
Critical Phenomena in the
Gravitational Collapse of SU(2)

Yang-Mills Fields

A Numerical Study

by

Tyler Dodds

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Science

(Physics)

The University Of British Columbia

April, 2007

c© Tyler Dodds 2007



Abstract

We investigate the behaviour of abelian gauge, magnetic ansatz SU(2) Yang-
Mills fields during gravitational collapse in spherical symmetry. The exis-
tence of critical phenomena is confirmed at the threshold of collapse. Two
generic end states of evolution are found: flat space and black hole forma-
tion. The critical solution of a family of initial data separates the phase
space into these end states. Type I critical phenomena, consisting of static
critical solutions, minimum mass black hole formation, and scaling of so-
lution lifetime near the critical solution, is the focus of this investigation.
Finite difference approximations are used to solve the equations of motion of
the system. These are formulated in two different manners. The first uses a
first order in time approach. In this, auxiliary variables are defined so that
their time derivatives are given by the equations of motion. Derivation of the
funtamental variable from the auxiliary ones is required at each time interval
in the simulation. This is the traditional formulation for solving problems
numerically in general relativity. The second uses a second order in time ap-
proach. Here, no auxiliary variables are defined, and the equation of motion
for the fundamental variable involves its second time derivative. Making the
finite difference approximation is slightly more difficult, but derivation of the
fundamental variable becomes unnecessary. Unpublished calculations seem
to imply the breakdown of the first order in time method when applied to
certain systems, and the second order method has been successfully utilized
in the full-dimensional non-symmetric case [15]. These facts, along with the
result that the second order method produces comparable results to the first
order method in this study, indicates the possible use of the second order
method in solving more general SU(2) systems. These generalizations would
be obtained by removing the magnetic ansatz or the imposition of spherical
symmetry.
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Chapter 1

Introduction

In general relativity, as in all areas of physics, most problems are simply
too intractable to be solved in closed form. When faced with this problem,
there are two general directions to head in. The first direction is to make
some clever approximation so as to yield a solvable problem. This has the
advantage of yielding a general closed form solution, making it easier to
see the dependence of the solution on the problem’s parameters. Often,
this can give great insight into the structure of the problem and its solution.
However, the solution is only approximate, and one needs to fully understand
how much of the solution’s behaviour the approximation truly describes.
The second direction is to attempt to solve the full problem exactly with
some sort of numerical method. The disadvantage here is that parameters
must be explicitly given beforehand, and thus many different solutions will
be required to discern the dependence of the problem on its parameters.
The advantage is that the solution is as exact as the numerical method and
computational resources will allow. The solutions truly are simulations, in
that they behave exactly as the theoretical system would, and can give us a
very good picture of the physics described by the theory.

Numerical relativity is the result of heading in this second direction in
an attempt to get a detailed picture of how systems behave under gravity
as described by the theory of general relativity. One of the many interesting
results obtained from having these full simulations is the existence of critical
phenomena, the behaviour associated with a system on the verge of collapse
to a black hole.

1.1 Critical Phenomena

A generic, isolated system acting under general relativity evolves on a long
time scale based on the competition between the dispersive effects of the
kinetic energy of the system and its gravitational self-attraction, or the ex-
plicit self-interaction of the matter. With minimal gravitational interaction,
a system with sufficient kinetic energy will tend to disperse to infinity. Sys-
tems with strong gravitational self-interaction will tend to collapse, forming
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Chapter 1. Introduction

a black hole. A binary system of two black holes orbiting each other, for
example, will also collapse into a single black hole, due to emission of grav-
itational waves [13].

Critical phenomena occur when the gravitational self-interaction be-
comes just strong enough to form a black hole. Since the initial data uniquely
determines the evolution of the system, it can be used to control the end
state of evolution of the system. In this sense, the parameters of the initial
data do more than just specify the starting point of the system: they also
distinguish between the two generic end states of a system, flat space (after
dispersal to infinity) and black holes. These parameters thus form a basis
for a phase space of the system, where the term phase here means the state
of the system after a sufficiently long time.

To be more precise, we choose the parameters of the initial data, pi,
so that they show this kind of control over the end state of the system.
Fixing all parameters pi except for a particular pj corresponds to a (single
parameter) family of initial data governed by the parameter pj , as it is
varied. In general it is fairly easy to choose parameters that scale with the
gravitational self-interaction of the system, and specifically that result in
the following properties:

• Sufficiently small values of p lead to dispersal of the system to infinity
for sufficiently long times, leaving behind flat space.

• Sufficiently large values of p lead to gravitational collapse of the system
and the eventual formation of a black hole.

• There exists a critical value of the parameter, p∗, that separates the
two end states of evolution. Flat space results for p < p∗, while a black
hole is formed for p > p∗.

The critical solution for this family of initial data is the solution when p = p∗.
We call initial data with p < p∗ subcritical, and initial data with p > p∗

supercritical. One could equally well define p in the opposite manner, where
black holes are formed for p < p∗. It is important to note that this family,
and hence p∗, depend on the values of the other fixed parameters.

The system wherein critical phenomena were first discovered was the
massless scalar field, minimally coupled to gravity, in spherical symmetry.
The advantage of the scalar field model is that it propagates at the speed
of light, effectively mimicking gravitational radiation. Unlike gravitational
radiation, however, it exists in spherical symmetry and is a simple enough
problem to allow for accurate calculations that can properly resolve the
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Chapter 1. Introduction

critical behaviour. See Gundlach’s review article for an excellent history of
the study of gravitational critical phenomena [11].

Systems display many interesting types of behaviour at and around their
critical solutions. There are two broad clases of critical phenomena, named
types I and II in analogy to first and second order phase transitions, since the
critical behaviour is also analogous to that seen in such phase transitions.
Like phase transitions, each type of critical phenomenon shows different be-
haviour in detail. However, both types share the universality of the critical
solution. This means that the critical solution is unique, up to rescaling of
units, across different families of initial data. Figure 1.1 shows the univer-
sality of a near-critical solution with a massless scalar field as the matter
source. Each of the four solutions evolves with identical profiles over time,
despite being generated from different families of initial data.

Figure 1.1: Universality of a near-critical solution of a massless scalar field.
At each time coordinate τ is a group of four different solutions of a massless
scalar field. Each profile has a different family of initial data, with scaling
chosen for each family to maximize agreement at the earliest τ . The consis-
tent evolution shows the universality of the critical solution, independent of
its initial form. Figure taken from [5].

Both types of critical phenomena can be understood in terms of the
phase space, where the so-called critical hypersurfaces separate the regions
of different final states of the system. A system beginning on a critical hy-
persurface never leaves it. In this view, the critical solution is an attracting
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Chapter 1. Introduction

equilibrium point within this critical hypersurface. Associated with the so-
lution are an infinite number of stable, decaying modes tangential to the
hypersurface and a single unstable, growing mode that is not tangent [11].
This unstable mode will eventually control the dynamics, taking solutions
away from the critical hypersurface towards one of the generic system end
states. In tuning towards the critical solution, we are essentially tuning out
this single unstable mode.

1.1.1 Type II Critical Phenomena

Type II critical phenomena were the first discovered, with the choice of a
single massless scalar field as the matter source [5]. It is characterized by the
presence of black holes of arbitrarily small mass, and a continuous transition
from the flat-space regime to the black hole regime.

The first feature of type II critical behaviour is the scaling of the black
hole mass with the parameter p. In the region p > p∗, where black holes
form, it is found that the mass of the black hole, MBH, varies as

MBH = cf |p − p∗|γ . (1.1)

Here, γ ∼ 0.37 is a family-independent dimensionless parameter; only the
scaling factor cf depends on the family of initial data. Figure 1.2 shows the
mass scaling relationship in type II black hole formation for a massless scalar
field. The identical slopes seen for all three types of initial data indicate the
same power law growth of the black hole mass with parameter p, regardless
of the form of the initial data.

This is what gives rise to “infinitesimal” mass black holes, as p → p∗. In
effect this is a continuous transition in parameter space, viewing the black
hole mass M as the parameter of interest of the end state of evolution.
The transition from the M = 0 region of parameter space (flat space) to
the M > 0 (black hole) region is continuous as p varies across p∗. This is
analogous to the definition of second order phase transitions, and is similarly
at the heart of the interesting behaviour near the critical solution.

The second interesting feature of type II critical behaviour is called scale
echoing. The critical solution φcrit(r, t) is invariant under a certain scaling
of both space and time, namely

φcrit(r, t − t∗) = φcrit(e
∆r, e∆(t − t∗)), (1.2)

for t < t∗, with t∗ being the time after which all scaling invariance has
finished. Here ∆ ∼ 3.44 is a dimensionless parameter that is, like the critical
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Chapter 1. Introduction

Figure 1.2: Black hole mass scaling in type II gravitational collapse of a
massless scalar field. The black hole mass variation with the difference of
the initial data parameter p from the critical value p∗ is plotted on a log-log
scale. Each of the three markers corresponds to a different type of initial
data. Each family of markers is plotted so as to normalize the domain and
place the smallest-mass black hole at the origin. Figure taken from [5].

solution, family-independent. Figure 1.3 shows this behaviour for a near-
critical solution of a massless scalar field, where the profile is identical to
one at a time e∆ closer to t∗, but on a spatial scale e∆ smaller.

1.1.2 Type I Critical Phenomena

There is also a classification of type I critical behaviour, which is the focus
of this investigation. It is characterized by the creation of a minimum mass
black hole for parameter values just above the critical value p∗. Here the
black hole mass M varies discontinuously as p crosses p∗, from the M = 0
flat space region for p < p∗ to the M ≥ M0 region for p > p∗, with M0 the
minimum black hole mass. This is analogous to the discontinuous nature of
first order phase transitions, where system variables change abruptly upon
phase change.

What one finds in type I critical phenomena is that the critical solution
acts as an unstable equilibrium point in phase space. Solutions that are
either slightly supercritical or subcritical will begin collapse, but stop at the
critical solution for a certain length of time before dispersing to infinity or
completely collapsing. The closer p approaches p∗, the longer is the lifetime
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Chapter 1. Introduction

Figure 1.3: Scale echoing property of a near-critical solution of a massless
scalar field. The curve marked with solid circles is on a spatial scale e∆ρ ≈ 30
times smaller than the curve marked by open squares, but is at a time
e∆τ ∼= e∆ρ closer to the time when the ‘echoing’ behaviour ceases. The two
profiles agree under this specific scaling. Figure taken from [5].

of this unstable solution. In fact, we get a scaling law similar to the mass
scaling in type II critical phenomena. The lifetime, τ , scales as

τ = df − σ ln |p − p∗|. (1.3)

As with the scaling exponent in the type II case, σ is independent of the
family of initial data. Only the constant df depends on the particular family.

Type I critical solutions do not exhibit the same type of scale invariance
that type II solutions do. Instead, they exhibit invariance under purely tem-
poral translations. If they are invariant under certain discrete translations,
the critical solutions are seen to be time-periodic. If they are invariant under
continuous time translations, as will be the case in this work, the critical
solutions are static. These static critical solutions satisfy the equations of
motion and are full static solutions for the matter choice.

1.2 Yang-Mills Fields

Gravitational critical phenomena are not peculiar to a certain few types
of matter. Indeed, critical phenomena of some sort have been found in all
matter types investigated to date [11]. Among the matter types investigated
are massive scalar fields, scalar fields coupled to electromagnetism, perfect
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Chapter 1. Introduction

fluids, and Yang-Mills fields, all of which generate critical behaviour. The
few investigations in axial symmetry suggest that critical behaviour occurs
in more general contextxs than spherical symmetry [1, 8].

In this investigation we focus on the critical behaviour of Yang-Mills
fields – in particular, an SU(2) field in spherical symmetry restricted to the
purely magnetic sector of the theory, and with the so-called abelian gauge.
This will henceforth be referred to as an abelian gauge magnetic ansatz
SU(2) field. This follows the work of Choptuik, Chmaz and Bizon [7]. A
description of the SU(2) Yang-Mills field, restriction to spherical symmetry,
and implementation of the magnetic ansatz and choice of abelian gauge can
be found in [9]. The Yang-Mills fields are perhaps the most well-known
examples of gauge theories, which are predicated on being able to perform
symmetry transformation locally, rather than being restricted to global ap-
plication. Interest in Yang-Mills fields arose as a result of an attempt to
understand the nature of fundamental interactions from a quantum field-
theoretical perspective. This was quite a successful attempt: the SU(3)
field describes quantum chromodynamics, while the SU(2) field is integral
in understanding the electroweak force [12].

Under the restrictions imposed for this investigation, the Yang-Mills field
is to be viewed as a simple model that can be used to explore the possible dy-
namics and phenomena that can arise in the collapse of a non-abelian gauge
field. As this work is classical, in the gravitational (rather than quantum)
regime, we do not expect the Yang-Mills field to be a model for a particular
phenomenon or system. However, this work can give an indication of the
behaviour of these gauge theories coupled to gravity, without requiring a
unified quantum gravitational theory.

1.3 Finite Difference Approximations

In this work, we consider the type I critical behaviour of the abelian gauge,
magnetic ansatz SU(2) field in spherical symmetry. The aim is to solve the
equations of motion of this field, as well as the equations determining the
general relativistic gravitational field, using finite difference approximations.
Such approximations use a grid on the spacetime domain and approximate
derivatives, equations of motion, and solutions on this grid.

Traditionally, numerical studies of general relativity cast the relevant
equations in a first order in time manner. With this approach, an equation
with multiple time derivatives is split up into multiple equations with fewer

7



Chapter 1. Introduction

time derivatives. For instance, the wave equation

φtt = φrr (1.4)

is naturally a single second order in time (with two time derivatives) equa-
tion. We use the notation of φx ≡ ∂φ/∂x for partial differentiation. How-
ever, with the definitions Φ ≡ φr and Π ≡ φt, we get

Πt = Φr (1.5)

Φt = Πr. (1.6)

The equation describing the time evolution of Π, (1.5), follows from the
initial equation, while that for the time evolution of Φ, (1.6), follows from
the commutation of partial differentiation.

First order in time schemes use auxiliary variables such as Φ and Π.
They are defined so that the set of equations reduces as much as possible
to equations yielding single time derivatives of one of these auxuilaury vari-
ables. Often these definitions help to simplify the equations even further.
This might be accomplished by replacing other spatial or temporal deriva-
tives of fundamental variables with auxiliary variables or their derivatives.
It is often more straightforward to write a finite difference approximation for
a system containing only single derivatives than one with second (or higher)
derivatives.

The advantages of this first order formulation are numerous. However,
while the introduction of these auxiliary variables can greatly simplify the
equations, this gives the auxiliary variables precedence over the fundamental
variables they are replacing. In the case of the wave equation, only deriva-
tives of the function φ appear in the equation (and also most boundary
conditions), so subsidiary calculation of φ from its derivative Φ is straight-
forward and furthermore is unnecessary in solving the equation. In other
cases (such as for the set of equations considered in this investigation) the
auxiliary variables can replace the fundamental variable’s derivatives, but
not the variable itself. In this case the fundamental variable of interest, such
as φ above, becomes a derived quantity of the problem, rather than a quan-
tity calculated directly by the new system of equations. Calculation of the
fundamental variable is necessary throughout the simulation — a process
which introduces more error. We will refer to this calculation as the ‘deriva-
tion’ of the fundamental variables from the auxiliary variables to emphasize
that, in this work, this is a process involving the non-trivial integration of
an auxiliary variable.
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Second order in time methods (for equations with second time deriva-
tives) solve directly for the fundamental variable of interest. Second deriva-
tives are approximated directly. In cases where they are the highest order
derivatives, no auxiliary variables are required. The aim is to be able to
sidestep any unwanted behaviour introduced by the derivation error. This
investigation will be looking at the critical phenomena of the chosen SU(2)
Yang-Mills field using both a first order and second order numerical formula-
tion. Its goal is to investigate the strengths and weakness of the second order
method in comparison to the first order one, using the spherically symmetric
SU(2) case as a simpler test case to determine if second order methods could
be employed to investigate the behaviour of a general SU(2) Yang-Mills field.
In this case the relevant system of equations would have more fundamental
variables and would fully incorporate all spatial dimensions. Indeed, unpub-
lished calculations seem to imply the breakdown of the first order in time
method when applied to certain systems, and the second order method has
been successfully utilized in the full-dimensional non-symmetric case [15].
This work looks to replicate that success in the context of studying SU(2)
Yang-Mills fields, looking first at a simplified version of the problem.

1.4 Outline

In Chapter 2 we begin with a brief overview of the relevant theory of the
problem. The focus is on the equations that describe the time evolution of
the Yang-Mills field and the geometry of the spacetime.

Chapter 3 delves deeply into the theory of finite difference approxima-
tions. When building a numerical simulation, it is very important to be able
to introduce the proper finite difference approximations and to understand
the solution error and convergence properties that result.

Chapter 4 describes the critical phenomena found in SU(2) Yang-Mills
fields. It contains checks that the simulations are converging and behaving
as expected. The first order and second order formulations are compared
here.

Chapter 5 discusses the critical phenomena found and explores the po-
tential for the use of second order methods in other numerical simulations
of generalized versions of the SU(2) fields considered in this work.

9



Chapter 2

Theory

2.1 3+1 Formalism of General Relativity

Most numerical work in relativity decomposes the spacetime into the tempo-
ral dimension and spatial dimensions. The most frequently used formalisms
derive from the 3+1 (ADM) formalism, first formulated by Arnowitt, Deser
and Misner [2]. This views the spacetime as a family of three-dimensional
spacelike hypersurfaces. Since ordinary matter moves along timelike curves,
its trajectory will be given by a unique position along each hypersurface.
This formalism will generate the spacetime and matter field as an initial
value problem, once a particular initial hypersurface is completely charac-
terized.

2.2 Coordinates and Spherical Symmetry

In all the work that follows, we work in “geometrized” units where the
speed of light c = 1 and the gravitational constant G = 1. Then all units
are measured as a power of a certain fundamental unit; in relativity, this is
often taken as the cm. Time, for example, would be measured in cm, with
the speed of light c being the conversion factor between the more usual units
of s.

In relativity, the metric provides infinitesimal distances between neigh-
bouring points in spacetime, thus describing its geometry. The most general
time-dependent metric under spherical symmetry can be written [14] as

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2, (2.1)

with α, β, a and b functions of r and t, and

dΩ2 = dθ2 + sin2 θdϕ2, (2.2)

which is the metric on the unit 2-sphere. Here, θ and ϕ comprise the usual
azimuthal and polar angles in spherical coordinates. It is convenient to
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Chapter 2. Theory

adopt so-called polar and areal coordinates, defined by β = 0 and b = 1 [3].
This simplifies the metric to

ds2 = −α2dt2 + a2dr2 + r2dΩ2. (2.3)

This makes constant-r trajectories normal to the spacelike hypersurfaces.
Furthermore, the coordinate r provides a measure of the proper surface
area in this case, with A = 4πr2.

These coordinates in spherical symmetry make it convenient to define
the mass aspect function by

a2(r, t) =

(

1 − 2m(r, t)

r

)

−1

. (2.4)

Then m(r, t) is the gravitating mass inside a radius r at time t. In spherical
symmetry, 2m/rB = 1 at the radius of a black hole, rB. By monitoring the
quantity 2m/rB , we can determine when black hole formation is imminent,
as 2m/rB approaches 1.

2.3 Yang-Mills Fields in Spherical Symmetry

Under the imposition of spherical symmetry, the choice of metric (2.3), and
the particular assumptions regarding the SU(2) field (namely, abelian gauge
and magnetic ansatz), it happens that one can view the matter content as
a single function W (r, t), which acts analogously to a scalar field with a
self-interacting potential [7]. There is an associated Lagrangian scalar

LM = −
(

gµν∇µW∇νW

r2
+

1

2

(1 − W 2)2

r4

)

. (2.5)

Then, by the principle of minimal coupling, one can picture the system as
being given by a total Lagrangian which is the sum of the free gravitational
Lagrangian Lg and the matter Lagrangian LM ,

L = Lg + LM =
√−g (R + LM ) , (2.6)

with R the Ricci scalar, and g the determinant of the metric (2.3).
One physically important quantity is the energy density,

ρ =
1

4πa2r2

(

W 2
r +

a2

α2
W 2

t +
a2

2r2
(1 − W 2)2

)

, (2.7)

which will be used to determine conditions on W and a at r = 0 [9].
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2.4 Equations of Motion for Yang-Mills Fields

The equations giving a and α come from the general 3+1 formalism in
spherical symmetry, with the specific choice of coordinates used here. The
equation of motion for W is given by the variational principle, using the
effective Lagrangian (2.6) [6].

Solution of the equations of motion for the system given by the La-
grangian (2.6) can be reduced to solving a system of partial differential
equations for the metric coefficients and the derivatives of the Yang-Mills
potential:

Φt =
(α

a
Π

)

r
(2.8)

Πt =
(α

a
Φ

)

r
+

aα

r2
W (1 − W 2) (2.9)

ar

a
+

a2 − 1

r2
(2.10)

−1

r

(

Φ2 + Π2 +
a2

2r2
(1 − W 2)2

)

= 0

αr

α
− a2 − 1

r2
(2.11)

−1

r

(

Φ2 + Π2 − a2

2r2
(1 − W 2)2

)

= 0,

where

Φ = Wr (2.12)

Π =
a

α
Wt, (2.13)

so that

W (r, t) = W0 +

∫ r

0
Φ(x, t)dx (2.14)

describes the Yang-Mills field. These equations are the set of first order in
time (or simply first order) equations because the variables Φ and Π are
evolved in time by PDEs containing only a single time derivative.

The definitions of Φ and Π can be substituted into the first order equa-
tions to yield the second order in time equations:

( a

α
Wt

)

t
=

(α

a
Wr

)

r
+

aα

r2
W (1 − W 2) (2.15)

12
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ar

a
+

a2 − 1

r2
(2.16)

−1

r

(

W 2
r +

a2

α2
W 2

t +
a2

2r2
(1 − W 2)2

)

= 0

αr

α
− a2 − 1

r2
(2.17)

−1

r

(

W 2
r +

a2

α2
W 2

t − a2

2r2
(1 − W 2)2

)

= 0.

Equation (2.15) gives the second order in time (second time derivative)
equation for W .

2.5 Regularity, Initial and Boundary Conditions

2.5.1 Regularity Conditions

When r = 0, we are at one edge of our numerical domain. This is not a phys-
ical boundary but merely the center of the spherically symmetric system.
Regularity conditions simply demand that the system behaves normally at
the origin, namely that quantities such as the energy density are all finite.
Looking at the energy density ρ, given in (2.7), as r → 0, we place certain
restrictions on W in order to keep ρ finite. In particular the term

1

8π

(

1 − W 2

r2

)2

(2.18)

needs to remain finite as r → 0, so we have that

1 − W 2 = O(r2) as r → 0. (2.19)

Then for small r, we expand W as

W (r, t) = W0(t) + W1(t)r + W2(t)r
2 + O(r3), (2.20)

so that

W 2(r, t) = W0(t)
2 + 2W0W1r + (2W0W2 + W 2

1 )r3 + O(r3). (2.21)

Thus we immediately see from (2.19) that

W0(t) = ±1 W1(t) = 0 (2.22)

13
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and hence

W (r, t) = ±1 + O(r2) Wt(r, t) = O(r2) Wr(r, t) = O(r). (2.23)

Continuity in time requires that W (0, t) stays constant, and without loss of
generality we can choose the + sign, since the equations of motion (2.15)
– (2.17) are symmetric under the transformation W → −W . Hence, the
regularity conditions for W are the origin are

W (0, t) = 1 Wt(0, t) = 0 Wr(0, t) = 0. (2.24)

As the origin is not a special point, we require spacetime to be locally
flat there, the same as all other non-singular points. So as r → 0, we require
the metric (2.3) to approach the flat space metric in spherical coordinates,

ds2 = −dt2 + dr2 + r2dΩ2. (2.25)

This implies that a(0, t) = 1, otherwise a conical singularity develops at the
origin. In other words, the ratio of proper circumference of a circle to its
proper radius does not approach 2π as r → 0. To see this, a circle around
the origin is parametrized by φ if θ = π/2, and the proper circumference is

∫ 2π

0
r sin (π/2)dφ = 2πr. (2.26)

The proper radius, however, is
∫ r

0

(

a(0, t) + r̃a′(0, t) + O(r̃2)
)

dr̃ = a(0, t)r + O(r2). (2.27)

Now, as r → 0, their ratio approaches 2π/a(0, t), which is not the locally
flat value of 2π unless a(0, t) = 1.

2.5.2 Initial Conditions

Since we want to consider the critical phenomena occuring as a result of
gravitational collapse, we want to set up the Yang-Mills field so that it is
initially collapsing. Since we are in principle able to choose any Wt(r, 0) that
we desire, we can get essentially ingoing (propagating towards the origin)
initial data just by making an appropriate choice for Wt as a function of W
and Wr. The easiest way to achieve this is to approximate the equation of
motion for W, by ignoring the self-interaction term aαW (1 − W 2)/r2, and
also assuming flat space: a = 1 and α = 1. Then (2.15) becomes

Wtt = Wrr. (2.28)

14
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This is a Cartesian wave equation in spherical coordinates. One might expect
a spherical wave equation, such as (rφ)tt = (rφ)rr, to describe spherically
symmetric wavelike behaviour. However, this leads to φ and φr decaying
to 0 as r → ∞. Usually this leads to a falloff in energy density (or related
quantity) at large distances away from the origin. However, the energy
density ρ in this case is proportional to (1 − W 2)2, so a spherical wave
equation for W at large radii would not lead to the expected falloff of energy
density at large radii. This approximation lets us capture the wave-like
nature of W . In particular it allows us to write an exactly ingoing solution
to this approximated equation, simply W = Wo(t + r). Then we can see
that Wt = W ′

o and also Wr = W ′

o. Then we have our approximately ingoing
initial data by letting

Wt(r, 0) = Wr(r, 0). (2.29)

Alternatively, the first order formulation makes it much easier to provide
Π at the initial time, rather than Wt. In this case Π ≈ Wt is assumed, so
we can let

Π(r, 0) = Φ(r, 0) = Wr(r, 0). (2.30)

The initial profile of the system given by the initial data is also free for
determination. We would like an initial distribution that yields the type I
critical phenomena in which we are interested. Further details will be given
in §4.1.

2.5.3 Boundary Conditions

Space is infinite in extent, but our computational resources are not. In
particular, we cannot do numerical computations on a truly infinite spatial
domain. Using a uniformly spaced discretization of the domain as we use in
§3.1, we can only compute up to some finite radius. Thus, we must choose
the largest radius, rmax, that is sufficiently large so as not to significantly
affect our results relative to the infinite-domain case.

However, stopping the simulation at some finite radius does make that
radius special, and appropriate boundary conditions must be imposed to
ensure that the behaviour of the fields there is essentially the same as for
any point suitably far from the origin.

In the case of the collapse problem, we want to specify the initial matter
profile that is collapsing. We also want the matter to be able to disperse
to infinity, while at the same time having no Yang-Mills field enter into the
problem from the outer boundary radius. So, in contrast to the case of the
initial condition, we want the solution to be precisely outgoing at the outer

15
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boundary. Again, the wave-like nature of our field makes a clear decomposi-
tion of solutions into ingoing and outgoing parts. This is only approximately
true, since the self-interaction potential and gravitational field can cause the
field to backscatter at any finite radius. For large enough radius, though,
this effect is minimal. So, at the outer boundary, we assume a large enough
radius rmax so that a = α = 1 and W (1 − W 2)/r2 ≈ 0, so that we again
have Wtt = Wrr. This has a purely outgoing solution W = W1(t− r); at the
outer boundary, then, Wt = W ′

1 and Wr = −W ′

1. So the outer boundary
condition following from this approximation, is

Wt(rmax, t) + Wr(rmax, t) = 0. (2.31)

Since a and α are described by first order ODEs, they require only one
boundary condition each. The condition on a has already been treated,
giving regularity at the origin. We are in fact free to choose a boundary
condition for α. If we want the time variable t to be the time measured
by a stationary observer at infinity, we can use our choice of coordinates to
require

lim
r→∞

α(r, t) =
1

a(r, t)
. (2.32)

This follows from the well-known and unique Schwarzschild form

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)

−1

dr2 + r2dΩ2 (2.33)

for any piece of vacuum spacetime in spherical symmetry. Here the t co-
ordinate measures the time for a stationary observer at infinity. Matching
these forms as r → ∞, we immediately recover (2.32).

For the first order formulation, we note that

(Wr)tt = Wrtt = Wttr = (Wtt)r = (Wrr)r = (Wr)rr (2.34)

(Wt)tt = (Wtt)t = (Wrr)t = Wrrt = Wtrr = (Wt)rr, (2.35)

and since Φ = Wr and Π = Wt under the large r approximation, both Φ
and Π satisfy the Cartesian wave equation. So the same argument yields
outgoing boundary conditions for them:

Φt(rmax, r) + Φr(rmax, r) = 0 (2.36)

Πt(rmax, r) + Πr(rmax, r) = 0. (2.37)
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Finite Difference
Approximations

3.1 Terminology

The goal of finite difference approximation is to approximate some differen-
tial system

Lu − f = 0 (3.1)

with a corresponding finite difference system

Lhuh − fh = 0. (3.2)

Here L is some differential operator acting on the solution u and f is
some function defined on the domain D of the problem. This work considers
problems with at most one spatial and temporal dimension. We cover the
domain D with a grid G, choosing uniform spatial spacing ∆r ≡ h and
uniform temporal spacing ∆t ≡ λh between grid points, where λ is known
as the Courant number. Then fh is the function f evaluated on G, Lh

is the finite difference approximation of L on G, and uh is the discrete
solution. Since uh is a discrete solution, we introduce the notation uj ≡
uh(rj) for one-dimensional problems dependent on the spatial variable r,
and un

j ≡ uh(rj , t
n) for problems also dependent on the temporal variable

t. If the spatial domain is [rmin,rmax] and the temporal domain [0,tmax],
then rj = rmin + jh and tn = jλh are the locations of the grid points. xµ

will be used to denote the spacetime coordinates (r,t). See figure 3.1 for an
example of a uniform grid on a spatial and temporal domain and the grid
point labelling convention. Referring to a system at time level n means to
consider the system at time t = tn; this terminology appears often when
solving time-evolution PDEs. These discretizations are known collectively
as a finite difference approximation (FDA).

17



Chapter 3. Finite Difference Approximations

Figure 3.1: Portion of a uniform grid on the temporal and spatial domains.
Spacings in t and r are both uniform, but need to be equal. The value of
the jth spatial grid point is given by rj, while the value of the nth temporal
grid point is given by tn. At the grid points, we define un

j ≡ uh(rj , t
n).

18
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The approximate solution converges to the continuum solution if

lim
h→0

uh = u, (3.3)

which is the hope in writing any finite-difference approximation.
Often the solution of (3.2) is difficult or impossible to obtain algebraically,

and iterative methods must be used. In this case the approximation to the
continuum solution, ũh, leads to a residual rh = Lhũh − fh which we wish
to drive to 0 to obtain the discrete solution uh.

The truncation error τh is defined by

τh = Lhu − fh, (3.4)

and is a measure of the error produced by the discretization of L and f . The
solution error eh = u − uh is then expected to be related to the truncation
error, in terms of the level of accuracy obtained by the particular differencing
approximation.

We say that the particular FDA is mth order (accurate) if we have

lim
h→0

τh = O(hm); (3.5)

that is, m is an integer giving the leading power of h in the truncation error.

3.2 Richardson Expansion

The truncation error τh can be made mth order accurate by an appropriate
choice of the FDA. One would like to be able to use the order of accuracy
of the truncation error to make some statement about the order of accuracy
of the solution error, namely that the two errors are accurate to the same
order in the grid spacing h.

The basis for analysis of the solution error lies in assuming the existence
of a Richardson expansion for the discrete solution, namely

uh(xµ) = u(xµ) + he1(x
µ) + h2e2(x

µ) + · · · (3.6)

Now if the FDA is accurate to order m, then we have

τh = hmτm(xµ) + O(hm+1), (3.7)

and since uh satisfies (3.2), applying the operator Lh − fh to (3.6) we have

0 = hmτm(xµ)+O(hm+1)+hLhe1(x
µ)+· · ·+hmLhem(xµ)+O(hm+1). (3.8)

19



Chapter 3. Finite Difference Approximations

This assumes that L and Lh are linear, but this argument can be expanded
to the non-linear case.

Now this means that Lhei(x
µ) = 0 in order that (3.8) is satisfied for all

orders of h, for 1 ≤ i ≤ m−1. But noting that ei(x
µ) is h-independent, this

cannot be true for a general h unless we have the trivial solution ei(x
µ) = 0.

This yields the result that if the FDA is accurate to order m, then we have
that solution error eh(xµ) = uh(x) − u(xµ) is O(hm), since

uh(xµ) = u(x) + hmem(xµ) + hm+1em+1(x
µ) + · · · . (3.9)

3.3 Convergence Testing

We need some way to test that the FDA solution uh actually is converging
as h → 0. We again make use of the Richardson expansion (3.6). What is
needed is a diagnostic quantity that can be used to compare various uhi for
smaller and smaller hi. To this end we consider a base grid spacing h and
look at uh, u2h and u4h, which we expect to look like

uh(xµ) = u(xµ) + he1(x) + h2e2(x
µ) + · · ·

u2h(xµ) = u(xµ) + 2he1(x) + (2h)2e2(x
µ) + · · ·

u4h(xµ) = u(xµ) + 4he1(x) + (4h)2e2(x
µ) + · · ·

in the limit that h → 0. Then we can look at the differences

u4h(xµ) − u2h(xµ) = 2he1(x
µ) + 12h2e2(x

µ) + · · · (3.10)

+ (4n − 2n)hnen(xµ) + · · ·
u2h(xµ) − uh(xµ) = he1(x

µ) + 3h2e2(x
µ) + · · · (3.11)

+ (2n − 1)hnen(xµ) + · · ·

If our FDA is mth order accurate, then we have e1(x
µ) = · · · = em−1(x

µ) = 0,
so the quantity

Ch(xµ) =
u4h(xµ) − u2h(xµ)

u2h(xµ) − uh(xµ)
=

2m + (4m+1
−2m+1)hm+1em+1(xµ)
(2m

−1)hmem(xµ) + · · ·

1 + (2m+1
−1)hm+1em+1(xµ)

(2m
−1)hmem(xµ) + · · ·

=
2m + h (4m+1

−2m+1)em+1(xµ)
(2m

−1)em(xµ) + · · ·

1 + h (2m+1
−1)em+1(xµ)

(2m
−1)em(xµ) + · · ·

(3.12)
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after cancelling the common factor of (2m − 1)hmem(xµ). From this, we can
easily see that

lim
h→0

Ch(xµ) = 2m. (3.13)

If this behaviour is seen in uh, then it is strong indication that uh is con-
verging as h → 0, and this furthermore can give the order of accuracy of our
FDA scheme. It is a strong indication that uh indeed has an expansion in
h, with the lowest order error term being of order m.

3.3.1 Practical Convergence Testing

In practice, it may be more useful to consider the function

u2kh(xµ) − ukh(xµ)

(2m − 1)kmhm
= em(xµ) +

2m+1 − 1

2m − 1
khem+1(x

µ) + O(h2), (3.14)

and compare the results for k = 1, 2, . . . ,N ,N different grid spacings. These
should all be fairly close to one another, being em(xµ) up to O(h) terms,
and the similarity should improve as the lowest grid spacing h → 0.

3.4 Discretizations

A finite difference operator, Lh, is a weighted sum of the discretized solution
uh. In the one-dimensional single function case we may write this as

Lhui = . . . + a−1ui−1 + a0ui + a1ui+1 + . . . (3.15)

with an constants depending on Lh. If we assume a Taylor expansion of
u about xi, then after replacing the un in (3.15) by the expansion of u
evaluated at xn, and rearranging terms, we get

Lui = u (. . . + a−1 + a0 + a1 + . . .)

+ u′h (. . . − 2a−2 − a−1 + a1 + 2a2 + . . .)

+ u′′
h2

2

(

. . . + 22a−2 + a−1 + a1 + 22a2 + . . .
)

+ . . .

+ u(n) h
n

n!
(. . . + (−2)na−2 + (−1)na−1 + a1 + 2na2 + . . .)

+ . . . (3.16)

From this, one may make appropriate choices of the an in order to obtain
the kth order derivative by letting the sum of coefficients in front of u′, ... ,
u(k−1) to be 0, and the sum of coefficients in front of u(k) to be k!/hk.
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Function CentrePoint Discretization Order

u′ xj
uj+1 − uj−1

2h
h2 (3.17)

u′ xj+ 1

2

uj+1 − uj

h
h2 (3.18)

u′ xj
3uj − 4uj−1 + uj−2

2h
h2 (3.19)

Table 3.1: Table of Commonly Used Discretizations

In general it is difficult to accomplish this unless all of the coefficients an

are of the same order in h. In the case of the kth derivative, this is O(h−k).
Then we can get the kth derivative to O(hm) by requiring the coefficients in

front of u(k+1), . . . , u(k+m−1) to be 0. Then Lui = u
(k)
i + O(hm).

3.5 Constructing Discretized Differential

Operators

Most differential operators involve some linear combination of multiple deriva-
tives of certain quantities, which may themselves involve derivatives. It is
thus possible most of the time to simply ‘build up’ the discretized differential
operator from discretizations of the derivative at certain points.

The first derivative requires only two pieces of information, and has two
generally useful discretizations, which differ in their centre point, the point
about which we perform the Taylor expansion. Table 3.1 lists some of the
more commonly used discretizations.

For example, we will confirm that (uj+1 − uj)/h is an O(h2) accurate
discretization for u′

j+ 1

2

. Writing out each term as a Taylor expansion from

the centre point of the scheme, we have

uj+1 − uj

h
=

uj+ 1

2

+ h
2u′

j+ 1

2

+
(

h
2

)2
u′′

j+ 1

2

+ O(h3)

h

−
uj+ 1

2

− h
2u′

j+ 1

2

+
(

h
2

)2
u′′

j+ 1

2

+ O(h3)

h

=
2
(

h
2

)

u′

j+ 1

2

+ O(h3)

h
= u′

j+ 1

2

+ O(h2). (3.20)
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Since the discretization (uj+1 − uj−1)/2h is the same as the above un-
der the linear transformation j + 1

2 → j, h → 2h, we see it is an O(h2)
discretization for u′

j.
Taking derivatives at boundaries is a more difficult task, since one only

has access to grid points on one side of the current point. In this case a
backwards O(h2) approximation for the derivative is given by

3uj − 4uj−1 + uj−2

2h

=
3uj − 4

(

uj − hu′

j + h2

2 u′′

j + O(h3)
)

+
(

uj − 2hu′

j + (2h)2

2 u′′

j + O(h3)
)

2h

=
(3 − 4 + 1)uj + (4 − 2)hu′

j − (4 − 4)h2

2 u′′(j) + O(h3)

2h
= u′

j + O(h2). (3.21)

In some cases an O(h) backwards derivative suffices, in which case we
may use only the neighbouring point, giving

uj − uj−1

h
=

uj −
(

uj − hu′

j + O(h2)
)

h
= u′

j + O(h). (3.22)

3.5.1 Discretizations Not Centred At Grid Points

Consider the linear differential system Lhuh − fh = 0. Suppose that we
have a discretization of Lh that is centred at the spatial point xj+ 1

2

=

(xj + xj+1)/2, and which is furthermore an O(h2) discretization. If in this
discretization the value uj+ 1

2

must be evaluated, then we only actually need

an O(h2) approximation to uj+ 1

2

. Since the system is linear, this O(h2) term

will be acted on by Lh, still being second-order in h, and add to the O(h2)
terms arising from the approximation of L by Lh.

In our calculations most half-centred discretizations of the differential
Lhuh do not involve the value uj+ 1

2

; instead, uj+ 1

2

appears only in the

evaluation of f at the point where the differential system is being evaluated,
namely xj+ 1

2

. In this case it is even clearer that the whole system is only

affected by an error of O(h2), since

f(uj+ 1

2

+ euh2, xj+ 1

2

) = f(uj+ 1

2

, xj+ 1

2

) + h2eufu(uj+ 1

2

, xj+ 1

2

)

+
(h2eu)2

2!
fuu(uj+ 1

2

, xj+ 1

2

) + · · · . (3.23)
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To this end the average value of u suffices, since

uj+1 + uj

2
=

1

2

((

uj+ 1

2

+
h

2
u′

j+ 1

2

+ O(h2)

)

+

(

uj+ 1

2

− h

2
u′

j+ 1

2

+ O(h2)

))

= uj+ 1

2

+ O(h2). (3.24)

Now consider a differential system with two functions, u and v, that need
evaluation at a half-step and assume that we need some O(h2) approximation
of

g
(

uj+ 1

2

, vj+ 1

2

, xj+ 1

2

)

. (3.25)

It turns out that the average of g suffices to obtain an O(h2) approximation:

1

2
(g(uj+1, vj+1, xj+1) + g(uj , vj , xj))

=
1

2

((

g(uj+ 1

2

, vj+ 1

2

, xj+ 1

2

) + (guu′ + gvv
′ + gx)

∣

∣

x
j+ 1

2

h

2
+ O(h2)

)

+

(

g(uj+ 1

2

, vj+ 1

2

, xj+ 1

2

) − (guu′ + gvv
′ + gx)

∣

∣

x
j+ 1

2

h

2
+ O(h2)

))

= g
(

uj+ 1

2

, vj+ 1

2

)

+ O(h2). (3.26)

Additionally, one may need an initial guess for the value of a function at
some grid point where earlier function values are known, in order to start
some iterative scheme. In this case the same reasoning may be applied to
show that the linear extrapolation gives an O(h2) approximation:

2uj − uj−1 = 2
(

uj+1 − hu′

j+1 + O(h2)
)

−
(

uj+1 − 2hu′

j+1 + O(h2)
)

= uj+1 + O(h2). (3.27)

3.5.2 Numerical Integration of Ordinary Differential
Equations

Consider the situation of a differential system that reduces to a first-order
ODE for one function u ≡ u(x),

u′ = f(u, x), (3.28)

as is the case for a and α as seen in §2.4. This can be discretized as

uj+1 − uj

h
= f(uj+ 1

2

, xj+ 1

2

), (3.29)
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which retains O(h2) accuracy upon using the average value for uj+ 1

2

. Then

the approximate discrete system becomes

uj+1 − uj

h
= f

(

uj+1 + uj

2
, xj+ 1

2

)

= f(uj, uj+1, xj+ 1

2

), (3.30)

which is simply a (possibly nonlinear) algebraic equation for uj+1 in terms
of uj, or vice-versa. From this, one may obtain uj+1 from uj, or vice-versa,
thus allowing forwards or backwards integration of the ODE.

3.5.3 Discretizing Multiple Derivatives

Discretizing multiple derivatives can be accomplished by “nesting” the dis-
cretizations of lower-order derivatives. Consider the following O(h2) approx-
imation for v′: (vj+ 1

2

− vj− 1

2

)/h. This is merely the discretization introduced

in (3.18), shifted by half a grid point. Not knowing v in between grid points,
we would need to use averages to make a further O(h2) approximation, which
would yield the old discretization for v′ given in (3.17).

However, suppose we instead wanted the second derivative of the func-
tion u, so letting v = u′ gets v′ = u′′. In this case we can make use of
the discretization for u′ at the half grid points, so that we are lead to the
discretization

vj+ 1

2

− vj− 1

2

h
=

(uj+1 − uj) − (uj − uj−1)

h2
=

uj+1 − 2uj + uj−1

h2
. (3.31)

This leads us to an O(h2) discretization of (gu′)′ for some function g,
namely

(gj+1 + gj)(uj+1 − uj) − (gj + gj−1)(uj − uj−1)

2h2
. (3.32)

Now, we have the following expansions:

gj + gj+1 = 2gj + hg′j +
h2

2
g′′j +

h3

6
g′′′j + O(h4) (3.33)

gj + gj−1 = 2gj − hg′j +
h2

2
g′′j − h3

6
g′′′j + O(h4) (3.34)

−uj + uj+1 = hu′

j +
h2

2
u′′

j +
h3

6
u′′′

j + O(h4) (3.35)

uj − uj−1 = hu′

j −
h2

2
u′′

j +
h3

6
u′′′

j + O(h4). (3.36)
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We then have

(gj + gj+1)(uj+1 − uj) = h(2gjuj) + h2(gju
′′

j + g′ju
′

j)

+ h3

(

1

2
g′′j uj +

1

2
g′ju

′′

j +
1

3
gju

′′′

j

)

+ O(h4) (3.37)

(gj + gj−1)(uj − uj−1) = h(2gjuj) + h2(−gju
′′

j − g′ju
′

j)

+ h3

(

1

2
g′′j uj +

1

2
g′ju

′′

j +
1

3
gju

′′′

j

)

+ O(h4). (3.38)

Thus, we have that our discretization is

(gj+1 + gj)(uj+1 − uj) − (gj + gj−1)(uj − uj−1)

2h2

=
h(0) + h2(2gju

′′

j + 2g′ju
′

j) + h3(0) + O(h4)

2h2

= gju
′′

j + g′ju
′

j + O(h2) = (gju
′

j)
′

j + O(h2) (3.39)

by the product rule.

3.6 Stability and the Courant Number

For a finite difference scheme to be stable, it must not contain any modes
that grow without bound when the continuum solution itself does not have
this behaviour. One such criterion for the difference schemes used in this
work is the condition that the Courant number

λ ≤ 1. (3.40)

This is known as the CFL condition, from Courant, Friedrichs and Lewy [10].
Since we are working with units with c = 1, information may propagate
at speed 1. This condition roughly states that the numerical domain of
dependence must contain the physical domain of dependence. See Figure
3.2 for an illustration.

3.7 Solving Discretized Systems

In general, there are two types of equations that need to be solved in or-
der to obtain the time evolution of the systems of partial differential equa-
tions considered here. The first are evolution equations, ones involving time
derivatives of the functions involved. The second are constraint equations,

26



Chapter 3. Finite Difference Approximations

Figure 3.2: Light-cones (domains of spacetime causal dependence) for the
physical problem (with speed of propagation 1) and the numerical problem
(with speed of propagation λ, since neighbouring grid points are used at
the previous time level). Values of λ > 1 yield grid points that do not
depend numerically on grid points that they would physically depend on.
This fails to capture all of the physics, and leads to instabilities. Values of
λ < 1 always contain the physical light-cone within the numerical one, so
the ‘information’ from a grid point will always reach the grid points it is
physically able to. Equally spaced grid points are shown for reference.
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which are purely ordinary differential equations, in the radial coordinate r,
that must be satisfied at all times.

By using a discretized approximation to an evolution equation, one ends
up with a system of algebraic equations. We look to solve for the values
of the functions at time level n + 1 based on values already determined at
time level n (and n − 1, depending on the nature of the scheme). This is
accomplished through the use of pointwise Newton-Gauss-Seidel relaxation.
For any function u given by an evolution equation, its value un+1

j is given
implicitly in the discretized version of the evolution equation applied at the
position rj . So for each position point rj we can associate to each unknowns
at the advanced time level n + 1 (such as un+1

j ) the equation (likely implic-
itly) defining it. Newton-Gauss-Seidel relaxation visits all the grid points
at time level n + 1 in some prescribed order, at each point updating the
value of un+1

j using the associated equation; once all positions are updated,
this process (a ‘pass-through’) is repeated until there is sufficiently small
change from the update. The value at a grid point is updated by solving
the associated discretized evolution equation using Newton’s method. The
Gauss-Seidel method differs from others in that function values from the
current update are used to update other positions that have not yet been
visited in the current pass-through. Rapid Numerical Prototyping Language
(RNPL) was used to implement this technique automatically, given the rel-
evant discretized evolution equations and boundary conditions.

In this way, the discretized equations can be satisfied to yield function
values at the advanced time levels for the functions given by evolution equa-
tions. Then those functions that are determined by the constraint equations
can be determined through usual methods of solving ordinary differential
equations, which in this work will consist of integration using finite differ-
ence techniques as described previously.

In some cases, a function that is determined by a constraint equation may
appear evaluated at the advanced time level. In this case, the evolution and
constraint equations become coupled, and then must be repeatedly solved
iteratively until all are satisfied simultaneously. This iterative technique is
also used in the case where the constraint equations cannot be decoupled.
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3.8 Discretization of the First Order Equations

of Motion

We have the first order equations of motion

Φt =
(α

a
Π

)

r
(3.41)

Πt =
(α

a
Φ

)

r
+

aα

r2
W (1 − W 2) (3.42)

ar

a
+

a2 − 1

r2
(3.43)

−1

r

(

Φ2 + Π2 +
a2

2r2
(1 − W 2)2

)

= 0

αr

α
− a2 − 1

r2
(3.44)

−1

r

(

Φ2 + Π2 − a2

2r2
(1 − W 2)2

)

= 0,

where

Φ = Wr, (3.45)

Π =
a

α
Wt, (3.46)

so that

W (r, t) = W0 +

∫ r

0
Φ(x, t)dx (3.47)

describes the Yang-Mills field variable W .
We introduce a discretization of these equations by centering the scheme

at time level n + 1
2 . Then (3.41) becomes

Φn+1
j − Φn

j

∆t
=

(

α
a
Π

)n+ 1

2

j+1
−

(

α
a
Π

)n+ 1

2

j−1

2∆r
(3.48)

for points rj in the interior of the grid, and (3.42) similarly becomes

Πn+1
j − Πn

j

∆t
=

(

α
a
Φ

)n+ 1

2

j+1
−

(

α
a
Φ

)n+ 1

2

j−1

2∆r
+

(αa

r2
W (1 − W 2)

)n+ 1

2

j
. (3.49)
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At this point, we need to provide values for the half time level. Since
the average value of a function over the two time levels gives an O(h2)
approximation to this, we have the discretizations

Φn+1
j − Φn

j

∆t
=

(

α
a
Π

)n+1

j+1
+

(

α
a
Π

)n

j+1
−

(

α
a
Π

)n+1

j−1
−

(

α
a
Π

)n

j−1

4∆r
(3.50)

Πn+1
j − Πn

j

∆t
=

(

α
a
Φ

)n+1

j+1
+

(

α
a
Φ

)n

j+1
−

(

α
a
Φ

)n+1

j−1
−

(

α
a
Φ

)n

j−1

4∆r

+

(

(

αa
r2 W (1 − W 2)

)n+1

j
+

(

αa
r2 W (1 − W 2)

)n

j

)

2
. (3.51)

These are O(h2) approximations to (3.41) and (3.42), evaluated at the

point (rj , t
n+ 1

2 ), providing discrete evolution equations for Φ and Π.
After (3.50) and (3.51), along with the appropriate boundary conditions,

are solved to produce Φn+1 and Πn+1, then (3.47), (3.43) and (3.44) are
ODEs that can be solved by the numerical integration method described in
§3.5.2. This yields W,a and α at time level n + 1. The evolution for this
time step is then complete.

3.8.1 Boundary and Regularity Conditions

We need to apply the boundary and regularity conditions

Φt(rmax) + Φr(rmax) = 0 Πt(rmax) + Πr(rmax) = 0 (3.52)

W (0) = 1 Φ(0) = 0 Π(0) = 0 (3.53)

a(0) = 1 α(rmax) = 1
a(rmax) (3.54)

with the appropriate discretizations on the grid. Now, (3.54) simply gives
initial conditions for the numerical integration of the constraint ODEs, while
(3.53) gives the constant values of W , Φ, and Π at the first grid point. (3.52)
can be discretized to O(h2) at the half-time level to obtain

3Φn+1
N − 4Φn+1

N−1 + Φn+1
N−2 + 3Φn

N − 4Φn
N−1 + Φn

N−2

4∆r
=

Φn+1
N − Φn

N

∆t
(3.55)

3Πn+1
N − 4Πn+1

N−1 + Πn+1
N−2 + 3Πn

N − 4Πn
N−1 + Πn

N−2

4∆r
=

Πn+1
N − Πn

N

∆t
(3.56)

at the last grid point, rN , using time averaged difference equations to yield
O(h2) accuracy.
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3.9 Discretization of the Second Order Equations

of Motion

We have the second order equations of motion

( a

α
Wt

)

t
=

(α

a
Wr

)

r
+

aα

r2
W (1 − W 2) (3.57)

ar

a
+

a2 − 1

r2
(3.58)

−1

r

(

W 2
r +

a2

α2
W 2

t +
a2

2r2
(1 − W 2)2

)

= 0

αr

α
− a2 − 1

r2
(3.59)

−1

r

(

W 2
r +

a2

α2
W 2

t − a2

2r2
(1 − W 2)2

)

= 0,

which only involve W directly. The constraint equations for a and α are
solved using numerical integration as before. In this case both equations
are now coupled, so they are solved iteratively, first for a and then for α. A
first guess for α is given by linear extrapolation in time, αn+1

j = 2αn
j −αn−1

j .
What is more difficult is the fact that Wt is unknown — only W is known —
so we need an O(h2) discretization for Wt in order to keep the discretization
of the whole equation O(h2) accurate.

We choose to evaluate the constraint equations at time level n + 1
2 . As

before, we use the time averages of discretizations at t = tn and t = tn+1

to provide O(h2) accuracy at t = tn+ 1

2 . Then the discretization of (3.58)
becomes

0 =
an+1

j+1 − an+1
j + an

j+1 − an
j

2∆t

+
1

2

[

a3 − a

2r
− a

r

(

W 2
r +

a2

α2
W 2

t +
a2

2r2
(1 − W 2)2

)]n+1

j

+
1

2

[

a3 − a

2r
− a

r

(

W 2
r +

a2

α2
W 2

t +
a2

2r2
(1 − W 2)2

)]n

j

, (3.60)
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while the discretization of (3.59) becomes

0 =
αn+1

j+1 − αn+1
j + αn

j+1 − αn
j

2∆t

+
1

2

[

α − αa2

2r
− α

r

(

W 2
r +

a2

α2
W 2

t − a2

2r2
(1 − W 2)2

)]n+1

j

+
1

2

[

α − αa2

2r
− α

r

(

W 2
r +

a2

α2
W 2

t − a2

2r2
(1 − W 2)2

)]n

j

. (3.61)

Then (3.60) gives an+1
j+1 in terms of an+1

j , and other known values at time

levels n and n + 1, allowing numerical integration to obtain an+1. Equation
(3.61) similarly allows for numerical integration to obtain αn+1.

The differencing of (3.57) is fundamentally distinct from previous differ-
encings, due to the existence of second spatial and time derivatives. Such
discretizations require three pieces of information; hence, we will have a
three-level scheme. The discretization of (3.57) will involve three separate
time levels. We will make use of the discretization given by (3.32). In
particular we have the final discretization of the equation of motion as

(

(

a
α

)n+1

j
+

(

a
α

)n

j

)(

W n+1
j − W n

j

)

−
(

(

a
α

)n

j
+

(

a
α

)n−1

j

)(

W n
j − W n−1

j

)

2∆t2

=

(

(

a
α

)n

j+1
+

(

a
α

)n

j

) (

W n
j+1 − W n

j

)

−
(

(

a
α

)n

j
+

(

a
α

)n

j−1

)(

W n
j − W n

j−1

)

2∆t2

+
αn

j an
j

rj
W n

j

(

1 − (W n
j )2

)

. (3.62)

3.9.1 Initial Conditions

With a three-level scheme, it is not sufficient merely to provide the value
of W , a and α at the initial time. One must provide them at a neighbour-
ing time (usually at the prior time step). Since a and α are governed by
constraint equations at each time, this reduces to specifying W at adjacent
time level, which is equivalent to specifying the time derivative Wt as well
as W .

This must be done so that W is obtained to O(h3) at the neighbouring
time level. To get O(h2) accuracy at fixed finite tf , we must have per-time-
step accuracy of O(h3) since there are O(h−1) time steps needed. This can
be achieved through the use of the Taylor expansion of W about t = 0,
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namely

W (r,−∆t) = W (r, 0) − ∆tWt(r, 0) +
∆t2

2
Wtt(r, 0) + O(h3). (3.63)

Now, with initial data giving W (r, 0) = Wo(r) and Wt(0, r) = Vo(r), a and α
can be determined as usual at the initial time. Then, Wtt can be determined
from the equation of motion for W , namely that

Wtt(r, 0) =
α

a

[

(α

a
W ′

o

)

′

+
α

a
Wo(1 − W 2

o ) − Vo

( a

α

)

t

]

. (3.64)

There is a distinct need for an iterative process here: the time derivative
of a/α is required to compute Wtt, but there is no analytical expression for
it. In this case, we need instead to use an approximation for it — an O(h)
approximation suffices, since to know W to O(h3) we only need to know Wtt

to O(h).

So, approximating ((a/α)t)
0
j

with
[

(a/α)0j − (a/α)−1
j

]

/∆t, we see that

we need to know a and α at time level −1 to O(h2). In turn, to know these,
we need not only W−1, but also W−1

t to O(h2) in order to derive a and α to
O(h2). We can approximate the final unknown quantity, W−1

t by its Taylor
expansion, Wt(r,−∆t) = Vo(r) − ∆tWtt(r, 0) + O(∆t2).

Solving these equations iteratively yields Wtt(r, 0) to O(h), W−1
t to

O(h2), and (a/α)0t to O(h), all of which yield W−1 to O(h3).

3.9.2 Boundary and Regularity Conditions

The boundary and regularity conditions are of the exact same form as for
the first-order equations:

Wt(rmax) + Wr(rmax) = 0 W (0) = 1 (3.65)

a(0) = 1 α(rmax) = 1
a(rmax) (3.66)

and are implemented and discretized in the exact same manner (see §3.8.1).
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Results

In this chapter we explore the results of the numerical simulations of gravi-
tational critical phenomena using SU(2) fields. We first consider the tradi-
tional first order scheme. We will begin by showing evidence of type I critical
phenomena, and follow it with convergence tests. Then a comparison with
the second order scheme will be made; in general, the schemes agree quite
well with a reasonable number of grid points.

4.1 Type I Critical Phenomena In SU(2)
Yang-Mills Fields Using First Order Methods

For the initial data Wo(r) = W (r, 0), we use a ‘kink’ form similar in form to
a static solution discovered by Bartnik and McKinnon [4]. It has the form

Wo(r) =
1 + r2

o−r2

δ2

√

(

1 + r2
o−r2

δ2

)2
+ 4r2

, (4.1)

with parameters ro and δ. ro controls the center of the kink, where Wo = 0.
δ controls the width of the kink, how quickly it transitions from Wo near 1
to −1. Figure 4.1 shows the initial data Wo(r) for ro = 15 and δ = 2.0.

Fixing r0 = 15, we have a certain family of initial data that is parametrized
by δ. In this case δ−1 is the parameter that scales with the gravitational
self-interaction of the system. Larger values of δ then correspond to the
system dispersing to infinity for large times, ending up with flat space as
the end state of evolution. Smaller values of δ will cause black hole creation.

See Figure 4.2 for a plot of the W in the subcritical case: the system
initially collapses inwards, but scatters through the origin, then disperses to
infinity. Here, δ = 2.0. Figure 4.3 shows a plot of the total mass contained
in a given radius for the same case. Figure 4.4 shows W for the supercritical
case, where a black hole will be formed, with δ = 1.5. The quantity 2m/r
rapidly asymptotes to 1, indicating imminent black hole formation. This
can be seen in figure 4.5. What is important to note here is that 2m/r is
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Figure 4.1: Initial profile for the Yang-Mills field variable W as a function
of ln(radius). Initial data for the field “velocity” is given by Π ≈ Wt = Wr,
as an approximation to precisely ingoing (towards the origin) initial motion.
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asymptoting to 1 at some finite radius, rB . So we immediately have a mass
for the black hole formed, mB = rB/2, which we see is finite.

Finding the critical value of δ for this choice of ro can be accomplished
using a bisection search. One starts with a range of δ, [δ1, δ2], where a black
hole is formed for δ = δ1, and flat space is reached for δ = δ2. One then
increases δ1 or descreases δ2 to their average value, (δ1 + δ2)/2, whichever
keeps the same end state of the system for both δ1 and δ2. In this way,
one can make the interval [δ1, δ2] arbitrarily small, to the level of floating-
point round-off error, thus obtaining a range for the critical value δ∗, since
δ1 < δ∗ < δ2. We perform this bisection search until δ∗ is found to 16
significant figures, the level of floating-point precision.

Then with δ = 1.6566278489408265 ∼= δ∗, we have a solution that is
quite close to the critical solution. Further refinement of δ will not increase
the precision of the critical parameter value due to the floating-point round-
off error. Note that δ is known to much greater precision than it is likely
to be accurate, in order to get as close as possible to the critical solution
for this discretized problem at this specific grid spacing. The critical value
of δ for the continuous problem will likely only be approximated to a few
significant figures by this nonetheless finely tuned value for δ. Nevertheless,
with this value, Figure 4.7 shows the evolution of W for this extremely-close-
to-critical solution. Note that the solution settles in at a static solution and
remains there for quite some time, illustrating that the critical solution truly
is static. Figure 4.6 shows a comparison of the critical solution with a static
solution discovered by Bartnik and McKinnon. The two agree quite well,
and only differ significantly at large radii.

Figure 4.8 shows the quantity 2m/r for a slightly supercritical value of
δ = 1.6566278489408260. In this case, we have deliberately chosen a value
of δ close to the critical value to show the creation of finite mass black holes
and the discontinuous change in the end state of evolution on either side of
the critical value of the parameter.

The last piece of critical behaviour is seen in the lifetime scaling. The
solution lifetime is calculated by tracking where the variable W crosses 0.
The slope of this line, σ, is the family-independent parameter of interest. For
the family of initial data with ro = 15, σ = 4.34294. Setting δ = 1.66 and
varying ro yields another family of initial data. This has critical parameter
value r∗o = 19.541136432698869 and a value of σ = 4.16923. Figure 4.9
shows the solution lifetime as a function of ln |p − p∗|, for the two families
of initial data discussed above. Prior work on this same problem yielded a
similar scaling parameter λ = 0.5520. Here, λ is the equivalent of σ, except

36



Chapter 4. Results

t =   0 t =   8 t =  16

t =  24 t =  32 t =  40

t =  48

W
(r

)

t =  56 t =  64

t =  72 t =  80 t =  88

-1
-0.5

 0
 0.5

 1

-4 -2  0  2  4  6

t =  96 t = 104

ln(r)

t = 112

Figure 4.2: Evolution of the Yang-Mills field variable W over time for the
subcritical case. Initially the profile is ingoing, but at smaller radii scatters
through the origin, eventually dispersing to infinity. Flat space is left behind
as the final state of the system.
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Figure 4.3: Evolution of the gravitating mass of the Yang-Mills field over
time for the subcritical case. Initially the profile is ingoing, but at smaller
radii scatters through the origin, eventually dispersing to infinity. Flat space
is left behind as the final state of the system. Note that mass is conserved
at the outer boundary until the field propagates off of the computational
domain.
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Figure 4.4: Evolution of the Yang-Mills field variable W over time for the
supercritical case. Note the irregularities appearing in the solution at later
times; this is characteristic of the formation of a black hole in the chosen
polar-areal coordinates.
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Figure 4.5: Evolution of the function 2m/r for the gravitating mass m of
the Yang-Mills field in the supercritical case. The rapid asymptote to 1 is
indicative of black hole formation. This occurence at a finite radius shows
the finite mass of the black hole created. As this solution is not close to the
critical solution, this is to be expected.
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Figure 4.6: Comparison of W for the near-critical case, with |p − p∗|/p∗ ≈
10−16, with the static solution discovered by Bartnik and McKinnon. The
two agree best near the origin and increasingly differ at larger radii. This is
likely caused by the fact that W is derived by integrating Φ = Wt outwards
from the origin in the first order method. The outer boundary condition is
also likely to be responsible.
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Figure 4.7: Evolution of the Yang-Mills field variable W over time for the
near-critical case, with |p − p∗|/p∗ ≈ 10−16. Initially the profile is ingoing,
but at intermediate times settles down at a nontrivial static solution. Even-
tually the field disperses to infinity due to lack of exact resolution for the
critical value of the relevant initial data parameter.
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Figure 4.8: Evolution of the function 2m/r for the gravitating mass m of
the Yang-Mills field in the slightly supercritical case. The asymptote to 1 is
indicative of black hole formation. This occurence at a finite radius shows
the minimum mass of black hole created and the discontinuous change in
the end state of the system as the initial data family parameter crosses its
critical value. 43
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that lifetime was instead measured in central proper time,

T ≡
∫ t

0
α(0, t′)dt′ (4.2)

However, during the static phase of the evolution, α(0, t) = αo is constant.
Thus T = αot, so T ∼ λ ln |p − p∗| means that t ∼ ln |p − p∗|λ/ao. Thus
λ ≈ σαo. Hence, with αo = 0.126525 for the first family of initial data, we
obtain a value of λ = 0.54949. With αo = 0.126526 for the second family of
initial data, we obtain a value of λ = 0.52752. The first is in good agreement
with the previously determined value of λ = 0.5520. However, the value of λ
obtained for the second family of initial data deviates a small but significant
amount; this could be due to a lack of resolution of the critical value of ro,
which could change p− p∗ enough to account for this discrepancy. All three
of these λ values are at least close, if off by a few percent from one another.
This is a strong indication that the scaling exponent λ truly is independent
of the family of initial data chosen.

4.2 First Order Methods Convergence Testing

We need to ensure that the solution to the finite difference approximations
is a good representation of the solution to the actual continuum problem.
The first check of this is to ensure that the continuum solutions converge
as the grid spacing h → 0, and that they converge as quickly as expected.
Since we are using O(h2) discretizations, the discrete solution should have
O(h2) error. To confirm this, we check the quantity Ch(xµ), as defined in
(3.12), to compare the discrete solutions as the grid size decreases. Figure
4.10 shows the L2 norm on the radial domain interval [0,rmax = 64] of Ch

over time. At the smallest grid spacing there are N = 8193 grid points
covering the spatial domain, resulting in a grid spacing of h = 0.0078125.
Also a Courant number of λ = 0.5 was chosen. This shows that as the basic
grid spacing h0 → 0, Ch approaches 4 = 22 for our O(h2) method. This
quantity is closest to 4 until the ingoing pulse scatters off of itself and starts
dispersing. At later times Ch is higher, likely due to effects at the origin.

Convergence does not necessarily imply convergence to the solution of
the continuum problem. Without knowing the continuum solution, this
cannot be proven directly. However, we can be reasonably certain that
the discrete solutions are converging to the correct solution by building up
evidence that shows consistency between the actual convergence and what
the correct convergence would look like.
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Figure 4.9: Lifetime of the critical ‘kink’ solution as a function of the ini-
tial data parameter p. The exponential dependence of the lifetime on the
parameter difference p − p∗ is shown with the line of best fit. The slopes of
the best-fit lines are nearly equal; this is an example of the universality of
the scaling exponent across different families of initial data.
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The most accessible piece of evidence is rooted in the physics of the prob-
lem — conservation laws. If a finite difference approximation is implemented
incorrectly, or if its solution somehow does not converge to the continuum
problem, it is highly unlikely that these solutions would obey the physical
conservation laws. For this problem, the total mass is conserved, and also
is easily calculated, making mass conservation an excellent check for proper
convergence. Figure 4.11 shows the mass at the outer boundary, for the case
of the critical solution, as a function of time. These curves clearly show that
although the computed total mass fluctuates as a function of time for any
finite grid spacing h, the fluctuations become smaller as h → 0, and indeed
appear to be O(h2) as expected.
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Figure 4.11: The function 2m/rmax at the outer boundary. For the initially
ingoing data the mass collapses inwards along with the field, resulting in a
nearly constant mass at the outer boundary until the field disperses, along
with the mass, off of the computational domain. As the grid spacing h
decreases, the outer boundary mass converges to a constant value for this
initial period of time.
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4.3 Second Order Methods

As discussed previously, second order methods provide a different discretiza-
tion for the same problem. Although slightly more difficult to implement
than first order methods, they are just as effective in giving the evolution
for W . One way in which they do differ from the first order methods is in
how we create approximately ingoing initial data, as detailed in §2.5.2.

This difference causes a change in the critical parameter values. With
ro = 15 as in the first order case, the critical value for the second order
method is δ = 1.75285780266774. Here, we have N = 1029 grid points cover-
ing the spatial domain [0,64], resulting in a grid spacing of h = 0.062256809.
Also, a Courant number of λ = 0.25 was chosen.

The difference in initialization also causes qualitative changes in the
behaviour of the solution as it collapses and disperses. However, it is an
excellent way to illustrate the universality of the critical solution, which,
to the level of numerical error, is the same for both methods. Figure 4.12
shows the evolution for the critical solutions for both first and second order
methods. Note that both solutions settle down to the same static solu-
tion, though the initial data for the second order method causes additional
wave-like behaviour in the solution at larger radii. Also, due to different
resolutions obtained for the critical parameters, the second order method
results in a near critical evolution whose lifetime is shorter than for the first
order case.
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Figure 4.12: Evolution of the Yang-Mills field variable W over time for the
critical solution. Solutions for both the first order method and second order
method are shown, each with different choices for ingoing initial data. While
the detailed evolution is different in the two cases, both solutions settle down
to the same static critical solution, showing its universality.

49



Chapter 5

Conclusion

We used the SU(2) Yang-Mills field as a representative of non-abelian gauge
theories in order to study their dynamics when coupled to the gravitational
field as described by the theory of general relativity. An abelian gauge,
magnetic ansatz field was assumed, along with spherical symmetry, to sim-
plify calculations. However, the behaviour of the field is still quite complex.
We confirm the existence of type I critical behaviour for this field, finding
minimum mass black hole formation, static critical solutions and scaling of
near-critical solution lifetimes.

Finite difference approximations were used to solve the partial differen-
tial equations governing the model. Two different approaches to making
these difference approximations are compared. One was the use of a first or-
der in time method. Here, auxiliary variables were defined in such a way that
the equations of motion reduced to a larger set of equations, each explicitly
an equation for a time derivative of an auxiliary variable. The simplification
this offers the equations, as well as the ease of creating a finite difference
scheme for single derivatives, has made this the traditional choice for numer-
ical work in relativity. Also, all time derivatives in the equations are given
explicitly, easing the creation of a finite difference system that evolves the
system in time. The other approach is to use second order in time method.
In this method, no auxiliary variables are defined, and for the case consid-
ered it was necessary to discretize an equation with second derivatives, both
spatial and temporal. Constructing the finite difference scheme is slightly
more involved but not qualitatively more difficult. Working directly with
the fundamental variables, this method obviates any potential issues arising
from the derivation of the fundamental variables from the auxiliary ones.

The second order method compared quite favourably with the first order
method. Program runtimes are comparable, as are the grid spacings needed
to obtain a similar degree of accuracy. For a relatively simple system, such
as the one considered in this investigation, the two methods do not seem to
differ significantly, except that the first order method provides an easier sys-
tem to discretize. Since derivation of fundamental variables from auxiliary
ones in this case reduced to one-dimensional integration, it was likely not
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a complicated enough process to introduce any error that cannot be con-
trolled by making the grid spacing slightly smaller. However, unpublished
calculations seem to imply the breakdown of the first order in time method
when applied to certain systems, and the second order method has been
successfully utilized in the full-dimensional non-symmetric case [15]. The
success of second order methods in this simple case argue for its possible
use in more general problems with SU(2) Yang-Mills fields. These problems
would remove the restrictions imposed in this work, such as the magnetic
ansatz and the imposition of spherical symmetry.
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