

regime in the coupled Einstein equations/hydrodynamical equations. Specifically we plan to incor-

porate adaptive mesh refinement into our axisymmetric code.
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6.1 Scalar Field Collapse with Angular Momentum

In Chap. 2 we studied the critical collapse of a scalar field in spherical symmetry. In this collab-

orative effort [23], the equations of motion for a massless scalar field included a term that was

characterized by an angular momentum parameter, l, and that could be viewed as providing an

angular momentum barrier. The additional term is analogous to the angular momentum barrier in

the 1-dimensional reduced mechanics problem of a particle moving in a central potential.

Following [17], we studied the threshold of black hole formation in our model through parame-

terization of the initial data with a single parameter, p. We found evidence for an entire family of

critical solutions—one for each value of l—and, as was the case for the original study [17] (equiva-

lent to the case l = 0), the threshold solutions were found to be discretely self-similar. The critical

solutions were thus characterized by two different exponents: (1) ∆l, which is the so-called echoing

exponent, and which is actually a period when the solution is expressed in coordinates adapted to

the scale-symmetry (self-similarity); and (2) a scaling exponent, γl, that describes how dimension-

ful quantities, such as the black hole mass, scale with parameter-space distance from criticality,

(p − p?), as p → p?. We found that both exponents decreased with l in an almost exponential

manner.

Moreover, we found that as l was increased, the time that a solution remained close to criticality

(for fixed (p− p?)/p?) grew, and that the critical solutions appeared to approach periodic configu-

rations. We believe that this fact can be understood as the angular momentum barrier having, at

least partially, a stabilizing effect against gravitational collapse.

6.2 Instability of a Black String

Chap. 3 described a study of the dynamical instability of a particular 5-dimensional relative of

the usual 4-dimensional Schwarzschild solution, namely the black string originally due to Myers

and Perry [73]. This was another collaborative effort [18], and in order to study the instability we

developed an effective 2+1 dimensional numerical relativity code to evolve the vacuum Einstein

equations.

The exposition in Chap. 3 focused on our numerical procedure to solve the constraint equations

at the initial time, and on our implementation of an algorithm to approximately locate event

horizons via “backwards evolution” of null rays, using the full results from the numerical simulations

of the spacetimes.

The results of our calculations were shown to agree with the predictions from perturbation

theory due to Gregory and Laflamme [37]. In addition, we used our code to evolve perturbed
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black-string spacetimes well beyond the linear regime where perturbation theory is valid. In the

non-linear regime, we found evidence that the perturbed spacetime evolves to a configuration that

resembles a series of black holes connected by a black string with radius smaller than the progenitor

string. Due to the development of a coordinate pathology, our code failed at late times, and we were

thus unable to make any statement about the ultimate fate of unstable black strings, particularly

since at the time the code crashes, the spacetimes were still highly dynamical. We also observed

that, at least for the spacetimes considered, our approximations for the location of the event horizon

at any instant of time agreed well with the locations of apparent horizons.

6.3 Relativistic Hydrodynamics

In the final two chapters of this thesis, Chaps. 4 and 5, we described the development of codes to

simulate, respectively, spherically symmetric, and axially symmetric, general relativistic hydrody-

namics.

The spherically symmetric code was based on a 3+1 decomposition of the Einstein equations

and used coordinates which are the natural restriction to spherical symmetry of the coordinates

used in the axisymmetric simulations. This allowed us to experiment with formalisms and numer-

ical methods in a simpler setting than that provided by the axisymmetric case. In order to evolve

the hydrodynamic quantities, a numerical technique tailored to treat discontinuities stably and

cleanly—namely a so-called high resolution shock capturing method—was implemented. Develop-

ment of the code also led to the identification of a new set of conservative variables, whose use was

crucial in making the solution of the Hamiltonian constraint in the model a well-posed problem.

In addition, we observed that—at least at the resolutions used in our simulations—our algorithm

was too dissipative to obtain long term evolution of stationary (TOV) solutions.

Chap. 5 considered the case of axisymmetric hydrodynamics. The equations of motion for

the fluid and the geometry were written using the 2+1+1 formalism [34]. In addition, the fluid

equations were expressed in conservation law form, which again permitted the use of high resolution

shock capturing methods. We showed that our code converged (at least for the weak evolution

shown in Fig. 5.6) as a function of mesh resolution as expected, and that it could stably evolve

various configurations of discontinuous initial data. On the other hand, we found that the code was

too unstable to permit study of the very strong-field regime, typified, for example, by configurations

close to black hole formation. Additionally, as in the spherical case, we found that the algorithm

used for the hydrodynamics was too dissipative to permit stable evolution of stars for long times.

In order to solve some of these problems we have started implementing a code which adaptively

refines the numerical grid of points on the locations where it is required. Some early experiments
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in spherical symmetry indicate that this is a promising approach.
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Appendix A

Hydrodynamic equations in

conservation form

The general relativistic hydrodynamic equations can be cast in conservation law form. This fact

was first fully exploited in the work of Mart́ıand Muller [66] (also see [30] for a review), who

developed what is now known as the Valencia formulation. Here we explicitly show the details of

the calculation that puts the fluid equations into such a form. Specifically, our goal is to show that

(1.36) and (1.37) can be written as

∂Qi

∂t
+
∂F j

i

∂xj
= Si, (A.1)

where the Si do not contain any derivatives of the fluid variables.

We begin with (1.36)

(T µ
ν);µ = 0, (A.2)

and then perform the following manipulations:

(
gδνT

µδ
)
;µ

= T µδgδν ;µ + gδνT
µδ

;µ

= gδν

[
1√−g

(√−gT µδ
)
,µ

+ Γδ
µλT

µλ

]

= gδν

[
1√−g

(√−ggξδT µ
ξ

)
,µ

+ Γδ
µλT

µλ

]

= gδν

[
gξδ

,µT
µ

ξ + gξδ 1√−g
(√−gT µ

ξ

)
,µ

+ Γδ
µλT

µλ

]
= 0. (A.3)

In the above, we have used equation (4.7.9) of [110] to go from the first to the second line and the

Leibniz rule elsewhere. Also note that g is the determinant of the metric gµν . Expression (A.3)

can be written as:
1√−g

(√−gT µ
ν

)
,µ

= gλν ,µT
µν − Γδ

µλT
µλgδν . (A.4)

This set of equations is thus in the form (A.1) since the stress tensor for a perfect fluid does not

contain any derivatives of the fluid variables. The equation of particle number conservation (1.37)
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is even simpler to massage into conservation form. Indeed

(Jµ);µ = 0, (A.5)

can be written as
1√−g

(√−gJµ
)
,µ

= 0, (A.6)

using equation (4.7.7) of [110], and this is also of the desired form.
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Appendix B

Scalar fields considered in the l=1

case

For illustrative purposes, in this Appendix we explicitly display the scalar fields Ψm
l (t, r, θ, φ) that

are considered in the calculations described in Chap. 2, for the specific case l = 1. Note that we

want to consider real eigenfunctions of the L2 operator. Moreover, all of the fields Ψm
l are required

to have the same functional dependence on t and r, which we denote ψ(t, r). We then have the

following 3 fields:

Ψ1
1 = ψ(t, r)Y 0

1 (θ, φ) = ψ(t, r)

√
3

4π
cos (θ) , (B.1)

Ψ2
1 =

i√
2
ψ(t, r)

[
Y 1

1 (θ, φ) + Y −1
1 (θ, φ)

]
= ψ(t, r)

√
3

4π
sin (θ) sin (φ) , (B.2)

Ψ3
1 =

1√
2
ψ(t, r)

[
Y 1

1 (θ, φ) − Y −1
1 (θ, φ)

]
= ψ(t, r)

√
3

4π
sin (θ) cos (φ) , (B.3)

where Y s
l (θ, φ) denotes the usual spherical harmonic of degree l and order s. The equations of

motion for ψ(t, r) can then be derived by taking the divergence of the stress-energy tensor T (l=1)
ab

which in this case is:

T (l=1)
ab = T

(11)
ab + T

(12)
ab + T

(13)
ab . (B.4)
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where each of the T
(1m)
ab is computed using equation (2.3). Specifically, we have

T
(11)
tt =

3

8π
α2

[
(Π2 + Φ2) cos(θ)2

a2
+
ψ2 sin(θ)2

r2

]
, (B.5)

T
(11)
tr =

3

4π

αΠΦ cos(θ)2

a
, (B.6)

T
(11)
tθ = − 3

4π

αΠψ cos(θ) sin(θ)

a
, (B.7)

T
(11)
tφ = 0, (B.8)

T (11)
rr =

3

8π

[(
Π2 + Φ2

)
cos(θ)2 − ψ2a2 sin(θ)2

r2

]
, (B.9)

T
(11)
rθ = − 3

4π
Φψ cos(θ) sin(θ), (B.10)

T
(11)
rφ = 0, (B.11)

T
(11)
θθ =

3

8π

[(
Π2 − Φ2

)
r2 cos(θ)2

a2
− ψ2 sin(θ)2

]
, (B.12)

T
(11)
θφ = 0, (B.13)

T
(11)
φφ =

3

8π
sin(θ)2

[(
Π2 − Φ2

)
r2 cos(θ)2

a2
− ψ2 sin(θ)2

]
. (B.14)
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T
(12)
tt =

3

8π

α2
(
−r2Π2 + r2Π2 cos(φ)2 − r2Φ2 + r2Φ2 cos(φ)2 + ψ2a2 − ψ2 cos(φ)2a2

)
cos(θ)2

a2r2

+
3

8π

α2
(
r2Π2 − r2Π2 cos(φ)2 + r2Φ2 − r2Φ2 cos(φ)2 + ψ2 cos(φ)2a2

)

a2r2
, (B.15)

T
(12)
tr =

3

4π

αΠ
(
−1 + cos(φ)2

)
Φ cos(θ)2

a
− 3

4π

αΠ
(
−1 + cos(φ)2

)
Φ

a
, (B.16)

T
(12)
tθ = − 3

4π

αΠ
(
−1 + cos(φ)2

)
sin(θ)ψ cos(θ)

a
, (B.17)

T
(12)
tφ = − 3

4π

αΠ sin(φ)ψ cos(φ) cos(θ)2

a
+

3

4π

αΠ sin(φ)ψ cos(φ)

a
, (B.18)

T (12)
rr =

3

8π

(
−r2Φ2 + r2Φ2 cos(φ)2 − r2Π2 + r2Π2 cos(φ)2 − ψ2a2 + ψ2 cos(φ)2a2

)
cos(θ)2

r2

+
3

8π

r2Φ)2 − r2Φ)2 cos(φ)2 + r2Π2 − r2Π2 cos(φ)2 − ψ2 cos(φ)2a2

r2
, (B.19)

T
(12)
rθ =

3

4π
Φψ sin(φ)2 sin(θ) cos(θ), (B.20)

T
(12)
rφ =

3

4π
Φ sin(φ) sin(θ)2ψcos(φ), (B.21)

T
(12)
θθ = − 3

8π

(
−ψ2 cos(θ)2 + ψ2 cos(θ)2 cos(φ)2 + ψ2 cos(φ)2

)

− 3

8π
r2

Π2 cos(φ)2 sin(θ)2 − Π2 sin(θ)2 − Φ2 cos(φ)2 sin(θ)2 + sin(θ)2Φ2

a2
, (B.22)

T
(12)
θφ =

3

4π
ψ2 sin(φ) cos(θ) cos(φ) sin(θ), (B.23)

T
(12)
φφ = − 3

8π

(
−r2Π2 + r2Π2 cos(φ)2 + r2Φ2 − r2Φ2 cos(φ)2 − ψ2a2 + ψ2 cos(φ)2a2

)
cos(θ)4

a2

− 3

8π

(
2 r2Π2 − 2 r2Π2 cos(φ)2 − 2 r2Φ2 + 2 r2Φ2 cos(φ)2 + ψ2a2

)
cos(θ)2

a2

− 3

8π

−ψ2 cos(φ)2 (a)2 − r2Π2 + r2Π2 cos(φ)2 + r2Φ2 − r2Φ2 cos(φ)2

a2
. (B.24)
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T
(13)
tt = − 3

8π

α2
(
−r2Π2 cos(φ)2 − ψ2a2 − r2Φ2 cos(φ)2 + ψ2 cos(φ)2a2

)

a2r2
sin(θ)2

+
3

8π

α2ψ2 cos(θ)2

r2
, (B.25)

T
(13)
tr =

3

4π

αΠΦ cos(φ)2 sin(θ)2

a
, (B.26)

T
(13)
tθ =

3

4π

αΠ cos(φ)2 sin(θ)ψ cos(θ)

a
, (B.27)

T
(13)
tφ = − 3

4π

αΠ sin(φ)ψ cos(φ)

a
sin(θ)2, (B.28)

T (13)
rr = − 3

8π

−r2Φ2 cos(φ)2 + ψ2a2 − r2Π2 cos(φ)2 − ψ2 cos(φ)2a2

r2
sin(θ)2

− 3

8π

ψ2a2 cos(θ)2

r2
, (B.29)

T
(13)
rθ =

3

4π
Φ cos(φ)2 sin(θ)ψ cos(θ), (B.30)

T
(13)
rφ =

3

4π
Φ sin(φ)ψ cos(φ) cos(θ) − 3

4π
Φ sin(φ)ψ cos(φ), (B.31)

T
(13)
θθ =

3

8π

r2Π2 cos(φ)2 + ψ2 cos(φ)2a2 − r2Φ2 cos(φ)2 − ψ2a2

a2
sin(θ)2

+
3

8π
ψ2 cos(θ)2

(
2 cos(φ)2 − 1

)
, (B.32)

T
(13)
φφ = − 3

4π
ψ2 sin(φ) cos(θ) cos(φ) sin(θ). (B.33)
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Appendix C

Hydrodynamic equations in the

2+1+1 formalism

In this Appendix we rederive the hydrodynamic equations in the 2+1+1 formalism as originally

performed by Maeda et al [63]. In particular the following derivation includes some steps not

detailed in [63].

We begin by writing the stress-energy tensor in the following way:

T µν =
1

s4
τξµξν +

1

s2
τ iξµγν

i +
1

s2
τ iξνγµ

i + τ ijγµ
iγ

ν
j , (C.1)

where we have used the following projections:

τ = Tµνξ
µξν , (C.2)

τ i = γiµξνTµν , (C.3)

τij = γµ
i g

ν
j Tµν . (C.4)

(We note that we adopt a different notation here for the various projections of the stress energy

tensor than that used in Chap. 5. We make a connection between the two notations at the end of

the appendix.) By construction, the projection operator satisfies

ξµγν
µ = 0. (C.5)

The fluid equations are derived from equations (1.36) and (1.37). We begin with (1.36):

T µ
ν ;µ = 0, (C.6)

which can be decomposed in the following way:

ξν (T µ
ν);µ = 0, (C.7)

γiν (T µν);µ = 0. (C.8)

We then focus on equation (C.7),

ξν (T µ
ν);µ = (ξνT µ

ν);µ − T µ
ν (ξν);µ = 0, (C.9)
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where the second term on the right hand side is zero since ξν satisfies the Killing equations

(ξµ;ν + ξν ;µ = 0), and T µ
ν is symmetric. Substituting (C.1) in (C.9) and performing some manip-

ulations, we obtain the following expression:
(

1

s2
τξµ

)

;µ

+
(
τ iγµ

i

)
;µ

=
( τ
s2

)
,µ
ξµ +

τ

s2
(ξµ);µ +

(
τ i
)
|i

+ τ i (γµ
i);µ = 0 . (C.10)

Here a vertical bar ()|i denotes the covariant derivative Di in the 3 dimensional quotient spacetime,

which is defined by projection of the spacetime covariant derivative, ∇µ, via Di = γµ
i∇µ. The

first term of (C.10), which is £ξ(τ/s
2), vanishes since ξ is Killing. The second term is zero because

it is proportional to the trace of the Killing equations. Thus we have

(
τ i
)
|i

+ τ i

(
gµ

i −
1

s2
ξµξi

)

;µ

=
(
τ i
)
|i
− τ i

s2
ξµ (ξi);µ = 0. (C.11)

Using the Killing equation once more, we can express the second term as the derivative of s2:

(
τ i
)
|i

+
τ i

2s2
(
s2
)
|i

=
1

s

(
sτ i
)
|i

= 0. (C.12)

We now turn attention to equation (C.8):

γiν (T µν);µ = (γiνT
µν);µ − T µν (γiν);µ = 0. (C.13)

Using (C.1) and the definition of the projection operator (5.2), we get the following expression:
(

1

s2
τ jγν

j γiν ξ
µ

)

;µ

+
(
γiν γ

µ
j γ

ν
k τ

jk
)
;µ

+ T µνξν

(
ξi
s2

)

;µ

= 0. (C.14)

Further manipulation gives

1

s2
(τi);µ ξ

µ +
(
τ j

i

)
|j

+ τ j
i (γµ

j);µ + T µνξν

(
ξi
s2

)

;µ

= 0, (C.15)

and combining the second and third terms of the right hand side we find

1

s2
(τi);µ ξ

µ +
1

s

(
sτ j

i

)
|j

+ T µνξν

(
ξi
s2

)

;µ

= 0. (C.16)

We now consider the first term of this last equation, which, using the definition of τi, can be written

as
1

s2
(τi);µ ξ

µ =
1

s2
(
γλ

i ξ
σ Tλσ

)
;µ
ξµ. (C.17)

Expanding the derivative of the product we have

1

s2

[(
γλ

i

)
;µ
ξσTλσξ

µ + γλ
iξ

σ
;µTλσξ

µ + γλ
i (Tλσ);µ ξ

µξσ
]
. (C.18)

We now use the fact that the Lie derivative along the Killing vector field of the stress energy tensor

vanishes, i.e.

£ξTµν = ξλ (Tµν);λ + Tλµ

(
ξλ
)
;ν

+ Tνλ

(
ξλ
)
;µ

= 0, (C.19)
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to further manipulate (C.76):

1

s2

[(
γλ

i

)
;µ
ξσTλσξ

µ + γλ
i (ξσ);µ Tλσξ

µ − γλ
iξ

σTµλ (ξµ);σ − γλ
iξ

σTµσ (ξµ);λ

]
. (C.20)

The second and the third terms in the above sum to 0 (as can be seen by relabelling dummy

indexes), and therefore (C.17) can be written as

1

s2
(τi);µ ξ

µ =
1

s2

[(
γλ

i

)
;µ
ξσTλσξ

µ − γλ
iξ

σTµσ (ξµ);λ

]
=

1

s2

{
ξσTµσ

[
(γµ

i);λ ξ
λ − γλ

i (ξµ);λ

]}
.

(C.21)

We can now introduce this last result into equation (C.16):

1

s

(
sτ j

i

)
|j

+ T µνξν

[
1

s2
(γµi);λ ξ

λ − 1

s2
γλ

i (ξµ);λ +

(
ξi
s2

)

;µ

]
= 0. (C.22)

The expression in brackets can be further simplified using the definition of the projection operator

(5.2)

1

s

(
sτ j

i

)
|j

+ T µνξν

[
− 1

s4
(ξµξi);λ ξ

λ − 1

s2
γλ

i (ξµ);λ +
1

s4
ξλξi (ξµ);λ +

(
ξi
s2

)

;λ

]
= 0. (C.23)

Some algebra gives

1

s

(
sτ j

i

)
|j

+ T µνξν

[
− 1

s4
ξµ (ξi);λ ξ

λ − 1

s2
(ξµ);i +

(
ξi
s2

)

;µ

]
= 0, (C.24)

and then using the Killing equations repeatedly, we find

1

s

(
sτ j

i

)
|j

+ T µνξν

[
−
(
ξµ
s2

)

;i

− 1

s3
ξµ (s);i +

(
ξi
s2

)

;µ

]
= 0. (C.25)

Using the definition of τ (C.2) we have

1

s

(
sτ j

i

)
|j

+ T µνξν

[
−
(
ξµ
s2

)

;i

+

(
ξi
s2

)

;µ

]
− τ

∂is

s3
= 0. (C.26)

We now use expression A12 from [34]:

∇µξν =
1

2s2
εµναβξ

αωβ +
1

2s2
ξ[ν∇µ]s

2, (C.27)

to simplify the second term of the equation (C.26):

T µνξν

[
−
(
ξµ
s2

)

;i

+

(
ξi
s2

)

;µ

]
= − 1

s4
τ bγν

j εiνγσξ
γωσ =

1

s3
τ jεijkω

k. (C.28)

With this result equation (C.26) becomes

1

s

(
sτ j

i

)
|j
− τ

s|i

s3
+

1

s3
τ jεijkω

k = 0. (C.29)
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This concludes the initial decomposition of equations (C.6) in directions parallel and orthogonal

to ξµ, and using quantities adapted to the projection with respect to the Killing field.

We now proceed to a space-plus-time (2+1) split of equations (C.12) and (C.29). To that end

we introduce another projection operator, H i
j ,

H i
j = γi

j + ninj , (C.30)

where ni is the unit-norm, future-directed, orthogonal vector field to the constant time surfaces

(which, in an abuse of terminology we will refer to as hypersurfaces). The following relations will

be useful in the subsequent derivations:

nini = −1, (C.31)

aj = nk (nj)|k = ∂j (α) /α, (C.32)

ni = (−α, 0, 0), (C.33)

ni = (
1

α
,−β

I

α
), (C.34)

(
ni
)
|i

=
1

α
√
H

£t

(√
H
)
− 1

α

(
βI
)
||I
. (C.35)

Note that α is the lapse function, while βI is the shift vector. In addition, the double vertical bar

()||I denotes covariant differentiation in the 2-dimensional spacelike surfaces of our dimensionally

reduced spacetime (i.e. differentiation compatible with the 2-metric HIJ).

We proceed to a decomposition of (C.12) by first splitting τ i into hypersurface-orthogonal and

hypersurface-tangential pieces:

τ i = Jφn
i + SIH i

I , (C.36)

Jφ = −niτ
i, (C.37)

SI = HI
jτ

j . (C.38)

Inserting this decomposition into equation (C.12) we obtain

1

s

(
sJφn

i
)
|i

+
1

s

(
sSIH i

I

)
|i

= 0, (C.39)

and expanding the derivatives of the products, we find

1

s
(sJφ)|i n

i + Jφ

(
ni
)
|i

+
1

s

(
sSI

)
||I

+ SI
(
H i

I

)
|i

= 0. (C.40)

It is now convenient to define a new vector field, N i = αni. Making use of this definition as well

as (C.35) we can write (C.40) as

1

αs
(sJφ)|iN

i + Jφ

[
1

α
√
H

£t

(√
H
)
− 1

α

(
βI
)
||I

]
+

1

s

(
sSI

)
||I

+ SI
(
ninI

)
|i

= 0. (C.41)
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Now, using the fact that ti = N i +βi and nI = (0, 0) and regrouping terms, we get the first of our

final equations:
1

αs
√
H

£t

(
s
√
HJφ

)
+

1

αs

[
αs

(
SI − Jφ

βI

α

)]

||I

= 0. (C.42)

We now similarly decompose (C.29):

1

s

(
sτ j

i

)
|j
− τ

s|i

s3
+

1

s3
τ jεijkω

k = 0. (C.43)

The hypersurface-orthogonal and hypersurface tangential components of the above are

ni 1

s

(
sτ j

i

)
|j
− τni s|i

s3
+ ni 1

s3
τ jεijkω

k = 0, (C.44)

hi
I
1

s

(
sτ j

i

)
|j
− τH i

I

s|i

s3
+H i

I
1

s3
τ jεijkω

k = 0. (C.45)

We begin be manipulating the first term of equation (C.44),

ni

s

(
sτ j

i

)
|j

=
1

s

(
s niτ j

i

)
|j
− τ j

i

(
ni
)
|j
. (C.46)

Using the decomposition

τ j
i = nin

jρH + niH
j
JJ

J + njHiIJ
I +HjJHi

ISIJ , (C.47)

where we have made use of the following definitions

ρH = ninjτ
ij , (C.48)

JJ = −niH
J

jτ
ij , (C.49)

SIJ = HIiHJjτ
ij , (C.50)

we obtain
1

s

[
s
(
−njρH −Hj

JJ
J
)]

|j
− τ j

i

(
ni
)
|j
. (C.51)

After some algebra and the use of (C.35) we obtain

− 1

αs
√
H

£t

(
s
√
HρH

)
− 1

αs

[
αs

(
JI − ρH

βI

α

)]

||I

− τ j
i

(
ni
)
|j
. (C.52)

Using the following property

(ni)|j = −Kij − nj (a)|i , (C.53)

and the fact that niKij = 0 and nja|j = 0 we find that the first term of equation (C.52) can be

written

− 1

αs
√
H

£t

(
s
√
HρH

)
− 1

αs

[
αs

(
JI − ρH

βI

α

)]

||I

+ (P + ρH)
[
vIvJKIJ − vI α||I

α

]
+ PKI

I .

(C.54)



Appendix C. Hydrodynamic equations in the 2+1+1 formalism 132

Here, we have made use of the fact that the stress energy tensor under consideration is that for a

perfect fluid. Therefore we have:

SIJ = (P + ρH) vIvJ +HIJP, (C.55)

JI = (P + ρH) vI . (C.56)

We now shift attention to the remaining terms of (C.44). The second term can be written as

−τ s|in
i

s3
=

τ

s3
κ, (C.57)

where we have defined κ via κ = −s|ini. In order to simplify the third term of (C.44), namely

1

s3
τ jεijkω

kni, (C.58)

we use the following definitions:

wi = −niΩH +H iJΩJ , (C.59)

ΩH = niω
i, (C.60)

ΩI = Hj
Iω

j . (C.61)

Introducing these into (C.58) we obtain

1

s3
(
Jφn

j + SIHj
I

)
εijk

(
−nkΩH + hkJ

)
ni. (C.62)

Now, by the antisymmetry of εijk, the only term that survives in the above is

1

s3
SIHj

IH
kJΩJεijkn

i. (C.63)

which has only a single factor of ni. We thus have

1

s3
τ jεijkω

kni =
1

s3
SIΩJε

IJ =
2

s2
EISI ,= Jφ

2

s2
EIv

I , (C.64)

where we have made the following definitions:

εij = nkεkij , (C.65)

EI =
1

2s
εIJΩJ . (C.66)

Collecting all of the terms, equations (C.54), (C.57),(C.64), together we find

− 1

αs
√
H

£t

(
s
√
HρH

)
− 1

αs

[
αs

(
JI − ρH

βI

α

)]

||I

(C.67)

+ (P + ρH)
[
vIvJKIJ − vI α||I

α

]
+ PKI

I + τ
κ

s3
+ Jφ

2

s2
EIv

I = 0
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where JI = (ρH + P ) vI , τ = Jφv
φs2 + Ps2, Eφ = κs.

Thus our final equation is:

1

αs
√
H

£t

(
s
√
HρH

)
+

1

αs

[
αs

(
JI − ρH

βI

α

)]

||I

− (P + ρH)
[
vIvJKIJ − vI α||I

α

]

−P
(
KI

I − 1

s
κ

)
+

1

s2
Jφ

(
1

s2
Eφvφ + 2EIv

I

)
= 0. (C.68)

We now turn to (C.45). Manipulation of its first term yields

hi
I
1

s

(
sτ j

i

)
|j

=
1

s

(
sH i

Iτ
j
i

)
|j
− τ j

i

(
H i

I

)
|j
. (C.69)

Using the decomposition

τ j
i = nin

jρH + niH
j
JJ

J + njHiIJ
I +HjJHi

KSJK , (C.70)

yields
1

s

[
sH i

In
jHiKJ

K +HjJH i
ISJKH

K
i

]
|j
− τ j

i

(
H i

I

)
|j
. (C.71)

Now, using the definition of the projection operator Hij , property (C.35), and the fact that ti =

N i + βi, we find, after some algebra, that

JI

α
√
H

£t

(√
h
)
− JI

α

(
βJ
)
||J

+
1

αs
£t (sJI) −

1

αs
(sJU )||J β

J −

JJ

α

(
βJ
)
||I

+
1

αs

(
αsSJ

I

)
||J

+ ρHn
j (nI)|j + JJ (nI)||J (C.72)

Regrouping terms we have

1

αs
√
H

£t

(
s
√
HJI

)
+

1

αs

[
αs

(
SJ

I − βJ

α
JI

)]

||J

−

JJ

α

(
βJ
)
||I

+ ρHn
j (nI)|j + JJ (nI)||J . (C.73)

Now using identity (4.7.6) from [110]:

(
Y J

I

)
||J

=
1√
H

(√
HY J

I

)
,J

− Y JK (HKI),J +HKIΓ
K

JLY
JL. (C.74)

expression (C.73) becomes

1

αs
√
H

£t

(
s
√
HJI

)
+

1

αs
√
H

[
αs

√
H

(
SJ

I −
βJ

α
JI

)]

,J

−

(
SJK − βJ

α
JK

)[
(HKI),J − (2)ΓIJK

]
−

JJ

α

(
βJ
)
||I

+ ρHn
j (nI)|j + JJ (nI)||J . (C.75)
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Expanding the Christoffel symbols, we have

1

αs
√
H

£t

(
s
√
HJI

)
+

1

αs
√
H

[
αs

√
H

(
SJ

I −
βJ

α
JI

)]

,J

−

(
SJK − βJ

α
JK

)[
1

2
(HIK),J − 1

2
(HIJ),K +

1

2
(HJK),I

]
−

JJ

α

{(
βJ
)
,I

+
1

2
HJLβK

[
(HLK),I + (HLI),K − (HIJ),L

]}
+

ρHn
j (nI)|j + JJ (nI)||J . (C.76)

Regrouping terms, we have rewritten the first term of equation (C.45) as

1

αs
√
H

£t

(
s
√
HJI

)
+

1

αs
√
H

[
αs

√
H

(
SJ

I −
βJ

α
JI

)]

,J

− SJK 1

2
(HJK),I +

ρH

α||I

α
+ JJ (nI)||J − JJ

βJ
,I

α
. (C.77)

We now proceed to the last term of (C.45):

1

s3
τ bεijkω

kH i
I . (C.78)

Using the decomposition

τ j = njJφ +Hj
KS

K , (C.79)

and

wk = −ΩHn
k + ΩJH

Jk, (C.80)

we get

− 1

s3
JφεIJΩJ − 1

s3
εIKΩHS

K . (C.81)

Here we have used the fact that H j
KH

i
IH

kJεijk = 0 as well as the definition of εIJ . Now, using

Bφ = 1/2ΩH and EI = 1/(2s)εIJΩJ we obtain

−2
1

s2
JφEI − 2

s3
BφS

KεIK . (C.82)

Again using the fact that we have restricted attention to the case where the stress energy is that

of a perfect fluid, we can use SI = Jφv
I which gives

− 1

s2
Jφ

(
2EI +

2

s
Bφv

KεIK

)
. (C.83)

Collecting all the terms together, i.e. collecting expressions (C.76) and (C.83),
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1
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2

s
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KεIK
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− τ

s||I
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, (C.84)
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and using the fact that τ = Jφvφ + Ps2 we have
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KεIK

)
− Jφvφ
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s3
− P

s||I

s
(C.85)

Now, since εIKε
KJ = −δJ

I , B
K = εIJ∂Bs and JJ (nI)||J = 0, we find our final expression for

equation (C.45):
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)
+

1
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H
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− 1
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[
2EI + εIK
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s
Bφv

K − 1

s
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− P

s||I

s
= 0. (C.86)

Equations (C.42), (C.68) and (C.86) represent the local conservation of energy, angular momen-

tum and linear momentum, respectively. To make connection with the notation used in chapter 5

we make the identifications

ρH = τ +D, (C.87)

JI = SI , (C.88)

Jφ = Sφ, (C.89)

SI = SφvI , (C.90)

SIJ = SIvJ +HIJP, (C.91)

where the quantities on the left are the variables defined and used in this appendix, while those on

the right are used in Chap. 5.

Finally, we must rewrite the equation of (local) baryon number conservation,

Jµ
;µ = (ρ0u

µ);µ = 0. (C.92)

The above implies
1

sα
√
H

(
sα

√
Hρ0u

µ
)

,µ
= 0, (C.93)

and then using the variables defined in Chap. 5, we have:

1

sα
√
H

£t

(
s
√
HD

)
+

1

sα
√
H

[
sα

√
HD

(
vI − βI

α

)]

,I

= 0. (C.94)

This completes our derivation of the hydrodynamical equations within the 2+1+1 formalism.
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Appendix D

Characteristic Structure

The characteristic structure for the Jacobian or velocity matrix Ṽ
ρ
ij = ∂F̃ρ

j/∂q̃
i is given by the

following set of eigenvalues:

λ0 = αvρ − βρ triply degenerate, (D.1)

λ± =
α

1 − v2c2s

{
vρ
(
1 − c2s

)
± cs

√
(1 − v2) [Hρρ (1 − v2c2s ) − vρvρ (1 − c2s )]

}
− βρ, (D.2)

and the corresponding right eigenvectors:

r0,1 =

( K
hW

, vρ, vz, vφ, 1 − K
hW

)T

, (D.3)

r0,2 =
(
Wvz , 2hW

2vρvz , h
(
ψ4 + 2W 2vzvz

)
, 2hW 2vzvφ,Wvz (2hW − 1)

)
, (D.4)

r0,3 =
(
Wvφ, 2hW

2vρvφ, 2hW
2vzvφ, h

(
s2 + 2W 2vφvφ

)
,Wvφ (2hW − 1)

)
, (D.5)

r± =
(
1, hWCρ

±, hWvz, hWvφ, hW Ãρ
± − 1

)
. (D.6)

In the above expressions we have made use of the following definitions

K =
κ̃

κ̃− c2s
, (D.7)

κ̃ = κ/ρ0, (D.8)

Cρ
± = vρ − Vρ

±, (D.9)

Vρ
± =

(
vρ − Λρ

±

)
/
(
1/ψ4 − vρΛρ

±

)
, (D.10)

Ãρ
± =

(
1/ψ4 − vρvρ

)
/
(
1/ψ4 − vρΛρ

±

)
, (D.11)

Λρ
± = λ±/α+ βρ/α, (D.12)

where c2s = 1/h
(
χ+ P/ρ2

0κ
)
, χ = ∂P/∂ρ0 and κ = ∂P/∂ε. The characteristic structure of the

Jacobian matrix in the z direction, Ṽz
ij = ∂F̃z

j/∂q̃
i can be easily calculated from the above results

using symmetry arguments, and is explained in [30].
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