
PHYS 449: Undergraduate Honours Thesis

Comparison of Landau Damping in Two Computer Models

by

Aaron Froese

A.Sc., University College of the Fraser Valley, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

in

The Faculty of Science

(Physics)

THE UNIVERSITY OF BRITISH COLUMBIA

March 31, 2005

c© Aaron Froese, 2005

ii

Abstract

The Vlasov-Maxwell model of a plasma is introduced and simplified to two-
dimensional phase-space. Unstable growth and Landau damping of the electric
field occurring in this model are developed for three different initial velocity
distributions, the Maxwellian, two cold streams, and two Lorentzian streams.
The particle-mesh scheme and the finite-difference approximation scheme for
numerical simulation of the model are compared. Then the velocity distributions
are run in two programs that employ the schemes, and the data is compared
with theory.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . viii

1 Introduction . 1
1.1 Computer Simulations . 2
1.2 Motivation . 3

2 Mathematics . 4
2.1 Development of the Vlasov-Maxwell Model 4

2.1.1 The Boltzmann Equation 4
2.1.2 The Vlasov Equation . 5
2.1.3 Maxwell’s Equations . 6

2.2 Down to One Dimension . 6
2.2.1 Motion of a Charged Particle in a Magnetic Field 7
2.2.2 Electrostatic Equations 9
2.2.3 Final Assumptions . 9
2.2.4 Summary of the Continuous Model 10

2.3 Landau Damping . 11
2.3.1 The Laplace Transform 12
2.3.2 The Dispersion Relation 12
2.3.3 The Inverse Transform . 13

2.4 Maxwellian Distribution . 16
2.5 Two-Stream Instability . 18

2.5.1 Cold Streams . 18
2.5.2 Warm Streams . 19

2.6 Properties of Interest . 22

Contents iv

3 Numerical Methods . 24
3.1 Particle-Mesh . 24

3.1.1 Assigning Charge to the Mesh 25
3.1.2 Poisson’s Equation . 26
3.1.3 Moving the Particles . 28
3.1.4 Stability . 28
3.1.5 Initialization . 30

3.2 Finite-Difference Approximation 31
3.2.1 Crank-Nicholson Scheme 32
3.2.2 Leapfrog Scheme . 34

3.3 Physical Diagnostics . 35
3.4 Convergence Testing . 36

4 Projects . 38
4.1 Two-Particle Test . 38
4.2 Maxwellian Distribution . 38
4.3 Two-Stream Instability . 44

4.3.1 Cold Streams . 44
4.3.2 Warm Streams . 45

5 Conclusion . 48

Bibliography . 49

A Tabulated Project Results . 50

B Code for Particle-Mesh Program 55
B.1 Initial File Generator . 55
B.2 Main Function . 59
B.3 Experiment Class . 61

C Code for FDA Program . 69
C.1 RNPL Description File . 69
C.2 Update Function . 71
C.3 Initialization Function . 73

D Code for Convergence Test . 79

v

List of Tables

A.1 Oscillation frequency for Maxwellian velocity distribution 51
A.2 Damping rate for Maxwellian velocity distribution 52
A.3 Results for cold two-stream velocity distribution 53
A.4 Results for warm two-stream velocity distribution 54

vi

List of Figures

2.1 Infinite sheets of charge interact in a slab geometry where two spatial dimensions are homogeneous.
2.2 A particle travels a helical trajectory in a constant magnetic field. 8
2.3 (a) The contour for integrating the dispersion function when its singularity is positive and (b) the analytic
2.4 The Laplace inversion contour for the electric field in the case of (a) Landau damping when all zeros ha
2.5 The complex plot of the dispersion function for a Maxwellian distribution. There is a zero at the tip of
2.6 (a) The dispersion function for the cold two-stream instability where the solid, dashed, and dotted lines
2.7 The warm stream velocity distribution is two Lorentzians. 20
2.8 The (a) real and (b) imaginary components of the four zeros of the dispersion function for the double

3.1 A visual comparison of the NGP and CIC charge assignment schemes. Given the same particle distribution,
3.2 To generate particle positions with a sinusoidal distribution, the integral of the function is found. Then
3.3 (a) The Crank-Nicholson stencil and (b) the domain and boundary conditions for the FDA simulation.

4.1 (a) Particle positions over two periods of the two particle test. (b) Energy conservation for time steps
4.2 Comparison of the initial velocity distributions in (a) the FDA simulation and (b) the PM simulation.
4.3 Different magnitude initial perturbations in (a) the FDA simulation and (b) the PM simulation with
4.4 Electrostatic energy mode logplots for different modes of initial perturbation k in the FDA simulation
4.5 Phase-space plots of the particles in a cold two-stream distribution. Images from ES1 [2]. 44
4.6 (a) Different magnitude initial perturbation in the cold two-stream velocity distribution. The black line
4.7 Different magnitude initial perturbation amplitudes in (a) the FDA simulation and (b) the PM simulation

vii

List of Algorithms

3.1 NGP Charge Accumulation . 25
3.2 CIC Charge Accumulation . 26
3.3 Update Particle Placement . 28
3.4 Compute points for f(x) distribution on x = 0..1 30
3.5 Gauss-Seidel Relaxation for Vlasov equation 33

viii

Acknowledgements

Thanks go to Matt Choptuik and the UBC Numerical Relativity Group for their
assistance and the use of their computing facilities.

1

Chapter 1

Introduction

Plasma is the fourth state of matter. A solid has few internal degrees of freedom;
all its constituent atoms are locked in place, relative to each other. If one
adds energy to a solid, the bonds holding those atoms together will break,
and the material will gain internal degrees of freedom, eventually crossing a
phase boundary and becoming a liquid. The atoms in a liquid are free to move
independently, but face constraints on that movement. They must remain in
contact, but can slide across each other. Heating a liquid to produce gas will
eliminate these final constraints on the position of the atoms. They will fly
into free space and eventually achieve a completely random distribution. As the
heating continues, the atoms in the gas will speed up, eventually hitting one
another with such force that they break into ions, the components of a plasma.

All these phase transitions, of course, do not take place instantly. There
are states of equilibrium between each complete phase. The lattice in a solid
begins to collapse first at points of weakness. The stronger bonds follow suit
only when sufficient “incentive” is provided. Once a liquid starts evaporating
at its surface, initially gas will be re-condensing as well. And when a gas begins
to ionize, not every atom will lose all of its electrons. As the heat increases, so
does the level of disintegration. For this reason, the actual point at which a gas
becomes plasma is open to debate. However, as soon as the gas becomes weakly
ionized, it does begin to exhibit the characteristic behaviour of a plasma.

Plasma is one of the few systems whose components interact by long-range
forces, the other notable one being groups of massive bodies in gravitational
interplay. Each free charge in the plasma is affecting, and subsequently being
affected by, every other free charge. The charges produce electric fields and the
charge currents produce magnetic fields. Then the electric field induces more
magnetic field and the magnetic field induces more electric field; the fields prop-
agate as electromagnetic waves. These fields produce forces on the particles
that give rise to a wide range of complex behaviour. While this electromag-
netic interaction accounts for the basic coherence of everyday objects, atoms
are charge-neutral, and so it is only the residual fields that play a role. There-
fore, the observed range of the force is microscopic compared to that in a plasma,
and the resulting behaviour is instead simple and familiar.

Plasma physics, the study of the complex interplay between ions, has a
number of broad applications. Ninety-nine percent of the visible matter in
the universe is plasma. The stars are completely ionized and are constantly
emitting charged particles as solar wind. The interstellar space is full of a
sparse population of ions, and a denser grouping is found in the magnetospheres

Chapter 1. Introduction 2

around planets. An understanding of plasma physics is therefore fundamental
to elucidate the mechanisms behind most space phenomena.

Plasma has applications in the lab as well. It is used to create laser beams
and etch semiconductors. However, the most appealing use for plasma, and
therefore the most convincing reason for delving into its secrets, is the possibility
of controlled fusion.

Fusion generators promise potentially limitless clean energy. The fuels are
only deuterium, stripped from heavy water molecules, and tritium, produced
from lithium ores. Both are plentiful and easily accessible, and the process re-
quires far less fuel than chemicals reactions, such as burning coal or oil. Unlike
coal, oil, and even nuclear fission, fusion energy produces no harmful byprod-
ucts. There is no carbon dioxide nor particulate matter to be released into the
atmosphere, and no radioactive waste to store. The stray neutrons that escape
the reactor core are sparser than their fission counterparts, and so, while the re-
actor materials do become radioactive, the effect is orders of magnitude weaker
than in fission reactors. In fact, it is safe to enter the reactor chamber within
an hour after its deactivation.

1.1 Computer Simulations

The computer-modelled plasma that I study is less complex than a complete
reactor simulation. This simulation is collisionless and non-relativistic, and vari-
ations in the plasma are limited to one dimension. Only the Coulomb interaction
is invoked to give structure. The plasma is analyzed in phase-space, so that the
simulation domain is two-dimensional. One dimension gives position and the
other gives velocity. Technically, since the position of each component particle
of the plasma is specified in phase-space, the number of dimensions required to
specify a single state is 2N -dimensional.

The computer can only simulate a finite domain size, so assumptions have
to be made about what happens on the edges. This is easy for the velocity
direction, the program just needs to ascertain that there are no particles with
very large velocity, that is, a velocity larger than the domain boundary. In
the spatial direction, since the plasma should not disappear from the field of
view, the boundary conditions must be assumed to be periodic. That way, when
particles fly off one side of the domain, they (or rather, their counterparts from
another interval) reappear on the opposite side.

I study the behaviour of two different programs, one which employs a finite-
differencing approximation (FDA) scheme and the other a particle-mesh (PM)
scheme. The PM simulation keeps track of the positions and velocities of a
number of representative particles. It creates a density function on a 1D grid
based on the spatial distribution of those particles. Then it calculates the electric
field from the density and finally attributes an electric force to each of the
particles, depending on where they are. This force and the velocity of each
particle determines how the particle moves through phase-space.

Instead of using particles, which are conceptually closer to an actual plasma,

Chapter 1. Introduction 3

the FDA simulation assumes that the plasma is a ‘charge fluid.’ The program
keeps track of how much fluid there is at each point of a fixed grid. Fluid can
flow from grid point to grid point, but the amount depends on the velocity and
the electric force at that grid point. The electric force is calculated in much the
same way as in the PM method, but without the difficulty of interpolating back
and forth between the particles and the grid.

The physical problems that will be attempted with each program are sim-
ulation of the Maxwellian velocity distribution and the two-stream instability.
The former exhibits Landau damping, and the latter an instability, which, sur-
prisingly enough, are two sides of the same coin. In one case, the energy in the
fields is damped, imparting it to the particles as kinetic energy. In the other,
the kinetic energy is taken from the particles and produces growth in the fields.
At some point in both cases, a balance is achieved and the effect saturates out.

1.2 Motivation

This project is intended to improve my understanding of plasma behaviour
and allow me to gain more experience in computational physics. The physical
problems I will be studying with my programs are standard examples, at least
in the linearized regime, in most introductory plasma physics texts [2][3][4][5].
However, plasma physics has settled on particles as the de-facto standard for
computational experimentation, and FDA simulations do not appear in those
same texts. Comparing the two methods is a facet that is rarely covered, and
as such, is novel research.

In any simulation, there are many parameters that can be modified. An
experienced simulator will know what each one does and only adjust the ones
that produce interesting variations in the physics. It is my hope that I will be
able to vary many different aspects of the simulation, and thereby gain a better
grasp of the balance between plasma behaviour and computational artifacts in
both simulations.

4

Chapter 2

Mathematics

2.1 Development of the Vlasov-Maxwell Model

Plasmas typically contain a large number of ions, from 1015 in the Van Allen
belts to 1020 in a fusion reactor to 1022 in an interstellar gas cloud. For this
reason, it is definitely not feasible to keep track of each individual particle.
Therefore, we introduce the phase-space density function f(~x,~v, t), which is
measured in units of s3 m−6. It specifies the number of particles in a box
of volume dxdydz that have a velocity in a range dvxdvydvz at each point in
time. One can recover the particle number density and the average velocity by
integrating over the velocity dimensions of the phase-space density.

n(x, t) =

∫ ∫ ∫

f(~x,~v, t)dvxdvydvz =

∫

f(~x,~v, t)d3v (2.1)

n~u =

∫ ∫ ∫

~vf(~x,~v, t)dvxdvydvz =

∫

~vf(~x,~v, t)d3v (2.2)

2.1.1 The Boltzmann Equation

Now, given a starting f(~x,~v, t) and a set of forces, we should theoretically
be able to completely determine the state of the system at any future time.
This evolution should be unique, so that two different sets of initial conditions
will never produce identical results, unless, of course, when one of the starting
conditions is a future state of the other. Neither should one starting condition
yields multiple possible outcomes.

Since each unique state causes the system to evolve along a unique path,
the phase space density at any two points along that path should be equal. For
example, a particle starts at x(t1) with velocity v(t1), and after some time ends
up at x(t2) with velocity v(t2). Likewise, all the particles that are infinitesimally
close to the first with a velocity infinitesimally similar to its own at t1 should
end up at much the same point by t2. This is essentially the definition of the
phase-space density function, so it is reasonable to say that

f(~x(t2), ~v(t2), t2) = f(~x(t1), ~v(t1), t1) (2.3)

We will rewrite the equation by moving both terms to one side and adding a
certain arbitrary constant.

f(~x(t2), ~v(t2), t2) − f(~x(t1), ~v(t1), t1)

t2 − t1
= 0 (2.4)

Chapter 2. Mathematics 5

Since this relation is true for any value of t1 and t2, we can let t2 get close to t1
and rewrite each as t1 ≡ t and t2 ≡ t + ∆t.

lim
∆t→0

f(~x(t + ∆t), ~v(t + ∆t), t + ∆t) − f(~x(t), ~v(t), t)

∆t
= 0 (2.5)

It is apparent that the result of assuming that systems evolve uniquely is simply
a total derivative.

df(~x,~v, t)

dt
= 0 (2.6)

This result is known as Louville’s theorem.
Louville’s theorem provides an equation to describe the evolution of the

system. The total derivative is expanded to

0 =
df

dt

0 =
∂f

∂t
+

∂x

∂t

∂f

∂x
+

∂y

∂t

∂f

∂y
+

∂z

∂t

∂f

∂z
+

∂vx

∂t

∂f

∂vx
+

∂vy

∂t

∂f

∂vy
+

∂vz

∂t

∂f

∂vz

0 =
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z
+ ax

∂f

∂vx
+ ay

∂f

∂vy
+ az

∂f

∂vz

0 =
∂f

∂t
+ ~v · ∇xf + ~a · ∇vf (2.7)

This result is called the Boltzmann equation. One can see that the characteristic
equations are

d~x

dt
= ~v

d~v

dt
= ~a, (2.8)

which are the basic equations of Newtonian motion.

2.1.2 The Vlasov Equation

According to Newton’s 2nd Law, in order to determine the acceleration for the
Boltzmann equation, we must know both the mass of the object and the force
applied to it. Since the aim is for an electromagnetic model, the only force
acting on the particles is the Lorentz force.

~a =
~F

m
=

q

m
(~E + ~v × ~B) (2.9)

Plugging this into (2.7) gives the Vlasov equation, which depends on the charge-
to-mass ratio, rather than just the mass.

∂f

∂t
+ ~v · ∇xf +

q

m
(~E + ~v × ~B) · ∇vf = 0 (2.10)

Certainly this in itself is not a revolutionary enough change to warrant a new
name for the equation, but A A Vlasov in 1938 was the first to solve it to find
the plasma dispersion function and apply it to various problems.

Chapter 2. Mathematics 6

2.1.3 Maxwell’s Equations

We have an equation to calculate the phase-space density function, but it de-
pends on the electric and magnetic fields. These are not given, since they change
in time depending on the movement of the charged particles. They can be solved
using Maxwell’s equations, given here in the Coulomb gauge,

∇2 ~A = −µ0
~J (2.11a)

∇2φ = − ρ

ǫ0
(2.11b)

~E = −∇φ − ∂ ~A

∂t
(2.11c)

~B = ∇× ~A (2.11d)

where the currents and charge densities can be extracted from the phase-space
density function.

ρ =
∑

species

qn =
∑

species

q

∫

f(~x,~v, t)d3v (2.12a)

~J =
∑

species

qn~u =
∑

species

q

∫

~vf(~x,~v, t)d3v (2.12b)

Up until now, it has been assumed that there is just one phase-space density
function, but if there is more than one type of particle, they must be kept track
of separately. However, the electric and magnetic fields depend on the movement
of all charged particles collectively. Therefore, all species must be summed over
when calculating the charge and current densities.

The combination of (2.10), (2.11), and (2.12) constitute the Vlasov-Maxwell
system of equations. They completely describe a collisionless plasma which in-
teracts only electromagnetically, and despite such a simple description, encom-
pass a very rich range of behaviour. However, for the purposes of this paper,
they are quite complex, and it is helpful to make some simplifying assumptions
to explore a more basic system.

2.2 Down to One Dimension

Simulating a plasma in the full six dimensions of phase-space (x, y, z, vx, vy, vz)
is computationally prohibitive and conceptually difficult. We must make some
assumptions about the behaviour of the plasma so that the model is simplified
to only one space dimension and its corresponding velocity dimension. Firstly,
the plasma is assumed to be homogeneous in two directions, so that we can
integrate over them.

f(x,~v, t) =

∫ ∫

f(~x,~v, t)dvydvz (2.13)

Chapter 2. Mathematics 7

y

z
x

Figure 2.1: Infinite sheets of charge interact in a slab geometry where two spatial
dimensions are homogeneous.

This condition is known as the slab geometry (Figure 2.1), as all ’particles’
appearing in the density function are actually infinite sheets in the plane per-
pendicular to x̂.

2.2.1 Motion of a Charged Particle in a Magnetic Field

A single charged particle in electric and magnetic fields experiences the Lorentz
force due to the fields.

~F = q(~E + ~v × ~B) (2.14)

If we impose an external magnetic field that points in the ẑ-direction, such that
~B = Bẑ, then the force due to that magnetic field is

m~̇v = ~FB ≡ q(~v × ~B)

= qB(vy x̂ − vxŷ). (2.15)

Since superposition is valid, we can analyze the component of the path of the
particle that is only dependent on the magnetic field.

v̇x =

(

qB

m

)

vy (2.16a)

v̇y = −
(

qB

m

)

vx (2.16b)

v̇z = 0 (2.16c)

This shows that the magnetic field does not affect the component of the velocity
that is parallel to it. Taking the derivative of (2.16a) and substituting in (2.16b)

Chapter 2. Mathematics 8

B

x

z

y

Figure 2.2: A particle travels a helical trajectory in a constant magnetic field.

produces an ODE that can be solved for vx.

v̈x = −
(

qB

m

)2

vx (2.17)

vx = A sin(ωct + φ) (2.18)

where ωc ≡ qB/m is called the ‘cyclotron frequency’ and A and φ are dependent
upon initial conditions. Substituting (2.18) back into (2.16b) shows that vy is

vy = A cos(ωct + φ). (2.19)

This suggests that we define the velocity perpendicular to the magnetic field,

v⊥ =
√

v2
x + v2

y

=

√

A2 cos2(ωct + φ) + A2 sin2(ωct + φ)

= A, (2.20)

which turns out to be the amplitude of the oscillations in v. Integrating (2.18)
and (2.19) gives the path of the particle due to the magnetic field.

x = −v⊥
ωc

cos(ωct + φ) (2.21a)

y =
v⊥
ωc

sin(ωct + φ) (2.21b)

z = vzt (2.21c)

Thus, without a ẑ-component to the velocity, the particle traces out a circle in
the xy-plane. Taking a non-zero vz will cause the particle to travel in a helical
trajectory along the magnetic field lines (Figure 2.2). The radius of the circle

Chapter 2. Mathematics 9

or helix is

r =
√

x2 + y2

=

√

(

v⊥
ωc

)2

cos2(ωct + φ) +

(

v⊥
ωc

)2

sin2(ωct + φ)

=
v⊥
ωc

=
mv⊥
qB

. (2.22)

What is important to note is that the radius is inversely proportional to the
strength of the magnetic field. If we impose a very strong field, then the radius
goes to zero, and the particles are constrained to move in the same direction
as the field. Therefore, the second condition we will apply to the model is that
there must be a strong external magnetic field imposed in the x̂-direction, such
that magnetic fields in the other directions are negligible.

2.2.2 Electrostatic Equations

Now that motion has been restricted to one dimension, the Vlasov-Maxwell
system of equations can be significantly streamlined. The Vlasov equation (2.10)
becomes

∂f

∂t
+ v

∂f

∂x
+

q

m
(Ex + vyBz − vzBy)

∂f

∂v
= 0. (2.23)

But since the perpendicular magnetic fields are assumed to be negligible, this
simplifies further to

∂f

∂t
+ v

∂f

∂x
+

q

m
Ex

∂f

∂v
= 0. (2.24)

Now we only need to calculate Ex, which from (2.11) is

∂2φ

∂x2
= − ρ

ǫ0
(2.25a)

Ex = −∂φ

∂x
(2.25b)

where the charge density is found just as before (2.12).

ρ =
∑

species

q

∫

f(x, v, t)dv (2.26)

2.2.3 Final Assumptions

In this model, we will assume that the electrons are free to move, while the
protons are fixed, creating a uniform neutralizing background. This is useful
because now we only need one phase-space density function, and since protons
are 1837 times heavier than electrons, it is not an unreasonable assumption.
Therefore, the charge density is more simply

ρ = −e

∫

f(x, v, t)dv + ρ0, (2.27)

Chapter 2. Mathematics 10

where ρ0 is the charge density of the protons, which remains to be found.
Plasmas contain electromagnetic components, in the form of ‘plasma waves’,

which suggest that the problem will contain periodic solutions. Assuming that
the spatial boundary conditions are periodic has two benefits, the first being that
a finite simulated domain can imitate an infinite spatial domain, Additionally,
charges reaching the border do not have to be artificially stopped or reflected,
thereby breaking momentum conservation. This is preferable, since conserved
quantities are useful for program diagnostics, and should be retained whenever
possible.

Periodic boundary conditions can only exist if there are no diverging fields in
the period. Periods outside some ‘origin period’ would experience the divergent
fields and the effect would be compounded with greater distance. Charges in
each period would experience different forces, but they are the same charges!
This can also be seen by noting that in a non-neutral period, the potential
on the right edge would not return to its value on the left edge, breaking the
periodicity.

Therefore, the proton charge density is easy to calculate. To achieve neu-
trality, it must be equal to the total electron charge density, which is the total
charge in one period divided by its length.

ρ0 =
e
∫

L dx
∫

dvf(x, v, t)

L
(2.28)

where L is the length of the period and f(x, v, t) is still the electron density
function.

2.2.4 Summary of the Continuous Model

For convenience, I will collect all the equations that make up the simplified one-
dimensional model. The assumptions that have been made to reach this point
are as follows.

1. The charge distribution is homogeneous in the ŷ and ẑ directions.

2. There exists a very strong magnetic field pointing in the x̂ direction.

3. The system is periodic in the x̂ direction.

4. The protons are fixed, uniform and neutralizing.

Chapter 2. Mathematics 11

This model is far simpler than the complete Vlasov-Maxwell system of equa-
tions, but it still produces very interesting behaviour.

∂f

∂t
= −v

∂f

∂x
+

e

me
E

∂f

∂v
(2.29a)

E = −∂φ

∂x
(2.29b)

∂2φ

∂x2
= − ρ

ǫ0
(2.29c)

ρ = −e

∫

f(x, v, t)dv + ρ0 (2.29d)

ρ0 =
e

L

∫

L

dx

∫

dvf(x, v, t) (2.29e)

2.3 Landau Damping

To solve the system in the linearized regime, we will follow Landau’s solution as
presented in [4]. We assume that the phase-space density function is described
by a time-independent, spatially uniform component and a transient component
with a small amplitude oscillation in space. Likewise, the electric field can
change in time, but has a regular oscillation in space.

f(x, v, t) = f0(v) + f1(v, t)eikx (2.30a)

E(x, t) = Ê(t)eikx (2.30b)

Plugging these into (2.29a) gives the linear Vlasov equation.

∂f1

∂t
= −ikvf1 +

e

me
E

(

∂f0

∂v
+

∂f1

∂v

)

∂f1

∂t
≈ −ikvf1 +

e

me
E

∂f0

∂v
(2.31)

The final term has been dropped, since the electric field is first-order and f1 is
also first-order, making their combination second-order. We can also simplify
the electrostatic equations. Putting them all together by taking the derivative
of (2.29b) and then plugging in (2.29c) and (2.29d) gives Gauss’s Law.

ǫ0
∂E(x, t)

∂x
= −e

∫ ∞

−∞

(

f0(v) + f1(v, t)eikx
)

dv + ρ0 (2.32)

Substituting in the simplified forms for E and f allows the derivative to be
easily evaluated. The integral over f0 is the total electron charge. It cancels
with ρ0, the total proton charge.

ikǫ0Ê(t)eikx = −e

∫ ∞

−∞

f1(v, t)eikxdv (2.33)

Chapter 2. Mathematics 12

The exponential on the right can come out of the integral and cancel the one
on the left, giving the final form

ikǫ0Ê(t) = −e

∫ ∞

−∞

f1(v, t)dv. (2.34)

The system has thus been reduced to a linearized version of the Vlasov equation
(2.31) and a linearized version of Poisson’s equation (2.34).

2.3.1 The Laplace Transform

Since f1 is transient, the Laplace transform is useful for solving this problem.
The transformation is defined as

L{f1(v, t)} ≡ f̃1(v, s) =

∫ ∞

0

f1(v, t)e−stdt (2.35)

and the inverse is a contour integral around the complex left half-plane encom-
passing all singularities.

f1(v, t) = L−1{f1(v, s)} =
1

2πi

∮

C

f̃1(v, s)estds

=
∑

Res
{

f̃1(v, s)est
}

(2.36)

The transform of a derivative is

L
{

df1

dt

}

= sf̃1(v, s) − f1(v, 0) (2.37)

2.3.2 The Dispersion Relation

Taking the Laplace transform of the linearized Vlasov equation (2.31) gives

(s + ikv)f̃1(v, s) − e

me
Ẽ(s)

∂f0

∂v
= f1(v, 0) (2.38)

while the transform of Poisson’s equation (2.34) is

ikǫ0Ẽ(s) = −e

∫

f̃1(v, s)dv. (2.39)

Solving the first for f̃1(v, s) and plugging it into the second gives an equation
that can be solved for Ẽ(s).

ikǫ0Ẽ(s) = − e2

me
Ẽ(s)

∫ ∞

−∞

∂f0/∂v

(s + ikv)
dv − e

∫ ∞

−∞

f1(v, 0)

s + ikv
dv

(

1 − ie2

kmeǫ0

∫ ∞

−∞

∂f0/∂v

s + ikv
dv

)

Ẽ(s) =
ie

kǫ0

∫ ∞

−∞

f1(v, 0)

s + ikv
dv (2.40)

Chapter 2. Mathematics 13

The term inside the braces is the dispersion relation for the plasma, describing
how fast waves propagate depending upon their frequency. In the simple situa-
tion where a sheet of electrons interacts with a sheet of protons, the frequency
of small oscillations is

ω2
p =

ne2

meǫ0
(2.41)

This is called the plasma frequency, since it often appears in plasma dispersion
relations as the first-order term. It nearly appears in this dispersion relation,
missing only the particle number density n, which is contained in f0. By defining
a normalized function f̂0 ≡ f0/n, we can set the Landau dispersion relation to

D(k, s) = 1 − i
ω2

p

k

∫ ∞

−∞

∂f̂0/∂v

s + ikv
dv. (2.42)

Finally, in all the cases I will analyze, at the initial time f1(v) = 0, so the term
on the LHS of (2.40) is just a constant. This means that the Laplace transform
of the electric field is only

Ẽ(s) =
iA

D(k, s)
. (2.43)

2.3.3 The Inverse Transform

Now, to find the electric field, there are two integrations that must be performed.
The first one is in the dispersion function, but it has a singularity at is/k =
ω/k ≡ vp. Physically, this singularity is caused by resonance at the phase-
velocity of the plasma. The closer electrons are to the phase-velocity, the more
strongly they will be affected by the waves. An electron that is not traveling
near the phase-velocity will spend roughly equal time being accelerated on the
front of the wave and being decelerated on the back of the wave, and experience
a net force near zero. However, an electron that is going only slightly slower
than the wave will spend a long time in front of it. Just like a surfer, the wave
will push it along, making its journey to the crest take a long time. Then it will
fall down the other side quickly and ride the next wave.

Conversely, an electron that is moving slightly faster than the wave will try
to rise over the wave from the back, but will be constantly hindered by climbing
the potential. When it reaches the peak, it quickly falls down the front of the
wave, spending little time in the accelerating potential. Overall, the average
force it experiences will decelerate it. Since particles moving slightly faster than
resonance are slowed and particles moving slightly slower than resonance are
accelerated, the effect is that the velocity distribution near the phase-velocity
will flatten out.

To calculate the integral in the dispersion function, it is simplest to use
contour integration (Figure 2.3a). By residue theory, the integral is the sum of
all the residues with positive imaginary components. However, the singularity
caused by the phase-velocity resonance must be treated with special care. As the
system evolves, the phase-velocity changes. If it changed from being positive

Chapter 2. Mathematics 14

Im(v)

Re(v)

is/k

Im(v)

Re(v)

is/k

(a) (b)

Figure 2.3: (a) The contour for integrating the dispersion function when its
singularity is positive and (b) the analytic continuation when the
singularity is negative.

to negative, the dispersion relation would suffer an unphysical discontinuity.
Therefore, the contour must be deformed (Figure 2.3b) to always include the
singularity so as to provide a proper analytic continuation.

D(k, s) = 1 − i
ω2

p

k

[

∮

C

∂f̂0/∂v

s + ikv
dv

]

= 1 − i
ω2

p

k

[

2πi
∑

Res

{

∂f̂0/∂v

s + ikv

}]

= 1 + 2π
ω2

p

k

∂f̂0

∂v

∣

∣

∣

∣

∣

v=is/k

+
∑

j

Res

{

∂f̂0/∂v

s + ikv
; v = vj

}

 (2.44)

Alternatively, in certain cases the dispersion function can be handled by se-
ries expansion. However, the phase-velocity singularity must still be analyzed
through contour integration. This method is used in Section 2.4 when dealing
with the Maxwellian distribution.

Once the dispersion relation has been found, the electric field can be deter-
mined. The only singularities in the transform of the electric field occur at the

Chapter 2. Mathematics 15

Im(s)

Re(s)

s1

s3

s2

Im(s)

Re(s)

s1

s3

s2

(a) (b)

Figure 2.4: The Laplace inversion contour for the electric field in the case of
(a) Landau damping when all zeros have Re(s) < 0 and (b) an
instability when one or more zeros of the dispersion function have
Re(s) > 0.

zeros of the dispersion function.

Ê(t) =

∮

C

Ẽ(s)estds

=

N
∑

j=1

Res

{

iAest

D(k, s)
; s = sj

}

=
N
∑

j=1

esjtRes

{

iA

D(k, s)
; s = sj

}

(2.45)

In the last step, the exponential does not create any singularities, so it can be
removed from the residue calculation. For an inverse Laplace transform, every

singularity must lie inside the contour (Figure 2.4). In some cases, this would be
prohibitive, since N could be a very large number. However, at large times, the
residue whose singularity contains the largest real component (s1) will become
the dominant term.

lim
t→∞

Ê(t) = es1tRes

{

iA

D(k, s)
; s = s1

}

(2.46)

Chapter 2. Mathematics 16

When s1 has a positive real component, the electric field grows with time, so
there is an instability. But when Re(s1) is negative, the electric field experiences
Landau damping. Because of the resonance with the phase velocity, the general
rule is that an instability will occur when there are more particles moving slightly
faster compared to the phase-velocity than there are moving slightly slower.
When the velocity distribution flattens out, there is a loss of kinetic energy,
which is imparted to the fields. Landau damping will occur when there is a
larger population moving slightly slower than the phase-velocity. Flattening
the velocity distribution requires an addition of energy, which is taken from the
fields.

2.4 Maxwellian Distribution

The Maxwellian distribution characterizes a completely thermalized gas. How-
ever, in the case of a plasma, we shall see that it is not the state of highest
entropy. The Maxwell velocity distribution in one dimension is

f̂0(v) =
1√
2πvt

exp

(

− v2

2v2
t

)

. (2.47)

When plugging this into the dispersion relation, it is apparent that there is only
one singularity at v = is/k.

D(k, s) = 1 −
ω2

p

k

∮

C

1

s + ikv

−v√
2πv3

t

exp

(

− v2

2v2
t

)

= 1 −
√

2π
ω2

ps

k3v3
t

exp

(

s2

2k2vt2

)

(2.48)

The dispersion function is resolved easily enough. However, we now have a
problem, because it has infinitely many zeros in the positive complex plane
(Figure 2.5). The solution is to calculate the integral without resorting to residue
theory.

The Maxwellian distribution is an example of weak Landau damping. The
first zero of the dispersion function lies just to the left of the imaginary axis.
Therefore, a semicircular detour has to be put in the contour to accommodate
the singularity that will arise when calculating the electric field. The rest of the
integral can be found by a principal value calculation. Substituting s = −iω
into the original dispersion relation (2.42) gives

D(k, s) = 1 +
ω2

p

k

(

p.v.

∫ ∞

−∞

∂f0/∂v

ω − kv
− πi

k

∂f0

∂v

∣

∣

∣

∣

v=ω/k

)

(2.49)

Assuming that the phase-velocity is larger than a majority of the particle ve-
locities, we can expand the integrand in powers of kv/ω.

D(k, s) = 1+
ω2

p

k

(

∫ ∞

−∞

∂f0

∂v

(

1

ω
+

kv

ω2
+

k2v2

ω3
+

k3v3

ω4
+ . . .

)

dv − πi

k

∂f0

∂v

∣

∣

∣

∣

v=ω/k

)

(2.50)

Chapter 2. Mathematics 17

–4 –2 0 2 4

–4

–2

0

2

4

Re
(

s
kvt

)

Im
(

s
kvt

)

Figure 2.5: The complex plot of the dispersion function for a Maxwellian dis-
tribution. There is a zero at the tip of each finger-like projection.

Each component of the integrand can then be analyzed individually for the
Maxwell distribution.

∫ ∞

−∞

∂f0

∂v
dv = 0

∫ ∞

−∞

∂f0

∂v
vdv = −1 (2.51a)

∫ ∞

−∞

∂f0

∂v
v2dv = 0

∫ ∞

−∞

∂f0

∂v
v3dv = −3v2

t (2.51b)

These values make the approximation to the dispersion function

D(k, s) = 1 −
ω2

p

ω2

(

1 +
3k2v2

t

ω2

)

+
i

2

(π

2

)1/2 ω2
pω

k3v3
t

exp

(

− ω2

2k2v2
t

)

(2.52)

The zero of this equation occurs at

ω2 = ω2
p

(

1 +
3k2v2

t

ω2

)

− i

2

(π

2

)1/2 ω2
pω3

k3v3
t

exp

(

− ω2

2k2v2
t

)

(2.53)

Since both the second real term and the imaginary component are small cor-
rections, the factors of ω can be approximated with the plasma frequency ωp.

ω2 = ω2
p + 3k2v2

t − i

2

(π

2

)1/2 ω4
pω

k3v3
t

exp

(

−
ω2

p

2k2v2
t

)

(2.54)

Chapter 2. Mathematics 18

Then, by using the binomial theorem on the real part and dividing both sides
of the imaginary part by a factor of ω, the components of the frequency are

Re(ω) ≈ ωp +
3

2
k2v2

t (2.55a)

Im(ω) ≈ −1

2

(π

2

)1/2 ω4
p

k3v3
t

exp

(

−
ω2

p

2k2v2
t

)

(2.55b)

One can see that the oscillation frequency is indeed very close to the plasma
frequency, so the earlier substitutions were appropriate. Interestingly, the imag-
inary part is negative, so the system is always damped.

2.5 Two-Stream Instability

When two beams of electrons pass through each other, the resulting electric
field causes a loss of free-streaming energy and sets up phase-space vortices as
the electrons fall under the influence of the growing plasma waves. The velocity
distribution for the two streams can take any number of shapes, but usually
they are assumed to be individually Maxwellian.

2.5.1 Cold Streams

In the limit that the temperature of the streams approaches zero, the distribu-
tion is just two delta functions.

f̂0(v) = [δ(v − v0) + δ(v + v0)]/2 (2.56)

In this case, the dispersion function (2.42) takes the form

D(k, s) = 1 +
ω2

p

k

∫ ∞

−∞

∂f0/∂v

ω − kv
dv

= 1 +
ω2

p

k

{

−
∫ ∞

−∞

f0

∂

∂v

(

1

ω − kv

)

dv +

[

f0

ω − kv

]∞

−∞

}

= 1 − ω2
p

∫ ∞

−∞

f0

(ω − kv)2
dv

= 1 −
ω2

p

2

(

1

(ω − kv0)2
+

1

(ω + kv0)2

)

(2.57)

This is a quartic equation with the solutions

ω = ±
√

k2v2
0 + ω2

p ±
√

4k2v2
0 + ω2

p (2.58)

The inner root contains only positive values, but the quantity in the outer root
could be positive or negative. Therefore, there are either two real roots and two
complex roots, or all four roots are real (Figure 2.6).

Chapter 2. Mathematics 19

–2

–1.5

–1

–0.5

0

0.5

1

–3 –2 –1 1 2 3
ω

D(k, ω)

–2

–1

1

2

–2 –1 1 2

ω

kv0

(a) (b)

Figure 2.6: (a) The dispersion function for the cold two-stream instability where
the solid, dashed, and dotted lines correspond to the cases where
kv0 < ωp, kv0 = ωp, and kv0 > ωp, respectively. (b) The values of
ω/ωp which are zeros of the dispersion function. ω is imaginary on
the infinity shape, but real on the four hyperbolas.

∣

∣

∣

∣

kv0

ωp

∣

∣

∣

∣

< 1 =⇒
{

two real roots
two complex roots

1 <

∣

∣

∣

∣

kv0

ωp

∣

∣

∣

∣

=⇒ all four roots real

kv0

ωp
=

√
6

4
=⇒ max{Im(ω)} =

ωp√
8

Complex solutions correspond to growth and real solutions correspond to stable
oscillations. In this model, there can only be one or the other (at the initial
time). One can see from these observations that as the wavenumber of the initial
perturbation is increased, eventually a threshold will be crossed, preventing the
instability from occurring.

2.5.2 Warm Streams

The Coulomb forces in a two stream instability thermalize the streams, spread-
ing the peaks in the velocity distribution. Therefore, the cold stream approxi-
mation is not valid for long. Completely cold streams are impossible to create
anyway; there will always be some variance in momentum between particles.
It is important to compare the cold stream approximation to the behaviour of
a pair of warm streams. Ideally, the warm streams would be two Gaussians.
However, Gaussians have the disadvantage of error functions appearing in the

Chapter 2. Mathematics 20

0

0.2

0.4

0.6

0.8

1

f(v)

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

v

Figure 2.7: The warm stream velocity distribution is two Lorentzians.

calculations, so the zeros must be calculated numerically. Instead, I will use a
pair of Lorentzians, which yield an analytic dispersion function.

f̂0(v) =
b

2π

[

1

(v − a)2 + b2
+

1

(v + a)2 + b2

]

(2.59)

This velocity distribution can fortunately be treated completely with the con-
tour integration method described in Section 2.3, without having to resort to
approximations.

The dispersion relation is

D(k, s) = 1 − i
ω2

p

k

{∮

C

b

π

[

v − a

((v − a)2 + b2)2
+

v + a

((v + a)2 + b2)2

]

dv

s + ikv

}

(2.60)
The singularities occur at four symmetric points, v = ±a ± ib, as well as the
phase-velocity, v = is/k. Only the residues in the positive complex plane are
included in the calculation. These are

Res

{

is

k

}

=
b

π

[

is/k − a

((is/k − a)2 + b2)2
+

is/k + a

((is/k + a)2 + b2)2

]

(2.61a)

Res {a + ib} =
−1

4πk(is/k + a − ib)2
(2.61b)

Res {−a + ib} =
−1

4πk(is/k − a − ib)2
, (2.61c)

which make the dispersion relation take the following relatively simple form.

D(k, s) = 1 + i
ω2

p

k2

(s/k + b)2 − a2

((s/k + b)2 + a2)2
(2.62)

Like the cold streams, this is also a quartic equation with four roots. How-
ever, the equation for the roots does not have the visual appeal of that in the

Chapter 2. Mathematics 21

–3

–2

–1

0

1

2

3

Re(s)

–3 –2 –1 1 2 3

k

–3

–2

–1

0

1

2

3

Im(s)

–3 –2 –1 1 2 3

k

(a) (b)

Figure 2.8: The (a) real and (b) imaginary components of the four zeros of the
dispersion function for the double Lorentzian velocity distribution.

case of the cold stream.

s = −bk ± 1

2

√

−i2ω2
p − 4a2k2 ± 2ωp

√

i8a2k2 − ω2
p (2.63)

Figure 2.8 shows how the positions of the zeros vary with the wavenumber. It
is apparent that there are two positive and two negative roots until a threshold
value of k is reached, after which all the roots are negative. Physically, like the
cold streams, as the length of the domain is reduced, there becomes insufficient
room for vortices to form, so the instability disappears.

By modifying some of the parameters in the velocity distribution, we can
form a qualitative picture of the requirements for instability. For the root with
the largest real component, the k = 0 intercept is s =

√
2ωp(1 − i). The

asymptotic behaviour at large k is s = ωp/2 − bk − i2ak. The separation of
the peaks a is proportional to the rate of decay to the asymptotic behaviour.
Assuming they are sufficiently far apart a > ωp/k, the last positive root becomes
negative at approximately k = ωp/2b and the instability disappears. As the
peaks are brought closer together, the maximum wavenumber that can still
support an instability becomes very slightly larger, but it never grows to be
more than k = ωp/

√
2b.

Since the roots have a complicated form, it is simplest to calculate the growth
of the electric field numerically. As an example, using the parameters of the
initial distribution shown in Figure 2.7 and setting both the plasma frequency

Chapter 2. Mathematics 22

and wavenumber to unity, the four roots of the dispersion fall at

a = 0.4
b = 0.17

ωp = 1
k = 1

=⇒

s1 = 0.497− i0.718
s2 = 0.297− i0.718
s3 = 0.269− i0.752
s4 = −0.131− i0.752

(2.64)

At a large time, the rate of growth is proportional to the root with the largest
real component. It is easy to see that in this example, we should expect a growth
rate approximately equal to one half.

Interestingly, my derivation of the conditions for stability using only contour
integration does not agree with the standard approximation. From the approx-
imation, [4] derives a simple expression to find the stability of an arbitrary
symmetric double-peak distribution. It states that instabilities occur when

ω2
p

k2

∫ ∞

−∞

f0(v) − f0(0)

v2
dv > 1 (2.65)

which for this case of two Lorentzians is

ω2
p

k2

a2 − b2

(a2 + b2)2
> 1 (2.66)

However, I found qualitatively that

a ≪ ωp/k =⇒
ω2

p

k2

1

2b2
> 1 (2.67)

a ≫ ωp/k =⇒
ω2

p

k2

1

4b2
> 1. (2.68)

These limits are obviously not the same as those of (2.66). Therefore, this will
make a good test of theory.

2.6 Properties of Interest

Other than the growth or damping rate of the electric field, there are a number
of interesting and important physical quantities that can be watched in any
particular experiment. A more extensive list is found in [2]. Assuming that the
simulation is occurring in the phase-space of one dimension, one can find three
different types of data.

Phase-Space Snapshots (2D): At various times, one can output the raw
phase-space density functions. This would provide a lot of detail, but can take
up much more space than performing some simplification before dumping the
data to disk.

• phase-space density function - f(x, v, t)

Chapter 2. Mathematics 23

Projection Snapshots (1D): Phase-space data is edifying, but no real ex-
periment can sample it. Therefore, projecting the data into measurable di-
mensions is preferable. Grid quantities to generate are the velocity and speed
distributions in velocity space, the particle number density, charge density, elec-
tric potential, and electric field in real space, and the electrostatic energy in
momentum space.

• velocity distribution - f(v, t) =
∫∞

−∞
f(x, v, t)dx

• speed distribution - f(v, t) =
∫∞

0
f(x, v, t) + f(x,−v, t)dx

• particle number density - n(x, t) =
∫∞

−∞
f(x, v, t)dv

• charge density - ρ(x, t) = q · n(x, t)

• electric potential - φ′′(x, t) = −ρ(x, t)/ǫ0

• electric field - E(x, t) = −φ′(x, t)

• charge density in p-space - ρ(k, t) = 2
∣

∣

∣

∫∞

−∞
ρ(x, t)e2πikxdx

∣

∣

∣

• electric potential in p-space - φ(k, t) = 2
∣

∣

∣

∫∞

−∞
φ(x, t)e2πikxdx

∣

∣

∣

• electrostatic energy p-space distribution - Ees(k, t) = 1

4
ρ(k, t)φ(k, t)

Histories (scalar): Global scalar quantities have the advantage of using up
little disk space, so they can be output frequently to provide a detailed picture of
system evolution in time. Since most are conserved in time, their conservation
(or lack thereof) is useful as a diagnostic tool. These include total energy,
momentum, and charge.

• electrostatic energy - Ees(t) = 1

2

∫∞

−∞
ρ(x, t)φ(x, t)dx

• kinetic energy - KE(t) = 1

2
m
∫∞

−∞
f(x, v, t)v2dv

• total energy - E(t) = KE(t) + Ees(t)

• total momentum - p(t) =
∫∞

−∞
f(x, v, t)|v|dv

• total charge - Q(t) = q
∫∞

−∞

∫∞

−∞
f(x, v, t)dxdv

Monitoring these physical values can paint a detailed picture of what the
simulation is doing. Of course, the choice of output depends on what the
experimenter is attempting to prove. In my case, I was just exploring, so I
implemented all of them.

24

Chapter 3

Numerical Methods

3.1 Particle-Mesh

To simulate a plasma, a particle-mesh simulation keeps track of a number of
representative particles. It records each one’s position and velocity at each
time step, and then calculates their new positions for the next time step. The
number of simulated particles is, of course, much smaller than the number in
the physical plasma. To justify this, we assume that if a number of ions start
very close together with nearly the same velocity, then after some time, they
will still be close together with another velocity. Therefore, we can clump each
set of close particles together into a superparticle.

However, computing the interaction forces between N particles is not ter-
ribly feasible. There are O(N2) operations required, so that even clumping
particles together does not help much. After all, making superparticles reduces
the resolution of the simulation, so we wish to make them as small as possible,
keeping their number as large as possible. To reduce the number of operations,
we will calculate the charge density and electric field on a one-dimensional mesh.

In a single time step of a PM simulation, the computer performs the following
operations.

1. Use particle positions to assign an equivalent charge density on the mesh.

2. Use Poisson’s equation to calculate the electric potential on the mesh.

3. Find the electric field, and equivalently, the force on the mesh.

4. Move each particle based on the force it feels and its velocity.

The first and last processes, converting between the particles and the mesh, are
just linearly proportional to the particle number. The middle two processes
take place on the M mesh points and, while calculating the electric field is
a simple derivative and linear in M , solving Poisson’s equation is a matrix
problem requiring M log2 M operations. Therefore, the PM method requires
O(N + M log2 M) operations. This is much more efficient than the particle-to-
particle interaction method, assuming that M log2 M is not close to N2.

Of course, the number of mesh points should be much less than the number
of particles. The particles must reasonably cover two-dimensions in phase-space,
while the mesh spans only one. Otherwise, it would be likely that each mesh
point would have either one or no particles associated with it. The resulting

Chapter 3. Numerical Methods 25

NGP CIC

Figure 3.1: A visual comparison of the NGP and CIC charge assignment
schemes. Given the same particle distribution, NGP produces large
peaks and troughs compared to the smoother result from CIC.

charge density would be extremely discontinuous and noisy. Therefore, for bet-
ter performance, the number of charges should be much larger than the mesh
size.

3.1.1 Assigning Charge to the Mesh

At the start of each time step, we have a distribution of superparticles in phase-
space. We wish to find the one-dimensional charge density (2.29d). A simple
way to do this would be to cycle through all the particles and add the charge
for each one to the nearest grid point. Letting the charge and spatial position
of each particle be q and xi, respectively, and the nearest mesh point be p, the
charge accumulation follows Algorithm 3.1. However, this method creates a
very rough function for sparse distributions, as shown in Figure 3.1.

Algorithm 3.1 NGP Charge Accumulation

for i = 1 to N do
p = int(xi + 0.5)
ρp = ρp − e

end for

To smooth the assigned charge out, one can use a first-order correction, called
cloud-in-cell (CIC) interpolation. For this, each particle’s charge is divided
between the two mesh points between which it lies. The division depends upon
how close the particle is to each point. This time, the charge accumulation

Chapter 3. Numerical Methods 26

follows Algorithm 3.2, where p and p + 1 are the surrounding mesh points and
the neutralizing effect of the stationary protons is included.

Algorithm 3.2 CIC Charge Accumulation

for i = 1 to N do
p = int(xi)
f = xi − real(p)
ρp = ρp − e(1 − f)
ρp+1 = ρp+1 − ef

end for
for p = 1 to M do

ρp = ρp + Ne
M

end for

Higher order corrections can be included, using elaborate charge allocation
functions, but I found this amount of smoothing to be sufficient.

3.1.2 Poisson’s Equation

Now that we are working on a grid, we can use a finite-difference equation
instead of the continuous version of Poisson’s equation (2.29c). To find the
second-order FDA equation, we take Taylor series of the three points around
the point of interest.

φp−1 = φp − ∆x
∂φ

∂x
+ ∆x2 ∂2φ

∂x2
+ O(∆x3) (3.1a)

φp = φp (3.1b)

φp+1 = φp + ∆x
∂φ

∂x
+ ∆x2 ∂2φ

∂x2
+ O(∆x3) (3.1c)

(3.1d)

where ∆x is the separation between mesh points. If we weight them properly,
after all three equations have been summed, the only remaining term will be the
second derivative. Substituting this into Poisson’s equation gives the sought-
after result.

φp−1 − 2φp + φp+1 = ∆x2 ∂2φ

∂x2
+ O(∆x3) (3.2)

= −∆x2 ρp

ǫ0
(3.3)

There are M such finite-difference equations, one for each of the M mesh points.
All the equations can together be expressed in matrix form.

D2~φ = −∆x2

ǫ0
~ρ (3.4)

Chapter 3. Numerical Methods 27

−2 1 0 0 . . . 0 1
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0
0 0 1 −2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −2 1
1 0 0 0 . . . 1 −2

φ1

φ2

φ3

φ4

...
φN−1

φN

= −∆x2

ǫ0

ρ1

ρ2

ρ3

ρ4

...
ρN−1

ρN

However, this is not a tridiagonal matrix, because of the non-zero values in the
top-right and bottom-left corner. These arise because equations for i = 1 and
i = M follow periodic boundary conditions. Therefore, the problem needs to be
modified before canned software can be used to solve it.

We use the method described in [6]. D2
∗ is defined to be the submatrix of

D2 containing rows 1 to M-1 and columns 1 to M-1. Similarly, ~φ∗ and ~ρ∗ are
subvectors of ~φ and ~ρ less only the Mth value. Also define ~k∗ as k1 = kN−1 = 1
and ki = 0 for i = 2..N − 2. Then the matrix equation becomes two coupled
equations.

D2
∗
~φ∗ + φN

~k∗ = ~ρ∗ (3.5a)

φN−1 − 2φN + φ1 = ρN (3.5b)

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
0 0 1 −2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −2

φ1

φ2

φ3

φ4

...
φN−1

= −∆x2

ǫ0

ρ1

ρ2

ρ3

ρ4

...
ρN−1

+

φN

0
0
0
...

φN

This matrix equation is now tridiagonal, but it is not unique. Since the electric
potential can vary by a constant, we can choose to define φN to be zero.

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
0 0 1 −2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −2

φ1

φ2

φ3

φ4

...
φN−1

=
∆x2

ǫ0

ρ1

ρ2

ρ3

ρ4

...
ρN−1

(3.6a)

φN−1 + φ1 = ρN (3.6b)

The separate equation (3.6b)is not required to solve the system. It can be used
as a check that the matrix solver produced a consistent solution.

Once the electric potential has been found, it is a simple matter to find the
electric field, and subsequently, the force on each particle. The discrete version
of (2.29b) is

Ep = −φp+1 − φp−1

∆x
. (3.7)

Chapter 3. Numerical Methods 28

3.1.3 Moving the Particles

The particles are updated by using Newton’s equations. The discrete versions
that apply to the electrons are

v
n+1/2

i − v
n−1/2

i

∆t
=

e

me
E(xn

i) (3.8)

xn+1
i − xn

i

∆t
= v

n+1/2

i (3.9)

where n is the number of the time step. The positions are recorded at whole
time steps, while the velocities are recorded at half-time steps. This keeps each
calculation symmetric in time, improving the stability, and is the reason for
naming the scheme “leapfrog.” In practice, the half-step does not affect the
calculations, and is purely an entity of theory.

There is a difficulty, however. The electric field is only defined at the mesh
points Ep, but it is needed at the particle positions E(xn

i), which are likely to lie
in between the points. Therefore, an interpolation must be performed back into
phase-space. This takes the same form as the interpolation to get the charge
onto the mesh, as seen in Algorithm 3.3.

Algorithm 3.3 Update Particle Placement

for i = 1 to N do
p = int(xi)
f = xi − real(p)
vi = vi + e

me
[Ep(1 − f) + Ep+1f]∆t

xi = xi + vi∆t
end for

After the particle coordinates have been updated, the boundary conditions
are applied. If any particle has an x position greater than 1 or less than 0,
it is adjusted to fall between them, while properly conforming to the periodic
boundary conditions. The program will also check that no particle exceeds the
maximum velocity. This completes a single time step of the simulation. At
this point, diagnostics on the state of the particles are performed, and then the
whole set of instructions is repeated.

3.1.4 Stability

It is important to be sure that any time integration scheme is not amplifying
the truncation errors so that they eventually swamp the real physics. To ensure
this does not happen, we look at whether the error incurred during a given step
grows or decays in time. Combining (3.8) and (3.9) gives a function of only
positions.

xn+1 − 2xn + xn−1 =
e

me
E(xn)∆t2 (3.10)

Chapter 3. Numerical Methods 29

Let the exact solution at each time step be given by Xn, so that the error is

ǫn = xn − Xn (3.11)

Substituting this into (3.10) gives

(Xn+1 + ǫn+1) − 2(Xn + ǫn) + (Xn−1 + ǫn−1) =
e

me
E(Xn + ǫn)∆t2 (3.12)

Taking the Taylor series of the electric field and collecting terms makes the
equation

Xn+1 − 2Xn + Xn−1 + ǫn+1 − 2ǫn + ǫn−1 =
e

me

(

E(Xn) + ǫn ∂E

∂x

∣

∣

∣

∣

x=Xn

)

∆t2

(3.13)
Since (3.10) is most certainly true for its own exact solution, the terms that
contain X can be subtracted out, which leaves

ǫn+1 − 2ǫn + ǫn−1 =
e

me

(

ǫn ∂E

∂x

∣

∣

∣

∣

x=Xn

)

∆t2 (3.14)

Since we are only interested in whether the error grows or decays, and not by
how much, it is sufficient to replace the ∂E/∂x by its maximum amplitude value.
We will choose the negative maximum, since the electric field is oscillatory.

ǫn+1 − 2ǫn + ǫn−1 = −ǫn e

me

∣

∣

∣

∣

∂E

∂x

∣

∣

∣

∣

max

∆t2 (3.15)

If we convert the derivative of the electric field to the charge density, we can see
that in a completely uniform spatial distribution, the constants are equivalent
to the plasma frequency squared.

ǫn+1 − 2ǫn + ǫn−1 = −ǫn eρmax

meǫ0
∆t2 (3.16)

However, since they are greater than ω2
p in all other cases, we will call them Ω2.

Dividing through by ǫn−1 produces a quadratic equation.

ǫ2 − 2ǫ + 1 = −ǫΩ2∆t2 (3.17)

The solution is

ǫ± = 1 − Ω2∆t2

2
± Ω2∆t2

2

√

1 − 4

Ω2∆t2
(3.18)

Since the error is a linear combination of both values, we need the modulus of
each to be less than or equal to one for there to be no growth in time. The
condition for this is Ω∆t < 2. For all my particle simulations, I use a time step
of ∆t = 0.01 seconds and a plasma frequency of ωp < 5. To break the stability
condition, there would need to be an overdensity of at least Ω/ωp = 40, which
is unlikely.

Chapter 3. Numerical Methods 30

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1
x

Figure 3.2: To generate particle positions with a sinusoidal distribution, the
integral of the function is found. Then a uniform distribution in y
will intersect the plot so that the density of the x points match the
sinusoid. Here, the desired function is f(x) = 1 + cos(4πx).

3.1.5 Initialization

To properly distribute the particles, the positions in space are generated inde-
pendently of the velocities. Then a particle is placed at each combination of
coordinates. Given a distribution f(x) in the range x = 0..1, the positions are
given by the solution to

y =

∫ x

0

f(x′)dx′. (3.19)

where y is taken from a uniform distribution between 0 and 1, sampled ei-
ther randomly or at equal intervals. To find the solutions, Newton’s method
is appropriate, since there is only one solution for each value of y. The ba-
sic method can be found in Algorithm 3.4. However, in practice, significant
tweaking is required for each individual distribution function. As an example,

Algorithm 3.4 Compute points for f(x) distribution on x = 0..1

Require:
∫ 1

0
f(x)dx = 1

xn+1 = y
while |xn+1 − xn| > ǫ do

xn = xn+1

xn+1 = xn − (
∫ xn

0
f(x)dx − y)/f(xn)

end while

in all cases I studied, the placement in space is a sinusoidal distribution function

Chapter 3. Numerical Methods 31

f(x) = 1 + A cos(2πkx). Its integral is plotted in Figure 3.2. One can see that
a uniform set of y values will generate the appropriate distribution of x values.

There is a choice between two evils when generating the initial particle po-
sitions. One option is to place the particles randomly. However, when I tried
a random sampling, there were not enough particles to remove the noise suf-
ficiently. The extra fluctuations changed the amount of spatial perturbation I
wished to start with, making it greater than specified. The alternative is to gen-
erate particles on a grid. This makes the electric potential exact, since it is an
integral, but the initial charge density becomes jagged when it is close to zero.
The velocity distribution is also discontinuous, actually being composed of a
number of independent streams, and not truly the function specified. However,
the latter method provided the desired global initial conditions more accurately,
so it is implemented in the code.

3.2 Finite-Difference Approximation

The finite-difference simulation, rather than maintaining the particle picture of
a plasma, makes use of the Vlasov equation (2.29a). The phase-space density
function is recorded on a fixed grid, with each grid point holding an amount
of “charge fluid.” Advantages to this method over the PM method include the
ability to move smalls amount of charge, rather than just integer amounts, as
well as the ability to sample the enter domain, irrespective of where the action is
taking place. It does not, however, scale as well when the number of dimensions
is increased.

The operations that take place in the FDA simulation are similar to those
in the PM simulation. In fact, steps (2) and (3) are identical. In a single time
step, the computer performs the following operations.

1. Sum phase-space density over velocity space to get spatial charge density.

2. Use Poisson’s equation to calculate the electric potential.

3. Find the electric field.

4. Update the phase-space density with the Vlasov equation.

Since we have the phase-space density specified at each point on a 2-D mesh
fn

i,j , the first operation is easy to perform. It is just the discrete form of (2.29d)
and (2.29e).

ρi = −e

Nv
∑

j=1

fn
i,j∆x + ρ0 (3.20a)

ρ0 = e

Nx
∑

i=1

Nv
∑

j=1

fn
i,j∆x∆v (3.20b)

Chapter 3. Numerical Methods 32

where i = 1..Nx is the index and ∆x the step size of the x dimension dis-
cretization, and j = 1..Nv is the index and ∆v the step size of the v dimension
discretization. Now, calculating Poisson’s equation and the electric field follows
exactly the form discussed for the PM case in Section 3.1.2.

Once the electric field is known, only one step remains to complete the time
step, updating the phase-space density function with the Vlasov equation. I
tried two different methods to create a finite-difference equation for (2.29a), the
Crank-Nicholson scheme and the Leapfrog scheme.

3.2.1 Crank-Nicholson Scheme

The second-order Crank-Nicholson equation for the Vlasov equation is centered
in time by making it depend implicitly upon its own solutions. There is a picture
of the stencil used to calculate each point in Figure 3.3a.

fn+1
i,j − fn

i,j

∆t
+

1

2

[

vj

fn
i+1,j − fn

i−1,j

2∆x
+ vj

fn+1
i+1,j − fn+1

i−1,j

2∆x

+
eEi

me

fn
i,j+1 − fn

i,j−1

2∆v
+

eEi

me

fn+1
i,j+1 − fn+1

i,j−1

2∆v

]

= 0 (3.21)

To enforce the spatially periodic boundary conditions, we identify fn
Nx+1,j =

fn
1,j. The velocity boundary conditions are set to zero at a specified maximum

velocity, since it is statistically probable that the energy is equally partitioned
among the particles in the plasma.

fn
i,1 = fn

i,Nv
= 0 (3.22)

These are shown in Figure 3.3b.
To solve the equation for each point on the grid, we employ Gauss-Seidel re-

laxation. First we assume that solution at the advanced time step is close to the
current solution, fn+1

i,j = fn
i,j . Then we cycle over the whole grid, solving each

point based on the adjacent points, even though their values are not yet correct.
The adjustment δ applied to each point at each iteration k will bring it closer
to its correct solution. Then it will provide a more accurate basis to solve for
its neighbouring points. The adjustment is found just like in Newton’s method;
it is the Vlasov finite-difference equation (3.21) divided by the derivative with
respect to fn

i,j.

δ =

fn+1

i,j
−fn

i,j

∆t + 1

2

[

vj
fn

i+1,j−fn
i−1,j

2∆x + vj
fn+1

i+1,j
−fn+1

i−1,j

2∆x + eEi

me

fn
i,j+1−fn

i,j−1

2∆v + eEi

me

fn+1

i,j+1
−fn+1

i,j−1

2∆v

]

1

∆t +
vj

4∆x + ai

4∆v

.

(3.23)
When it falls below a given threshold, the process is concluded. This is summa-
rized in Algorithm 3.5.

Chapter 3. Numerical Methods 33

j-1

i+1i-1 n

j+1

i+1i-1
n+1

x

v

w
r
a
p

0

0

w
r
a
p

(a) (b)

Figure 3.3: (a) The Crank-Nicholson stencil and (b) the domain and boundary
conditions for the FDA simulation. The dotted line indicates zero
velocity, and the white arrows indicate the direction of flow in phase
space.

Algorithm 3.5 Gauss-Seidel Relaxation for Vlasov equation

fn+1 = fn

repeat
δmax = 0
for i = 1 to Nx do

for j = 1 to Nv do
δ = F (f)/F ′(f)
fn+1

i,j = fn
i,j − δ

if |δ| > δmax then
δmax = |δ|

end if
end for

end for
until δmax < ǫ

Chapter 3. Numerical Methods 34

Using von Neumann’s method to analyze the stability of this scheme, we
assume that the error takes the form

ǫn
i,j = ζneIk∆xieIh∆vj (3.24)

where I ≡
√
−1 to avoid confusion with the indices. For the error to not grow

in time, the modulus of ζ must be less than or equal to 1. Plugging ǫn
I,J into

the Vlasov equation (3.21) and then dividing by it gives

ζ − 1

∆t
+

I

2
(ζ + 1)

[

vj

∆x
sin(k∆x) +

eEi

me∆v
sin(h∆v)

]

= 0 (3.25)

Collecting the ζ terms suggests a substitution

ζ − 1

ζ + 1
= −I∆t

2

[

vj

∆x
sin(k∆x) +

eEi

me∆v
sin(h∆v)

]

≡ IG(∆x, ∆v, ∆t) (3.26)

Solving for zeta gives

ζ =
1 + IG

1 − IG
=

(1 + IG)2

1 + G2

|ζ|2 =
(1 − G2)2 − 4G2

(1 + G2)2
=

(1 + G2)2

(1 + G2)2
= 1 (3.27)

Since the modulus is always 1, the Crank-Nicholson scheme is unconditionally
stable.

3.2.2 Leapfrog Scheme

An alternative to the Crank-Nicholson scheme is the Leapfrog scheme. To
achieve a centered time derivative, the n − 1 time step is kept in memory.
This is much simpler, as the value of fn

i,j is given explicitly and, therefore, no
iterative behaviour is required.

fn+1
i,j − fn−1

i,j

2∆t
+ vj

fn
i+1,j − fn

i−1,j

2∆x
+

eEi

me

fn
i,j+1 − fn

i,j−1

2∆v
= 0 (3.28)

Applying the von Neumann stability analysis to this case, it is apparent that
the equation for error propagation is

ζ − ζ−1 = − ∆t

∆x
vj2I sin(k∆x)− ∆t

∆v

eEi

me
2I sin(k∆x) ≡ IG(∆x, ∆v, ∆t) (3.29)

Solving for ζ produces the equation

ζ = −I
G

2
±

√

1 −
(

G

2

)2

(3.30)

Chapter 3. Numerical Methods 35

When the value inside the square root is positive, then |G| ≤ 2 and the modulus
of ζ is

|ζ|2 =

(

G

2

)2

+ 1 −
(

G

2

)2

= 1. (3.31)

Otherwise, when |G| > 2, the modulus of ζ is

|ζ±|2 =

(

G

2

)2

+

(

G

2

)2

− 1 ± 2
G

2

√

(

G

2
− 1

)2

(3.32)

|ζ+|2 >
G2

2
− 1 > 1 (3.33)

Since |ζ+| is always greater than 1, the condition for stability is that |G| ≤ 2.
This means that the leapfrog scheme is only stable when

∣

∣

∣

∣

∆t

∆x
vj2 sin(k∆x) +

∆t

∆v

eEi

me
2 sin(k∆x)

∣

∣

∣

∣

≤ 2

∆t

∆x
vj +

∆t

∆v

eEi

me
≤ 1. (3.34)

One must include error checking in all leapfrog simulations to ensure that this
condition is not broken, otherwise the results will be meaningless.

Despite the fact that the Crank-Nicholson scheme is unconditionally stable
and requires less memory than the leapfrog scheme, it is much slower than the
leapfrog scheme. For these simulations, the memory required is quite low, so
an increase of 50% is not significant. But the Gauss-Seidel method must iterate
about 6 or 7 times per time step, which is many times longer than the single
iteration leapfrog. I found no difference in the solutions, so I chose to use the
leapfrog method in my program.

3.3 Physical Diagnostics

It is appropriate to discuss the discretized equations for the properties of in-
terest listed in Section 2.6. However, most of them are trivial conversions. For
instance, the speed distribution is

f(v, t) =

∫ ∞

0

f(x, v, t) + f(x,−v, t)dx → fn
j =

Nx
∑

i=0

(fn
i,j0+j + fn

i,j0−j)∆x

where j0 is the row of v = 0.
There is one set of equations that do need a short explanation: those that

give the frequency dependence of the energy. Performing the discrete Fourier
transform in the continuous regime uses complex exponentials, but they need
to be recast as sinusoidal functions for the numerical transform. The equations

Chapter 3. Numerical Methods 36

for the charge density, electric potential, and electrostatic energy are as follows:

ρk = 2

√

√

√

√

{

Nx
∑

i=1

ρi cos(2πk∆xi)

}2

+

{

Nx
∑

i=1

ρi sin(2πk∆xi)

}2

(3.35)

φk = 2

√

√

√

√

{

Nx
∑

i=1

φi cos(2πk∆xi)

}2

+

{

Nx
∑

i=1

φi sin(2πk∆xi)

}2

(3.36)

Ek =
1

4
ρkφk (3.37)

I only record histories for the first 8 modes in my programs.

3.4 Convergence Testing

With all these numerical approximations, we need to be sure that the solution
we are getting converges as we increase the resolution. Presumably, if the pro-
gramming is correct, when the spacing between the grid points reaches zero, the
continuous solution should be reached. Since no computer would ever be able
to do this, we need to check that at least some solution is being approached as
the grid spacing is reduced. If the behaviour changes drastically with different
resolutions, there is something wrong.

According to [7] as described in Matt’s FDA manual, the solutions of second-
order FDAs take the form

uh(x, t) = u(x, t) + h2e2(x, t) + h4e4(x, t) + . . . (3.38)

where h is the parameter that scales the grid, u(x, t) is the continuum solution,
and the en(x, t) are unknown error functions. To make use of this, we calculate
the solution to our FDA at three different levels, so that each point of the lowest
level matches every second point of the middle level and every fourth point of
the highest level. Then we have

low u4h(x, t) = u(x, t) + (4h)2e2(x, t) + (4h)4e4(x, t) + . . . (3.39)

mid u2h(x, t) = u(x, t) + (2h)2e2(x, t) + (2h)4e4(x, t) + . . . (3.40)

high uh(x, t) = u(x, t) + h2e2(x, t) + h4e4(x, t) + . . . (3.41)

If we calculate the difference between the first two and the second two, a course
of action suggests itself.

|u4h(x, t) − u2h(x, t)| = 12h2|e2(x, t)| + 48h4|e4(x, t)| + . . . (3.42)

|u2h(x, t) − uh(x, t)| = 3h2|e2(x, t)| + 15h4|e4(x, t)| + . . . (3.43)

If we define the convergence factor as (3.42) divided by (3.43), then this value
should approach 4 as h → 0 and the higher terms disappear.

Q(t) =
|u4h(x, t) − u2h(x, t)|
|u2h(x, t) − uh(x, t)| (3.44)

Chapter 3. Numerical Methods 37

Of course, u4h(x, t), u2h(x, t), and uh(x, t) are not scalar values. They include
points spanning a space, so their norm must be properly defined. One possibility
is the l2 norm.

|uh(x, t)| =

J−1

J
∑

j=1

[uh(x, t)]2

1/2

(3.45)

38

Chapter 4

Projects

4.1 Two-Particle Test

The first project is a test to see whether the particle-mesh simulation behaves
properly for a simple case. We place two stationary electrons at positions x1 =
0.4 and x2 = 0.6. Since there are periodic boundary conditions, the left electron
will see an infinite series of other electrons at distances x = x2 − x1 + n and
x = n. Of course, its own mirror images will have no effect because the copies
on each side cancel. But when x2 − x1 < 0.5, the first electron is closer to
the second electron on the right, so it is repelled in the negative x direction.
Eventually, x2 − x1 > 0.5, and it will be closer to the second electron on the
left, so it is repelled back in the positive direction. Therefore, there should be
sinusoidal oscillation.

The plasma frequency ωp is defined as the frequency that electrons oscillate
past stationary protons. This is exactly the case we are testing here, and there-
fore, by setting ωp = 2π, we expect to see a period of 1 (Figure 4.1a). This is
exactly what occurs and one can also see that the electric potential and electric
field have exactly the form expected (Figure 4.1c+d). The potential has peaks
at the particle positions and slopes off as r2, while the electric field is linear
with discontinuities at the particle positions.

While changing the time step, the energy conservation can be seen to be
linear. This is not as good as the quadratic convergence that the leapfrog scheme
claims, but it is sufficient for our needs. These results fill us with confidence
and we proceed to a more complicated problem.

4.2 Maxwellian Distribution

When observing the generated velocity distribution (Figure 4.2a+b), it is ap-
parent that the FDA approach has significant advantages. The PM distribution
exhibits discontinuities where the particle density is low, while the FDA distri-
bution remains smooth everywhere. For this reason, we will often defer to the
FDA data, as it provides cleaner results.

Linear theory indicates that the Landau damping of the electric field will
impart energy to the particles near the phase-velocity. When subtracting the
initial velocity distribution from the distribution at early times (Figure 4.2c),
there is an obvious node at the phase-velocity. What is surprising is how quickly
the situation becomes non-linear.

Chapter 4. Projects 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

po
si

tio
n

time

Two Particle Test

 33.2

 33.4

 33.6

 33.8

 34

 34.2

 0 0.2 0.4 0.6 0.8 1

to
ta

l e
ne

rg
y

time

Energy Conservation

 33.2

 33.4

 33.6

 33.8

 34

 34.2

 0 0.2 0.4 0.6 0.8 1

time

(a) (b)

 0

 1

 2

 3

 4

 0 0.2 0.4 0.6 0.8 1

el
ec

tr
ic

 p
ot

en
tia

l

position

Initial Potential

-20

-10

 0

 10

 20

 0 0.2 0.4 0.6 0.8 1

el
ec

tr
ic

 f
ie

ld

position

Initial Field Strength

(c) (d)

Figure 4.1: (a) Particle positions over two periods of the two particle test. (b)
Energy conservation for time steps of 0.001 [r], 0.002 [g], 0.004 [b],
and 0.008 [p]. (c) The potential and (d) the electric field at t = 0.

Chapter 4. Projects 40

At t = 0.3, the phase-velocity is very close to its initial value, but by t = 0.9
it has shifted outwards and a new, unstable phase-velocity has appeared. At
t = 1.7, both of these have shifted outwards and another stable phase-velocity
appears. New phase-velocities are created at a rate of ∆t ≈ 0.9 at first. This
number does drop as time progresses, but very slowly. Eventually, the velocity
distribution looks like a terraced Maxwellian. Unfortunately, this effect is rather
small (note the vertical scales), so it is only readily observable on the difference
graph (Figure 4.2d).

Going back to comparing the simulation schemes, an interesting test is how
they handle progressively lower perturbation amplitudes. While the FDA pro-
gram is limited only by the size of the subdivisions of a double floating-point
variable, the PM program must deal with integer sized particles. One can see
in Figure 4.3a that the FDA program runs small amplitude perturbations flaw-
lessly; there is no change in the initial damping rate between a perturbation of
0.1 and one of 10−8.

The same cannot be said of the PM program Figure 4.3b. Indeed, one
questions whether any damping is occurring at all. What is the worst part is
that an initial perturbation of only 10−3 appears to hit the limit of machine
epsilon; near t = 0, the blue points (10−3) inhabit the same region as the gray
points, which indicate no perturbation at all.

Let us look, instead, at the computed convergence for each program. The
convergence factor for the FDA scheme is quadratic (4), as promised, although
it does begin to drop as time progresses (Figure 4.3c). On the other hand, the
PM scheme appears to have a convergence factor midway between linear and
quadratic, which eventually drops to linear (Figure 4.3d). However, scaling the
particle number up raises it rapidly and the period of high convergence lasts
longer, so one expects that the scheme is indeed quadratic. Notice also that the
time scale on the PM graph is significantly longer than that on the FDA graph,
so the FDA convergence may exhibit the similar poor behaviour at later times.

A complete list of damping rates and oscillation frequencies for the Maxwellian
tests can be found in Tables A.1 and A.2. The plasma frequency ωp, thermal
velocity vt, and perturbation mode k were all varied. Despite the results from
the PM scheme being difficult to analyze, there was still excellent agreement
between both programs. However, the results were not corroborated by the
theory. The theory indicates oscillation rates almost identical to the plasma fre-
quency and infinitesimal Landau damping. However, both programs produced
oscillation frequencies larger than the plasma frequency and significant Landau
damping.

Since both programs agree with each other within error and give the same
visual results as a third-party program, I suspect a simple change of the theory
is all that is required. The variation in the results while changing the param-
eters exhibited the same behaviour as the theory. There may be a constant of
proportionality that needs to be included with some of the parameters.

There is an interesting effect that I noticed in all damped trials of the FDA
simulation. If the electrostatic energy is analyzed by Fourier modes (Figure
4.4), then at early times, only the damped perturbation mode k contributes

Chapter 4. Projects 41

 0

 5

 10

 15

 20

 25

-1 -0.5 0 0.5 1

de
ns

ity

velocity

FDA Initial Maxwellian

 0

 5

 10

 15

 20

 25

-1 -0.5 0 0.5 1
de

ns
ity

velocity

PM Initial Maxwellian

(a) (b)

-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001
 0.002

-1 -0.5 0 0.5 1

de
ns

ity

velocity

Landau Damping at Phase-Velocity

-0.01

-0.006

-0.002

 0.002

 0.006

 0.01

-1 -0.5 0 0.5 1

de
ns

ity

velocity

Multiple Phase-Velocities

(c) (d)

Figure 4.2: Comparison of the initial velocity distributions in (a) the FDA
simulation and (b) the PM simulation. (c) Initial flattening occurs
at v = 0.15, the phase-velocity. Times shown are t = 0 [r], 0.8
[g], 0.16 [b], 0.23 [p], 0.31 [a]. (d) Later, multiple flattening points
appear. Times shown are t = 0 [r], 7.8 [g], 1.6 [b], 2.3 [p], 3.1 [a].

Chapter 4. Projects 42

-50
-45
-40
-35
-30
-25
-20
-15
-10

-5

 0 10 20 30 40 50 60

el
ec

tr
os

ta
tic

 e
ne

rg
y

time

FDA Amplitude Comparison

-20

-15

-10

-5

 0 10 20 30 40 50 60
el

ec
tr

os
ta

tic
 e

ne
rg

y
time

PM Amplitude Comparison

(a) (b)

 2.5

 3

 3.5

 4

 4.5

 0 3 6 9 12 15

co
nv

er
ge

nc
e

fa
ct

or

time

FDA Convergence

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

co
nv

er
ge

nc
e

fa
ct

or

time

PM Convergence

(c) (d)

Figure 4.3: Different magnitude initial perturbations in (a) the FDA simulation
and (b) the PM simulation with a Maxwellian velocity distribution.
The colours in both graphs correspond, except the gray points in the
PM plot indicate no perturbation. (c) Convergence factors between
grid sizes of (Nx, Nv) = (16,32), (32,64), (64,128) [r], (128,256) [g],
(256,512) [b], and (512,1024) [p]. (d) Convergence factors between
particle numbers of 2.5k, 10k [r], 40k [g], 160k [b], and 640k [p].

Chapter 4. Projects 43

-80
-70
-60
-50
-40
-30
-20
-10

 0 10 20 30 40 50 60

en
er

gy
 m

od
es

time

Initial Perturbation k = 2

-80
-70
-60
-50
-40
-30
-20
-10

 0 10 20 30 40 50 60

en
er

gy
 m

od
es

time

Initial Perturbation k = 3

-80
-70
-60
-50
-40
-30
-20
-10

 0 10 20 30 40 50 60

en
er

gy
 m

od
es

time

Initial Perturbation k = 4

-80
-70
-60
-50
-40
-30
-20
-10

 0 10 20 30 40 50 60

en
er

gy
 m

od
es

time

Initial Perturbation k = 5

Figure 4.4: Electrostatic energy mode logplots for different modes of initial
perturbation k in the FDA simulation with a Maxwellian velocity
distribution. The red line in each is the total energy. The energy
with mode k is green, 2k is blue, 3k is purple, and 4k is aqua.

Chapter 4. Projects 44

t = 20 t = 25

t = 30 t = 200

Figure 4.5: Phase-space plots of the particles in a cold two-stream distribution.
Images from ES1 [2].

significantly. Multiples of k also appear, and it is interesting to see how they
are damped at a rate proportional to their individual modes. Eventually, the
damping ceases, but the electrostatic energy does not remain constant. It ex-
hibits spikes as certain modes that are multiples of k are suddenly given a lot
of energy. The spiking occurs at a frequency proportional to the mode. This is
obviously an artifact of the simulation, and not physical, but I am curious to
investigate its cause.

4.3 Two-Stream Instability

4.3.1 Cold Streams

The cold two-stream velocity distribution starts with two delta function streams.
As time progresses, the streams will wrap around each other with a ‘kneading’
action, eventually forming vortices (Figure 4.5). Because of the discontinu-
ous initial conditions, it cannot be simulated using the FDA program; finite-
difference techniques require smooth functions to be reliable. This made it
difficult to study, since the PM simulation produced noiser data, and there was
no corroboration possible between programs.

Unlike the Maxwellian, one can see that varying the amplitude of the ini-
tial perturbation is consistent, although the rate of growth is not completely
identical in all cases (Figure 4.6a). There does not appear to be a point where

Chapter 4. Projects 45

-35

-30

-25

-20

-15

-10

-5

 0 5 10 15 20

el
ec

tr
os

ta
tic

 e
ne

rg
y

time

PM Amplitude Comparison

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 10 20 30 40

co
nv

er
ge

nc
e

fa
ct

or

time

PM Convergence

(a) (b)

Figure 4.6: (a) Different magnitude initial perturbation in the cold two-stream
velocity distribution. The black line in the bottom-right is the no
perturbation solution. It intersects the vertical axis at 10−70. (b)
Convergence factors between particle numbers of 2.5k, 10k, 40k [g],
160k [b], and 640k [p].

decreasing the perturbation does not lower the initial electrostatic energy. This
cannot be completely true, however, since initial conditions without any pertur-
bation will eventually become unstable. Round-off errors incurred while moving
the particles around seed the instability. The initial electrostatic energy of the
zero perturbation case is about 10−70. Fortunately, this lower limit is well below
anything we would bother to simulate.

The convergence of this distribution is worse than the Maxwellian. The
time before the convergence factor falls off is shorter, and it stabilizes below 2
(Figure 4.6b). I suspect this is because of the kneading that causes filamentation
in velocity space. Also, if the vortices do not form in exactly the same place,
the convergence will be low, despite the behaviour being identical.

To compound the problem of poor convergence, the data is very dissimi-
lar to the theory (Table A.3). Furthermore, the theory indicates that varying
parameters does not produce monotonic results, so that a missing constant of
proportionality would change the expected values drastically.

4.3.2 Warm Streams

The warm two-stream velocity distribution has features that make it very diffi-
cult to measure. Its behaviour is extremely dependent on the initial conditions.
Sometimes, after the transients disappear from the electrostatic energy, the re-
mainder of the plot has no oscillations. The instability growth rate is then very
easy to measure, but the oscillation frequency is impossible to find. Alterna-
tively, one would expect that if the two Lorentzians were very wide and close,

Chapter 4. Projects 46

then the distribution should act like the Maxwellian. However, this only occurs
when a ≈ b (Figure 4.7a). If b > a, then the electrostatic energy quickly settles
to a constant value and doesn’t oscillate at all.

The amplitude comparison for the warm two-stream distribution is similar
to the Maxwellian case (Figure 4.7a+b), with the FDA handling all magnitudes
equally well, but the PM hitting machine error at 10−3. The convergence of
the PM simulation is midway between the Maxwellian and the cold streams.
However, the FDA convergence is very bad, with the highest resolution levels
always below 1. This causes me to suspect that unstable initial conditions
are slightly chaotic; even if a minute change produces a solution with identical
behaviour, it might be in a different place.

I have analyzed some data from this case, which appears in Table A.4, but
because of its erratic behaviour, I was unable to make many conclusions. There
is corroboration between programs when the instability exists, but there is dis-
agreement in the stable case. Since the known cases, the Maxwellian and the
cold two-stream distribution, did not match their theory exactly, I am currently
unable to confirm which theory for the warm two-strema distribution with my
data. Fortunately, I was able to determine that the transition point of the in-
stability occurs when a is close to b, and therefore, that (2.66) is likely correct.
This case requires further simulation to find initial parameters that give clearer
results.

Chapter 4. Projects 47

-40
-35
-30
-25
-20
-15
-10

-5

 0 10 20 30 40 50 60

el
ec

tr
os

ta
tic

 e
ne

rg
y

time

FDA Amplitude Comparison

-20

-15

-10

-5

 0 5 10 15 20 25 30 35 40
el

ec
tr

os
ta

tic
 e

ne
rg

y
time

PM Amplitude Comparison

(a) (b)

 0

 1

 2

 3

 4

 5

 0 3 6 9 12 15

co
nv

er
ge

nc
e

fa
ct

or

time

FDA Convergence

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40

co
nv

er
ge

nc
e

fa
ct

or

time

PM Convergence

(c) (d)

Figure 4.7: Different magnitude initial perturbation amplitudes in (a) the FDA
simulation and (b) the PM simulation with a warm two-stream ve-
locity distribution. The colours in both graphs correspond, except
the gray points in the PM plot indicate no perturbation. (c) Con-
vergence factors between grid sizes of (Nx, Nv) = (16,32), (32,64),
(64,128) [r], (128,256) [g], (256,512) [b], and (512,1024) [p]. (d) Con-
vergence factors between particle numbers of 625, 2500, 10k [r], 40k
[g], 160k [b], and 640k [p].

48

Chapter 5

Conclusion

Plasma exhibits a complex set of behaviours that are usually not measurable
in physical experiments. Therefore, one must turn to computer simulations to
elucidate what is occurring inside. Even in one dimension, I experienced how
complicated a ‘simple’ four-equation model can be.

I created two programs, one running a particle-mesh simulation and the
other a finite-difference approximation, to emulate the interaction of charged
electrons in a neutralizing background. In initial tests, both programs visually
corroborated the results of third-party programs. They also performed well on
the simple two particle test.

Three initial velocity distributions were used to generate data: the Maxwellian,
the cold two-stream distribution (two delta functions), and the warm two-stream
distribution (two Lorentzians). The Maxwellian data exhibited flattening near
the phase-velocity as described by theory. It also showed how the nonlinear
behaviour causes the creation of new phase-velocities. In this case, both pro-
grams agreed quantitatively with each other and were qualitatively similar to
the theory.

Both two-stream distributions produced qualitatively correct behaviour. How-
ever, in each case, there were only two sets of data to compare. For the cold
streams, only the PM simulation could be used, and like the Maxwellian, the
theory was not well matched to the results. The warm streams are undocu-
mented, and so, were supposed to be a test of new theory. However, the results
were unclear and the only conclusion that could be drawn is that the perturba-
tion disappears near the point where the separation of the Lorentzian peaks is
twice the width of each one.

Despite the inconclusive evidence derived from the programs, I did succeed in
my objective to become more experienced at simulating plasma. I have learned
about Landau damping and seen the effect of different parameters on my results.
And, most importantly, I have discovered that FDA simulations are easier to
implement and yield much cleaner data than particle simulations, and when the
dimensionality of the problem is low, FDA programs run at a speed competitive
with their PM counterparts.

49

Bibliography

[1] D. Anderson, R. Fedele, and M. Lisak. A tutorial presentation of the two
stream instability and Landau damping. American Journal of Physics,
69(12):1262, 2001.

[2] Charles K. Birdsall and A. Bruce Langdon. Plasma Physics Via Computer

Simulation. McGraw-Hill, New York, 1985.

[3] Francis F. Chen. Introduction to Plasma Physics and Controlled Fusion,
volume 1. Plenum Press, New York, 1984.

[4] Robert J. Goldston and Paul H. Rutherford. Introduction to Plasma Physics.
Institute of Physics Publishing, London, 1995.

[5] Roger W. Hockney and James W. Eastwood. Computer Simulation Using

Particles. McGraw-Hill, New York, 1981.

[6] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek. A Numeri-
cal Scheme for the Integration of the Vlasov-Maxwell System of Equations.
Journal of Computational Physics, 179:495, 2003.

[7] L. F. Richardson. The Approximate Arithmetical Solution by Finite Differ-
ences of Physical Problems involving Differential Equations, with an Appli-
cation to the Stresses in a Masonry Dam. Phil. Trans. Roy. Soc., 210:307,
1910.

[8] Marc Spiegelman. Myths and methods in modeling.
http://www.ldeo.columbia.edu/ mspieg/mmm/, 2000.

50

Appendix A

Tabulated Project Results

Appendix A. Tabulated Project Results 51

Table A.1: Oscillation frequency for Maxwellian velocity distribution
ωp vt k Re(ωPM) Re(ωFDA) Re(ωtheory)

1.0 0.15 1 2.0 ± 0.1 1.936 ± 0.001 1.034
1.5 0.15 1 2.4 ± 0.1 2.338 ± 0.001 1.534
2.0 0.15 1 2.8 ± 0.1 2.722 ± 0.001 2.034
2.5 0.15 1 3.1 ± 0.1 3.109 ± 0.001 2.534
3.0 0.15 1 3.47 ± 0.01 3.512 ± 0.001 3.034
3.5 0.15 1 3.90 ± 0.01 3.93 ± 0.005 3.534
4.0 0.15 1 4.35 ± 0.01 4.37 ± 0.01 4.034
4.5 0.15 1 4.80 ± 0.01 4.82 ± 0.01 4.534
5.0 0.15 1 5.28 ± 0.01 5.28 ± 0.01 5.034

3.0 0.05 1 3.05 ± 0.01 3.050 ± 0.001 3.004
3.0 0.10 1 3.20 ± 0.01 3.212 ± 0.001 3.015
3.0 0.15 1 3.47 ± 0.01 3.512 ± 0.001 3.034
3.0 0.20 1 3.9 ± 0.1 3.884 ± 0.001 3.060
3.0 0.25 1 4.5 ± 0.1 4.29 ± 0.01 3.094
3.0 0.30 1 4.8 ± 0.2 4.74 ± 0.01 3.135

3.0 0.15 1 not clear 3.05 ± 0.01 3.034
3.0 0.15 2 not clear 4.71 ± 0.01 3.135
3.0 0.15 3 not clear 5.90 ± 0.01 3.304
3.0 0.15 4 not clear 6.95 ± 0.01 3.540
3.0 0.15 5 not clear 8.1 ± 0.1 3.844
3.0 0.15 6 not clear 9.1 ± 0.1 4.215
3.0 0.15 7 not clear 10.2 ± 0.1 4.654
3.0 0.15 8 not clear 11.2 ± 0.1 5.160

Appendix A. Tabulated Project Results 52

Table A.2: Damping rate for Maxwellian velocity distribution
ωp vt k Im(ωPM) Im(ωFDA) Im(ωtheory)

1.0 0.15 1 -1.6 ± 0.1 -1.50 ± 0.05 -4e-8
1.5 0.15 1 -0.9 ± 0.1 -0.88 ± 0.01 -1e-19
2.0 0.15 1 -0.39 ± 0.01 -0.48 ± 0.01 -7e-36
2.5 0.15 1 -0.17 ± 0.01 -0.25 ± 0.01 -3e-57
3.0 0.15 1 stable -0.11 ± 0.005 -2e-83
3.5 0.15 1 stable -0.032 ± 0.001 -2e-114
4.0 0.15 1 stable stable -2e-150
4.5 0.15 1 stable stable -3e-191
5.0 0.15 1 stable stable -6e-237

3.0 0.05 1 stable stable -8e-777
3.0 0.10 1 stable stable -2e-190
3.0 0.15 1 stable -0.10 ± 0.01 -2e-83
3.0 0.20 1 -0.36 ± 0.05 -0.48 ± 0.01 -9e-46
3.0 0.25 1 -0.95 ± 0.05 -1.06 ± 0.01 -2e-28
3.0 0.30 1 -1.65 ± 0.05 -1.70 ± 0.02 -4e-19

3.0 0.15 1 not clear -0.11 ± 0.01 -2e-83
3.0 0.15 2 not clear -1.80 ± 0.05 -4e-19
3.0 0.15 3 not clear -4.54 ± 0.05 -1e-7
3.0 0.15 4 not clear -7.81 ± 0.05 -9e-4
3.0 0.15 5 not clear -11.4 ± 0.1 0.04
3.0 0.15 6 not clear -15.3 ± 0.1 0.27
3.0 0.15 7 not clear -19.5 ± 0.1 0.74
3.0 0.15 8 not clear -23.5 ± 0.1 1.3

Appendix A. Tabulated Project Results 53

Table A.3: Results for cold two-stream velocity distribution
ωp vt k ω1

PM ω1
th ω2

PM ω2
th

1.0 0.10 1 0.25 ± 0.1 1.01 0.5714 ± 0.0006 0.0980
1.5 0.10 1 0.31 ± 0.1 1.51 0.894 ± 0.004 0.0991
2.0 0.10 1 0.39 ± 0.1 2.01 1.188 ± 0.002 0.0995
2.5 0.10 1 0.45 ± 0.1 2.50 1.675 ± 0.009 0.0997
3.0 0.10 1 0.49 ± 0.1 3.00 1.83 ± 0.01 0.0998
3.5 0.10 1 0.60 ± 0.1 3.50 2.116 ± 0.006 0.0998
4.0 0.10 1 0.67 ± 0.1 4.00 2.57 ± 0.02 0.0999
4.5 0.10 1 0.71 ± 0.1 4.50 3.10 ± 0.02 0.0999
5.0 0.10 1 0.80 ± 0.1 5.00 3.32 ± 0.02 0.0999

3.0 0.05 1 0.50 ± 0.1 3.00 1.886 ± 0.008 0.050
3.0 0.10 1 0.49 ± 0.1 3.00 1.83 ± 0.01 0.100
3.0 0.15 1 0.58 ± 0.1 3.01 1.862 ± 0.006 0.149
3.0 0.20 1 0.48 ± 0.1 3.02 1.85 ± 0.01 0.198
3.0 0.25 1 0.68 ± 0.1 3.03 1.93 ± 0.01 0.246
3.0 0.30 1 0.75 ± 0.1 3.04 1.810 ± 0.007 0.294

3.0 0.10 1 0.49 ± 0.1 3.00 1.83 ± 0.01 0.100
3.0 0.10 2 0.50 ± 0.1 3.02 1.66 ± 0.02 0.198
3.0 0.10 3 0.57 ± 0.1 3.04 1.76 ± 0.01 0.294
3.0 0.10 4 0.63 ± 0.1 3.08 1.681 ± 0.004 0.386
3.0 0.10 5 0.85 ± 0.1 3.12 stable 0.474
3.0 0.10 6 0.94 ± 0.1 3.17 stable 0.557
3.0 0.10 7 1.04 ± 0.1 3.22 stable 0.634
3.0 0.10 8 1.12 ± 0.1 3.28 stable 0.705

Appendix A. Tabulated Project Results 54

Table A.4: Results for warm two-stream velocity distribution
ωp a b k Re(ωPM) Re(ωFDA) Im(ωPM) Im(ωFDA)

1.0 0.10 0.10 1 0.43 ± 0.1 ± 0.1111 ± 0.0004 ±
1.5 0.10 0.10 1 0.47 ± 0.1 ± 0.184 ± 0.001 ±
2.0 0.10 0.10 1 0.54 ± 0.1 ± 0.295 ± 0.002 ±
2.5 0.10 0.10 1 0.55 ± 0.1 ± 0.382 ± 0.004 ±
3.0 0.10 0.10 1 0.66 ± 0.1 ± 0.521 ± 0.008 ±
3.5 0.10 0.10 1 0.72 ± 0.1 ± 0.69 ± 0.01 ±
4.0 0.10 0.10 1 0.78 ± 0.1 ± 0.75 ± 0.01 ±
4.5 0.10 0.10 1 0.90 ± 0.1 ± 1.50 ± 0.02 ±
5.0 0.10 0.10 1 1.06 ± 0.1 ± 1.29 ± 0.04 ±
3.0 0.05 0.10 1 0.62 ± 0.1 0.62 ± 0.1 0.79 ± 0.01 stable
3.0 0.10 0.10 1 0.66 ± 0.1 0.66 ± 0.1 0.521 ± 0.008 stable
3.0 0.15 0.10 1 0.60 ± 0.1 0.71 ± 0.1 0.516 ± 0.007 0.289 ± 0.003
3.0 0.20 0.10 1 0.43 ± 0.1 0.75 ± 0.1 0.570 ± 0.005 0.596 ± 0.005
3.0 0.25 0.10 1 0.42 ± 0.1 1.00 ± 0.1 0.760 ± 0.003 0.771 ± 0.008
3.0 0.30 0.10 1 0.44 ± 0.1 1.07 ± 0.1 0.855 ± 0.002 0.851 ± 0.007

3.0 0.10 0.01 1 0.51 ± 0.1 0.58 ± 0.1 1.13 ± 0.02 1.66 ± 0.07
3.0 0.10 0.04 1 0.60 ± 0.1 0.51 ± 0.1 0.72 ± 0.02 0.69 ± 0.02
3.0 0.10 0.07 1 0.64 ± 0.1 0.51 ± 0.1 0.55 ± 0.01 0.234 ± 0.003
3.0 0.10 0.10 1 0.66 ± 0.1 0.64 ± 0.1 0.521 ± 0.008 stable
3.0 0.10 0.15 1 0.68 ± 0.1 0.67 ± 0.1 0.547 ± 0.007 stable
3.0 0.10 0.20 1 0.78 ± 0.1 0.75 ± 0.1 0.529 ± 0.006 stable

55

Appendix B

Code for Particle-Mesh

Program

These appendices contain the important parts of the code used to generate the
data for this thesis. Many components, such as error checking and I/O com-
mands, have been omitted to save space, except where they were appropriate
substitutions for commenting. For complete digital copies, please see my web-
site, which is now at ‘http://laplace.physics.ubc.ca/People/aaron/’.

The PM simulation was written in C++. There are two programs to run, the
initial data generating program and the actual PM program. The former takes a
generation file that contains parameters and control values and creates an input
file with the initial positions for each and every particle. The latter accepts that
input file and runs the simulation, producing the diagnostic information.

B.1 Initial File Generator

//**

// Get setup parameters to generate

//**

//setup parameters

unsigned short setup;

unsigned long numParticles;

double amp, k, vmax, vc, vwid;

//for calculation

const double epsilon=1e-10;

double uniform, y, w, area, x_n, x_np1, v_n, v_np1;

unsigned long side;

if(interactive)

std::cout << "Please choose a setup.\n"

<< " 1. Two Particles\n"

<< " 2. Single Cold Stream Dist\n"

<< " 3. Cold Two Stream Dist\n"

<< " 4. Maxwellian Dist [exp(-v^2/vt^2)]\n"

<< " 5. Assymetric Two Stream Dist [v^2*exp(-v^2/vt^2)]\n"

Appendix B. Code for Particle-Mesh Program 56

<< " 6. Lorentzian Two Stream Dist

[1/((v-b)^2+a^2) + 1/((v+b)^2+a^2)]\n"

<< "Choice: ";

std::cin >> setup;

if(interactive) std::cout << "Number of particles: ";

std::cin >> numParticles;

if(interactive) std::cout << "Perturbation amplitude (amp): ";

std::cin >> amp;

if(interactive) std::cout << "Perturbation wavenumber (k): ";

std::cin >> k;

if(interactive) std::cout << "Maximum velocity (vmax): ";

std::cin >> vmax;

if(interactive) std::cout << "Median velocity (vc): ";

std::cin >> vc;

if(interactive) std::cout << "Velocity decay rate (vwid): ";

std::cin >> vwid;

//**

// Two Particles

//**

if(setup == 1) {

outFile << "0.4, 0.0\n"

<< "0.6, 0.0\n";

}

//**

// Cold Two Stream distribution

//**

else if(setup == 3) {

if(numParticles % 2 != 0)

errorMsg << "Number of particles not even.";

for(i=0; i<numParticles/2; i++) {

//f(x) = 1 + A*cos(2*PI*k*x)

//int(f) = x + A/(2*PI*k)*sin(2*PI*k*x) 0<int(f)<1

uniform = (double(i)+0.5)/double(numParticles/2);

y = uniform;

x_np1 = y;

do {

x_n = x_np1;

if(fabs(amp*2.*PI*k*sin(2.*PI*k*x_n)) > epsilon)

x_np1 = x_n - (x_n + amp/(2.*PI*k)*sin(2.*PI*k*x_n) - y)/

Appendix B. Code for Particle-Mesh Program 57

(1 + amp*cos(2.*PI*k*x_n));

} while(fabs(x_np1-x_n) > epsilon);

outFile << x_np1 << "\t" << vc << "\n"

<< x_np1 << "\t" << -vc << "\n";

}

}

//**

// Maxwellian distribution

//**

else if(setup == 4) {

side = (unsigned short)(sqrt(numParticles));

if(side*side != numParticles)

errorMsg << "Number of particles not a square.";

for(i=0; i<numParticles; i++) {

//f(x) = 1 + A*cos(2*PI*k*x)

//int(f) = x + A/(2*PI*k)*sin(2*PI*k*x) 0<int(f)<1

uniform = (double(i)+0.5)/double(numParticles/2);

y = uniform;

x_np1 = y;

do {

x_n = x_np1;

if(fabs(amp*2.*PI*k*sin(2.*PI*k*x_n)) > epsilon)

x_np1 = x_n - (x_n + amp/(2.*PI*k)*sin(2.*PI*k*x_n) - y)/

(1 + amp*cos(2.*PI*k*x_n));

} while(fabs(x_np1-x_n) > epsilon);

//g(x) = exp(-v^2/vwid^2)

//int(g) = 0.5*sqrt(PI)*vwid*erf(v/vwid)

area = 0.5*erf(vmax/sqrt(2.)/vwid);

uniform = (double(i/side)+1.)/double(side+1);

w = area*(uniform*2.-1.);

v_np1 = w;

do {

v_n = v_np1;

v_np1 = v_n - (0.5*erf(v_n/sqrt(2.)/vwid) - w)/

(exp(-0.5*pow(v_n/vwid, 2))/(sqrt(2.*PI)*vwid));

} while(fabs(v_np1-v_n) > epsilon);

outFile << x_np1 << "\t" << v_np1 << std::endl;

}

Appendix B. Code for Particle-Mesh Program 58

}

//**

// Lorentzian Two Stream Dist [1/((v-b)^2+a^2) + 1/((v+b)^2+a^2)]

//**

else if(setup == 6) {

side = (unsigned short)(sqrt(numParticles));

if(side*side != numParticles)

errorMsg << "Number of particles not a square.";

std::vector<double> x, v;

//compile list of x values

for(i=0; i<side; i++) {

//f(x) = 1 + amp*cos(2*PI*x)

//int(f) = x + amp/(2*PI)*sin(2*PI*x) 0<int(f)<1

uniform = (double(i)+0.5)/double(side);

y = uniform;

x_np1 = y;

do {

x_n = x_np1;

if(fabs(amp*2.*PI*k*sin(2.*PI*k*x_n)) > epsilon)

x_np1 = x_n - (x_n + amp/(2.*PI*k)*sin(2.*PI*k*x_n) - y)/

(1 + amp*cos(2.*PI*k*x_n));

} while(fabs(x_np1-x_n) > epsilon);

x.push_back(x_np1);

}

//compile list of v values for centred Lorentzian

for(j=0; j<side/2; j++) {

//g(x) = exp(-v^2/vwid^2)

//int(g) = 0.5*sqrt(PI)*vwid*erf(v/vwid)

area = atan(vmax/vwid)/PI;

uniform = (double(j)+1.)/double(side/2+1);

w = area*(uniform*2.-1.);

v_np1 = 0.;

do {

v_n = v_np1;

v_np1 = v_n - (atan(v_n/vwid)/PI - w)/

(vwid/PI/(pow(v_n,2)+pow(vwid,2)));

} while(fabs(v_np1-v_n) > epsilon);

Appendix B. Code for Particle-Mesh Program 59

v.push_back(v_np1);

}

for(i=0; i<side; i++) {

for(j=0; j<side/2; j++) {

outFile << x[i] << "\t" << vc+v[j] << "\n"

<< x[i] << "\t" << -vc-v[j] << "\n";

}

if(side % 2 == 1) {

outFile << x[i] << "\t0\n";

}

}

}

B.2 Main Function

The main function of the particle generator takes care of setup, IO, and general
organization, such as the main time-stepping loop.

//**

// Define Phase

//**

class Phase

{

public:

inline Phase(double setX, double setV)

: x(setX), v(setV) {};

inline Phase()

: x(0.), v(0.) {};

double x, v;

};

//**

// Read initial conditions

//**

//get the constants

std::string filename = "pm";

double meshSpacing, startTime, timeStep, plasmaFreq;

unsigned long numMeshPoints, numTimeSteps;

unsigned short substepLevel;

if(interactive) std::cout << "Enter file ID: ";

Appendix B. Code for Particle-Mesh Program 60

std::cin >> filename;

if(interactive) std::cout << "Enter mesh spacing: ";

std::cin >> meshSpacing;

if(interactive) std::cout << "Enter number of mesh points: ";

std::cin >> numMeshPoints;

if(interactive) std::cout << "Enter initial time: ";

std::cin >> startTime;

if(interactive) std::cout << "Enter base time step: ";

std::cin >> timeStep;

if(interactive) std::cout << "Enter number of base time steps: ";

std::cin >> numTimeSteps;

if(interactive) std::cout << "Enter level of substepping: ";

std::cin >> level;

if(interactive) std::cout << "Enter plasma frequency: ";

std::cin >> plasmaFreq;

if(interactive) std::cout << "Enter phase coordinates:\n";

std::cout << "Running ID ’" << filename << "’\n";

//get the initial sampling point conditions

std::vector<Phase> initialConditions;

double currX, currV;

while(std::cin.peek() != EOF) {

std::cin >> currX >> currV;

initialConditions.push_back(Phase(currX, currV));

}

std::cout << "Number of particles read: "

<< initialConditions.size() << "\n";

//**

// Setup

//**

//create the plasma object

Experiment plasma(meshSpacing, numMeshPoints, startTime,

timeStep/pow(2., level), level, plasmaFreq,

initialConditions, outputFormat);

//output initial data

outputFile << plasma.writeHeader();

outputFile << plasma.writeData();

//time the calculation

Stopwatch timer;

timer.start();

Appendix B. Code for Particle-Mesh Program 61

//**

// Perform Simulation

//**

//base step loop

for(i=0; i < numTimeSteps*pow(2, level); i++) {

plasma.step();

//output data for high memory usage formats only at rate user sets

if(outputFreq != 0 and i % outputFreq*pow(2, level) == 0) {

outputFile << plasma.writeData();

snapshotFile << plasma.writeData("snapshot");

velocityFile << plasma.writeData("velocity");

}

historyFile << plasma.writeData("history");

fourierFile << plasma.writeData("fourier");

//save progress every 5 minutes

if(timer.alarm(300)) {

stateFile << filename << " file ID\n"

<< plasma.writeData("save-state");

std::cout << "State saved at step " << i << ".\n"

<< "Time elapsed - " << timer.writeString() << std::endl;

}

}

//**

// Clean up

//**

//output elapsed time

timer.stop();

stateFile << filename << " file ID\n"

<< plasma.writeData("save-state");

std::cout << "Simulation complete.\n"

<< "Time elapsed - " << timer.writeString() << std::endl;

B.3 Experiment Class

The experiment class performs time steps and analyzes the particles to produce
physical data.

//**

// Set up class with parameters and constants

//**

Appendix B. Code for Particle-Mesh Program 62

Experiment::Experiment(double meshSpacing, unsigned long numMeshPoints,

double startTime, double timeStep,

unsigned short substepLevel, double plasmaFreq,

const std::vector<Phase>& initialConditions,

const std::string& outputFormat)

: time(startTime),

QtoM(1.), eps0(1.), level(substepLevel),

H(meshSpacing), DT(timeStep), freq(plasmaFreq),

Nmesh(numMeshPoints), L(double(Nmesh)*H),

Ncell(initialConditions.size()/double(Nmesh)),

rhoFactor(freq*freq/Ncell*eps0/QtoM), //gives charge per particle

density(Nmesh), potential(Nmesh), Efield(Nmesh),

format(outputFormat)

{

particles.resize(initialConditions.size());

unsigned long i;

for(i=0; i<initialConditions.size(); i++) {

particles[i].x = initialConditions[i].x;

particles[i].v = initialConditions[i].v;

}

//output total charge as a check

std::cout << "Q = " << Ncell*L*rhoFactor << "\n";

}

void Experiment::step()

{

unsigned long i, loMeshPt, hiMeshPt;

double hiFrac;

//**

// UpdateDensity - Assign charge to the mesh

//**

//double neutral = 0;

for(i=0; i<Nmesh; i++)

density[i] = rhoFactor*Ncell;

for(i=0; i<particles.size(); i++) {

loMeshPt = (unsigned long)(particles[i].x/H);

hiMeshPt = loMeshPt+1;

hiFrac = particles[i].x/H - double(loMeshPt);

if(loMeshPt == Nmesh) {

Appendix B. Code for Particle-Mesh Program 63

loMeshPt = 0;

hiMeshPt = 1;

}

else if(hiMeshPt == Nmesh) {

hiMeshPt = 0;

}

density[loMeshPt] -= rhoFactor*(1.0-hiFrac);

density[hiMeshPt] -= rhoFactor*hiFrac;

}

//**

// UpdatePotential - Calculate the potential from the charge density

//**

//compute potential at mesh point 1

potential[1] = Nmesh*density[0];

for(i=1; i<Nmesh; i++)

potential[1] += i*density[i];

potential[1] *= H*H/eps0/double(Nmesh);

//compute potential at mesh point 2

potential[2] = (H*H/eps0*density[1] + 2*potential[1]);

//compute rest of potentials

for(i=3; i<Nmesh; i++)

potential[i] = (H*H/eps0*density[i-1] + 2*potential[i-1]

- potential[i-2]);

//compute potential at mesh point 0

potential[0] = (H*H/eps0*density[Nmesh-1] + 2*potential[Nmesh-1]

- potential[Nmesh-2]);

//**

// UpdateEfield - Calculate the electric field

//**

//boundary condition

Efield[0] = (potential[1] - potential[Nmesh-1])/(2*H);

//internal conditions

for(i=1; i <= Nmesh-2; i++)

Efield[i] = (potential[i-1] - potential[i+1])/(2*H);

//boundary condition

Efield[Nmesh-1] = (potential[Nmesh-2] - potential[0])/(2*H);

Appendix B. Code for Particle-Mesh Program 64

//**

// UpdateParticles - Find force at each particle and

// perform equations of motion

//**

for(i=0; i<particles.size(); i++) {

loMeshPt = (unsigned long)(particles[i].x/H);

hiMeshPt = loMeshPt+1;

hiFrac = particles[i].x/H - double(loMeshPt);

if(loMeshPt == Nmesh) {

loMeshPt = 0;

hiMeshPt = 1;

}

else if(hiMeshPt == Nmesh) {

hiMeshPt = 0;

}

particles[i].v += QtoM*(Efield[loMeshPt]*(1.0-hiFrac) +

Efield[hiMeshPt]*hiFrac)*DT; //negative charges

particles[i].x += particles[i].v*DT;

//do wrap-around and check that it only happens once

if(particles[i].x < 0) {

particles[i].x += L;

if(particles[i].x < 0)

throw std::runtime_error("Speeds have become excessive.");

}

if(particles[i].x > L) {

particles[i].x -= L;

if(particles[i].x > L)

throw std::runtime_error("Speeds have become excessive.");

}

}

//**

// Increment the time

//**

time += DT;

}

//**

// Output header data for pp2d

//**

std::string Experiment::writeHeader() const

Appendix B. Code for Particle-Mesh Program 65

{

std::stringstream ss;

if(format == "pp2d-xy" || format == "pp2d-xv") {

//give number of particles and their sizes

ss << particles.size() << "\n";

unsigned long i;

for(i=0; i < particles.size(); i++) {

ss << 0.1 << "\n";

}

}

return ss.str();

}

//**

// Output phase-space data for pp2d

//**

std::string Experiment::writeData(const char* outputFormat) const

{

std::string fmt(outputFormat);

std::stringstream ss;

unsigned long i, j;

if(fmt == "pp2d-xy") {

ss << time << "\n";

for(i=0; i < particles.size(); i++) {

ss << particles[i].x << "\t0\t0\n";

}

}

else if (fmt == "pp2d-xv") {

ss << time << "\n";

for(i=0; i < particles.size(); i++) {

ss << particles[i].x << "\t" << particles[i].v << "\t0\n";

}

}

else if (fmt == "gnuplot-xt") {

ss << time << "\t";

for(i=0; i < particles.size(); i++)

ss << particles[i].x << "\t";

Appendix B. Code for Particle-Mesh Program 66

ss << std::endl;

}

//**

// Output history data

//**

else if (fmt == "history") {

ss << time << "\t";

double KE = 0., Ees = 0., mom = 0., absMom = 0.;

for(i=0; i < particles.size(); i++) {

KE += particles[i].v*particles[i].v;

mom += particles[i].v;

absMom += fabs(particles[i].v);

}

//Q = (Ncell*L*rhoFactor)

//Q/Nparticles = H*rhoFactor

KE *= 0.5*H*rhoFactor/QtoM;

mom *= H*rhoFactor/QtoM;

absMom *= H*rhoFactor/QtoM;

for(i=0; i < Nmesh; i++)

Ees -= density[i]*potential[i];

Ees *= 0.5*H;

ss << mom << "\t" << absMom << "\t"

<< Ees << "\t" << KE << std::endl;

}

else if (fmt == "snapshot") {

ss << "# " << time << "\n";

//unsigned long count = 0;

double position = 0., totalDen = 0., totalPot = 0., totalEfd = 0.;

for(i=0; i < Nmesh; i++) {

position += H*i;

totalDen += -density[i];

totalPot += potential[i];

totalEfd += Efield[i];

//if(count == 25) {

ss << position << " " << totalDen << " "

<< totalPot << " " << totalEfd << "\n";

position = 0.;

totalDen = 0.;

totalPot = 0.;

Appendix B. Code for Particle-Mesh Program 67

totalEfd = 0.;

}

ss << std::endl << std::endl;

}

//**

// Output velocity distribution data

//**

else if (fmt == "velocity") {

unsigned long loMeshPt, hiMeshPt;

double hiFrac;

std::vector<double> vDist(1000);

const double VMAX = 2.0, DV = 2.*VMAX/vDist.size();

for(i=0; i<particles.size(); i++) {

loMeshPt = (unsigned long)((particles[i].v+VMAX)/DV);

hiMeshPt = loMeshPt+1;

if(loMeshPt < 0 or hiMeshPt >= vDist.size()) continue;

hiFrac = (particles[i].v+VMAX)/DV - double(loMeshPt);

vDist[loMeshPt] += (1.0-hiFrac)/double(particles.size());

vDist[hiMeshPt] += hiFrac/double(particles.size());

}

ss << "# " << time << "\n";

for(i=0; i < vDist.size(); i++)

ss << -VMAX + i*DV << " " << vDist[i] << "\n";

ss << std::endl << std::endl;

}

//**

// Output data on first 8 terms of discrete Fourier series

//**

else if (fmt == "fourier") {

ss << time << "\t";

double cosCoeff, sinCoeff, density_k, potential_k;

//find total energy (j=0) and amplitude of first 8 modes

for(j=0; j<9; j++) {

Appendix B. Code for Particle-Mesh Program 68

//fourier series of density

cosCoeff = 0;

sinCoeff = 0;

for(i=0; i<Nmesh; i++) {

cosCoeff += density[i]*cos(i*H*2*PI*j);

sinCoeff += density[i]*sin(i*H*2*PI*j);

}

density_k = sqrt(cosCoeff*cosCoeff + sinCoeff*sinCoeff)*H;

//fourier series of potential

cosCoeff = 0;

sinCoeff = 0;

for(i=0; i<Nmesh; i++) {

cosCoeff += potential[i]*cos(i*H*2*PI*j);

sinCoeff += potential[i]*sin(i*H*2*PI*j);

}

potential_k = sqrt(cosCoeff*cosCoeff + sinCoeff*sinCoeff)*H;

//find electrostatic energy

//if you want to output density_k and potential_k, multiply them by 2.

ss << density_k*potential_k << "\t";

}

ss << std::endl;

}

//**

// Output an input format file as a save-state

//**

else if (fmt == "save-state") {

ss << H << " mesh spacing\n"

<< Nmesh << " number of mesh points\n"

<< time << " initial time\n"

<< DT << " base time increment\n"

<< "10000 number of base time steps\n"

<< level << " level of substepping\n"

<< freq << " plasma frequency\n";

for(i=0; i < particles.size(); i++)

ss << particles[i].x << " " << particles[i].v << "\n";

}

//return the data to the main function

return ss.str();

}

69

Appendix C

Code for FDA Program

The finite difference approximation program was built using FORTRAN and
the high-level language RNPL, developed by Robert Marsa and Matt Chop-
tuik at Center for Relativity, The University of Texas in Austin. Three user
defined files were required: the RNPL description, the initialization code, and
the update code. Their names are relatively self-explanatory. Please see RNPL
documentation for further description of the features used.

C.1 RNPL Description File

##

RNPL program to solve the Vlasov equation in 1D

#

f_t + v*f_x + a*f_v = 0

#

The acceleration ’a’ is given by the Lorentz force.

#

a = q*E

#

##

#---

Definition of memory size (only needed for Fortran)

#---

system parameter int memsiz := 10000000

#---

Definition of parameters and associated default values.

#---

parameter int first := 1

#---

Specify domain

#---

parameter float xmin := 0.0

parameter float xmax := 1.0

parameter float vmin := -5.0

Appendix C. Code for FDA Program 70

parameter float vmax := 5.0

#---

Physical values

#---

parameter float wp := 1.0

parameter float qtot0:= 1.0

parameter float qnorm:= 1.0

constant parameter float eps0:= 1.0

constant parameter float qtom := 1.0

constant parameter float twopi := 6.283185307179586

#---

The following parameters are used in the

specification of the initial data.

#---

parameter int type := 1

parameter float amp := 1.0

parameter float knum := 1.0

parameter float xc := 0.5

parameter float xwid := 0.05

parameter float vc := 0.0

parameter float vwid := 0.05

parameter float const:= 0.0

parameter float dissip:= 0.0

#---

Definition of coordinate system

#---

phase coordinates t, x, v

#---

Definition of finite-difference grids

#---

uniform phase grid g1 [1:Nx][1:Nv] {xmin:xmax} {vmin:vmax}

#---

Definition of u as the phase-space density function

#---

float f on g1 at -1,0,1 {out_gf = 1}

#---

Initializations

#---

Appendix C. Code for FDA Program 71

initialize f { [1:Nx][1:Nv] := 0 }

initializer0.inc initializer1 initializes f

header f, x, v, dx, dv, xmin, xmax, qtot0, qnorm, twopi, knum,

wp, qtom, eps0, type, amp, vc, vwid, xc, xwid, const

#---

Updates

#---

looper standard

update0.inc update0 updates f

header f, t, x, v, dt, dx, dv, xmin, xmax, twopi,

first, qtom, dissip, qtot0, qnorm, const

C.2 Update Function

integer i,j

integer Nx, Nv

real*8 Ncell

Nx = g1_Nx - 1 //last point is identified with first

Nv = g1_Nv

C---

C Maxwellian velocity distribution

C---

if (type .eq. 2) then

do i=1, Nx

do j=1, Nv

if (j .eq. 1 .or. j .eq. Nv) then

f_n(i,j) = const

else

f_n(i,j) = exp(-0.5d0*v(j)**2/vwid**2)/

& (sqrt(twopi)*vwid)*(1d0+amp*cos(twopi*knum*x(i)))

& + const

end if

end do

end do

C---

C Two Lorentzian velocity distribution

C---

else if (type .eq. 4) then

do i=1, Nx

Appendix C. Code for FDA Program 72

do j=1, Nv

if (j .eq. 1 .or. j .eq. Nv) then

f_n(i,j) = const

else

f_n(i,j)= 2d0*vwid/twopi*(1d0/((v(j)-vc)**2 + vwid**2)

& + 1d0/((v(j)+vc)**2 + vwid**2))*

& (1d0+amp*cos(twopi*knum*x(i))) + const

end if

end do

end do

end if

C---

C Normalize charge

C---

Ncell = 0d0

do j=1, Nv

do i=1, Nx

Ncell = Ncell + f_n(i,j)

end do

end do

Ncell = Ncell*dx*dv

qnorm = ((xmax-xmin)*wp**2/Ncell*eps0/qtom)

write(*,*) "Q_initial = ", Ncell, " qnorm = ", qnorm

do j=1, Nv

do i=1, Nx

!((xmax-xmin)*wp**2*eps0/qtom) is total charge

f_n(i,j) = f_n(i,j) * qnorm

end do

f_n(g1_Nx, j) = f_n(1,j)

end do

qtot0 = 0d0

do j=1, Nv

do i=1, Nx

qtot0 = qtot0 + f_n(i,j)

end do

end do

qtot0 = qtot0*dx*dv

write(*,*) "Q = ", qtot0

Appendix C. Code for FDA Program 73

C.3 Initialization Function

C---

C Define variables

C---

!output global from ’other_glbs.inc’

integer output(41)

common / com_oglb_int / output

real*8 a(g1_Nx-1), phi(g1_Nx-1)

integer i, ip1, ip2, im1, im2, j, jp2, jm2

integer Nx, Nv

real*8 qtot, test

!lapack variables

real*8 dl(g1_Nx-2), d(g1_Nx-2), du(g1_Nx-2) !diagonals

integer nrhs, info

parameter (nrhs = 1)

!distribution variables

integer ret, gft_out_full

real*8 rhox(g1_Nx-1), rhoxB(g1_Nx-1), rhov(g1_Nv)

integer rank, shape(1)

character*5 cnames(1)

!IO variables

integer fh, skip

save skip

character*50 historyFile, rhoXFile, rhoVFile, rhoWFile, fmt

!history variables

real*8 ptot, absptot, Ees, KE, rmserr

real*8 fa, fb

real*8 rhok(0:8), phik(0:8)

Nx = g1_Nx - 1 //last point is identified with first

Nv = g1_Nv

C---

C Update Density - Integrate over the velocity dimension

C charge density is placed in ’phi’

C---

qtot = 0d0

do i=1, Nx

Appendix C. Code for FDA Program 74

do j=1, Nv

qtot = qtot + f_n(i,j)

end do

end do

qtot = qtot*dx*dv

!sum over all velocities

do i=1, Nx

rhox(i) = -qtot/(xmax-xmin)

do j=1, Nv

rhox(i) = rhox(i) + f_n(i,j)*dv

end do

!prepare for potential calculation

phi(i) = rhox(i)*dx**2 / eps0

end do

C---

C Update Potential - Use tridiagonal solver for Poisson’s equation

C charge potential is placed in ’phi’

C---

!create the submatrix for d2phi/dx2

do i=1, Nx-1

du(i) = -1d0

d(i) = 2d0

dl(i) = -1d0

end do

!calculate the Nx-1 by Nx-1 submatrix

call dgtsv(Nx-1, nrhs, dl, d, du, phi, Nx, info)

!set the end value to zero

phi(Nx) = 0d0

C---

C Update Acceleration - coefficient of du/dv in Vlasov equation

C---

!acceleration proportional to -dphi/dx

a(1) = qtom*(phi(Nx) - phi(2))/(2*dx)

do i=2, Nx-1

a(i) = qtom*(phi(i-1) - phi(i+1))/(2*dx)

end do

a(Nx) = qtom*(phi(Nx-1) - phi(1))/(2*dx)

Appendix C. Code for FDA Program 75

do i=1, Nx

if((dt/dx)**2+(a(i)*dt/dv)**2 .ge. 1d0) then

write(*,*) "Caution: a(", i, ") =", a(i),

& " exceeds the instability criterion."

end if

end do

C---

C Solve equation

C---

do i=1, g1_Nx

f_np1(i,1) = const * qnorm

f_np1(i,Nv) = const * qnorm

end do

do j=2, Nv-1

do i=1, Nx

ip1 = i+1

im1 = i-1

if(i .eq. 1) then

im1 = Nx

im2 = Nx-1

else if(i .eq. Nx) then

ip1 = 1

ip2 = 2

end if

jp2 = j+2

jm2 = j-2

if(j .eq. 2) then

jm2 = 1

else if(j .eq. Nv-1) then

jp2 = Nv

end if

!standard leapfrog

f_np1(i,j)= f_nm1(i,j) - dt*(

& v(j)*(f_n(ip1,j)-f_n(im1,j))/dx +

& a(i)*(f_n(i,j+1)-f_n(i,j-1))/dv)

& - dissip/16d0 *

& (6d0*f_n(i,j) + f_n(ip2,j) + f_n(im2,j)

& - 4*(f_n(ip1,j) + f_n(im1,j))

& + 6d0*f_n(i,j) + f_n(i,jp2) + f_n(i,jm2)

& - 4*(f_n(i,j+1) + f_n(i,j-1)))

Appendix C. Code for FDA Program 76

end do

f_np1(g1_Nx,j) = f_np1(1,j)

end do

C---

C Output diagnostics

C---

if(first .eq. 1) then

skip = output(13)

else if(t .gt. 0d0) then

skip = skip + 1

end if

if(skip .eq. output(13)) then

skip = 0

!find velocity distribution

do j=1, Nv

rhov(j) = 0d0

do i=1, Nx

rhov(j) = rhov(j) + f_n(i,j)

end do

rhov(j) = rhov(j)*dv

end do

!find total momentum and kinetic energy

ptot = 0

absptot = 0

KE = 0

do j=1, Nv

ptot = ptot + v(j)*rhov(j)

absptot = absptot + abs(v(j))*rhov(j)

KE = KE + v(j)**2*rhov(j)

end do

ptot = ptot/qtom*dv

absptot = absptot/qtom*dv

KE = 0.5d0*KE/qtom*dv

!find electrostatic energy

Ees = 0

do i=1, Nx

Ees = Ees + rhox(i)*phi(i)

end do

Ees = 0.5d0*Ees*dx

!find RMS error

Appendix C. Code for FDA Program 77

rmserr = 0d0

do i=1, Nx

do j=2, Nv-1

ip1 = i+1

im1 = i-1

if(i .eq. 1) then

im1 = Nx

else if(i .eq. Nx) then

ip1 = 1

end if

rmserr = rmserr + ((f_np1(i,j)-f_nm1(i,j))/(2d0*dt) +

& v(j)*(f_n(ip1,j)-f_n(im1,j))/(2d0*dx) +

& a(i)*(f_n(i,j+1)-f_n(i,j-1))/(2d0*dv))**2

end do

end do

rmserr = sqrt(rmserr / (Nx * (Nv-2)))

!find amplitude of first 8 modes

do j=0, 8

fa = 0d0

fb = 0d0

do i=1, Nx

fa = fa + rhox(i)*cos(twopi*real(j)*x(i))

fb = fb + rhox(i)*sin(twopi*real(j)*x(i))

end do

rhok(j) = sqrt(fa**2 + fb**2)*dx

fa = 0d0

fb = 0d0

do i=1, Nx

fa = fa + phi(i)*cos(twopi*real(j)*x(i))

fb = fb + phi(i)*sin(twopi*real(j)*x(i))

end do

phik(j) = sqrt(fa**2 + fb**2)*dx

end do

!write histories

if(first .eq. 1) then

open(fh, FILE=historyFile, STATUS=’UNKNOWN’)

else

open(fh, FILE=historyFile, STATUS=’UNKNOWN’,

& ACCESS=’APPEND’)

end if

write(fh,900) t, (qtot-qtot0)/qtot0, ptot, absptot,

Appendix C. Code for FDA Program 78

& Ees, KE, rmserr

900 format(10000E14.6)

close(fh)

!write spatial snapshots

if(first .eq. 1) then

open(fh, FILE=rhoXFile, STATUS=’UNKNOWN’)

else

open(fh, FILE=rhoXFile, STATUS=’UNKNOWN’,

& ACCESS=’APPEND’)

end if

write(fh,*) "#", t

do i=1,Nx

write(fh,900) x(i), rhox(i), phi(i), a(i)/qtom

end do

write(fh,*)

write(fh,*)

close(fh)

!write velocity snapshots

if(first .eq. 1) then

open(fh, FILE=rhoVFile, STATUS=’UNKNOWN’)

else

open(fh, FILE=rhoVFile, STATUS=’UNKNOWN’,

& ACCESS=’APPEND’)

end if

write(fh,*) "#", t

do j=1,Nv

write(fh,900) v(j), rhov(j), f_n(1,j)

end do

write(fh,*)

write(fh,*)

close(fh)

!write fourier history

if(first .eq. 1) then

open(fh, FILE=rhoWFile, STATUS=’UNKNOWN’)

else

open(fh, FILE=rhoWFile, STATUS=’UNKNOWN’,

& ACCESS=’APPEND’)

end if

write(fh,900) t, (rhok(j)*phik(j), j=0,8)

close(fh)

end if

79

Appendix D

Code for Convergence Test

This program is written in C++ with Qt I/O objects. It accepts Gnuplot-style
data files and computes the convergence factor (3.44) for the column specified.

//prepare variables

double diff12, diff23a, diff23b, sum12, sum23, convergence;

QString buffer;

unsigned short blankLine, ratio, column = 1;

unsigned long i, j, record = 0, lastSize;

bool ok;

double time1, time2, time3, yValue;

std::vector<double> set1, set2, set3;

//**

// Loop through data files until one ends

//**

while(!stream1.atEnd() and !stream2.atEnd() and !stream3.atEnd()) {

record++;

//load record from file1

blankLine = 0;

set1.clear();

do {

buffer = stream1.readLine().simplifyWhiteSpace();

if(buffer.isEmpty())

blankLine++;

else if(buffer.startsWith("#")) {

buffer.remove(0,1);

time1 = buffer.toDouble(&ok);

}

else {

yValue = buffer.section(’ ’, column, column).toDouble(&ok);

set1.push_back(yValue);

}

Appendix D. Code for Convergence Test 80

} while(blankLine != 2 and !stream1.atEnd());

//load record from file2

blankLine = 0;

set2.clear();

do {

buffer = stream2.readLine().simplifyWhiteSpace();

if(buffer.isEmpty())

blankLine++;

else if(buffer.startsWith("#")) {

buffer.remove(0,1);

time2 = buffer.toDouble(&ok);

}

else {

yValue = buffer.section(’ ’, column, column).toDouble(&ok);

set2.push_back(yValue);

}

} while(blankLine != 2 and !stream2.atEnd());

//load record from file3

blankLine = 0;

set3.clear();

do {

buffer = stream3.readLine().simplifyWhiteSpace();

if(buffer.isEmpty())

blankLine++;

else if(buffer.startsWith("#")) {

buffer.remove(0,1);

time3 = buffer.toDouble(&ok);

}

else {

yValue = buffer.section(’ ’, column, column).toDouble(&ok);

set3.push_back(yValue);

}

} while(blankLine != 2 and !stream3.atEnd());

//**

// Check that data conforms to expectations

//**

//check that sets have correct sizes

if(set1.size() <= 0 or set2.size() <= 0 or set3.size() <= 0) {

std::cerr << "converge> record " << record << ": Empty set.";

return 1;

Appendix D. Code for Convergence Test 81

}

else if(set1.size() == set2.size() and

set2.size() == set3.size()) {

ratio = 1;

}

else if(set2.size() == 2*set1.size() and

set3.size() == 2*set2.size()) {

ratio = 2;

}

else if(set2.size()-1 == 2*(set1.size()-1) and

set3.size()-1 == 2*(set2.size()-1)) {

set1.pop_back();

set2.pop_back();

set3.pop_back();

ratio = 2;

}

else if(set2.size() == 10*set1.size() and

set3.size() == 10*set2.size()) {

ratio = 10;

}

else {

std::cerr << "converge> record " << record

<< ": Set sizes do not match.";

return 1;

}

//check that times correspond

if(time1 != time2 or time2 != time3) {

std::cerr << "converge> record " << record

<< ": Times do not match.";

return 1;

}

//check that the number of entries has not changed

if(record > 1 and set1.size() != lastSize) {

std::cerr << "converge> record " << record

<< ": Array size has changed.";

}

lastSize = set1.size();

//**

// Perform calculation

//**

sum12 = 0.;

sum23 = 0.;

if(ratio == 1) {

Appendix D. Code for Convergence Test 82

for(i=0; i<set1.size(); i++) {

diff12 = set2[i] - set1[i];

diff23a = set3[i] - set2[i];

sum12 += diff12*diff12;

sum23 += diff23a*diff23a;

}

}

else if(ratio == 2) { //ratio = 2

for(i=0; i<set1.size(); i++) {

diff12 = set2[2*i] - set1[i];

diff23a = set3[4*i] - set2[2*i];

diff23b = set3[4*i+2] - set2[2*i+1];

sum12 += diff12*diff12;

sum23 += (diff23a*diff23a + diff23b*diff23b)/2.;

}

}

else { //ratio > 2

for(i=0; i<set1.size(); i++) {

diff12 = set2[ratio*i] - set1[i];

diff23b = 0;

for(j=0; j<ratio; j++) {

diff23a = set3[ratio*(ratio*i+j)] - set2[ratio*i+j];

diff23b += diff23a*diff23a;

}

sum12 += diff12*diff12;

sum23 += diff23b/ratio;

}

}

convergence = sum23 ? sqrt(sum12 / sum23) : 0;

std::cout << time1 << "\t" << convergence << std::endl;

}

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Computer Simulations
	Motivation

	Mathematics
	Development of the Vlasov-Maxwell Model
	The Boltzmann Equation
	The Vlasov Equation
	Maxwell's Equations

	Down to One Dimension
	Motion of a Charged Particle in a Magnetic Field
	Electrostatic Equations
	Final Assumptions
	Summary of the Continuous Model

	Landau Damping
	The Laplace Transform
	The Dispersion Relation
	The Inverse Transform

	Maxwellian Distribution
	Two-Stream Instability
	Cold Streams
	Warm Streams

	Properties of Interest

	Numerical Methods
	Particle-Mesh
	Assigning Charge to the Mesh
	Poisson's Equation
	Moving the Particles
	Stability
	Initialization

	Finite-Difference Approximation
	Crank-Nicholson Scheme
	Leapfrog Scheme

	Physical Diagnostics
	Convergence Testing

	Projects
	Two-Particle Test
	Maxwellian Distribution
	Two-Stream Instability
	Cold Streams
	Warm Streams

	Conclusion
	Bibliography
	Tabulated Project Results
	Code for Particle-Mesh Program
	Initial File Generator
	Main Function
	Experiment Class

	Code for FDA Program
	RNPL Description File
	Update Function
	Initialization Function

	Code for Convergence Test

