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ABSTRACT

We present a novel numerical study of critical phenomena in the massive, spher-
ically symmetric Einstein-Vlasov system. After casting of the Vlasov equation
in flux-conservative form, a finite volume approach is used to evolve the distribu-
tion function in phase space. Such an approach yields solutions with well defined
convergence behavior; a property both crucial for critical phenomena research
and also one that supersedes previous Monte-Carlo dominated Einstein-Vlasov
research. Up to machine precision, and in accord with work by Schaeffer, Rein
and Rendall [12] and Olabarietta and Choptuik [19, 20], the critical solution
for distributions having constant angular-momentum-squared-per-particle, l2,
are shown to be static intermediate attractors. Near-critical solutions are also
shown to exhibit the logarithmic scaling associated with Type I critical phe-
nomena.

We also look at critical phenomena for two interacting distributions with
different values of l2, displaying evidence that even in this two-species coupled
case, the critical solution exhibits Type I scaling and staticity.

Finally, the massless case is studied, and evidence for Type I scaling and
staticity is presented.

The question of whether or not the critical solution is universal remains
unanswered for all cases. However, at least without some nontrivial rescaling of
variables, there is no clear evidence for universality in our results at the current
time.
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CHAPTER 1

INTRODUCTION

Critical phenomena describe the behavior of solutions to Einstein’s equations

coupled to matter at the threshold of black hole formation (see Gundlach [14] for

a comprehensive recent review of this subject). Given an initial configuration

of matter described by one parameter, p, as it evolves, the configuration will

either collapse (supercritical evolution) or disperse (subcritical evolution). In

practice one is limited by the precision of a computer in constructing a critical

solution exactly on the boundary between dispersal and collapse. Therefore,

numerically, one typically “tunes” p until it approximates the critical parameter

p⋆, to machine precision (and for some specific discretization parameters, such

as the basic mesh scale, h).

Type I critical phenomena exhibit three distinguishing characteristics as p

approaches p⋆: they describe static, though unstable, spacetimes; nearly crit-

ical solutions have lifetimes that scale logarithmically with |p − p⋆|; critical

solutions are posited to be universal, in that different initial conditions—for

a fixed model—produce the same critical behavior. These characteristics, and

critical phenomena per se, were first discovered by Choptuik [4].

This thesis provides evidence for two of the above three characteristics for

the massive spherically symmetric Einstein-Vlasov system, namely staticity and

scaling. Chapter 2 reviews the governing equations of the system. Chapter 3

describes how to write the evolution equation in flux conservative form as well

as the novel numerical techniques underlying finite volume methods for flux-
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conservative equations. Chapter 4 shows in detail that the code converges and

that as it converges, so does conservation of mass (as consistency demands!). Fi-

nally, Chapter 5 provides numerical evidence for the existence of Type I critical

phenomena in various Einstein-Vlasov systems.

1.1 A Brief History of Critical Phenomena

Critical phenomena trace their roots back to a discussion between Christodoulou

and Chopuik [9, 10] in 1987. While studying scalar field collapse from a closed-

form (often called “analytical”) standpoint, Christodoulou posed the following

question to Choptuik, who was studying the same system numerically: “At the

threshold of black hole formation, does a scalar field form a finite-mass black

hole, or an infinitesimally-small black hole?” Choptuik set to work developing

advanced numerical techniques in order to answer this question, and in his

response the field of critical phenomena in gravitational collapse was born [4].

Following the discovery of critical phenomena in the gravitational collapse

of a scalar field, critical phenomena were discovered in other systems including

SU(2) Yang-Mills fields[16], fluids [21, 3, 11], and non-linear sigma models [23],

as well as in axi-symmetric collapse scenarios [18] [17].

Critical solutions in any system of equations are found by defining a param-

eter p in the model, which, when varied, produces either dispersive or collapse

behavior in the model. These two end states of the model represent a bifur-

cation, and the p which lies exactly on the boundary between the two choices,

called p⋆, defines what is known as the critical solution. It represents the so-

lution which is closest to forming a black hole, but will nonetheless not form

a black hole. The phenomena associated with this particular solution are, not

surprisingly, known as critical phenomena.

In analogy with statistical mechanics, critical phenomena can be of Type
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I or II. Type II critical phenomena, discovered first, allow for a continuous

phase transition during the onset of a black hole, where the black hole mass

represents the order parameter. In other words, the black holes formed can

have infinitesimal mass. In Type I phenomena, on the other hand, infinitesimal

black holes cannot be created, and the black hole “turns on” at finite mass.

Thus, the closest solution (on the collapse side) to the critical solution contains

a finite-mass black hole.

Type I critical phenomena are known to have scaling relationships of the

following form:

|t− t⋆| = ln |p− p⋆|σ (1.1)

Here, t represents the time a solution defined by parameter p spends within

the critical regime—an arbitrarily defined radius for all examples contained

within this thesis. Clearly, (1.1) shows that the time spent near the critical

solution increases logarithmically with how close the solution is to criticality

in parameter space. Furthermore, the scaling exponent, σ, is conjectured to

be universal for all sets of initial data, and for fixed physical model. Note that

specification of the model can involve other tunable parameters, such as our

angular momentum parameter, l2, below, and that we do not necessarily expect

to see true unversality as all possible model parameters are varied. Finally,

Type I critical solutions are conjectured to be either static or periodic, whereas

Type II critical phenomena exhibit scale symmetry (self-similarity), also in both

continuous and discrete varieties. Again, the reader interested in additional

details is referred to the excellent review by Gundlach [14]

This thesis considers the critical regime of spherically symmetric clouds of

collisionless matter. Scaling relationships of the form (1.1) are observed and

tabulated for a variety of initial conditions. Finally, the approximately critical

solutions are shown to resemble static (Type I) solutions.
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1.2 Collisionless Matter

Collisionless matter represents one of many possible “toy models” for a self-

gravitating system. As one might guess, collisionless matter only interacts

through its gravitational field, and therefore contains no inherent pressure. Ev-

ery particle of collisionless matter in spherical symmetry can have a particular

position and radial momentum, and therefore naturally “lives” in a two dimen-

sional phase space—one dimension representing the radial location of the shell,

the other representing the shell’s radial momentum. It is this two dimensional

phase space that we choose to exploit in modelling the dynamics of critical

phenomena.

If we consider a spherical shell of collisionless matter, without any repulsive

central potential it will naturally collapse inwards on itself in all cases. We

include an angular momentum term in the equations, which provides an effec-

tive repulsive central potential which the ingoing spherical shell “feels” as it

collapses on itself. Thus, the angular momentum provides the repulsive self-

interaction in the model that is needed to “balance” the attractive gravitational

self-interaction and create a critical solution.

One may ask how we can define an angular momentum in a spherically

symmetric system, since angular momentum by definition chooses an axis of ro-

tation. We circumvent this issue by asserting that, for a particular distribution,

all particles have the same angular momentum, and that at every point in space

we have an infinite number of infinitesimal particles rotating in every possible

direction, such that every particle has a particle rotating opposite to it. In this

way, spherical symmetry is preserved, but the dynamics of each particle are still

influenced by angular momentum.
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1.3 The Einstein-Vlasov System

The equation which describes the dynamics of our collisionless particles as they

move through phase space is known as the Vlasov equation. The corresponding

equation that describes how they interact through gravity is known as Einstein’s

equation. The system we study is therefore called the Einstein-Vlasov system.

A more mathematical treatment of the Einsten-Vlasov system than ours was

initiated by Rendall and collaborators in a series of papers that primarily ad-

dressed the existence and uniqueness of solutions to the system, as well as the

Cauchy problem [22, 2, 1]. The first numerical studies of critical phenomena

were conducted by Rein, Rendall, and Schaeffer [12] using techniques motivated

by previous work in numerical plasma physics. Subsequently, Olabarrieta and

Choptuik [19, 20] numerically investigated critical phenomena in the system,

also using a particle-based approach, and found evidence for Type-I pheone-

mena, including indications that the threshold solutions were static with near-

critical solutions having lifetimes satisfying power law scaling of the form (1.1)

While these particle-based approaches indicated the existence of Type I crit-

ical phenomena, their relative poor accuracy and convergence properties left

something to be desired. The implementation of a second order convergent

code that indicates Type I critical phenomena is what this thesis provides, as

well as results on the massless Einstein-Vlasov system, and the case of two

separate distribution functions spanning a range of angular momenta.
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CHAPTER 2

MATHEMATICAL FORMALISM

In this chapter, we define the set of equations that describe spherically sym-

metric collisionless matter interacting with itself only through its own net grav-

itational field. This system couples two equations: Einstein’s equation and the

Boltzmann equation for collisionless matter, also known as the Vlasov equation.

The coupled system, which we will solve numerically, is thus

Gµν = 8πTµν (2.1)

df(t, xk, pk)

dσ
=

df(t, Rxk, Rpk)

dσ
= 0 R ∈ SO(3) (2.2)

The first equation, Einstein’s equation, which relates the Einstein curva-

ture tensor, Gµν , to the matter stress-energy tensor, Tµν , governs the geometric

variables, while the second, the Vlasov equation, determines the evolution

of a distribution function f(t, xk, pk) in phase space. The evolution of the dis-

tribution function depends only on phase space variables and the geometry, so

the problem reduces to solving an evolution equation with coupled constraints

on the geometric variables. The exact system of equations will be explicitly

presented in the following subsections.

To make notational conventions explicit: Latin indices i, j, k, · · · range over

spatial dimensions (r,θ,φ), and Greek indices α, β, γ, · · · range over time and

space (t,r,θ,φ). We use units where G=c=1. Primes, as in a′, always denote
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derivatives with respect to r. Overdots, as in ȧ always denote derivatives with

respect to time, t.

2.1 The 3+1 Formalism

We make use of the “3+1”, or Arnowitt-Deser-Misner (ADM), formalism to de-

compose the 4 dimensional structure of spacetime defined by Einstein’s equation

into three spatial dimensions and one time dimension. The ADM formalism al-

lows us to write Einstein’s equation as a coupled set of constraint equations and

evolution equations. In this section we closely follow the specific development

of the ADM equations due to York [25], and paraphrased by Choptuik [5] in

order to derive the relevant geometric equations for our system.

2.1.1 Foliation of Spacetime

We begin with an arbitrary 4 dimensional manifold M with metric gab and

foliate it along level surfaces of a scalar field t into spacelike hypersurfaces Σt.

These hypersurfaces are described locally by a closed one-form, Ωa:

Ωa = ∇at

The norm of Ωa is:

gabΩaΩb = −
1

α2

where α is known as the lapse. The unit-norm vector field dual to Ωa is clearly,

na = −αΩa

Here we can think of na as being the 4-velocity field of a set of observers moving

orthogonally to the slices, whose spatial coordinates, however, may in general



CHAPTER 2. MATHEMATICAL FORMALISM 9

be changing.

Since na is orthogonal to the foliation, we can use it to define a projection

tensor, γa
b, which we will later use to decompose tensors into components

tangent and orthogonal to the hypersurfaces. We define the projection operator

as:

γa
b = δa

b + nanb

If we operate with the projection tensor on our 4-metric, we obtain the

spatial metric,

γab = gab + nanb

that is, γab, is the metric induced on the hypersurfaces. Note that this tensor is

also the completely covariant form of the projection tensor (i.e. the version of

the projection tensor that has all indices downstairs). Furthermore, note that

the relative + sign in front of nanb, in both of the above definitions, is due to

the Lorentzian signature, (− + ++), we demand of our spacetimes.

On our three dimensional hypersurfaces, we have a natural definition of the

3-derivative as the projection of the covariant derivative,

Da = γb
a∇b

This definition allows us to introduce the spatial Riemann tensor, which can

be defined by its action on an arbitrary dual-vector, ωa,

3R d
abc ωd = (DaDb −DbDa)ωc



CHAPTER 2. MATHEMATICAL FORMALISM 10

We also have the spatial Ricci tensor,

3Rac =3 R b
abc

and finally the spatial Ricci scalar,

3R =3 Ra
a

We now define the extrinsic curvature, Kab, which will help in formulat-

ing Einstein’s equations. Kab describes how the 3 dimensional hypersurfaces

are embedded in the 4 dimensional spacetime by accounting for the variation of

the surface normal gradient, when projected onto the three dimensional hyper-

surface. The extrinsic curvature is also closely related to the variable conjugate

to the spatial metric, when Einstein’s theory is cast in Hamiltonian form.

Specifically, we have

Kab ≡ −Danb = ∇anb − nan
cDcnb

It can also be shown that the extrinsic curvature can be written in terms of the

Lie derivative of the spatial metric along the normal field,

Kab = −
1

2
Lnγab

The geometry of the spacetime has now been entirely defined. The spatial

metric describes the curvature of spacelike hypersurfaces, while the extrinsic

curvature describes how these surfaces are embedded in the spacetime.

Examination of Einstein’s equation (2.1), reveals that it generically decom-

poses into (1) a set of evolution equations for the dynamical variables (com-

ponents of the spatial metric and extrinsic curvature tensors), and (2) a set of
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constraint equations on the dynamical variables.

In order to derive the 3+1 form of the Einstein equation, we will act with

the normal vector and projection tensor on (2.1). Combining contractions with

the normal vector and projections onto the foliations will yield three groups of

equations: the Hamiltonian constraint (1 equation), the momentum constraint

(3 equations), and evolution equations for the extrinisic curvature components

(6 equations).

In looking at Einstein’s equation (2.1), we first turn our attention to the

right hand side, and the behavior of the stress-energy tensor, Tab. Under the

operations of contraction with the normal and projection onto the hypersurface,

Tab will define a set of physical quantities related to the matter content of the

system with respect to observers who are moving orthogonally to the slices.

Contracting the stress-energy tensor twice with the normal vector, produces

the energy density:

ρ = nanbTab

while contracting and projecting produces the momentum density:

ja = γa
bncT

bc

Finally, projecting all indices yields the stresses in the hypersurface:

Sab = γa
cγ

b
dT

cd

Now, application of similar contractions and projections to the left hand

side of Einstein’s equation (i.e. to the Einstein tensor) produces the basic sets

of equations that we are to solve.

Contracting Einstein’s equation twice with the normal vector produces the
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Hamiltionian constraint:

Gabn
anb = Tabn

anb (2.3)

3R +K2 −Ka
bK

b
a = 16πρ

where K = gabKab.

Contracting once and projecting produces the momentum constraint:

γa
cG

cbnb = γa
cT

cbnb (2.4)

DbK
ab −DaK = 8πja

Finally, projecting Einstein’s equation onto the hypersurfaces produces an

evolution equation for the extrinsic curvature components:

γa
cγ

b
dG

cd = γa
cγ

b
dT

cd (2.5)

Note that the Hamiltonian and momentum constraints involve only spatial

derivatives of the dynamical variables, and therefore represent equations which

much be satisfied on each hypersurface. In contrast, as the name implies, the

evolution equations (2.5) are simply that—evolution equations for the extrinsic

curvature compoents, as will be sketched below.

At this point, however, we must first introduce a coordinate system and an

associated coordinate basis in which to derive specific forms for our equations.

To do this, we consider the Lie derivative along a vector field, ta, tangent to

lines of constant spatial coordinate

ta =
d

dt

a

= αna + βa

Here α is the lapse function introduced earlier. βa is known as the shift vec-
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α

β

(t,x )i

(t+dt,x )        i (t+dt,x +dx )         i         i

dt

Σ(t+dt)

Σ(t)

Qp’’dt
ip’

p

Figure 2.1: Quantities involved in the 3+1 decomposition of a four dimensional
manifold, with metric gµν . Credit: Kevin Lai.

tor, and encodes the “shifting” of spatial coordinates relative to normal propa-

gation (see Fig. 2.1). In a 3+1 coordinate system, (t, xi), we can then express

the 3+1 form of the spacetime line-element using a 4-dimensional version of the

Pythagorean theorem:

ds2 = (−α2 + βjβj)dt
2 + 2βjdx

jdt+ gijdx
idxj

Having adopted coordinates (t, xi), the evolution of the spatial metric, can

be derived from the Lie derivative of the metric with respect to time,

Ltγab = −2αKab + Lβγab (2.6)

Extensive manipulation of (2.5), using (2.6), then allows us to write the



CHAPTER 2. MATHEMATICAL FORMALISM 14

evolution of the extrinsic curvature as:

LtK
a
b = LβK

a
b −DaDbα+ α

{

3Ra
b +KKa

b + 8π

[

1

2
γa

b(S
c

c − ρ)− Sa
b

]}

(2.7)

Worthy of note is the fact that though a symmetric 4-dimensional metric

ostensilby has 10 degrees of freedom, 4 of these (the lapse and shift vector

components) will be determined by our choice of coordinates. Furthermore,

another 4 will be fixed by the constraint equations, leaving only 2 degrees of

freedom, which are the “true” dynamical degrees of freedom of the gravitational

field. Note, however, that we have 6 evolution equations each for the metric

(2.6) and extrinsic curvature (2.7). We therefore have a great deal of flexibility

in terms of precisely which equations we wish to use in order to update our

geometrical variables. Indeed, due to (1) our restriction to spherical symmetry

and (2) our use of a specific spherical coordinate system, we can eschew any

need to solve evolution equations and, rather, implement what is known as a

completely constrained evolution.

We now proceed to choose a set of coordinates in spherical symmetry and de-

rive explicit, coordinate dependent forms of the needed constraint and evolution

equations.

2.2 Polar-Areal Coordinates in Spherical

Symmetry

We now choose to impose spherical symmetry on our system, and then adopt

polar-areal coordinates to analyze its dynamics. The most general spherically-

symmetric metric can be written as:

ds2 = (−α+ a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2



CHAPTER 2. MATHEMATICAL FORMALISM 15

where α, a, β, and b are functions of r and t.

The polar-areal choice of coordinates results from two conditions, namely

polar slicing and the areal radius condition. The former condition determines

the structure of the extrinsic curvature. In particular, polar slicing implies:

K = Ki
i = Kr

r

The areal radius condition, requires the proper surface area of a sphere of

radius r to be 4πr2; that is, that b(t, r) ≡ 1. One can then show that the

slicing condition and the areal radius condition further imply that the metric

is diagonal, i.e. that β(t, r) = 0, so, solely because of the spherical symmetry,

and the very special properties of these coordinates (which generalize those of

the original Schwarzschild solution), we eliminate 3 of the geometric variables

(i.e. b, β and the extrinisic curvature component Kθ
θ) in this case.

Thus, our line element now reads

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2 (2.8)

and the spacetime metric is fully fixed by knowledge of the two functions α(t, r)

and a(t, r), which will be calculated from the slicing condition and Hamiltonian

constraint, respectively. We now derive the exact form of these two equations,

using (2.3) and (2.5).

Using our 3+1 coordinate system, and taking the form of the metric (2.8)

we can calculate (2.3) by noting that:

Gab = Rab −
1

2
Rgab
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where, Rab is the Ricci tensor, defined as,

Rac = R b
abc

and

R d
abc = ∂bΓ

d
ac − ∂aΓd

bc + Γe
acΓ

d
eb − Γe

bcΓ
d
ea

The Γa
bc are known as the Christoffel symbols and are easily calculated from

derivatives of the metric (2.8), via the equation:

Γa
bc =

1

2
gad(∂bgcd + ∂cgbd − ∂dgbc)

For our particular metric, the Christoffel symbols are tabulated in Appendix A.

Upon calculating the Einstein tensor for our particular metric, and contract-

ing Einstein’s equation with the hypersurface normal twice, we find that (2.3)

becomes

a′

a
=

1 − a2

2r
−
ra2

2
8πT t

t (2.9)

which is the final form of our Hamiltonian constraint.

To derive the slicing condition we first note that if we assume that K(r, 0) ≡

Kr
r(r, 0)—i.e. that the slicing condition holds at the initial time—then we must

have Kθ
θ(r, 0) = 0 since K ≡ Ki

i = Kr
r +Kθ

θ +Kφ
φ = Kr

r + 2Kθ
θ. Thus,

to ensure that the slicing condition be maintained in time, it is sufficient to

demand that

K̇θ
θ(t, r) = 0

for all r and for all t ≥ 0. Use of the corresponding component of the evolution

equations (2.5)—now interpreted as an equation for the lapse function, α(t, r)—



CHAPTER 2. MATHEMATICAL FORMALISM 17

leads to the final form of our slicing condition:

α′

α
=
a2 − 1

2r
+
ra2

2
8πT r

r (2.10)

Note that this equation is to be solved subject to (1) regularity at the origin

(i.e. no “kinks” in the slices), thus limr→0 α(t, r) = α0(t) + r2α2(t) + O(r4),

which implies α′(0, t) = 0. (2) asymptotic flatness and identification with t

with inertial proper time at infinity, which implies limr→∞ α(t, r) = 1.

As is evident from (2.9) and (2.10), we can now determine the two residual

degrees of freedom in the metric by solving two coupled ordinary differential

equations. The method used to solve this couple system is discussed in Chapter

3.

2.3 The Vlasov Equation

Each component particle of collisionless matter in spherical symmetry has an

associated radial position, r, and radial momentum, pr; therefore a distribution

of particles can be represented in a two dimensional phase-space by a distri-

bution function, f(t, r, pr). Liouville’s theorem says that if the particles are

non-interacting, then the distribution function in phase space is a conserved

quantity and we have

df

dσ
= 0 (2.11)

where σ is an affine parameter along a particle’s trajectory. The trajectories

in phase space are tangent to the Liouville operator, which as an expression of

d/dσ’s action on f is

L = pµ ∂

∂xµ
− Γi

µλp
µpλ ∂

∂pi
(2.12)
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If particles are moving in the θ or φ directions, clearly their trajectories

cannot be represented in a two-dimensional phase space. However, if we now

define each “particle” as representing a shell of an infinite number of infinitesimal

particles each orbiting r = 0 with some net angular momentum of magnitude

|l|, but in every possible direction, then the “particle” distribution can still

be described within a two-dimensional phase space. In this case the average

angular momentum is zero, and we maintain spherical symmetry and indeed

simplicity, but clearly the average of the square of the angular momentum is

non-zero. Therefore we may expect a term proportional to l2 to influence the

dynamics, and indeed it does.

We note here that previous studies have actually worked within the context

of the full 3D phase space, i.e. with f ≡ f(t, r, pr, l
2). Here, we choose to reduce

the computational burden by treating l2 as a parameter that can be varied, but

that which, for any fixed computation, will be set to some fixed value.

We observe that this implies that for any specific calculation, all of the

particles have the same angular momenta. Intutitively, not least since the an-

gular momentum must be conserved particle by particle, we feel that this lack

of a spread in angular momentum space (we effectively only compute with δ-

function-in-l2 conditions in this work) should have little impact on the overall

picture of criticality in the model. Moreover, we partially test the validity of

the “frozen l2” ansatz in Chap. 6 in our study of two species of particles each of

which has a distinct value of l2, and where the picture of criticality does appear

to be basically the same as for the single species calcuations.

The “equation of motion” that determines trajectories of our particles can

be explicitly calculated by applying the Liouville operator to the distribution

function:
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df

dσ
= L(f) = 0 (2.13)

This is the Vlasov equation, and it determines the time-evolution of our

matter in phase space. Given the choice (2.8) for our metric, we obtain after

some algebra that

∂f

∂t
+
αpr

a2p̄t

∂f

∂r
+

(

−α′p̄t +
α

a3
a′
p2

r

p̄t
+

αl2

p̄tr3

)

∂f

∂pr
= 0 (2.14)

where we define

p̄t = αpt =
√

m2 + (apr)2 + l2/r2

Note that other authors [12, 13] denote p̄t by W and relate it to the constant

of motion, l2, which is called F in their notation.

To expedite the discussion in Sec. 3, it is convenient to define auxiliary

functions g ≡ g(t, r) and h ≡ h(t, r) as follows:

g =
αpr

a2p̄t
(2.15)

h = −α′p̄t +
α

a3
a′
p2

r

p̄t
+

αl2

p̄tr3
(2.16)

With the these definitions, the Vlasov equation can be written in the simple

form

∂f

∂t
+ g

∂f

∂r
+ h

∂f

∂pr
= 0 (2.17)

which makes the precise differential form of the equation—which specific deriva-

tives must be approximated—transparent.
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2.4 The Stress Energy Tensor for Collisionless

Matter

At this stage, we have expressions for the evolution of the distribution function

(2.13) and the geometric constraints (2.9–2.10) that must be satisfied. The only

remaining part of these equations that needs to be worked out in detail are

certain components of the stress-energy tensor, T µν . For collisionless matter we

have that the stress-energy tensor is just the integral over all collisionless par-

ticles in phase-space that comprise the system, with the fundamental quantity

being integrated simply being the outer product of the particle’s 4-momentum,

pµ, with itself:

T µν(r) =

∫

dVp
1

m
pµpνf(t, r, pr, l2) (2.18)

Here dVp represents an integral over the entire momentum volume of phase

space. After introducing coordinates adapted to the symmetry [24], we find

dVp = m
dprdl

2dψ

2ar2p̄t

The required stress-energy components for our constraint equations are thus

T t
t = −

π

a2r2

∫

p̄tf(t, r, pr, l
2)dprdl

2 (2.19)

T r
r =

π

a2r2α

∫

prf(t, r, pr, l
2)dprdl

2 (2.20)

2.5 Conserved Quantities

We now derive two diagnostic quantities that will be useful in providing “sin-

gle number” views of convergence. Indeed, due to our restriction to spheri-

cal symmetry and asymptotic flatness, we know that of the 4 conserved ADM
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“charges”—ADM mass and ADM 3-momentum—only the ADM mass, M∞,

can be non-trivial. Thus, the ADM mass is always absolutely conserved in time

given our assumptions. Therefore, both of the diagnostic quantities defined be-

low, being absolutely conserved in time in the limit that the discretization scale,

h, goes to 0, and both measuring mass content of the system, must tend to M∞

as h → 0. However, as will be seen below, the expressions for the two distinct

approximate measures of M∞ are quite different, both in terms of which of the

dynamical variables they directly depend on, as well as in terms of what types

of numerical approximations are made in their approximate computation.

In addition, purely for historical reasons (vis a vis development of this

project), we will refer to the two estimates of the ADM mass, M∞, as “the

ADM mass” (or just “the mass”) and “the energy” respectively.

2.5.1 ADM Mass: Direct Computation

Due to our restriction to spherical symmetry and our choice of polar-areal coor-

dinates (which are clearly a natural generalization of the usual Schwarzschild co-

ordinates to time-dependent, spherically-symmetric spacetime), Birkhoff’s the-

orem ensures that in a vacuum region—in our case, outside the radial support

of the distribution function f(t, r, pr)—the metric is precisely

ds2 = −

(

1 −
2M

r

)

dt2 +

(

1 −
2M

r

)−1

dr2 + r2dΩ2

where M is the gravitating mass of the energy-denstity within the radius r (as

in Newtonian gravity, observers at any r̃ in spherical symmetry feel no gravity

due to matter located at distance r > r̃).

a2(t, r) →

(

1 −
2M

r

)−1

(2.21)
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α2(t, r) →

(

1 −
2M

r

)

(2.22)

Indeed, it is conventional when using polar-areal coordinates to define the so

called mass aspect function, denoted here M(t, r), by identification of the

line elements (2.8) and (2.5.1)

M(t, r) =
1

2
r
(

1 − a−2
)

(2.23)

Note that the mass in this case is an algebraic function of the geometric variables,

and indeed, is a function only of the radial metric function, a.

In the limit that r → ∞, one can read off the ADM mass from the mass

aspect function:

lim
r→∞

M(t, r) = MADM (2.24)

2.5.2 Total Energy (Indirect computation of the ADM

mass)

A second, somewhat independent computation of the ADM mass comes from

a direct integration of the energy content—due to the particle matter—of the

spacetime. Our distribution function lives in a 2D phase space, and, as (2.19)

illustrates, various quadratures of the distribution function over phase space

represent various components of the stress-energy tensor. Using (2.19), we can

derive an expression for the scalar energy density in the system:

ρ = nanbTab =
π

a2r2

∫

p̄tf(t, r, pr, l
2)dprdl

2

Integrating this over all pr and r in our system yields what we call “the total

energy” in the system, which as argued above, must also tend to, M∞, in the

continuum limit, h→ 0, if our code is convergent.
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2.6 The Equations, Summarized

As previously mentioned, given an initial distribution of matter in the form of

f(0, r, pr, l
2), the Vlasov equation, (2.14) determines the time evolution of f

according to:

∂f

∂t
+
αpr

a2p̄t

∂f

∂r
+

(

−α′p̄t +
α

a3
a′
p2

r

p̄t
+

αl2

p̄tr3

)

∂f

∂pr
= 0 (2.25)

However, to determine the time evolution, the metric coefficients a(t, r) and

α(t, r) must be known. These are fixed using the Hamiltonian constraint and

slicing condition as discussed above:

a′

a
=

1 − a2

2r
−
ra2

2
8πT t

t (2.26)

α′

α
=
a2 − 1

2r
+
ra2

2
8πT r

r (2.27)

Now, these equations depend on two specific components of the stress-energy

tensor, T µν, which are

T t
t = −

π

a2r2

∫

p̄tf(t, r, pr, l
2)dprdl

2 (2.28)

T r
r =

π

a2r2α

∫

prf(t, r, pr, l
2)dprdl

2 (2.29)

Notice that the two stress-energy components are not independent of the geom-

etry, so that their calculation and the calculation of the metric coefficients must

be done in a self-consistent manner. This will later be referred to as the coupled

stress-energy, metric-coefficient problem. The methods for solving this, as well

as those for solving the evolution and constraint equations, are described in the

following chapter.



24

CHAPTER 3

NUMERICS

Advances in computational power and resources since the 1970’s allow us to

directly solve for a distribution function’s evolution in the spherically symmet-

ric 3+1 Einstein Vlasov system. Since this method was once computationally

intractable, researchers were led to less computationally expensive methods,

typically based on Monte Carlo integration of the Vlasov equation, and finite

difference treatment of the geometric variables [24, 12, 19, 20], to yield an ap-

proximation. The great advantage of the “direct” approach that we have imple-

mented and that is discussed in this chapter, is that the discrete solutions we

generate have the usual sort of convergence behaviour that one expects for finite

difference approximations to smooth solutions of partial differential equations.

A quick analysis of a finite difference approach shows why Shapiro and

Teukolsky were lead to use Monte Carlo methods in their pioneering work [7].

Assuming we have 3+1 dimensions, and an equal number of points, N , required

to resolve each dimension, then the computational cost, denoted CFD
C (N) of the

calculation scales as

CFD
C (N) ∼ N4

while the memory requirements, CFD
M (N), scale as

CFD
M (N) ∼ N3

Immediately we see that even a poorly resolved hypercube, with 100 points
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on an edge, would lead to memory requirements on the order of megabytes and

computational requirements on the order of hundreds of megaflops—unavailable

even on the supercomputers and “big iron” mainframes of those days.

Shapiro and Teukolsky’s simplifying Monte Carlo technique represented the

distribution function in three dimensional phase space by a collection of M

phase-space particles, whose initial distribution in (r, pr, l) are defined pseudo-

randomly via a Monte-Carlo method, typically the rejection method [24]. M

dominantly affects the accuracy of the solution, and from the law of large

numbers, we can expect the following asymptotic behavior of our solution for

f = f(t, r, pr, l)

lim
M→∞

f = f̂MC + ÊMC√
· M

1/2 + higher order terms

Note that f represents the continuum distribution function, and f̂MC is the

Monte-Carlo-generated approximate solution. ÊMC√
· is the leading order error

function.

While the Monte-Carlo method reduces the computational complexity of the

problem to O(M) by allowing us to integrate the phase-space trajectories of M

particles in time, the leading order error terms are not necessarily smooth and

therefore give us no extrapolatable additional information as to the higher order

behavior of the solution.

In contrast, the finite difference (finite volume) case yields solutions of the

following form (assuming completely centred differencing, as we have attempted

to implement):

lim
h→0

f = f̂FD + h2êFD
2 +O(h4) (3.1)

with the critical facts that

1. êFD
2 has smoothness properties similar to f .
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2. Straightforward convergence tests can assess to what degree (3.1) is valid,

and thus one can easily put reliable error bars on the solution.

3. Since the error functions, êFD
2 , êFD

4 · · · are expected to be smooth, it is

much easier to identify, and argue for, continuum properties, such as an

entire function, ζ(t, r), identically vanishing, for all r and for some range

of t, as happens to the time dervatives of all dynamical variables in the

apparently static solutions of the Einstein-Vlasov system that we identify

below.

3.1 The 2+1 Ansatz

The computational complexity of computing a discrete solution of the Einstein-

Vlasov system using finite volume techniques can be further reduced fromO(N4)

to O(N3) by adopting the ansatz that all particles have the same squared angu-

lar momentum, l2. In other words, the distribution is either a δ-function, or a

sum of δ-functions, in l2, resulting in a 2-dimensional phase-space (r, pr). This

approach is new, and was suggested by Choptuik [8].

As discussed previously, we argue that this ansatz is justified since particles

cannot exchange angular momenta, even through their combined gravitational

field. This is readily apparent if we note that the final form of the Vlasov

equation 2.14 contains no ”velocities” in the l-direction. Thus, any distribution

is initially and remains a sum of δ-functions in l, whose phase-space volumes

are independently conserved. As a test, we will analyze the sum of two δ-

functions in l and show that the critical results are universal in the sense of not

disappearing when we use two δ-functions. This provides at least some evidence

that our ansatz is indeed justified.
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3.2 Finite Volume Methods

Finite volume methods take advantage of flux-conservation in cells defined on a

grid over a computational domain [15]. A 2-dimensional hyperbolic equation is

said to be in flux-conservative form if it can be written as

∂q

∂t
+
∂Fx(q)

∂x
+
∂Fy(q)

∂y
= 0 (3.2)

In this form, the quantities Fx,y(q) are two distinct functions of q known as

fluxes, and (3.2) expresses a conservation law.

If we divide a computational domain into a grid which is Nx cells of width

∆x × Ny cells of height ∆y, then the average value in cell (i, j) is

Qn
ij =

1

∆x∆y

∫

Cij

∫

Cij

q(x, y, t) dxdy (3.3)

where Cij denotes an integral over the i, jth cell, and n indexes time. We can

write (3.2) for each cell in integral form,

d

dt

∫

Ci

∫

Ci

q(x, y, t)dxdy =

∫ yt

yb

Fx(q(xl, y, t))dy −

∫ yt

yb

Fx(q(xr , y, t))dy

+

∫ xr

xl

Fy(q(x, yb, t))dx −

∫ xr

xl

Fy(q(x, yt, t))dx (3.4)

where subscripts l, r, b and t describe values at the left, right, bottom and top

boundaries, respectively, of cell (i, j). The above equation is merely a statement

that, if flux is conserved, the change in the cell value will be equal to the sum

of fluxes into and out of the cell.

Dividing (3.4) by ∆x∆y and substituting in (3.3) yields an equation for the
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future cell value

Qn+1
ij = Qn

ij −
∆t

∆x

(

Fn
x,r − Fn

x,l

)

−
∆t

∆y

(

Fn
y,b − Fn

y,t

)

(3.5)

The problem then reduces to accurately computing the average fluxes Fn
x,l

and Fn
x,r, at the left and right boundaries, respectively, as well as those at the

bottom and top boundaries, namely Fn
y,b and Fn

y,t. A variety of methods exist for

estimating the fluxes, one of the more promising for fluid dynamics simulations

being High Resolution Shock Capturing (HRSC) techniques.

If steep gradients are produced, HRSC methods provide second order conver-

gence in domains excluding maxima, and first order convergence near maxima,

while still resolving shocks. It has been shown [24] that the Einstein-Vlasov sys-

tem can develop significant mixing and steep gradients, so the use of HRSC in a

finite volume method seems natural. We choose to use a min-mod slope limiter

[15] for flux estimation, and show details of the convergence of our scheme in

Chap. 5.

We now proceed to show that the Vlasov equation can be written in flux-

conservative form, and then describe a finite volume approach that makes use

of an HRSC scheme to implement the evolution of the distribution function.

Finally, we make a note on an iterative method used to solve the coupled stress-

energy, metric-coefficient problem described at the end of Section 2.

3.3 Casting the Vlasov Equation in

Flux-Conservative Form

In the numerical study of the Einstein-Vlasov system, it does not appear to

be widely known that the Vlasov equation can be cast into flux-conservative

form [12, 24, 19], for which finite volume techniques are ideally suited. We now
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perform a simple demonstration that the Vlasov equation (2.17), can be written

in that form.

Currently, the Vlasov equation is

∂f

∂t
+ g

∂f

∂r
+ h

∂f

∂pr
= 0

with g and h defined by (2.15) and (2.16), respectively. We wish to recast this

equation in the form

∂f

∂t
+
∂(gf)

∂r
+
∂(hf)

∂pr
= 0 (3.6)

in order for it to be expressed as a conservation law, (3.2). One possible way for

this to hold is if g and h are independent of r and pr, respectively. However we

immediately see that this is not the case. Another possible condition is to have

∂g

∂r
= −

∂h

∂pr

and this is satisfied. Therefore, we can correctly identify the quantities gf

and hf as fluxes in the r and pr directions, respectively, by writing the Vlasov

equation in the form (3.6).

3.4 Finite Volume Implementation for the

Evolution

With the Vlasov equation in flux-conservative form, second order in time evo-

lution is accomplished by a two step Euler method implementation of (3.5).

Denoting the distibution function at time n by fn and fluxes in the r and pr

directions at time n as Fn
r and Fn

pr
, respectively, we briefly describe the two-step

Euler method for advancing the solution in time: First, the fluxes at the current
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time are used to advance the distribution function one half timestep, to fn+ 1

2 .

At this point we calculate the half-advanced fluxes F
n+ 1

2

r and F
n+ 1

2

pr , and use

these, instead of the fluxes at time n, to update fn to fn+1. This produces a

second order in time algorithm.

3.5 Solving the Constraint Equations

In order to determine the form of our metric functions on each hypersurface, we

need to solve the constraint equations. Solving the Hamiltonian constraint,

a′

a
=

1 − a2

2r
−
ra2

2
8πT t

t (3.7)

with the regularity condition

lim
r→0

a(t, r) = 1 + r2a2(t) +O(r4)

that follows from local flatness at the origin, at any time, t, yields a(t, r), which

can then be used in the slicing equation

α′

α
=
a2 − 1

2r
+
ra2

2
8πT r

r (3.8)

to solve for α(t, r) at that time.

We solve 3.8 by integrating inwards from r = rmax with the condition that

α(rmax) =
1

a(rmax)

This last condition follows for the known (Schwarzschild) form of the vacuum

spherically symmetric line element in our coordinates, plus the demand that

time at infinity measure local proper time for an inertial observer, also at spatial
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infinity.

3.6 An Iterative Solution of Einstein’s

Equation

We now discuss an iterative method for solving the coupled stress-energy, metric-

coefficient problem mentioned in Section 2. As described, the constraint equa-

tions for a(t, r) and α(t, r) depend on the stress-energy components T r
r and T t

t ,

which themselves depend on a(t, r) and α(t, r).

Defining a set of solutions for the stress-energy tensor at iteration i by T i,

and a set of solutions for the geometric variables at iteration i by Gi, then

an algorithm yielding consistent T i and Gi for a distribution function f at a

particular time is:

• Define G0 as the flatspace set of solutions.

• Calculate T 0
[

G0
]

• while (|T i-T i−1| > tol) AND (|Gi - Gi−1| > tol)

1. Calculate T i
[

Gi
]

2. Calculate Gi
[

T i
]

3.7 A Portrait of the Program Flow

Here, we briefly summarize the flow of the program for quick reference. The

program solves the Einstein-Vlasov system by iteratively evolving a distribution

function, f(t) → (t+ ∆t), or, equivalently fn → fn+1

1. Define an initial distribution f(t, r, pr) of compact support.
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2. Iteratively solve for T (t) and G(t).

3. Calculate average fluxes and advance the solution to f(t+ ∆t/2).

4. Iteratively solve for T (t+ ∆t/2) and G(t+ ∆t/2).

5. Calculate the average fluxes Fr(t+ ∆t/2) and Fpr
(t+ ∆t/2).

6. Calulate f(t+ ∆t) using Fr(t+ ∆t/2) and Fpr
(t+ ∆t/2).

7. Use f(t+ ∆t) as the initial distribution in step 1.
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CHAPTER 4

CONVERGENCE AND

CONSERVATION TESTS

4.1 Convergence

Here we show sample convergence plots for both the metric functions and the

stress-energy tensor components for an arbitrary “test scenario”. The evidence

suggests that our code is not yet second order accurate, even well away from

extrema in the dynamical variables, and this matter is still under investigation.

Nonetheless, we do have convincing evidence that the code is converging to the

continuum solution in all cases, if only at first order, O(h).

To perform a convergence test, one must calculations at three or more reso-

lutions that use the same initial configuration. We label the distinct resolutions

used by hi, so that if the cell width at the coarsest level, h1, is ∆x, then the

width of a cell at level i is 2−(i−1)∆x. With each level we double the number

of cells in a particular direction. In two dimensions we therefore quadruple the

total number of cells in going from a level i calculation to a level i+ 1 one.

A convergence analysis verifies the fact that, when discretising a solution

to second order—so that the truncation error is second order—the expected

error in the approximate solution is also O(∆x2) [6]. Therefore, if our code

is indeed second order, we should find that the deviation between our closest

approximation to a continuum solution, h3, and the next-closest, h2 is one
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quarter the error between h2 and h1. Alternatively, four times h3 − h2 should

be about equal to h2 − h1. Results from such as test are plot in Figs. 4.1

and 4.2 for the stress-energy component T r
r and the metric function a(t, r).

The convergence tests are done at two different times to show that convergence

is achieved throughout the duration of an evolution. Note that the largest

discrepancy appears near peaks, since the min-mod limiter is first-order near

local extrema, and we should therefore expect the difference h3 − h2 to be only

half of h2 − h1.

Again, it is important to note that although Figs. 4.1 and 4.2 show clearly

that the code is converging, they do not provide convincing evidence of O(h2)

convergence, even away from extrema, and understanding of this non-optimal

behaviour will require further study.

4.2 Mass and Energy Conservation

The total mass and energy quantities defined previously (recall that both should

tend to the ADM mass in the continuum limit) are valuable diagnostics precisely

because their conservation is a necessary property of the continuum solution. If

a solution’s total mass is not conserved as the fundamental mesh scale, h, tends

to 0, then one can be certain the code is not solving the Einstein-Vlasov system.

Again, to recap the previous discussion, we monitor conservation of the ADM

mass in two independent ways. In the first instance, we read off the ADM mass

from the large r behaviour of the mass aspect function, M(t, r):

M(t, r) =
r

2

(

1 −
1

a2(t, r)

)

and show that it is conserved during the period in which all particles remain

within the computational domain. Secondly, Fig. 4.4 displays the convergence
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Figure 4.1: Sample convergence test (CT) of the stress energy component T t
r

at t=30.
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Figure 4.2: Sample convergence test (CT) of the metric function a(t, r) at
t=90.



CHAPTER 4. CONVERGENCE AND CONSERVATION TESTS 37

Figure 4.3: .
Convergence of ADM mass conservation. Note that the pulse begins to leave
the computational domain at around t ≈ 45. At initial times, as shown in the
inset, this plot indicates convergence to conservation of a mass ≈ 2.44. After
the mass has been shed from t ≈ 45 to t ≈ 130, there appears to be linear
conservation (in h) to a final mass ≈ 2.275.
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of the mass as computed via integration of the energy-density ρ, or −T t
t , to

r = rmax.

The strong evidence is that both measures of the mass are converging in the

limit h→ 0.

Figure 4.4: Convergence of energy conservation. Note that the pulse begins to
leave the domain at around t ≈ 45. At initial times, as shown in the inset, this
plot indicates convergence to conservation of an integrated energy ≈ 0.19425.
After the mass has been shed from t ≈ 45 to t ≈ 130, there appears to be linear
convergence (in h) to a continuum total integrated energy ≈ 0.1825.
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CHAPTER 5

RESULTS FOR ONE VALUE OF L
2

We now move on to show evidence for the existence of a Type I (static) crit-

ical solution, and illustrate how the time derivatives of the metric variables

apparently converge to zero with increasing resolution. Finally, we describe the

expected and observed scaling behavior of the lifetimes of near-critical solutions,

and tabulate the scaling parameters for various sets of initial data.

As described previously, we deal with distribution functions describing par-

ticles with fixed angular-momentum-squared, l2. Specifically, our initial data is

of the form

f(0, r, pr, l
2) = A exp

(

−

(

r − ro
∆r

)2
)

exp

(

−

(

pr − pro

∆pr

)2
)

δ(l2 − l2o) (5.1)

5.1 Static Critical Solutions

Type I critical solutions are conjectured to be either static or periodic. We

now present evidence that the Einstein-Vlasov model studied here admits static

Type I critical solutions. By way of a bisection search, we are able to tune

one parameter to machine precision, 16 digits, in order to best approximate the

critical solution (at fixed resolution). The fairly mundane recipe for conducting

a bisection search is now described: Begin with a “bracket”: one solution which

evolves to form a black hole, called “high”, and another solution which disperses,

called “low”. Let us say that “high” corresponds to a larger value of a parameter
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Table 5.1: Scaling parameter σ for various initial conditions defining the dis-
tribution function in (5.1).

l2 ro ∆r pro
∆pr σ

400 5.0 1.0 0.0 2.0 -11.21
144 5.0 1.0 0.0 2.0 -11.09
64 5.0 1.0 0.0 2.0 -9.58
16 5.0 1.0 0.0 2.0 -5.27
144 5.0 2.0 0.0 1.0 -11.65
144 5.0 1.0 -1.0 2.0 -8.63

p in the initial data, and “low” to a smaller value of the same parameter; the total

initial mass, for example. Now “tune” p to approximate the threshold between

high solutions and low solutions by continually taking it as the average of the

most recent high and low runs. Do this until machine precision is reached—

typically 25-30 trials.

The above procedure was conducted for several sets of initial conditions.

In each case, a near-static approximation to a critical solution that was nearly

static was obtained. Note that although the distribution functions themselves

are not stationary, the metric coefficients represent a static metric and their time

derivatives converge to zero—showing strong evidence for staticity. As a typical

example, Figure 5.1 shows the time derivative of the metric function a(t, r)

at a variety of different times during an evolution, at 4 different resolutions.

The time derivative of a(t, r) more closely approximates zero with increasing

resolution. Similar behavior is exhibited for all initial data profiles, and we

therefore conjecture the existence of a static critical solution.
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Figure 5.1: Convergence to zero of time derivative of metric coefficient a(t, r).
While this is not a convergence plot per se, since we have a different p⋆ at
each resolution, it does show that as we increase resolution, the time derivative
of a(t, r) more closely indicates a static metric. Arguably, this is a stronger

demonstration of convergence to a static solution in the continuum limit than a
“traditional” convergence test (which would be done at fixed parameter value,
p) would provide.
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5.2 Scaling

Solutions in the vicinty of Type-I critical solutions (i.e. those solutions with

p ≈ p⋆) are known to have “lifetime scaling”” laws of the form

|t− t⋆| = ln |p− p⋆|σ (5.2)

Here t represents the time a solution defined by parameter p is “near” the closest

critical solution defined by p⋆, and t⋆ is some fiducial reference time. Indeed

since scaling law (5.2) really relates the change in |t−t⋆| to the change in |p−p⋆|,

the definition of this “near-to-criticality” time is only defined up to an arbitrary

constant.

In the inset of Figure 5.2 we show a typical scaling relationship of the form

(5.2)—including an estimate of the scaling exponent, σ, that we are able to

extract from our numerical results. It is apparent from the linear relationship

between |t− t⋆| and ln |p− p⋆| that the data does conform to (5.2), and we thus

have ever stronger evidence that previously [19, 20] that the critical solutions

in this model are static, and one-mode unstable [13].

As further evidence that the scaling relationship is indeed linear, we plot

the difference between the best fit line obtained at the highest resolution and

the scaling behavior obtained at successively coarser resolutions in Figure 5.2.

We see that as resolution is increased, the residuals more closely approximate a

straight line.

We tabulate scaling exponents for a variety of initial data in Table 5.1, and

note that they are neither unique nor universal. Further work must be done

in order to determine whether the scaling exponent is universal with respect to

some specific dimensionless parameter.
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Figure 5.2: The best fit line at highest resolution, shown in inset, minus (t−t⋆)
at four different resolutions, plotted against ln |p− p⋆|. Note that as resolution
is increased the difference converges to zero above some ln |p− p⋆| ≈ −15 which
we call the “critical regime”. In the inset we have a demonstration that the
relationship between t− t⋆ and ln |p− p⋆| is indeed linear. The slope is listed in
Table 5.1.
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Figure 5.3: Time evolution of distribution function f(t, r, pr) for l2 = 12
critical solution. Evolution proceeds left to right, top to bottom. In each frame
the x-axis is radius, r, while the y-axis is radial momentum, pr. Note that during
the critical regime—roughly, frames 2 through 7—the distribution function is
approximately symmetric with respect to the pr = 0 axis, as must be the case
for a static solution. This emphasizes the highly non-trivial and time-dependent
radial behaviour of the particles in the critical solution. In contrast, for example,
with the Einstein-cluster solutions to this model, which describe clusters of
particles on purely circular orbits, the individual particles in the critical solution
are constantly moving in and out radially, but in such a fashion that, collectively,
the distribution function is static.
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CHAPTER 6

RESULTS FOR TWO VALUES OF L
2

We now discuss the critical collapse of two distributions comprised of two species

of particles with distinct values of the angular momentum parameter, l2. We

provide evidence for Type I (static) critical solutions, describe the expected

scaling behavior of solutions, and tabulate the scaling parameters for various

sets of initial data.

In this chapter our initial data is composed of a linear superposition of two

distribution functions. Each distribution has particles with a particular value

of angular-momentum-squared. Specifically, our initial data has the form:

f(t, r, pr, l
2) = A1 exp

(

−

(

r − r1
∆1r

)2

−

(

pr − pr1

∆1pr

)2
)

δ(l2 − l21) (6.1)

+ A2 exp

(

−

(

r − r2
∆2r

)2

−

(

pr − pr2

∆2pr

)2
)

δ(l2 − l22)

We now outline the form of our bisection search method for two distribution

functions of varying angular momenta, and then tabulate scaling parameters for

a variety of initial conditions.

6.1 Bisection Search and Critical Behavior

The critical parameter p which forms the basis for our bisection search is the

amplitude of the first distribution, A1. By varying p we can form super- and



CHAPTER 6. RESULTS FOR TWO VALUES OF L
2

46

Table 6.1: Scaling parameter σ for various initial conditions defining the dis-
tribution function in (6.1)

l21 r1 ∆r1 pr1 ∆pr1
l22 r2 ∆r2 pr2

∆pr2
σ

144 12.0 1.0 -2.0 1.0 169 12.0 1.0 -2.0 1.0 -9.25
144 12.0 1.0 -2.0 1.0 169 12.0 1.0 -1.0 1.0 -9.83
144 12.0 1.0 -2.0 1.0 196 12.0 1.0 -1.0 1.0 -9.30
400 5.0 1.0 0.0 2.0 144 5.0 2.0 0.0 1.0 -11.65

sub-critical evolutions. For p > p⋆ we have a situation where both distribution

functions collapse to form a black hole, and for p < p⋆ both disperse. Defining

the critical regime as a particular radius that both distribution functions are

within, we find that for p → p⋆, the time both distributions are in the critical

regime scales as expected:

|t− t⋆| = ln |p− p⋆|σ

The estimated scaling exponents, σ for a variety of initial conditions are

tabulated in Table 6.1.

6.2 Convergence, Conservation, and Staticity

Convergence and conservation of mass and energy were tested in each of the

solutions listed in Table 6.1, yielding results similar to those shown in Figures

4.4, 4.2, 4.1, and 4.3. Furthermore, an increasingly static metric was achieved

as resolution increased, thus exhibiting behavior similar to that shown in Figure

5.1.
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CHAPTER 7

RESULTS FOR MASSLESS CASE

In [13] it was proposed that the massless Einstein-Vlasov case should not exhibit

Type I critical phenomena. We now present evidence to the contrary: such a

system does seem to exhibit the staticity and lifetime-scaling associated with

Type I critical phenomena.

Specifically, in both one- and two-distribution function calculations at one

and two angular momenta respectively, Type I scaling and staticity are both

manifest.

The scaling parameters for a variety of initial conditions are given in Ta-

ble 7.1.

Table 7.1: Scaling parameter σ for various initial conditions defining the mass-
less distributions according to (6.1).

l21 r1 ∆r1 pr1 ∆pr1
l22 r2 ∆r2 pr2

∆pr2
σ

144 12.0 1.0 -2.0 1.0 169 12.0 1.0 -2.0 1.0 -9.13
144 12.0 1.0 -2.0 1.0 196 12.0 1.0 -2.0 1.0 -9.51
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CHAPTER 8

CONCLUSIONS AND DISCUSSION

Our studies of the spherically-symmetric Einstein-Vlasov system provide strong

evidence for the existence of Type I critical solutions. Within the context of our

ansatz, in which all particles have the same angular momentum, all near-critical

solutions approach static spacetimes and the lifetimes of near-critical solutions

satisfy scaling laws as expected. We have also show that similar behaviour is seen

for the case of two-species calculations, where the l2 for each species is constant.

Finally, and contrary to some expectations discussed in the literature, we have

found strong evidence that the black hole transition in this model remains Type

I, with static critical solutions, even in the limit of massless particles.

The focus of futher work should be in determining whether or not the critical

solution is universal, up to an arbitrary rescaling of space and time variables.

This has not been determined in this thesis, and will require one to deduce the

dimensionless variables that govern the rescaling.

Another future avenue is to look at the logarithmic scaling of angular mo-

mentum to see whether the critical solution persists across a large range of

angular momenta. In calculations, the distribution function, f , becomes in-

creasingly prolate or oblate, depending on the ratio of radial kinetic energy to

angular momentum. Resolving very prolate or very oblate configurations re-

quires large computational domains and computation times that are beyond

our current means.

Notably however, what this thesis does provide is a demonstrably convergent
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implementation of a finite volume method that solves the spherically symmetric

Einstein-Vlasov system. This method is not subject to the statistical fluctu-

ations seen in earlier Monte-Carlo-based work, but rather has “good” conver-

gence properties as one expects for finite volume approximations of smooth

solutions ot partial differential equations. This well defined and regular con-

vergence behaviour is crucial in providing convincing evidence that the Type I

critical behaviour seen in this model is characterized by static solutions.
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APPENDIX A

CHRISTOFFEL SYMBOLS FOR

POLAR-AREAL METRIC

The polar-areal line element used in the body of the thesis is

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2

Straightforward comoputations of the Christoffel symbols, Γc
ab, using

Γc
ab =

1

2
gcd

(

∂agbd + ∂bgad − ∂dgab

)

then yields the following non-trivial components.

Γr
rr =

a′

a
Γr

θθ = −
2r

2a2
Γr

φφ = − sin2 θ
2r

2a2
(A.1)

Γθ
rθ =

2r

2r2
Γθ

φφ = − sin θ cos θ

Γφ
rφ =

2r

2r2
Γφ

θφ = cot θ


