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Motivation

Why study Einstein-SU(2) Yang Mills?

• Rich phenomenology in context of BH critical phenomena

• Provides good model in which to study relative stability of BH critical solutions
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Spherically Symmetric SU(2) EYM
(with Eric Hirschmann)

• Consider SU(2) Yang-Mills (gauge) field, minimally coupled to Einstein gravity
in spherical symmetry

• General form for spherically symmetric metric (G = c = 1)

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2β dtdr + a2 dr2 + r2b2 dΩ2

=
(
−α2 + a2β2

)
dt2 + 2a2β dtdr + a2 dr2 + R2 dΩ2

where α, β, a, b and R are functions of r and t; R measures proper surface
area (“areal radius”)

• Gravitating mass well defined in spherically symmetry (at least in vacuum
regions)

m(R, t) =
1
2
R (1−R;µR;µ)

m, dm/dR are useful diagnostic quantities
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• Action for general Einstein / Yang-Mills theory

S =
∫

d4x
√
−g

[
R

16πG
− 1

g2
F a

µνF
aµν

]
where a is the group index and g is the YM coupling constant that will be set
to unity after this slide

• Einstein field equations

1
16π

Gµν = Tµν

=
1
g2

(
2F a

µλF a
ν

λ − 1
2
gµνF

a
αβF aαβ

)

• Yang-Mills field equations:
DµF aµν = 0

where Dµ is the gauge-covariant/spacetime covariant derivative
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• Now specialize to SU(2)—most general spherically-symmetric parameterization
of the gauge connection is (Witten, PRL 38, 121 (1977))

A = uτ rdt + vτ rdr + (wτθ + w̃τφ)dθ

+
(
cot θτ r + wτφ − w̃τθ

)
sin θdφ

where u, v, w and w̃ are all functions of r and t and the τa are the spherical
projection of the Pauli spin matrices and form an anti-Hermitian basis for
SU(2), satisfying

[τa, τ b] = εabcτ c a, b, c ∈ {r, θ, φ}

• Field strength is then

F = τ r(v̇ − u′)dt ∧ dr

+ [(ẇ − uw̃)dt + (w′ − vw̃)dr] ∧ (τθdθ + τφ sin θdφ)

+
[
( ˙̃w + uw)dt + (w̃′ + vw)dr

]
∧ (τφdθ − τθ sin θdφ)

− (1− w2 − w̃2)τ rdθ ∧ sin θdφ

where ˙ ≡ ∂/∂t, ′ ≡ ∂/∂r
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• Convenient to write EOM in first-order-in-time form; to this end define auxiliary
variables

Π =
a

α
[ẇ − uw̃ − β(w′ − vw̃)]

Φ = w′ − vw̃

P =
a

α

[ ˙̃w + uw − β(w̃′ + vw)
]

Q = w̃′ + vw

Y =
b2r2

2αa
(v̇ − u′)
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• Then have the following EOM for the YM field:

Φ̇ =
(α

a
Π + βΦ

)′
+ uQ− v

(α

a
P + βQ

)
− w̃

2αa

b2r2
Y

Q̇ =
(α

a
P + βQ

)′
− uΦ + v

(α

a
Π + βΦ

)
+ w

2αa

b2r2
Y

Π̇ =
(α

a
Φ + βΠ

)′
+ uP − v

(α

a
Q + βP

)
+

αa

b2r2
w(1− w2 − w̃2)

Ṗ =
(α

a
Q + βP

)′
− uΠ + v

(α

a
Φ + βΠ

)
+

αa

b2r2
w̃(1− w2 − w̃2)

Ẏ =
α

a
(w̃Φ− wQ) + β(w̃Π− wP )

Y ′ = w̃Π− wP

u′ = −2αa

r2
Y

9



SU(2) EYM—Purely Magnetic Ansatz

• Assume electric charge density is identically 0; =⇒ Y (r, t) ≡ 0

• Can set v = 0 by gauge transformation; Y = 0 then implies u = const. Further
gauge transformation makes u = 0; EOM then imply that we can set w̃ = 0
without loss of generality (i.e. that w̃ is pure gauge in this case)

• Thus, in the context of the (dynamically self-consistent) “purely magnetic”
ansatz, the dynamics of the YM field is described by the single “field”, w(r, t)

• Regularity at the origin, and finite-energy require that w(r, t) be in one of two
vacuum states at r = 0 and r = ∞:

w(0, t) = ±1 w(∞, t) = ±1

• Hereafter, will also work in polar/areal (Schwarzschild-like) coordinates

ds2 = −α2dt2 + a2dr2 + r2dΩ2
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• Equations of motion simplify considerably:

Φ̇ =
(a

α
Π

)′
Π̇ =

(a

α
Φ

)′
+

αa

r2
w

(
1− w2

)
a′

a
+

1− a2

2r
+

1
r

(
Φ2 + Π2 +

a2

2r2

(
1− w2

)2
)

α′

α
+

a2 − 1
2r

+
1
r

(
Φ2 + Π2 − a2

2r2

(
1− w2

)2
)

w′ = Φ

• Initial conditions

w(0, r) = f(r)

ẇ(0, r) = g(r)

where in practice typically choose g(r) so that data is time-symmetric (g ≡ 0),
or (almost) purely ingoing (imploding).
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SU(2) EYM—General t-dependent Spherical Ansatz

• Now allow for both electric/magnetic charge densities

• Can still set v(t, r) ≡ 0 via gauge transformation, but now must apparently
retain both u(t, r) and w̃(t, r) in addition to w(t, r), although there is clearly
gauge freedom left in u, w, w̃ (e.g. no evolution equation for u, and will see
“gauge” effects in animations to come)

• Regularity (YM field must again be in vacuum state at origin)

lim
r→0

(
w(t, r)2 + w̃(t, r)2

)
= 1 + O(r2)

• Via gauge freedom can take

w(t, 0) = 1 + O(r2)

w̃(t, 0) = O(r2)

u(t, 0) = O(r2)

12



• Equations of motion

ẇ =
α

a
Π + uw̃

˙̃w =
α

a
P − uw

Π̇ =
(α

a
w′

)′
+ uP +

αa

r2
w

(
1− w2 − w̃2

)
Ṗ =

(α

a
w̃′

)′
− uΠ +

αa

r2
w̃

(
1− w2 − w̃2

)
u′ = −2αa

r2
Y

Y ′ = w̃Π− wP

α′

α
=

a2 − 1
2r

+ 4πra2Sr
r = · · ·

a′

a
=

1− a2

2r
+ 4πra2ρ = · · ·
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• Initial conditions

w(r, 0) = f(r)

w̃(r, 0) = f̃(r)

ẇ = g(r)
˙̃w = g̃(r)

where will typically choose g, g̃ so that initial data is (almost) purely ingoing
(imploding)
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• Initial conditions

w(r, 0) = f(r)

w̃(r, 0) = f̃(r)

ẇ = g(r)
˙̃w = g̃(r)

where will typically choose g, g̃ so that initial data is (almost) purely ingoing
(imploding)

• Note: In all of calculations described below, outgoing radiation conditions
(Sommerfeld conditions), possibly corrected by relevant non-differentiated
terms, work well
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Review of Black Hole Critical Phenomena

• Consider parameterized families of solutions to Einstein equations, typically
coupled to one or more matter fields (but vacuum case can also be considered);
focus on collapse of matter/energy and black hole formation

• Family parameter, p, viewed as “control parameter” for initial data, and hence
for subsequent dynamical evolution
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Review of Black Hole Critical Phenomena

• Consider parameterized families of solutions to Einstein equations, typically
coupled to one or more matter fields (but vacuum case can also be considered);
focus on collapse of matter/energy and black hole formation

• Family parameter, p, viewed as “control parameter” for initial data, and hence
for subsequent dynamical evolution

• Demand that family “interpolates” through the black hole threshold, i.e. that
there exists a critical value, p = p?, such that

1. p < p?: No black hole forms
2. p > p?: Black hole forms

• Empirically (and for some models, analytically) scenarios 1. and 2.
characterized by long-time, stable “end-states” of evolution, may be only such
states
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Review of Black Hole Critical Phenomena

• Consider parameterized families of solutions to Einstein equations, typically
coupled to one or more matter fields (but vacuum case can also be considered);
focus on collapse of matter/energy and black hole formation

• Family parameter, p, viewed as “control parameter” for initial data, and hence
for subsequent dynamical evolution

• Demand that family “interpolates” through the black hole threshold, i.e. that
there exists a critical value, p = p?, such that

1. p < p?: No black hole forms
2. p > p?: Black hole forms

• Empirically (and for some models, analytically) scenarios 1. and 2.
characterized by long-time, stable “end-states” of evolution, may be only such
states

• Solution in near-critical regime p ∼ p? ≡ black hole critical phenomena

• Use “competition” (loosely, kinetic energy vs potential energy) inherent in
collapse models, and fine-tuning to dynamically evolve to unstable critical
solution
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Critical Phenomenology

• Critical solutions Z?, do exist (for all models considered thus far) and are
locally unique (in solution space sense and up to certain symmetry
transformations)—details of initial data, parameterization irrelevant
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Critical Phenomenology
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locally unique (in solution space sense and up to certain symmetry
transformations)—details of initial data, parameterization irrelevant

• Critical solutions have additional symmetry, beyond that which may define the
model (i.e. spherical symmetry), symmetry sometimes characterized by
“exponents” (one or more “eigenvalues”)

• Critical solutions belong to two broad classes, that can conveniently be labelled
by behaviour of black hole mass at threshold (which can be viewed as an order
parameter)

1. Type I: Black hole formation turns on at finite mass
2. Type II: Black hole formation turns on at infinitesimal mass
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Critical Phenomenology

• Critical solutions Z?, do exist (for all models considered thus far) and are
locally unique (in solution space sense and up to certain symmetry
transformations)—details of initial data, parameterization irrelevant

• Critical solutions have additional symmetry, beyond that which may define the
model (i.e. spherical symmetry), symmetry sometimes characterized by
“exponents” (one or more “eigenvalues”)

• Critical solutions belong to two broad classes, that can conveniently be labelled
by behaviour of black hole mass at threshold (which can be viewed as an order
parameter)

1. Type I: Black hole formation turns on at finite mass
2. Type II: Black hole formation turns on at infinitesimal mass

• Near-critical solutions characterized by scaling of dimensionful quantities
(defines additional critical exponents)
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Critical Phenomenology

• Although unstable, critical solutions tend to be minimally so, in the sense of
having one unstable mode in the context of perturbation theory

• Growth factor (Lyapunov exponent), Reλ1, of unstable mode can be
immediately related to exponents in scaling relations
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Type I Critical Solutions

• Smallest BH has finite mass

• Model will generally have one (or more) intrinsic length scales that will set the
minimum mass

• Critical solution exhibits time translational invariance

1. Continuous: static
2. Discrete: periodic, defines “exponent”, ω

• Scaling law for, e.g., “lifetime” of near-critical configuration during dynamical
evolution

τ ∼ σ ln |p− p?| σ = [Reλ1]
−1
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Type I Critical Solutions

• Examples (all spherically symmetric)

• magnetic EYM (n = 1 Bartnik-McKinnon solution)

• real scalar field (unstable oscillons, Brady et al)

• complex scalar field (unstable mini-boson stars, Hawley, Lai)

• perfect fluid (neutron star models on unstable branch, Noble)
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Type II Critical Solutions

• No minimum BH mass, arbitrarily small BHs possible

• Critical solution exhibits scale invariance

1. Continuous: continuous self-similarity (CSS)
2. Discrete: discrete self-similarity (DSS), defines ”echoing exponent”, ∆

• Scaling law for, e.g., BH masses from super-critical evolutions:

lnMBH ∼ γ ln |p− p?| γ = [Reλ1]
−1
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Type II Critical Solutions

• Examples (spherically symmetric)

• massless scalar field: ∆ ≈ 3.44, γ ≈ 0.37
• magnetic EYM: ∆ ≈ 0.74, γ ≈ 0.20
• non-linear sigma models (Choptuik et al, Husa et al)

• perfect fluid (Evans & Coleman, Neilsen, Noble)

• Examples (axisymmetric)

• vacuum gravitational waves (Abraham & Evans)

• massless scalar field with angular momentum (Pretorius et al)
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Critical Collapse in Purely Magnetic EYM
(Choptuik, Chmaj, Bizon, PRL 77, 424, (1996))

• See both Type I and Type II transitions, depending on initial data

• Roughly, get Type II transition if, during collapse, configuration becomes
sufficiently relativistic (kinetic-energy dominated), i.e. so that self-interaction
“potential” term in effective Lagrangian

(
1− w2

)2

r2

becomes negligible in comparison to kinetic terms w′2, ẇ2

• Within context of this ansatz, Bartnik and McKinnon demonstrated numerically
existence of countable infinity of regular, static solutions, wn(r), n = 1, 2, · · ·,
to EYM equations, where n counts number of zero crossings of w(r)

• Solutions have been extensively studied, generalized since
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Critical Collapse in Purely Magnetic EYM

• Key facts

1. wn has n unstable perturbative modes in magnetic ansatz
2. wn has 2n unstable perturbative modes in general ansatz

• In particular, n = 1 solution can, and does, act as Type I critical solution for
appropriate initial data families

• As mentioned above, Type II solution characterized by ∆ ≈ 0.74,
γ = [Reλ1]

−1 ≈ 0.20
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n = 1 Bartnik-McKinnon Solution
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EYM Collapse Animations

• ANIMATION of Type I collapse (w(r, t))

• ANIMATION of Type II collapse ((1− w)/r)
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Type I EYM Collapse
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Type II EYM Collapse
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Relative Stability of Critical Solutions

QUESTION: Given that critical solutions are unstable—i.e. in perturbation
theory, always have at least one unstable mode—how does matter of one type
behave in presence of critical solution of another type of matter?
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Relative Stability of Critical Solutions

QUESTION: Given that critical solutions are unstable—i.e. in perturbation
theory, always have at least one unstable mode—how does matter of one type
behave in presence of critical solution of another type of matter?

• Can at least partially address this issue by considering relative stability of
critical solutions as (loosely) defined below

• Will proceed via (approximate) solution of full field equations

• Presumably could also do perturbation theory (perhaps using results from full
PDEs as input), but some evidence that pert. theory will not be as effective in
the relative stability case

35



Relative Stability: Basic Setup of Numerical Expts.

• Consider two fields
Ψ1(r, t), Ψ2(r, t)

where we are investigating the stability of Ψ2 w.r.t. critical soln of pure-Ψ1

model, Ψ?
1

36



Relative Stability: Basic Setup of Numerical Expts.

• Consider two fields
Ψ1(r, t), Ψ2(r, t)

where we are investigating the stability of Ψ2 w.r.t. critical soln of pure-Ψ1

model, Ψ?
1

1. Choose 1 parameter family of initial data, Ψ1(0, r; p) (pure Ψ1 evolution)
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3. (Minimally) couple Ψ2(t, r), with parameterized initial data Ψ2(0, r; q) such
that support of Ψ2(t, r; q) during evolution overlaps support of Ψ1(t, r; p).
Generically, for pure Ψ2 evolution Ψ2(0, r; q?) will generate critical solution
Ψ?

2
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• Consider two fields
Ψ1(r, t), Ψ2(r, t)

where we are investigating the stability of Ψ2 w.r.t. critical soln of pure-Ψ1

model, Ψ?
1

1. Choose 1 parameter family of initial data, Ψ1(0, r; p) (pure Ψ1 evolution)

2. Tune p so that Ψ1(0, r; p?) =⇒ Ψ?
1

3. (Minimally) couple Ψ2(t, r), with parameterized initial data Ψ2(0, r; q) such
that support of Ψ2(t, r; q) during evolution overlaps support of Ψ1(t, r; p).
Generically, for pure Ψ2 evolution Ψ2(0, r; q?) will generate critical solution
Ψ?

2

4. Fix initial data Ψ2(0, r; q) (i.e. fix q), then retune Ψ1(0, r; p), determining p?
q

such that [Ψ1(0, r; p?
q),Ψ2(0, r; q)] generates a black hole threshold solution
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Relative Stability: Basic Setup of Numerical Expts.

• Consider two fields
Ψ1(r, t), Ψ2(r, t)

where we are investigating the stability of Ψ2 w.r.t. critical soln of pure-Ψ1

model, Ψ?
1

1. Choose 1 parameter family of initial data, Ψ1(0, r; p) (pure Ψ1 evolution)

2. Tune p so that Ψ1(0, r; p?) =⇒ Ψ?
1

3. (Minimally) couple Ψ2(t, r), with parameterized initial data Ψ2(0, r; q) such
that support of Ψ2(t, r; q) during evolution overlaps support of Ψ1(t, r; p).
Generically, for pure Ψ2 evolution Ψ2(0, r; q?) will generate critical solution
Ψ?

2

4. Fix initial data Ψ2(0, r; q) (i.e. fix q), then retune Ψ1(0, r; p), determining p?
q

such that [Ψ1(0, r; p?
q),Ψ2(0, r; q)] generates a black hole threshold solution

5. Study solution phenomenology as function of q, including limits q → 0,
q → p?
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Relative Stability of Scalar & YM Type II Solns.

• YM field w: Adopt dynamical purely magnetic ansatz described above, pure
EYM model admits Type II solution, w?

II, with

∆YM ≈ 0.74 γYM ≈ 0.20
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Relative Stability of Scalar & YM Type II Solns.

• YM field w: Adopt dynamical purely magnetic ansatz described above, pure
EYM model admits Type II solution, w?

II, with

∆YM ≈ 0.74 γYM ≈ 0.20

• Massless scalar field, φ: Has Type II solution with EYM model admits Type II
solution with

∆S ≈ 3.44 γS ≈ 0.37

43



Relative Stability of Scalar & YM Type II Solns.

• YM field w: Adopt dynamical purely magnetic ansatz described above, pure
EYM model admits Type II solution, w?

II, with

∆YM ≈ 0.74 γYM ≈ 0.20

• Massless scalar field, φ: Has Type II solution with EYM model admits Type II
solution with

∆S ≈ 3.44 γS ≈ 0.37

• Initial data

w(0, r; p) = p e−(r−c)2/s2

φ(0, r; q) = q e−(r−C)2/S2

with constants c, s, C and S chosen to ensure dynamical overlap of the supports
of the two fields; ẇ(0, r) and φ̇(0, r chosen to produce ingoing initial data.
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Relative Stability of Scalar & YM Type II Solns.

• Setting φ ≡ 0, tune p to p? such that w(0, r; p?) =⇒ w?
II
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Relative Stability of Scalar & YM Type II Solns.

• Setting φ ≡ 0, tune p to p? such that w(0, r; p?) =⇒ w?
II

• Fix q, φ(r, 0; q), retune p, w(r, 0, p) to determine p?
q that generates critical

solution
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Relative Stability of Scalar & YM Type II Solns.

• Setting φ ≡ 0, tune p to p? such that w(0, r; p?) =⇒ w?
II

• Fix q, φ(r, 0; q), retune p, w(r, 0, p) to determine p?
q that generates critical

solution

• Investigate phenomenology as function of q
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Relative Stability of Scalar & YM Type II Solns.

• Setting φ ≡ 0, tune p to p? such that w(0, r; p?) =⇒ w?
II

• Fix q, φ(r, 0; q), retune p, w(r, 0, p) to determine p?
q that generates critical

solution

• Investigate phenomenology as function of q

• Note that the YM critical solution has the larger Lyapunov exponent, so naively,
one might expect it to be unstable in the presence of the Type II scalar solution
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Relative Stability of Scalar & YM Type II Solns.

• ANIMATION of critical solution for q = 0

• [dm/dr]YM and [dm/dr]S ≡ 0

• ANIMATION of critical solution for q = 1.0× 10−5

• [dm/dr]YM and 10× [dm/dr]S

• ANIMATION of critical solution for q = 3.0× 10−5

• [dm/dr]YM and [dm/dr]S

• ANIMATION of critical solution for q = 5.0× 10−5

• [dm/dr]YM and[dm/dr]S

• ANIMATION of critical solution for q = 1.0× 10−4

• [dm/dr]YM and [dm/dr]S
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Relative Stability of Scalar & YM Type II Solns.
[dm/dr]YM and [dm/dr]S
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Relative Stability of Scalar & YM Type II Solns.
[dm/dr]YM and [dm/dr]S (detail)
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Concluding Remarks

• Calculations suggestive of an entire hierarchy of critical solutions when one
considers the case of coupling to all conceivable forms of matter
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phenomenology

54



Concluding Remarks

• Calculations suggestive of an entire hierarchy of critical solutions when one
considers the case of coupling to all conceivable forms of matter

• Quite possible that in completely generic case (i.e. w.r.t matter content),
there is only one threshold solution

• Relaxation of symmetry assumptions quite likely to lead to additional
phenomenology

55


