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Abstract

While most of the research on critical collapse has involved the general relativistic gravitational

field; There have been demonstrations that, for the case of a perfect fluid, similar phenomena arise

when the gravitation is Newtonian. This paper will explore critical collapse of a massive scalar

field in spherical symmetry coupled to Newtonian gravity. The mathematical model describing

the evolution of our field will be taken as a modified version of the newtonian limit of the Einstein-

Klein-Gordon equation, entitled the Nonlinear Schrödinger Poisson System (NSP). The puropse

of this paper is to develope a deeper insite into the nature of critical collapse and attempt to

characterize the nature of the nonlinearity that leads to critical collapse.

Static calculation of the NSP system were carried out to determine the behavour of our

system by varying the exponent (α) in the Poisson equation, having the property of gravitational

strength. It was found that α = 2 and α = 3 carried two distinctly different behavours. Due to

smoothness of our system in terms of α, it was found that α = 8/3 was the threshold between the

two behaviours, denoted αc. Our system gave us strong evidence that for α < αc static solutions

are stable, indicating that blow-up cannot be induced; While α > αc produces 1-mode unstable

static solutions, allowing for blow-up to occur. Static analysis of the stability of our solutions for

various α’s produced no information to confirm our conjectures.

Time dependent calculations were then performed with the intent of understanding the end

behaviour of the NSP system for all α and amplitudes of the initial gaussian (A). Setting α=2,

blow-up could not be induced for any A, finding the system seems to scale with A. Increasing

the gravitational strength to α = 3, it was found that blow up could be induced, and the critical

value for A was found to 16 decimal places. Our critical solution was found to be periodic in

time, indicative of Type I critical behaviour. Further, α = 3 was found to be 1-mode unstable

through pertubation analysis, with a corresponding 1-mode excited state static solutions.
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Chapter 1

Introduction

While critical collapse has been studied extensively in general relativity, models involving Newto-

nian gravity remain largely unexplored. Motivated by calculations showing that critical collapse

can occur in the Newtonian setting for the case of a perfect fluid, we propose to look for models

involving a simpler form of matter—namely a scalar field. We thus will consider the dynamics of

generalizations of the Schrodinger-Poisson system, and with a restriction to spherical symmetry.

Previous work by Andrew Inwood suggests that although the Schrodinger-Poisson system itself

does not produce critical behavior, an increase in the strength of the gravitational coupling to

the matter field results in Type I critical phenomena. We will extend these studies and consider

additional modifications to the system in attempt to produce simple models that capture the

essence of critical collapse.

1.1 Modivations

Part of the motivation for the use of scalar fields in these studies is that they are considerably

simpler to handle computationally than more astrophysically realistic matter such as perfect

fluids [4]. At the same time, the scalar models seem to capture enough of the strong-field grav-

itational physics that it is reasonable to expect that they can shed light on the more realistic

scenarios. There are two main motivating factors for this project: First, we wish to develop a

deeper insight into the nature of critical collapse and the related issue of “blow-up” in evolution-

ary PDEs. Second, we want to characterize, if possible, the nature of the nonlinearity that leads

to critical collapse, by looking for models which exhibit critical behaviour, but which, in some

sense, are as simple as possible.

There have been demonstrations that, for the case of a perfect fluid, similar phenomena to

critical behaviour arises when the gravitation is Newtonian [9]. We thus wish to see whether

critical phenomena can also occur for a scalar field interacting with Newtonian gravity. This

question was recently addressed by Andrew Inwood [3] who studied the Newtonian limit of the

Einstein-Klein-Gordon equations, which results in a model known as the Schrödinger-Poission

(SP) system. Restricting attention to spherical symmetry, Inwood provided strong evidence from

numerical calculations that there was no critical behaviour or blow-up in the SP model; However,

with the correct modification to the SP system, critical solutions could be generated.

The principal aim of this research is to characterize the nonlinearities that are needed for

1



1.2. Critical Collapse

critical collapse to occur.

1.2 Critical Collapse

Given a set of evolutionary partial differential equations (PDEs), do solutions exist globally for

arbitrarily large data? In the early 1990’s Choptuik addressed this question in the context of

the gravitational collapse of a massless scalar field in spherical symmetry [1]. Solutions of this

model describe two distinct end states (t→ ∞): complete dispersal of the scalar field to large

distances on the one hand, and black hole formation with partial scalar field dispersal on the

other. Choptuik considered the evolution of families of initial data, characterized by a control

parameter, p, which could be tuned to generate solutions that interpolated between the two end

states. Specifically, it was found that for each family, there was a critical value p?, such that

for p < p?, the scalar field completely dispersed, while for p > p?, a black hole formed. Near

p = p?, the solutions approached a universal solution which was independent of the initial data.

The behaviour observed near the threshold black hole formation was dubbed critical behaviour

due to its similarity to the critical phenomena familiar from statistical mechanical systems.

1.3 Critical Solutions

The critical solutions known thus far, and the black hole thresholds associated with them, come

in two broad classes as seen on Fig. 1.1. Type I behaviour is characterized by static or periodic

critical solutions, and by the fact that the black hole mass just above threshold is finite (i.e. so that

there is a minimum black hole mass that can be formed from the collapse). Type II behaviour

is characterized by continuously or discretely self-similar critical solutions (i.e. the additional

symmetry is a continuous or discrete scaling symmetry), and by the fact that the black hole

mass just above threshold is infinitesimal [2]. The behaviour seen in Choptuik’s original study

was Type II, while an example of Type I phenomena is provided by the collapse of spherically

symmetric boson stars by Hawley and Choptuik [8], which again used a scalar field as a matter

source.

Last years results showed as the tuning parameter approached the critical value, the Ψ field

became periodic in time from a finite mass. These are the two factors which define type I

behaviour and we will be exploiting them in the time dependent calculations.

2



1.3. Critical Solutions

Figure 1.1: These two plots of Mass vs the tuning parameter show that the black hole begin
formation at p*(critical value). Type I behaviour, as seen in last years results and expected this
year, produces a field which becomes periodic in time. Another feture of Type I collapse is that a
finite initial mass is needed to induce blow-up. Type II is not used in this project but displayed
for completeness.

3



Chapter 2

Nonlinear Schrödinger-Poisson

System

2.1 Mathemaical Model

Restricting our attention to spherical symmetry we introduce the complex Schrödinger field,

Ψ(r, t),

Ψ(r, t) = Ψ1(r, t) + iΨ2(r, t) (2.1)

where Ψ1 are Ψ2 are real fields. The Newtonian gravitational potential will be denoted as V (r, t).

Without loss of generality, c = ~ = g = 1, yielding the system of PDEs defined as the Nonlinear

Schrödinger-Poisson (NSP)

i
∂Ψ

∂t
= −1

2
∆Ψ + VΨ (2.2)

∆V = |Ψ|α 2 ≤ α ≤ 3 (2.3)

∆ will be taken as the laplacian, α is a control parameter which we will use to adjust the strength

of the gravitational self-coupling. If we let α=2, the NSP system reduces to the Schrödinger-

Poisson (SP) system.

For our purposes, the Schrödinger field, Ψ, typically associated with a single particle in quan-

tum mechanics, is to be viewed as the non-relativistic limit of a classical massive Klein-Gordon

field, and thus constitutes a simple model for matter which can self-gravitate. It is important to

note here that these calculations are purely classical in the sense that we directly interpret the Ψ

field as describing a macroscopic distribution of matter. Ψ evolves according to the Schrödinger

equation (2.2), and feels a gravitational potential that is self-generated through the source term

|Ψ|α appearing in the Poisson equation (2.3).

2.1.1 Previous work done on this Mathemaical Model

Previous numerical calculations by Andrew Inwood [3] provided strong evidence that there is no

critical behaviour in the SP system; i.e that irrespective of the nature of the initial data, the

subsequent evolution appears to remain singularity free. Inwood studied the dynamical evolution

of one-parameter families of initial data for the SP equations, and found that as the family

parameter was increased, the resulting solutions appeared to simply be rescaled versions of one

4



2.2. Spherical Symmetry

another, so that there was no evidence of focusing or other behaviour that would result in finite-

time blowup. The SP system was then modified through the gravitational coupling seen in (2.3),

in an attempt to induce critical behaviour. For the specific case of α = 3, evidence for Type I

critical behaviour was found, with a critical solution that appeared to be periodic.

2.2 Spherical Symmetry

By choosing to work in a spherically symmetric coordinate system, all angular dependency has

been eliminated. With this assumption, the laplacian reduces to

∆f (r) =
1

r2

(
r2f ′ (r)

)′
(2.4)

with f ′ (r) ≡ df(r)
dr

2.3 Boundary and Initial Conditions

2.3.1 Boundary Conditions

For both static and time dependent calculations, the following boundary conditions will be en-

forced. At the inner boundary, we impose that V and Ψ are smooth

dV

dr
(0, t) = 0 (2.5)

dΨ

dr
(0, t) = 0 (2.6)

The outer boundary conditions are that both V and Ψ go to zero as r → ∞. Since we are

implementing numerical analysis, there must be a cut-off, rmax, such that all functions go to zero

at rmax. With this, we let the outer boundary conditions be

V (rmax, t) = 0 (2.7)

Ψ(rmax, t) = 0 (2.8)

The advantages to these outer boundary conditions is they are simple to enforce in any

numerical scheme. The main disadvantage to this approach is that it limits how long a time over

which the equations can be integrated. Because these boundary conditions reflect all incoming

waves, if the matter field propagates out to the outer boundary it will reflect and the solution

becomes unphysical.

5



2.4. Norm calculation

If blow-up is occurring in the model, then the matter will tend to fall into the origin very

quickly, and, for sufficiently large rmax a singularity will form before any matter can propagate

to the outer boundary [3]. However, this reflective property at the outer boundary condition

becomes problematic under certain dispersal conditions and in searching for the critical solution.

2.3.2 Initial Conditions

The initial condition will only be used in the time dependent calculation, and as it will soon

be seen, Ψ resembles a gaussian when calculating static solutions. Thus it seems reasionable to

choose a gaussian as the initial field.

Ψ (r, 0) = Ae−
r2

0.1 (2.9)

Here we have chosen our free parameter for the system to be the aplitute of the gaussian, A. By

tuning this parameter, we hope to find the critical solutions of Ψ for the particular α’s which

allow blow-up to occur.

2.4 Norm calculation

In this paper we will are looking at end behaviour of our system. |Ψ|2 is, as usual, the spatial

probability distribution function of the particle; that is, integrating over it tells us the probability

of finding the particle in a region of space. Since we are working in spherical symmetry there is

an r2 weighting in the integral; so even if |Ψ|2 is large at the origin, the probability may be small

due to this r2 weighting. Without loss of generality we have chosen to leave |Ψ|2 un-normalized

to introduce the conserved quantity I(r)

I(r) =

∫ r

o
s2 |Ψ (s)|2 ds (2.10)

which is proportional to the mass, and will be used to follow the evolution of the mass of our

stars. If Ψ is exhibiting blow-up behaviour, then most of the mass is concentrated near the origin

and I(r) will exhibit rapid grow for a small value of r. To calculate this integral numerically we

employ a Riemann sum using the midpoint rule,

I(rj) = I(rj−1) + dr

(
rj −

dr

2

)2

(Ψj + Ψj−1)
(
Ψ∗j −Ψ∗j−1

)
(2.11)

with I(r1) = 0, dr ≡ rj − rj−1, and Ψ∗ = conjugateΨ

6



Chapter 3

Relations and Theory of Static

Solutions

3.1 Boson Stars

Gravitationally bound and static solutions of the SP system (known as Newtonian boson stars)

can be constructed from our system. These solutions correspond to the familiar eigenstates of the

1-d Schrödinger equation in quantum mechanics for the harmonic oscillator; In particular, can be

labelled by the number of nodes in the wave functions. The initial part of our work will consider

the analogous solutions in the NSP system, with a focus on “‘ground state” configurations which

have no nodes in their radial profiles, as shown in Fig. 3.1. There are infinitly many boson

star solutions, defined by the number of zero crossings. Fig. 3.2 plots the first excited state

wavefunction, with each excited state has one more zero than the previous.

3.2 Ansatz of solution and ODE system

To begin our static analysis, we assume solutions of the form

Ψα(r, t) = eiωαtΦα(r) (3.1)

where the subscrpt α denotes the solutions at a fixed α. ωα are the eigenvalues which correspond

to their eigenfunction Φα for a given α. When the ansatz given in equation (3.1) is plugged into

the NSP system, the time dependency is removed, yeilding the following time independent ODE

(r2Φ′α(r))′ + r2(ωα − V (r))Φα = 0 (3.2)

Figure 3.1: The first bound-state wavefunction (Ψ) is a solution of the time independent SP
system. This is a 0 mode solution as (Ψ) does not cross the r-axis before it flattens out, and
these are the forms of solutions that we will be analyzing. The solution was calculated by Moroz,
Penrose, and Tod [10] numerically using a Runge-Kutta NAG routine (S is a scaled wavefunction)
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3.3. Scaling Relations of solutions

Figure 3.2: The plot is of the first excited state wavefunction. Each excited state has one more
zero than the previous.

(r2V ′(r))′ = r2|Φα(r)|α (3.3)

3.2.1 Relate Boson star solutions to Harmonic Oscillator

To my knowledge, equations (3.2) and (3.3) are not analytically solvable, forcing us to use nu-

merical techniques. To show how the eigenvalues (ωα) affect our eigenfunctions (Φα), it is helpful

to notice that equation (3.2) is very similar to the 1-d Schrödinger equation with a harmonic

oscillator potential.

− ~2

2m

d2Ψ

dx2
+

1

2
mω2x2Ψ = EΨ (3.4)

With the substitutions s =
√

mω
~ x and K = 2 E

~ω , we get

d2Ψ

ds2
+
(
K − s2

)
Ψ = 0 (3.5)

It is well known that equation (3.5) has the eigenvalues En = (n + 1
2)~ω, and plugging in a

given En value will produce a normalizable eigenfunction Ψ. However, if En → En± ε where ε is

taken to be small, Ψ will diverge to ±∞. This behaviour is exactly what is seen with the boson

star solutions, where Fig. 3.1 and Fig. 3.2 shows the characteristic tail flipping.

Since we cannot obtain exact eigenvalues ωα for equation (3.2), we will be tuning the tail

behaviour of Φα to produce ωα to 16 decimal digits using the “wag-the-dog” method, also known

as a binary search.

3.3 Scaling Relations of solutions

Following a scaling relationship described in Choi’s Thesis [5], Equations (3.2) and (3.3) have

been shown to obey a scaling law relationship that allows all solutions to be calculated from one

solution. A slight abuse of notation in this section has replace the α’s in Φα , Vα, and ωα by

1, and 2; in reference to the solutions. Consider two solutions labeled by indices 1 and 2, If ’1’

denotes known solutions to equations (3.2) and (3.3), then

ω2 = ω1

(
N2

N1

)2

(3.6)
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3.4. Integral relations between Φα(r) and Vα(r)

r2 = r1

(
N1

N2

)( 1
α−1)

(3.7)

Φ2 = Φ1

(
N2

N1

)( 2
α−1)

(3.8)

V2 = V1

(
N2

N1

)2

(3.9)

’2’ will be solutions of the same equations, where N is the conserved particle number defined as

N =
∫
r2Φ2dr.

To see this relationship, assume that solutions ’2’ satisfy equations (3.2) and (3.3),

1

2r2
2

d

dr2

(
r2

2

d

dr2
Φ2

)
+ (ω2 − V2) Φ2 = 0 (3.10)

1

r2
2

d

dr2

(
r2

2

d

dr2
V2

)
= Φα

2 (3.11)

Applying the scaling relations from (3.6), (3.7), (3.8), and (3.9), we get

(
1

2r2
1

d

dr1

(
r2

1

d

dr1
Φ1

)
+ (ω1 − V1) Φ2

)(
N2

N1

)( 4
α−1)

= 0 (3.12)

1

r2
1

d

dr1

(
r2

1

d

dr1
V1

)(
N2

N1

)( 2α
α−1)

= Φα
2

(
N2

N1

)( 2α
α−1)

(3.13)

where it can be seen this relationship works for all α’s.

3.4 Integral relations between Φα(r) and Vα(r)

Three integral relationships between Φα(r) and Vα(r) can be extracted from equations (3.2)

and (3.3) by multiplying the equations with a function and integrating over all space.

1) Multiply equation (3.2) by Φα(r) and integrate over all space

∞∫
0

Φα

(
r2Φ′α

)′
dr =

∞∫
0

r2 (Vα − ωα) Φ2
αdr (3.14)

And integrate the left hand side by parts, noticing the boundary terms are zero, we are left with

the relationship
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3.5. Validity of rmax in static settings

∞∫
0

r2
(

(Vα − ωα) Φ2
α +

(
Φ′α
)2)

dr = 0 (3.15)

2) Multiply equation (3.3) by Vα(r) and integrate over all space

∞∫
0

Vα
(
r2V ′α

)′
dr =

∞∫
0

r2VαΦα
αdr (3.16)

And integrate the left hand side by parts, noticing the boundary terms are zero, we are left with

the relationship

∞∫
0

r2
(
VαΦα

α +
(
V ′α
)2)

dr = 0 (3.17)

3) Multiply equation (3.2) by Vα(r) and (3.3) by Φα(r). Subtract the two functions and

integrate over all space

∞∫
0

(
Vα
(
r2Φ′α

)′ − Φα

(
r2V ′α

)′)
dr =

∞∫
0

r2
(
Vα (Vα − ωα) Φα − Φα+1

α

)
dr (3.18)

Where again, we can simplify by integrating by parts and throw away the boundary terms,

yielding

∞∫
0

r2
(
VαΦα (Vα − ωα)− Φα+1

α

)
dr = 0 (3.19)

Equations (3.15), (3.17), and (3.19) have been written in the form
∞∫
0

r2f(r)dr = 0. These

relationships have been included to show the relationships between Φα and Vα; However, I will

not explore them further.

3.5 Validity of rmax in static settings

In future calculations, the solutions for Φα will been croped to create a numerically integrable

function. It is desired that our numerical approximation of Φα integrates reasionably close to the

true value. The spacial probability can be written as

∞∫
0

r2Φ2
α =

rmax∫
0

r2Φ2
α +

∞∫
rmax

r2Φ2
α (3.20)

Further, from [1] we know that Φα has an exponential tail, so it is valid to make the approximation
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3.5. Validity of rmax in static settings

∞∫
0

r2Φ2
α '

rmax∫
0

r2Φ2
α +

∞∫
rmax

r2(Ae−r)2 (3.21)

Where Φα has been replaced with Ae−r; A is on the order of 10−5 (the typical values for Φα(rmax))

to enforce continuity between Φα and e−r at r = rmax. The last term in equation (3.21) can be

easily integrated, yielding

∞∫
rmax

r2(Ae−r)2 =
A2

4

(
1 + 2 rmax + 2 rmax

2
)

e−2 rmax (3.22)

For the work to follow, rmax ≥ 10, plugging into (3.22)

∞∫
rmax

r2(Ae−r)2 ≤ 10−7A2 (3.23)

which shows our numerical scheme will provide accuracy of the integral on the order of 10−7A2,

where A is on the order of 10−5.
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Chapter 4

Numerical analysis of Static Solutions

4.1 Calculating Solutions of ODE system

Equations (3.2) and (3.3) can be solved using a forward integration starting at r=0, and im-

plementing a technique called “shooting”; so the solution satisfies the boundary conditions at

r = rmax. One expects the solutions to be parametrized by the central value Φα(0) which,

naively, leaves two shooting parameters, V (0), and the eigenvalue ωα.

We can in fact choose V (0) = 0 (or any other constant) and then adjust ωα until Φα(rmax)→ 0.

We then have a solution Φα(r) and V (r; Φα(0)) but where V (r; Φα(0)) does not go to 0 as r →∞.

However, if V (r) is a solution to (3.2) then so is V (r) + c where c is an arbitrary constant.

Thus, to get a solution that satisfies both boundary conditions as r → ∞ we need only take

V (r; Φα(0))→ V (r; Φα(0)) + c and ωα → ωα + c where c is chosen so that V → 0 as r →∞.

4.2 Eigenvalues

Equations (3.2) and (3.3) form an eigenvalue problem, where Φα are the eigenfunctions of the

corresponding eigenvalues ωα. As previously discussed, there are infinitly many Φα solutions to

equations (3.2) and (3.3); however only one stable solution (no zero crossing). Numerically it is

easier and more accurate to first calculate Φα and ωα with the initial condition Vα(0) = 0, and

then perform the shifts described in section ’Calculating Solutions of ODE system’

Firstly, looking at the eigenvalues before the shifts; A trend has appeared showning that the

the eigenvalues can be listed ωα0 < ωα1 < ωα2 < ..., where ωα0 corresponds to the stable solutions,

and ωαi corresponds to the ith excited state ( i zero crossings in the eigenfuction Φαi )

Further, looking at the first mode stable eigenvalues, and plotting ωα against the initial

condition Φα(0); a relationship between α, ωα, and Φα(0) has been found.

ωα = CΦα(0)
α
2 (4.1)

where the constant ’C’ has the property that the eigenvalues have the same value when Φα(0) '
1.2248, and can be seen in Fig. 4.1. These eigenvalues are accurate to 16 decimal places. However,

up to now, the gravitational field has been given the initial condition V (0), which gives the wrong

asymptotic behaviour. The true eigenvalues are more sensitive to calculate, and can be seen on

Fig. 4.2
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4.3. Eigenfunctions

Figure 4.1: This plot shows the relationship between the eigenvalues (ωα), initial condition of the
eigenfunctions (Φα(0)), for α = 2 and α = 3 with V (0) = 0

It can be seen through Fig. 4.5 that by shifting ωα and V (0) to get the correct asymptotic

behaviour for V (r), that Φα is unchanged, and the accuracy (length that Φα is valid) has been

reduced by half. Thus, all following calculations will use eigenvalues and eigenfunctions with

the initial condition V (0) = 0, since we are not looking at the gravitational field in any static

calculations.

4.3 Eigenfunctions

Our eigenfunctions, Φα, have the behaviour of a monotonically decreasing function which are

always greater than or equal to zero. Once coded in Matlab, it was found that when Φα increases

ωα needed to be decreased; and when Φα was less than zero, ωα needed to be increases to maintain

correct end behaviour. A loop was then made repeating these calculations until ωα was known

to 16 decimal places. Solution curves to our coupled ODE system can now be produced as shown

in Fig. 4.3.

With our solution know for any α, we will now create an rmax for all solutions to cut off the

“tail” as seen in Fig. 4.3. Φα monotonically decreases to zero, before it wildly explodes to ±∞.

Thus, rmax has been defined as the point where the absolute value of dΦ
dr is minimum (away from

the origin). The typical values of Φ(rmax) are on the order of 10−5.

Once we have cropped our solutions, Φα(r) and Vα(r) take the form of Fig.4.4. It can be seen

that the solutions drop off quickly for large Φ2(0), while small Φ2(0) produce flatter solutions.
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4.4. Results

Figure 4.2: This plot shows the true relationship between the eigenvalues (ωα), initial condition of
the eigenfunctions (Φα(0)), for α = 2 and α = 3. Now V (rmax) = 0, giving the correct behaviour
for the gravitational field

This behaviour is consistent for 2 < α ≤ 3.

4.4 Results

We now have Φα(r) as a monotonically decreasing integrable function, which can be found for

and α and Φα(0), we are in a position to look at some properties of our system. To begin, we

chose to look at the conserved quantity

ℵ(α,Φα(0)) =

∫ ∞
0

Φ2
α(r)r2dr (4.2)

which is propotional to the mass of our system, Without loss of generality,

ℵ(α,Φα(0)) =

∫ rmax

0
Φ2
α(r)r2dr (4.3)

The initial condition Φα(0) can be viewed as characterizing the central pressure of the configu-

ration, and α is the gravitational strength. This has been done to try and understand how, and

why α and pressure influences the mass of our system.

Fig. 4.6 shows the plots (mass vs central pressure) of our three extremes for static solutions

in our range 2 ≤ α ≤ 3. For α=2, it was found that mass is proportional to central density; The

mass of system (ℵ) grows with the central density (Φα(0)) with the relation ℵ=2.06(Φ2(0))0.5.
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4.4. Results

Figure 4.3: This plot shows Φα(r) and V(r) with machine precision of the eigenvalue ωα. Our
solutions are valid up to r = rmax; After that point, the exponential decay behaviour is replaced
by a diverging solution. The divergence behaviour seen for r > rmax is purely a numerical
phenomenon controlled by the eigenvalues.
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4.4. Results

Figure 4.4: Φ2(r) are the static solutions of the NSP system for various initial conditions Φ2(0).
The higher Φ2(0) is, the steeper Φ2(r) drops off to zero. This same behaviour is noticed for α = 3.
These solutions have been plotted up to r=7 to see behaviour near origin; however, rmax = 18
for Φ2(0) = 5 and rmax = 44 for Φ2(0) = 1
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4.4. Results

Figure 4.5: This plot shows by shifting ωα and V (0) to get the correct asymptotic behaviour for
V (r), that Φα is unchanged, and the accuracy (length that Φα is valid) has been reduced by half
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4.4. Results

Figure 4.6: Plot of ℵ(α,Φα(0)) dr vs Φα(0) to see how mass of system is (ℵ) affected by changing
the gravitational coupling given initial conditions of central density Φα(0). The critical solution
(with α = 8

3) was found using a binary search between monotonically increasing and decreasing
ℵ(Φα(0), α)

This type of behavior shows the static solution is stable.

However, when we increase the strength of the gravitational coupling to α = 3, Fig. 4.6 shows

that mass is inversely proportional to central pressure. This behaviour suggests blow-up occurs, as

mass grows unbounded with a decreasing central pressure. It was found that ℵ = 2.75(Φ3(0))−0.25,

which we believe corresponds to 1 mode unstable static solutions.

Since we are interested in the critical solution, that is exactly where this behaviour changes,

a binary search was implemented to find the boundary of these two behaviours. We found that

there was a constant solution for α ' 8
3 (denoted αc), that is mass is constant for all initial central

pressures as shown in Fig. 4.6.

It can be seen that ℵ ∝ (Φα(0))x where x(α). This is a simple linear relation, showing

x(α) = −3
4α+ 2, thus

ℵ(Φα(0), α) ∝ (Φα(0))−
3
4
α+2 (4.4)

The relationship described in equation (4.4) completely defines our system in terms of the

physical quantities mass and central density. The next job looking at the stability of our solutions

in these different regions to get a better understanding of why this relationship occurs.
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Chapter 5

Static Stability Analysis

5.1 Introduction to stability analysis

In this chapter, stability analysis will be done by introducing a small pertubation in our fields.

Physically, introducing this pertubation corresponds to introducing a small disturbance in a

“perfectly stable” star. Once this pertubation is introduced, the star can either absorb and

restabalize or become unstable. We can determine which solutions are stable or unstable by

looking to see if the perturbations are oscillatory or exponentially growing in time.

Results from last years research has given strong evidence that α = 2 produces stable solutions,

and α = 3 produces 1-mode unstable solutions. Static analysis has found the relationship through

equation (4.4) defining how the mass behaves for different α’s. Combinding the above facts, the

following conjectures will be made:

• 2 ≤ α < αc the static solutions are all stable

• αc < α ≤ 3 static solutions are all 1-mode unstable

At this point, their have been no clues to the stability of α = αc; And further investigation is

required.

5.2 Defining Pertubations

To begin, we will use the same ansatz for the wavefunction as equation (3.1), and add a small

pertubation in the fields.

Ψ (r, t) = e−iwtΦ (r) + ε e−iwεtΦε (r) (5.1)

Vtotal (r) = V (r) + ε Vε (r) (5.2)

Here we have introduces an O(ε) pertubation into both of the fields. ωε are the eigenvalues

corresponding to the eigenfunctions Φε in the perturbed field. There will also be a Vε introduced

in the gravitational field to composate for Φε.

To look for exponential behaviour in our fields, it is natural to let the eigenvalues be complex,

wε=a+ib. Plugging this into equation (5.1) we get
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5.3. Calculations

Ψ (r, t) = e−iwtΦ (r) + ε e−iatebtΦε (r) (5.3)

where it can be seen that ebt will determine our stability; yielding the three conditions on b

for stability:

• b>0 produces exponential growth in time, 1-mode unstable

• b=0 will provide no information

• b<0 produces exponential decay which quickly eliminates the pertubation, 1-mode stable

5.3 Calculations

Plugging equations (5.1) and (5.2) into the NSP system, we obtain two coupled O(1) and two

coupled O(ε) equations. Our O(1) equations are the same as equations (3.2) and (3.3). The O(ε)

equations are

(r2Φ′ε (r))′ + r2 (wε − V (r)) Φε (r) + 2r2Vε (r) Φ (r) = 0 (5.4)

(r2V ′ε (r))′ = r2 |Φε (r)|α (5.5)

These ODE’s are not analytically (as far as i know) solvable, so MATLAB will be implemented

to numerically solve equations (3.2), (3.3), (5.4) and (5.5).

These solutions have been solved in a two step process. Firstly the O(1) solutions were

found using methods described in previous section as they have no dependency on the O(ε)

equations. Secondly, the O(ε) equations were numerically solved. This process required two

shooting parameres as we require Φε and Vε to go to zero as r → rmax. Φε is the eigenvalue

controlled by its eigenvalue ωε and was found using a binary search. Once Φε was found, Vε which

initially had the boundary condition Vε(0)=0 was simply shifted down through trial and error

until Vε(rmax) = 0

Fig. 5.1 has been plotted showing the solution curves for Φ, Φε, V , and Vε. It can be seen

that the perturbed field Φε has been given the same initial conditions as Φ.

5.4 Results

I began my calculations with α=2, and found that ωε was purely real, yeilding no information. I

then checked α = 3 where critical behaviour was found last year and α = 8
3 , where static solutions

suggest we have a critical solution in the NSL system. Both of these results yielded b=0, forcing

us to make the conclusion that static pertubations on our system provide no information on the
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5.4. Results

Figure 5.1: This plot shows Φ, Φε, V , and Vε solved with ω, and ωε accurate to machine precision.

stability of the NSP system. Fortunatly not all is lost, this just means that we are going to

have to look at the more complecated time dependent stability cases discussed in the next two

chapters.
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Chapter 6

Time Dependent Analysis using

Matlab

6.1 Code

I began The time dependent analysis using a pre-programed matlab code called PDEPE. This

program requires three seperate files: boundary conditions, initial conditions, and the equations.

The mesh for the spacial component was chosen to be:

x (i) = R

(
1− cos

(
iπ

2N

))
(6.1)

where i indexes from 1 to N, and N is the number of spacial mesh points. This mesh was chosen

over a uniform mesh because we are looking for blow-up, which occurs at the origin. So the

natural choice is to choose a mesh which smoothly consitrates at the origin. The spacial mesh is

automatically chosen by PDEPE to be uniform.

6.2 Confirm last years results

6.2.1 NSP system with α = 2

Beginning with α = 2 in the NSP system, last years results suggested that blow-up could not be

induced.

This system was studied extensively last year by Inwoods, and all results indicated a system

that does not support blow-up. Fig. 6.2 shows the time derivative of mass near the origin. It can

be seen that increasing A increases the initial growth, however, dispursal always occurs. Inwoods

found that there was a scaling relationship between Ψ and A [? ].

It has been found that the dispersal of Ψ in this region takes two forms. Under low A values,

the field does not have the gravitational strength for any growth, and dispersal is imediate as

shown in Fig. 6.1. A little more interesting, is when the initial gaussian gives the system enough

mass for growth. However, as previously mentioned, Ψ will never collapse at the origin because

the gravitational strength will not support such behaviour.
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6.2. Confirm last years results

Figure 6.1: This plot shows the dispersal of Ψ which would result under week gravity or low
amplitude (A)
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6.2. Confirm last years results

Figure 6.2: Setting α = 2 in the MSP system, we see initial growth in the mass at the origin
followed by dispersion, indicating that the gravitational strenth is not strong enough to hold the
system together. There is also evidence that the MSP system scales in time with A as the growth
rates of the mass exhibit similar behaviour on different time scales.
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6.2. Confirm last years results

Figure 6.3: Setting α = 3 in the MSP system, two distinctly different behaviours are noticed. For
0 < A < 16, the mass shows same behaviour as seen with α=2. For 16 < A < 17 this plot shows
the transition between the dispersal and blow-up states. And for A > 17 blow-up time decreases
as A increases

6.2.2 NSP system with α = 3

The second extreme of our system is setting α = 3 in the NSP system, where blow-up has been

found to occur. Two distinctly different behaviours occur with the central mass of the system

which can be seen in Fig. 6.3. Setting the amplitude within the region 0 < A < 16 yields the

same behaviour that was seen for α = 2; Their is either complete dispersal or some initial growth

followed by quick dispersal. However, this region is dispersing for a different reason than seen in

the α = 2 case. Here, it is the fact that we are not giving enough mass into our system to induce

blow-up.

Fig. 6.3 has been plotted showing how a small mass increase in our system (controlled by A)

will produce drastically different results. Somewhere in the region 16 < A < 17, Ψ has switched

its behaviour from dispersal to ’blow-up’. Fig. 6.4 shows the evolution of Ψ, characteristic of

’blow-up’.

The NSP system with α = 3 has demonstrated that blow-up occurs in the NSP. The goal at

this point is to tune ’A’ to machine percision for all α’s that allow blow-up to occur; Then look

at the critical solution of Ψ and perform stability analysis.
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6.2. Confirm last years results

Figure 6.4: This plot shows the exponential growth of Ψ. This plot was taken with α = 3, and
A=16, which is just under the critical solution.
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6.3. Results and limitations

Figure 6.5: In tuning ’A’ to produce the critical value (Ψcritical), it can be seen that fluxuations
are occuring at the origin. These fluxuations are due to Ψ propogating to the outer boundary
and back to the origin. The fluxuations can be removed by increasing rmax, at the cost of
computational power.

6.3 Results and limitations

It has been demonstrated by Fig. 6.3 that our critical value of ’A‘ will lie in the region 16 < A < 17

for α = 3.

In looking for a critical solution, It was helpful to follow the Mass of the system near the

origin. As the critical solution is the threshold of blackhole formation, the mass with neither

grow or decay. Unfortunatly, Matlab was not able to resolve ’A’ to more than two decimal places.

The problem was that by increasing the accuracy of ’A’, we were increases the time we must

look at our solution. Increasing the time presents the problem that our solution has time to

propogate to the outer boundary and reflect back into the origin. To composate for the boundary

reflections, the spacial domain was increased. It was found that memory became an issue and it

was not feasable to find critical solutions using Matlab. Fig. 6.5 has been included to show the

fluxuations that occur from Ψ propogating to the outer boundary and back to the origin when

looking for the critical solution.

27



Chapter 7

Time Dependent Analysis using a

Finite Difference Approximation

Due to limitations of Matlab in calculating critical solutions, Code written by Andrew Inwoods

has been implemented. A brief outline of the discretization and code will be summarized here;

However, for a full derivation please refer to Inwoods thesis [3].

7.1 Discretization

7.1.1 Spacial and Temral points

Fig. 7.1 displays how our spacial and tempral domains will be discretized. subscripts will indicate

the spatial point, and superscripts will indicate the time level. h and dr will be used synonymously

to describe the spacing of the spatial coordinate, and the time spacing is set to be proportional

to h, The proportionality constant λ is known as the Courant factor, such that.

λ =
dt

dr
(7.1)

The spacial domain will be denoted rj , with j=1,2,...,N. We will also use half steps, defined as

rj± 1
2

= rj ±
h

2
(7.2)

which will be needed to satisfy our accuracy as described in the next section.

7.1.2 NSP System

All calculations will be carried out to O(h2) accuracy. The descritization of the NSP will be done

by breaking the system down several components, and combinding them together.

Figure 7.1: This figure shows the discretization of our spacian and tempral domains. Subscripts
will indicate the spatial point and superscripts will indicate the time level . The mesh spacing
for the spacial points is denoted h. λ will be set to 1

2 to implement a Crank-Nicolson scheme,
centering the tempral points at the half time level, denoted with the red dots.
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7.1. Discretization

The time derivitive which shows up in the Schrödinger equation will be descretized into half

time steps (λ = 1
2) to satisfy the accuracy requirements, those steps are displayed in Fig. 7.1 and

the derivitive becomes

(
∂Ψ

∂t

)n+ 1
2

j

=
Ψj

n+1 −Ψj
n

dt
(7.3)

Smoothness at the origin is best enforced by our numerical scheme if the The laplacian is

written in terms of r3

∆f = 3
∂

∂r3

(
r2 ∂f

∂r3

)
(7.4)

And by implementing the half spacial points, the laplacian becomes

∆f = 3

(
rj+ 1

2

2 (fj+1 − fj)
dr

−
rj− 1

2

2 (fj − fj−1)

dr

)(
rj+ 1

2

3 − rj− 1
2

3
)−1

(7.5)

With our laplacian and time derivitive as written above, we are able to write the FDA

Schrödinger equation as

i
(
Ψj

n+1 −Ψj
n
)

dt
= − 3

2
(
rj+ 1

2

3 − rj− 1
2

3
) [rj+ 1

2

2
(
Ψj+1

n+1 −Ψj
n+1 + Ψj+1

n −Ψj
n
)

2dr

−
rj+ 1

2

2
(
Ψj+1

n+1 −Ψj
n+1 + Ψj+1

n −Ψj
n
)

2dr
+
(
Vj
n+1Ψj

n+1 + Vj
nΨj

n
)

(7.7)

and the FDA Poisson equation is

3

(
rj+ 1

2

(
V nj+1−V nj

dr

))2
−
(
rj− 1

2

(
V nj −V nj−1

dr

))2(
r3
j+ 1

2

− r3
j− 1

2

) =
∣∣Ψn

j

∣∣α (7.8)

7.1.3 Code

Inwoods developed all of the machinery to take an initial state Ψ1 and calculate the state at the

next time level Ψ2, while satisfying the NSP system and boundary conditions. Routines have

been developed to quickly and efficiently invert tridiagonal matrices, and we use the routines

found in LAPACK for tridiagonal matrices: DGTSV and ZGTSV. A skeleton code for solving
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7.2. Introduction to stability analysis

the NSP system is written in RNPL (Rapid Numerical Prototyping Language), and the updates

are written in FORTRAN 77

For more details please refer to Andrew Inwoods Thesis [3].

7.2 Introduction to stability analysis

The following data will be generated using the Finite Difference Approximation with RNPL,

followed by analysis through Matlab.

The two regions of interest are α = αc and α=3. We will be using the smoothness of our NSP

system found in the static case and displayed in equation (4.4) to assume that α < αc behaves

the same as α = 2 and α > αc behaves the same as α = 3. α=3 is expexted to be 1-mode

unstable, at blow up was found in last years results and has been confirmed. α = αc will produce

the most interesting results, as this is critical value for the NSP system, which in essence carries

two critical values, αc and potentially a critical amplitude A.

To begin our look for the stability of the NSP, we must first find the critical amplitude for

a given α. Once Acritical has been found to 16 decimal places by performing a binary search,

the critical solution will give us the information about stability. As discussed earlier, our critical

solutions in this system are Type 1, which have been shown to oscillate in time; increasing the

accuracy of Acritical increases the time the solution will oscillate.

7.3 Stability analysis for α = 3

A binary search has found Acritical = 75.4999145847602406 as the threshold of blackhole forma-

tion. In the previous chapter, Matlab found 16 < Acritical < 17. This discrepency is because

different widths were given for the initial gaussians.

By giving the NSP system Acritical as an initial condition, Ψcritical has been found to oscillate

as shown in Fig. 7.2. Our critical solutions are only as good as the accuracy of Acritical, as it can

be seen in Fig. 7.2 the solution dispurces for larger t, our solutions will only be valid within the

regions of oscillation.

In order to calculate the pertubation, the oscillations seen Fig. 7.2 must be removed, revealing

the fundamental solutions which are stable in time; That is the static solutions calculated in

chapter 4. A plot of the fundamental solutions Ψcritical(0, t) vs t would ideally produce a constant

line, while a radial plot will produce the static solutions seen from chater 3 and 4.

The way we have decided to remove the oscillations, is to take a time average of our solution

at r = 0, defined as

Ψ(0, t) =
1

δt

∫ t+ δt
2

t− δt
2

Ψ(0, τ) dτ (7.9)
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7.3. Stability analysis for α = 3

Figure 7.2: This plot shows the periodicity of our critical solution. The radial profile of Real(Ψ)
can be seen to quickly decays.
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7.3. Stability analysis for α = 3

Figure 7.3: This plot shows the time average of the critical solution. While oscillations still exist,
it can be seen that the solutions seems to have a minimum around 0.9. This is the point of closest
approach between the critical solution and the static solution.

This integral has the property of averaging Φ(0, t), in theory eliminating the oscillations. To

implement this numerically, δt will be given the value nω, where ω is the frequency of oscilla-

tions seen in Fig. 7.2 and n is an integer. For the following calculations, δt = ω = 0.0170898.

Equation (7.9) has been calculated using the mid point rule, yeilding

Ψ(0, tn) =
1

δtn

δtn∑
i=0

(
Ψ

(
0, i+ tn − δtn

2

)
+ Ψ

(
0, i+ 1 + tn − δtn

2

))
∆t

2
(7.10)

where δtn denotes the discrete range of integration for each tn. ∆t has been denoted as the spacial

step (ti+1 − ti). Equation (7.10) has been implemented over each discrete tn value, creating an

average over some region. The range of integration for Ψ(0, t) can be seen on Fig. 7.3.

Fig. 7.3 has been plotted showing Ψ(0, t), and will be used to obtain the time of closest

approach between Ψcritical(r, t) and Ψc(r), where Ψc(r) is the static solution which occurs at

time t = tc. It can be seen in Fig. 7.3 that our averaging still has some oscillation, however,

these oscillations have been reduced ∼1000 times from the origonal solution and have produced

workable results. By definition, tc occurs when dΨ
dt (0, t) = 0; tc can be seen to lie between t = 0.07

and t = 0.9 by following the centre of the oscillations, and we will take tc = 0.8911 for the following

calculations.

With Ψ(r, t) and tc calculated, we are in the position to define the pertubation as
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7.4. Results of Stability Analysis for α = 3

Figure 7.4: As Ψ(r, t) approaches the static solution Ψ(r, tc) it can be seen that the static solution
has a stable radial profile (no zero crossing).

δΨ = eλ(t−tc)δΨ1(r) (7.11)

Where δΨ1(r) are static spacial profiles. It can be seen that λ will control whether δΨ is stable

or instable; here we are looking for the same exponential behaviour as the static settings.

Fig. 7.4 shows the radial profile our our static solution Ψ(r, tc), (Ψ(r, tc) ≡ Ψc(r)) before the

oscillations have been removed, and some radial solutions around tc. These radial profiles are all

stable boson star solutions.

Fig. 7.5 shows the radial profile our our fundamental static solution Ψ(r, tc), and some radial

solutions around tc. Here it can be seen that our radial profiles have gone from a stable boson

star solutions to the 1-mode excited state. That is, the radial profiles for Ψ(r, t) cross the zero

line once. This behaviour was expected from the static calculations, as we believed the static

solutions switched from stable to 1-mode excited at α = 8
3 and now we have confirmed that, for

α = 3, we do indeed get 1-mode excited static solutions.

7.4 Results of Stability Analysis for α = 3

Imputing all of the found data described in the last section has yielded λ = 518− 650i. Plugging

this value into equation (7.11), we can concude

δΨ = e650i(t−tc)e518(t−tc)δΨ1(r) (7.12)
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7.4. Results of Stability Analysis for α = 3

Figure 7.5: As Ψ(r, t) approaches the static solution Ψ(r, tc) it can be seen the radial profiles have
become 1-mode excited, revealing the fundamental solutions are unstable

When (t− tc) < 0, Ψ(r, t) is approaching the static solution, and when (t− tc) > 0, Ψ(r, t) is

departing the static solution with some exponential behaviour (either growth or decay). δΨ1(r)

is some radial profile which is of no importance at this point.

To summarize the situation and results found here, we began by finding Ψcritical with α = 3

in the NSP system. This corresponds to a ’star’ having the perfect mass to remain stable (will

not dispurse or collapse). From there, we are interested in introducing a small pertubation

in our ’star’, to see how the ’star’ responds in our (NSP) system. It has been found through

equation (7.12) that a small pertubation, denoted δΨ, introduced at some time (t = 0), will

exhibit exponential growth for all time (t− tc) > 0; That is, our ’star’ will become unstable.
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Chapter 8

Conclusion

This project began with the goal of building a mathematical model that was capable of describing

matter coupled to gravity using scalar fields. The purpose was to study the system in hopes of

learning more about critical phenomenon.

We began by defining our model with a parameter α that allowed us to control the strength

of gravity. Then by making the correct anzats to convert the system into a static setting, it was

found that two distinctly different end behaviours occured when looking at mass as a function of

central pressure. The boundary of these two behaviours was founds to be α = 8/3, denoted αc.

Through smoothness of our static mass function, it was conjectured that α < αc produces stable

solutions, while α > αc produces 1-mode unstable static solutions.

A static stability test was attempted by introducing a small pertubation in the fields. If

exponential decay occured than the conclusion is stable solutions exist, and exponential growth

would conclude 1-mode unstable solutions. Unfortunatly, neither behaviour was present, pushing

us to use time dependent pertubation

Before looking at time dependent pertubation, it was vital to look at our system to confirm

the static setting conclusions. setting α = 2 displayed fields with initial growth followed by decay,

alway dispursing at large time. α = 3 showed dispursal for small initial amplitudes, and ’blow-up’

for larger amplitudes. A binary search found our critical amplitudeAcritical=75.4999145847602406,

which produced the critical solution.

Time dependent stability analysis was done on our critical solution for α = 3. First we had

to remove the oscillations in the solution, in order to look at the fundamental solution. It was

found that δΨ = e650i(t−tc)e518(t−tc)δΨ1(r) which exhibits exponential growth, showing α = 3 is

1-mode unstable.

Combinding the static and time dependent results, we can confirm our conjecture that α < αc

produces stable solutions, while α > αc corresponds to 1-mode unstable solutions.
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Chapter 9

Future Work

The stability of α = αc was not tested purely due to time constraints, all of the theory and

programs are done to do this test. It would be interesting to see if blow-up can occur in this

region. Further, to show that there truely is a boundary at α = αc; It may be of interest to show

the behaviour of α = αc ± ε in time dependent settings, where ε is taken to be small.
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Appendix A

Static Solutions

The static solutions were all analyzed in Matlab. The build in program ODE45 was implemented

to solve these couples ODE.

A.0.1 ODE

The first file defines the ODE. Equations (3.2) and (3.3) have been decomposed into first order

ODE. Also, since the ODE become undefined at the origin, we were able to use L’Hpital’s rule

to obtain a bounded set of ODE when at the origin. These are described in the file below, with

• I = Φ(r)

• J = d
drΦ(r)

• V = V(r)

• L = d
drV (r)

• F = Φε(r) (perterbed field)

• K = d
drΦε(r)

• VD = Vε(r) (perterbed field)

• M = d
drVε(r) (perterbed field)

• e = α (exponent to NSP system)

• w = ω (eigenfunction to Φ(r)

• k = ωε (eigenfunction to Φε(r)

Code

C is a comment line

clear all; format long Io = 25; Vo = 0; e = 3; C initial guess for w,k,rmax; program will

fix w = 1; k = 1; rmax = 100; C ————–START PROGRAM—————- C columns of y =

(I,J,V,L,Fk,K, Vd,M, e, w, k)C−−−−−−−−−−−−−−−−−−shootforw−−−−−−−−−
−−−−−−−− fori = 1 : 190yin = [Io, 0, V o, 0, Io, 0, V o, 0, e, w, k]; rspan = [0, rmax]; [r, y] =
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Appendix A. Static Solutions

ode45(′ODE′, rspan, yin); I = y(:, 1); forj = 1 : length(r); pow = 10( − floor(i/10)); ifI(j) >

Io;w = w + pow; breakelseifI(end) − I(end − 1) > 0;w = w + pow; breakelseifI(j) < 0;w =

w − pow; breakelsew = wendendendCshiftV o, findshiftedwkk = find((y(:, 2) < 0)); kkk =

length(kk); rval = kkk−5; rmax = r(end);m = ((y(rval, 3)));ws = w−m;CthisisshiftedwvalueV s =

−abs(m)C−−−−−replot−(correctIV wr1max)−−−−−−−−−yin = [Io, 0, V s, 0, Io, 0, V o, 0, e, ws, k]; rspan =

[0, rmax]; [r, y] = ode45(′ODE′, rspan, yin); I = y(:, 1);V = y(:, 3); [P, PP ] = min(abs(I −
0)); r1max = r(PP ); rspan = [0, r1max]; [r, y] = ode45(′ODEP ′, rspan, yin); I = y(:, 1);V = y(:

, 3);C−−−−−−userr−−−−−shootfork−−−−alterV eo−−−−−−−−CfirstguessV eo = V s+

.3rmax = 150; fori = 1 : 190yin = [Io, 0, V s, 0, Io, 0, V eo, 0, e, ws, k]; rspan = [0, rmax]; [rr, y] =

ode45(′ODE′, rspan, yin);F = y(:, 5);

for j = 1:length(rr); pow = 10( − floor(i/10)); ifF (j) > Io; k = k + pow; breakelseifF (j) <

0; k = k − pow; break

A.0.2 Program

This program has α, ψ(0), V(0), and rmax as free variables. Once these are defined, the program

will first find ψ(r) and corresponding eigenvalue w to 16 decimal places, along with V(r). It will

then find ψε(r) along with corresponding eigenvalue wε, and Vε(r).

Code

C is a comment line

clear all; format long Io = 25; Vo = 0; e = 3; C initial guess for w,k,rmax; program will

fix w = 1; k = 1; rmax = 100; C ————–START PROGRAM—————- C columns of y =

(I,J,V,L,Fk,K, Vd,M, e, w, k)C−−−−−−−−−−−−−−−−−−shootforw−−−−−−−−−
−−−−−−−− fori = 1 : 190yin = [Io, 0, V o, 0, Io, 0, V o, 0, e, w, k]; rspan = [0, rmax]; [r, y] =

ode45(′ODE′, rspan, yin); I = y(:, 1); forj = 1 : length(r); pow = 10( − floor(i/10)); ifI(j) >

Io;w = w + pow; breakelseifI(end) − I(end − 1) > 0;w = w + pow; breakelseifI(j) < 0;w =

w − pow; breakelsew = wendendendCshiftV o, findshiftedwkk = find((y(:, 2) < 0)); kkk =

length(kk); rval = kkk−5; rmax = r(end);m = ((y(rval, 3)));ws = w−m;CthisisshiftedwvalueV s =

−abs(m)C−−−−−replot−(correctIV wr1max)−−−−−−−−−yin = [Io, 0, V s, 0, Io, 0, V o, 0, e, ws, k]; rspan =

[0, rmax]; [r, y] = ode45(′ODE′, rspan, yin); I = y(:, 1);V = y(:, 3); [P, PP ] = min(abs(I −
0)); r1max = r(PP ); rspan = [0, r1max]; [r, y] = ode45(′ODEP ′, rspan, yin); I = y(:, 1);V = y(:

, 3);C−−−−−−userr−−−−−shootfork−−−−alterV eo−−−−−−−−CfirstguessV eo = V s+

.3rmax = 150; fori = 1 : 190yin = [Io, 0, V s, 0, Io, 0, V eo, 0, e, ws, k]; rspan = [0, rmax]; [rr, y] =

ode45(′ODE′, rspan, yin);F = y(:, 5);

for j = 1:length(rr); pow = 10( − floor(i/10)); ifF (j) > Io; k = k + pow; breakelseifF (j) <

0; k = k−pow; breakelsek = k; endkendendC−−(correctIV wr1max)−−−replot−−(getr2maxV eF )−
−−−−−−−yin = [Io, 0, V s, 0, Io, 0, V eo, 0, e, ws, k]; rspan = [0, rmax]; [r, y] = ode45(′ODE′, rspan, yin);F =
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Appendix A. Static Solutions

y(:, 5);V e = y(:, 7); k2 = find(abs(y(:, 8) > 3)); r2max = r(k2(1)− 5);

yin=[Io,0,Vs,0,Io,0,Veo,0,e,ws,k]; rspan=[0,r2max]; [r, y]=ode45(’ODE’, rspan, yin); I = y(:,1);

V = y(:,3); rspan=[0,r2max]; [rr, y]=ode45(’ODE’, rspan, yin); F = y(:,5); Ve = y(:,7); C ———

—-PLOT——————– plot(r,I,rr,F,r,V,rr,Ve) legend(’Φ′,′Φ′ε,
′ V ′,′ V ′ε )title(′Solutionswithperturbations′)xlabel(′r′)
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Appendix B

Time Dependent Solutions

B.1 Time Dependent Solutions using Matlab

The build in program PDEPE was implemented for the time dependent calculations. PDEPE is

specifically designed to solve PDE of the form

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂ ∂x(
xmf

(
x, t, u, ∂u∂x

))
+ s
(
x, t, u, ∂u∂x

)
(B.1)Since we are working with spherically symetric coordi-

nates, m=2. NSP is a set of two PDE of the form set by equation (B.1). This program consisted

of four seperated .m files which are described below.

B.1.1 Boundary Conditions

MATLAB function that defines boundary conditions for a system of two PDE in time and one

space dimension. The boundary conditions are written in the form

p (x, t, u) + q (x, t) f

(
x, t, u,

∂u

∂x

)
= 0 (B.2)

which yields the following matlab file for the boundary conditions:

function [pl,ql,pr,qr] = bc2(xl,ul,xr,ur,t)

pl = [0; 0];

ql = [1; 1];

pr = [ur(1); ur(2)];

qr = [1; 1];

B.1.2 Initial Conditions

The two fields (Φ(r) and V (r)) are given an initial shape. Φ(r) is chosen to be a positive gaussian

and V (r) is the negative gaussian, as those are the shapes we were getting with the static solutions.
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B.2. Independent Residual (convergence)

function value = initial(x)

global A

value = [A*exp(-(x2/0.05));−A ∗ exp(−(x2/0.05))];

B.1.3 PDE Equations

The equations for the NSP system given in the form of equation (B.1) are:

function [c,b,s] = eqn(x,t,u,DuDx)

global eps;

c = [i; 0];

b = [-1/2 ; 1] .* DuDx;

s = [u(1)*u(2) ; -(abs(u(1)))eps];

B.1.4 Program for Time Dependent Calculations

clear all

format long

global eps A

eps = 2;

A = 30

N = 200

for i = 1:N

x(i)=2*(1-cos(i*pi/(2*N)));

end

TEND = 0.2

t = linspace(0,TEND,2000);

m = 2;

sol = pdepe(m,@eqn,@initial,@bc,x,t);

Φ(r,t) = sol(:,:,1);

V(r,t) = sol(:,:,2);

B.2 Independent Residual (convergence)

While a pre-programmed MATLAB code has been chosen, it is important to check the convergence

of our PDE. To do so, I will begin by taking our Schrödinger equation and replace the V term
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B.2. Independent Residual (convergence)

Figure B.1: Taking the difference between the independent residual of decreasing mesh points,
we get I(dr, dt) − I(dr2 ,

dt
2 ) = 37, I(dr2 ,

dt
2 ) − I(dr4 ,

dt
4 ) = 33, I(dr4 ,

dt
4 ) − I(dr8 ,

dt
8 ) = 19 indicating

convergence of our system.

with a constant called ’N’.

∂Ψ (r, t)

∂t
= −1

2
∆Ψ (r, t) +NΨ (r, t) (B.3)

Now we have an equation which depends only on Ψ(r, t). The next step is to use the spherically

symetric laplacian, and break our equation in discrete time and space steps.

1

2

Ψn+1
j −Ψn−1

j

∆t
= −1

2

1

r2
j

(
r2
j+ 1

2

(
∂Ψ

∂r

)n
j+ 1

2

− r2
j− 1

2

(
∂Ψ

∂r

)n
j− 1

2

)
+NΨn

j (B.4)

where j is the spacial and n is the time step. You will notice that some of the spacial steps are

takin in half integers, which do not exist. This was done to allow a central difference operator to

be used on the radial derivitives.

1

2

Ψj
n+1 −Ψj

n−1

∆t
= −1

2

1

rj2∆r2

(
r2
j+ 1

2

(
Ψn
j+1 −Ψn

j

)
− r2

j+ 1
2

(
Ψn
j −Ψn

j−1

))
+NΨn

j (B.5)

with rj+ 1
2
≡ 1

2 (rj+1 + rj) and rj− 1
2
≡ 1

2 (rj − rj−1)

The independent Residual (I) is taken to be the difference between the two sides of the

equation.

I =
1

2

Ψj
n+1 −Ψj

n−1

∆t
+

Ψj
n+1 −Ψj

n−1

2∆t
+

1

2

1

rj2∆r2

(
r2
j+ 1

2

(
Ψn
j+1 −Ψn

j

)
− r2

j+ 1
2

(
Ψn
j −Ψn

j−1

))
−NΨn

j

(B.6)

And for convergence to occur, scaling the mesh to finer grid points should converge I to some

function. Convergence brings us to a scaled function and not to zero due to the constant N that

was introduced to eliminate the gravitational field dependency in the PDE. The above formula

was coded in MATLAB with the mesh points taken to be successively smaller. Fig. B.1 showed

a scaled function converging for successively smaller dr and dt, consistant with a converging

solution; Thus we have convergence and can continue with the calculations.
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B.3. Time Dependent Solutions using RNPL

B.3 Time Dependent Solutions using RNPL

To calculate the critical solutions (Ψcritical) with α = 3, I used Andrew Inwoods RNPL code.

Convergence has been discussed in his thesis [3].
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