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Preface

This work is chiefly a numerical study of a particular form of the nonlinear Klein-Gordon
(nlKG) equation. It is based on the previous work, Resonant Structures within the Nonlinear
Klein-Gordon Equations, the thesis of Dr. Ethan P. Honda, a former student of Dr. Matthew
W. Choptuik. Choptuik is a professor in the Department of Physics & Astronomy at the
University of British Columbia in Vancouver, Canada, and the supervisor of the author.

The nlKG equation was solved numerically using finite-difference methods in one spatial
dimension with a symmetric double well potential as its nonlinear term. As is the case with
Honda’s thesis, a coordinate system that contains an absorbing region is implemented to
greatly increase solution accuracy over long time periods. In addition, the solutions were
generated using a language called Rapid Numerical Prototyping Language, developed by
Dr. Robert Marsa (UT Austin) and Dr. Choptuik. Prior to the actual solving of the nlKG
equation are explanations of the numerical techniques used throughout this work and a
solution to the wave equation, which provides many of the details skipped over in the nlKG
equation chapter.

ii



Summary

This work is a reproduction of some of the results of Ethan Honda’s Ph. D. thesis, Resonant
Dynamics within the Nonlinear Klein-Gordon Equations, namely, the solutions to the non-
linear Klein-Gordon (nlKG) equation with a symmetric double well potential. The solutions
are localized and oscillatory and so termed oscillons. The lifetimes of these phenomena can
be divided into three stages: an initial period of high radiation followed by a pseudo-stable
quasi-periodic phase and a final stage of dispersal. Resonance states exist where the life-
times are infinite and it is the critical behaviour surrounding these resonance states that is
the focus of this work.

The coordinate system used is termed monotonically increasingly boosted coordinates.
In the radial direction, it interpolates between regular, static coordinates and an outgoing
null coordinate, freezing ingoing and outgoing radiation in the interpolating region. This
“bunched up” radiation is then dissipated using a method developed by Kreiss and Oliger
[6], leaving the interior region virtually free of contamination.

Prior to the major results are discussions of the numerical methods employed in solving
the nlKG equation. Crank-Nicolson finite-difference schemes were programmed using Rapid
Numerical Prototyping Language (RNPL), a language developed by Robert Marsa and
Matthew Choptuik that is specically designed for solving time-dependent PDEs. As well,
the solution to the wave equation is presented using the same methods as above (but in a
regular coordinate system) to illustrate the finer details of the how the nlKG equation is
solved.
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Chapter 1

Introduction

The oscillating solutions to the Nonlinear Klein-Gordon (nlKG) equation (and sine-Gordon
equation) were first discovered by Bogolyubskii and Mankhan’kov [1] in 1976, although
they originally called them pulsons for their radiative properties. They were analyzed in
more detail by Copeland et al in 1995 [2] who renamed them oscillons for their oscillatory
bahaviour. They were not able to study the solutions in great detail due to a lack of
computational resources. In 2002, Ethan Honda took advantage of better computational
techniques and was able to do a more or less complete study of the oscillon solutions in his
thesis, Resonant Dynamics within the Nonlinear Klein-Gordon Equation [5]. The goal of
this work is to reproduce some of Honda’s results, namely the resonant solutions within a
symmetric double well potential.

Oscillons are thought of as (spherically symmetric or axisymmtric) bubbles separating
two vacuum states φc and φ0 with the bubble wall interpolating between them. These
bubbles exhibit three-stage lifetimes: (1) Much of the bubble’s mass is shed as energy that
radiates outward; (2) This is followed by the pseudo-stable oscillion phase in which the core
field value oscillates almost periodically and virtually no energy is radiated; (3) The oscillon
either collapses quietly or with a final burst of energy. The most significant factor in the
lifetime of the oscillon is its initial radius r0. At certain initial radii, there exist resonance
states in which the lifetime goes to inifinity. Three are shown and analyzed in this work,
but there are many more as demonstrated by Honda [5].

Additionally, Honda used a novel coordinate system termed montonically increasingly
boosted (MIB) coordinates as a means to reduce contamination of data. The need for this
arises from the lack of an outgoing boundary condition for the massive scalar field. It can
only be approximated by the condition for the massless case (wave equation). When radia-
tion reaches the outer boundary in a regular coordinate system with an outgoing boundary
condition, it is partially reflected back into the computational domain. This effect is several
times greater if the equation of motion is massive compared to the massless case.

In MIB coordinates, the equations are solved in flat spacetime, but the points near
the outer boundary travel outwards at nearly the speed of light while the points near the
origin remain nearly motionless with an interpolating region between. Outgoing and ingoing
radiation are trapped in this interpolating region and subsequently dissipated leaving the
inner region virtually free of contamination.

Following this introduction is a chapter outlining the numerical methods employed to
solve all the equations in this work. All the equations are solved using Crank-Nicolson
finite-difference schemes and the programs for generating the solutions are written in Rapid
Numerical Prototyping Language (RNPL).

Preceeding the work on the nlKG equation is a detailed solution to the wave equation.
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Of particular interest is the regularity condition at the origin and the outgoing boundary
condition at r = rmax.

The major results of this work, unfortunately, bear only qualitative resemblence to
Honda’s due to a systematic computational error that could not be corrected. The reso-
nances were shown to exist, but their positions in the parameter space r0 and their lifetimes
do not align with Honda’s.
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Chapter 2

Numerical Analysis

This chapter provides the foundation for understanding how differential equations are solved
on a discrete domain and describes the tricks and tools for doing so.

2.1 Discretization

2.1.1 The Residual

A differential equation (or a system thereof) can be written generally as

L(u)− f = 0 (2.1)

where L is some differential operator, u is the yet undetermined solution, and f is possibly
some function of u, the coordinates, and time. The corresponding difference equation can
be written as

L̂(û)− f̂ = 0 (2.2)

where the ˆ notation indicates the corresponding discretized variable. Equation (2.2) can
never be an exact replacement for (2.1) and û is not always an exact solution to (2.2). In
the case where it cannot be made exact (nonlinear DE), a small term r̂ is added to the
equation to account for this and û is replaced by the approximation ũ,

L̂(ũ)− f̂ = r̂. (2.3)

Equation (2.3) is iterively re-solved as a nonlinear algebraic equation would be until r̂ → 0
and necessarily ũ → û. If this occurs in the limit of infinite iteration, the finite-difference
scheme used is said to be convergent.

2.1.2 Error

The difference in the discrete and continuum solutions is the solution error,

ê = û− u, (2.4)

which is more easily understood as a Richardson Expansion, a power series in h,

û = u + e1h
1 + e2h

2 + e3h
3 + e4h

4 + · · · . (2.5)

If the scheme is centered, only even error terms will appear. If the scheme is not centered,
then odd terms will appear as well.
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The truncation error τ̂ is a measure of how well the continuum solution satisfies the
discrete equations.

τ̂ = L̂(u)− f̂ (2.6)

The scheme is said to be a consistent representation of the continuum equation if the trun-
cation error goes to zero as the grid spacing goes to zero. That is to say, the disrete and
continuum solutions will be equal. In practice, the grid spacing can only be made so close
to zero, resulting in

lim
h→0

τ̂ = O(hp). (2.7)

where p is some positive integer. This test reflects the accuracy of the scheme in reproducing
the continuum solution.

2.1.3 Convergence

Most often, the purpose behind finding numerical solutions is that a continuum solution
is very difficult to determine or cannot be found. So how can one be sure to have found
the right discrete solution with nothing to compare it too? If the scheme is second-order
accurate (p = 2) as are all the schemes in this work, the following condition should be met.

Cf =
û4h − û2h

û2h − ûh
→ 4 as h → 0 (2.8)

Cf is called the convergence factor and ûnh are discrete solutions computed at different
grid spacings. Visually, the successive solutions will asymptotically converge to a solution
representing h → 0.

2.2 Finite-difference Schemes

Finite difference schemes are the manner in which the differential equations are discretized.
They are either explicit or implicit. Explicit schemes render difference equations that can
be solved for the future time step completely in terms of previous time steps. For example,
the forward Euler and Leap-frog schemes respectively are

un+1
j = un

j + kNh(un
j ), (2.9)

un+1
j = un−1

j + 2kNh(un
j ), (2.10)

where Nh is some function of the discrete variables, j and n index the spatial and temporal
points in the domain, respectively, and k is the time step. Implicit schemes must be solved
as a set of (potentially nonlinear) algebraic equations at each time step. For example, the
backward Euler and Crank-Nicolson schemes respectively are

un+1
j = un

j + kNh(un−1
j ), (2.11)

un+1
j − un

j =
1
2
k

[
Nh(un

j ) + Nh(un+1
j )

]
(2.12)

This work was exclusively done using Crank-Nicolson schemes for their stability over
long time periods and O(h2) accuracy. This is due to the time averaging that occurs in the
right-hand side of equation (2.12). These schemes were taken from Drazin [3].
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Operator Expansion Definition

∆f
t(u

n
j ) = ∂tu

∣∣n+1/2

j
+ O(h2) =

1
∆t

(
un+1

j − un
j

)
(2.13)

µf
t(u

n
j ) = u

∣∣n+1/2

j
+ O(h2) =

1
2

(
un

j + un+1
j

)
(2.14)

∆c
r(u

n
j ) = ∂ru

∣∣n
j

+ O(h2) =
1

2∆r

(
un

j+1 − un
j−1

)
(2.15)

∆c
r3(un

j ) = ∂r3u
∣∣n
j

+ O(h2) =
un

j+1 − un
j−1

(rj+1/2)3 − (rj−1/2)3
(2.16)

∆f
r(u

n
j ) = ∂ru

∣∣n
j+1

+ O(h2) =
1

2∆r

(−3un
j + 4un

j+1 − un
j+2

)
(2.17)

∆b
r (un

j ) = ∂ru
∣∣n
j−1

+ O(h2) =
1

2∆r

(
3un

j − 4un
j−1 + un

j−2

)
(2.18)

µdiss
t (un

j ) = ∆r3∂4
ru

∣∣n
j

+ O(h2) = − ε

16∆t

(
un

j−2 − 4un
j−1 + 6un

j + 4un
j+1 + un

j+2

)

(2.19)

Table 2.1: Finite-difference Operators

2.2.1 Finite-difference Operators

There is a straight-forward natural way to generate finite-difference equations from the differ-
ential equations. The differential operators are replaced with their corresponding difference
operators. Time-averaging operators are also inserted to create Crank-Nicolson schemes.
The difference operators are generated by combining different Taylor series expansions of
derivitives and truncating terms that are second order in h. See Appendix A for some of
the derivations. Table 2.1 lists the operators used in this work with their definitions.

2.3 Rapid Numerical Prototyping Language (RNPL)

The programming behind this work was done almost entirely in Rapid Numerical Prototyp-
ing Langauge. RNPL is a high-level programming language developed by Dr. Robert Marsa
(UT Austin) and Dr. Matthew Choptuik for the purpose of solving systems of differential
equations using finite-difference techniques. Its usefulness lies in its natural, operator-based
syntax, relatively compact source code, and built-in check-pointing mechanism.

The source code consists entirely of declaration statements including parameters, the
grid(s), grid functions, operators, and the FD equations. The operators are defined in the
code essentially as they are in table 2.1 and the FD equations are generated as described in
section 2.2.1 above. Well-commented source code for the spherically symmetric case in the
symmetric double well potential (SDWP) is in Appendix B.

The RNPL compiler does not do all the work. It simply writes either the C or Fortran
source code, depending on the user’s preference, that one would otherwise write in order
to solve the same equations in C or Fortran. These are then compiled and linked to form
the executable. The executable takes one argument, a parameter file that supercedes the
default parameters in the source code so they can be changed easily.
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Chapter 3

Wave Equation

This chapter details the preliminary work done prior to reproducing Honda’s data. It
is essentially a “practice run” for the author, but also a simple example for the reader
and provides many details for understanding the work in the following chapter that aren’t
included therein.

3.1 Wave Equation in Spherical Symmetry

The wave equation in spherical coordinates with unit speed and no angular dependence is

∂2φ

∂t2
=

1
r2

∂

∂r

(
r2 ∂φ

∂r

)
. (3.1)

This, however, is not the preferred form of the wave equation if a numerical solution is
sought after.

3.1.1 Regularity at the Origin

The boundary condition at r = 0 is to be Neumann, so φ should be an even function as
r → 0.

lim
r→0

φ(t, r) = φ0(t) + φ2(t)r2 + φ4(t)r4 + O(r6) (3.2)

Casting the right hand side of (3.1) in this form,

lim
r→0

1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= 6φ2(t) + 20φ4(t)r2 + O(r4). (3.3)

According to equation (3.2), ∂rφ = O(r) to leading order. Thus, r2∂rφ = O(r3) to leading
order. Then using the following relation,

∂

∂r
=

∂(r3)
∂r

∂

∂(r3)
= 3r2 ∂

∂(r3)
, (3.4)

equation (3.1) becomes
∂2φ

∂t2
= 3

∂

∂(r3)

(
r2 ∂φ

∂r

)
. (3.5)
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Although this derivitive applied to r2∂rφ also returns an expression whose leading term is
O(1) in the limit just as much as the form of equation (3.1) does, when (3.2) at fixed time is
substituted into the discrete form of (3.5), (see below for definitions of discretized variables)

3
r2
j+ 1

2

(
un

j+1 − un
j

)− r2
j− 1

2

(
un

j − un
j−1

)

∆r
(
r3
j+ 1

2
− r3

j− 1
2

) , (3.6)

the following results.

6φ2 − 402
13

φ4∆r2 (3.7)

This is precisely equation (3.3) to leading order. When (3.2) is substituted into the discrete
form of (3.1),

r2
j+1/2(φ

n
j+1 − φn

j )− r2
j−1/2(φ

n
j − φn

j−1)

r2
j

, (3.8)

the result is
27
4

φ2∆r2 +
67
2

φ4∆r4, (3.9)

which is not equation (3.3) to leading order.

3.1.2 Equations of Motion

The solution scheme implemented here is written in RNPL. It is best utilized when the
equations to be solved are split into a first order system because the language only allows
one initial condition to be specified for each equation. Given the definition of Π in equation
(3.10), the initial conditions can be specified as they normally would when solving the wave
equation, that is, with an initial profile φ(0, r) and initial time derivitive Π(0, r).

∂φ

∂t
= Π (3.10)

∂Π
∂t

= 3
∂

∂(r3)

(
r2 ∂φ

∂r

)
(3.11)

3.1.3 Sommerfeld Outgoing Boundary Condition

This equation is to be solved on the domain

0 ≤ x ≤ rmax, t ≥ 0.

with a Neumann conditions at r = 0 (left side) and Sommerfeld conditions at r = rmax

(right side).

∂φ

∂r
(t, 0) = 0 (3.12)

∂Π
∂r

(t, 0) = 0 (3.13)

Sommerfeld conditions at the right boundary allow waves to be transmitted through it from
the left as if there was no boundary, but no waves are allowed to enter the domain from the
right. Determining this boundary condition in the cartesian case for simplicity, we begin
with the general solution to the wave equation,

φ(t, x) = f(t + x) + g(t− x), (3.14)

7



where f(t + x) represents any wave function travelling to the left and g(t− x) is any wave
function travelling to the right. If no left-moving waves are to enter the domain through the
boundary, then necessarily f = 0. Letting u = t− x, the general solution (3.14) becomes

φ(t, x) = g(u) (3.15)

Differentiating φ(t, x) with respect to t and x,

∂φ

∂t
=

dg

du

∂u

∂t
, (3.16)

∂φ

∂x
=

dg

du

∂u

∂x
. (3.17)

Adding (3.16) and (3.17),

∂φ

∂t
+

∂φ

∂x
=

dg

du

(
∂u

∂t
+

∂u

∂x

)
= 0, (3.18)

a condition on φ(t, x) results that applies to the right endpoint only.
It need only be shown that rφ(t, r) is a solution to the 1-d cartesian wave equation and

the boundary condition (3.18) may be applied in the spherical case. Beginning with

∂2(rφ)
∂t2

=
∂2(rφ)

∂r2
, (3.19)

it will be shown that equation (3.1) follows.

∂2

∂t2
(rφ) =

∂2

∂r2
(rφ)

r
∂2φ

∂t2
=

∂

∂r

(
φ + r

∂φ

∂r

)

∂2φ

∂t2
=

r

r2

∂

∂r

(
φ + r

∂φ

∂r

)
(3.20)

From here, it is trivial to show that

r
∂

∂r

(
φ + r

∂φ

∂r

)
=

∂

∂r

(
r2 ∂φ

∂r

)
. (3.21)

Given that (3.21) is true, it can be substituted into (3.20) resulting in (3.1), which shows
that it follows from (3.19) and vice versa because the algebaic steps can be performed in
reverse. Therefore, the boundary conditions on the right can safely be stated as

∂(rφ)
∂t

(t, rmax) = −∂(rφ)
∂r

(t, rmax), (3.22)

∂(rΠ)
∂t

(t, rmax) = −∂(rΠ)
∂r

(t, rmax). (3.23)

3.1.4 Initial Conditions

The initial condition is chosen to be a Gaussian pulse, shown in figure 3.1,

φ(0, r) = a exp

[
−

(
r −R

∆

)2
]

, (3.24)

Π(0, r) =
σ

r

d
dr

φ(0, r). (3.25)

where σ = 1, 0,−1 causing the pulse to initially move left, time-symmetrically, or right,
respectively.
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Figure 3.1: Gaussian initial profile of wave equation with parameters a = 1.0, R = 5.0, ∆ = 0.5,
and σ = 1.0.

3.1.5 Discretization

The domain needs to be converted into a discrete set of points (or grid), upon which the
solution φn

j is defined. The grid here is defined as the set of points (tn, rj) such that

tn = n∆t,

rj = (j − 1)∆r,

for j = 1, 2, · · · , J and n = 0, 1, 2, · · · , and

∆r =
rmax

J − 1
,

∆t = λ ∆r,

where λ is an adjustable parameter called the Courant factor. The discrete solutions are

φn
j = φ(tn, xj), Πn

j = Π(tn, xj).

Including the boundary conditions, the equations of motion in the discrete domain are

∆f
t(φ

n
j ) = µf

t(Π
n
j ), j = 1, 2, · · · , J (3.26)

∆f
r(Π

n+1
1 ) = 0, (3.27)

∆f
t(Π

n
j ) = µf

tδ
c
r3(φn

j ), j = 2, 3, · · · , J − 1 (3.28)

∆f
t(rJΠn

J) + µf
t∆

b
r (rJΠn

J) = 0. (3.29)

The initial conditions in their discrete form are

φ0
j = 0, j = 1, J (3.30)

φ0
j = a exp

[
−

(
rj −R

∆

)2
]

, j = 2, 3, · · · , J − 1 (3.31)

Π0
j =

σ

rj
∆c

r(rjφ
0
j ), j = 1, 2, · · · , J. (3.32)
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Equations (3.26) through (3.32) are the discrete analogues of equations (3.10) through
(3.13) and (3.22) through (3.25). The differential operators are replaced with the correspond-
ing finite difference operators from table 2.1 and continuous variables with the corresponding
discrete variables.

3.2 Solutions and Analysis

The full solutions and convergence tests of the spherically symmetric wave and sine-Gordon
equations as well as similar solutions to the 1-d cartesian wave equation can be viewed in
mpg format at [5].

Figure 3.2 shows the time evolution of the Gaussian pulse (3.24) according to the spher-
ically symmetric wave equation. The profile is initially left-moving, σ = 1. It reflects off the
left boundary and escapes through the right boundary as was intended.

The solutions on the less dense grids show a small reflection off the right side that becomes
more visible as it approaches the origin. The more dense grids reduce the magnitude of this
phenomenon monotonically. The time taken for that small pulse to travel from one end and
back is called the light crossing time as the speed of these waves is very close to unity. This
error invariably contaminates solution data if evolved for longer than a crossing time.

Additionally, a small piece of the initial profile splits off and moves to the right. This,
again, is due to computational imprecision (and the nature of solutions to the wave equation)
and can be minimized by using a denser grid.
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Figure 3.2: Solution to wave equation. The pulse begins in the center, reflects off the
left boundary, and escapes through the right boundary.
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Chapter 4

φ4 Klein-Gordon Equation

4.1 MIB Coordinates

The coordinate system here is said to be monotonically increasingly boosted (MIB). The
points that constitute the domain move outward according a monotonic velocity function
f(r) relative to the origin. The function sets up three regions in the domain. The innermost
region is a typical radial coordinate, the outermost is an outgoing null coordinate and the
middle region interpolates smoothly between the two. It has the definition

f(r) =
1
2

tanh
(

r − rw

δ

)
+

1
2

tanh
(

rw

δ

)
(4.1)

and therefore the following properties.

f(r)





= 0, r = 0
≈ 0, r ¿ rw

≈ 1, r À rw

The middle region is where the usefulness of the coordinate system lies. Radiation en-
tering it from either direction is compressed in the radial direction and its speed is brought
to near zero. Dissipation added to the equations everywhere dampens the radiation propor-
tionally to its wavenumber. This dampening is therefore only effective in the middle region,
leaving the interior solution virtually free of contamination and still based in a regular
spherical coordinate system.

The geometry of the spacetime here is flat, but it will be helpful to write the metric and
the equations in a (3+1) form useful in general relativity.

ds̃2 = −dt̃2 + dr̃2 + r2dΩ̃
2
, (4.2)

where dΩ̃2 = dθ̃2 + sin2(θ̃)dφ̃2. The coordinate transformations are

t̃ = t, r̃ = r + f(r)t, Ω̃ = Ω . (4.3)

With these in place, the metric becomes

ds2 = (−1 + f(r)2)dt2 + 2f(r)(1 + f ′(r)t)dtdr

+ (1 + f ′(r)t)2dr2 + (r + f(r)t)2dΩ2. (4.4)
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Figure 4.1: This function, f(r) = 1
2 tanh

(
r−rw

δ

)
+ 1

2 tanh
(

rw

δ

)
in units where rw = 1,

smoothly interpolates between the outgoing null coordinate and regular interior region.
The characteristic velocities are zero in both directions in the interpolation region.

Using the definitions,

a(t, r) = 1 + f ′(r)t b(t, r) = 1 +
f(r)t

r

α(t, r) = 1 β(t, r) =
f(r)

1 + f ′(r)t

(4.5)

the metric can be written in the (3+1) form,

ds2 = (−α2 + a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2. (4.6)

In this form, the metric, called it g, has determinant g, given by
√−g = αar2b2 sin(θ). Its

inverse is

inv g =




−1/α2 β/α2 0 0
β/α2 1/a2 − β/α2 0 0
0 0 1/r2b2 0
0 0 0 1/r2b2 sin2(θ)


 . (4.7)

4.2 Theory

The nonlinear Klein-Gordon equation with unit speed is most generally written as

∇2φ− ∂2φ

∂t2
=

∂V

∂φ
(4.8)

where V is a some potential that depends on φ. In this case we are examining a symmetric
double well potential (see fig. 4.2),

VS(φ) =
1
4

(
φ2 − 1

)2
. (4.9)
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Figure 4.2: This is the symmetric double well potential, V (φ) = 1
4 (φ2−1)2. The two vacuum

states are the minima of the function, 1 and −1.

4.2.1 Equations of Motion

The spherically symmetric action for a massive scalar field is

S(φ) =
∫ √−g

(
−1

2
gµν ∇µφ∇νφ− V (φ)

)
d4x. (4.10)

Since φ is a scalar field,

∇µφ =
∂φ

∂xµ
,

and the Lagrangian is

L =
√−g

(
−1

2
gµν ∂φ

∂xµ

∂φ

∂xν
− V (φ)

)
(4.11)

where gµν are the components of the flatspace metric g in spherically symmetric MIB coor-
dinates. The equation of motion is found by substituting the Lagrangian into a particular
form of the Euler-Lagrange equation,

∇µ

(
∂L

∂(∇µφ)

)
− ∂L

∂φ
= 0, (4.12)

resulting in

∇µ (−gµν∇νφ) +
∂V

∂φ
= 0. (4.13)

This reduces to

gµν∇µ∇νφ− ∂V

∂φ
= 0,

∇ν∇νφ− ∂V

∂φ
= 0.
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Then from any text,
1√−g

∂µ

(√−g gµν∂νφ
)− ∂V

∂φ
= 0. (4.14)

This equation of motion can be written as a set of two equations that are first order in time
using the definition

Π =
a

α
(∂tφ− β∂rφ) . (4.15)

The equations of motion become

Π̇ =
1

r2b2

(
r2b2

(α

a
Π + βφ′

))′
− 2

ḃ

b
Π− αaφ(φ2 − 1) (4.16)

φ̇ =
α

a
Π + βφ′ (4.17)

in which the dot and prime notations are time and radial derivitives, respectively. As a
means of confirming that these equations produce the right solutions, a different imple-
mentation of the same equation of motion is needed for comparison. Here, a set of three
equations is devoloped with the definitions

Π =
a

α
(∂tφ− β∂rφ) , (4.18)

Φ = ∂rφ, (4.19)

giving us

Π̇ =
1

r2b2

(
r2b2

(α

a
Π + βΦ

))′
− 2

ḃ

b
Π− αaφ(φ2 − 1) (4.20)

Φ̇ =
(α

a
Π + βΦ

)′
(4.21)

φ̇ =
α

a
Π + βΦ (4.22)

There exists no outoing boundary condition for the massive scalar field, so the OBC for
the massless scalar field (wave equation) is used as an approximation.

4.2.2 Finite-difference Equations

For each equation of motion, there are five FD equations representing different regions of the
discrete domain. These regions are j = 1, j = 2, j = 3, . . . , N − 2, j = N − 1, and j = N .
The outermost points are for the boundary conditions, and the remaining points are for the
equations of motion. The five regions facilitate the dissipation operator, which spans five
spatial points, so can only be applied in the j = 3, . . . , N − 2 region.
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∆f
r(Π

n+1
1 ) = 0 (4.23)

∆f
t(Π

n
2 ) = µf

t

(
3

(1 + f(r)t/r)2
∆c

r3

(
(r + f(r)t)2(Φ + f(r)Π)

1 + t∆f
rf(r)

)

− 2f(r)Π
r + f(r)t

− φ3 + φ

)
(4.24)

∆f
t(Π

n
j ) = µf

t

(
3

(1 + f(r)t/r)2
∆c

r3

(
(r + f(r)t)2(Φ + f(r)Π)

1 + t∆c
rf(r)

)

− 2f(r)Π
r + f(r)t

− φ3 + φ

)
+ µdiss

t Πn
j , j = 3, . . . , N − 2 (4.25)

∆f
t(Π

n
N−1) = µf

t

(
3

(1 + f(r)t/r)2
∆c

r3

(
(r + f(r)t)2(Φ + f(r)Π)

1 + t∆b
rf(r)

)

− 2f(r)Π
r + f(r)t

− φ3 + φ

)
(4.26)

∆f
t (rΠn

N ) = −µf
t

(
∆b

r (rΠn
N )

)
(4.27)

Φn+1
1 = 0 (4.28)

∆f
t(Φ

n
j ) = µf

t ∆f
r

(
Π + f(r)Φ

1 + t∆c
rf(r)

)
, j = 2, N − 1 (4.29)

∆f
t(Φ

n
j ) = µf

t ∆f
r

(
Π + f(r)Φ

1 + t∆c
rf(r)

)
+ µdiss

t Φn
j , j = 3, . . . , N − 1 (4.30)

∆f
t (rΦn

N ) = −µf
t

(
∆b

r (rΦn
N )

)
(4.31)

∆f
r(φ

n+1
1 ) = 0 (4.32)

∆f
t(φ

n
j ) = µf

t

(
Π + f(r)Φ
1 + t∆c

rf(r)

)
, j = 2, N − 1 (4.33)

∆f
t(φ

n
j ) = µf

t

(
Π + f(r)Φ
1 + t∆c

rf(r)

)
+ µdiss

t φn
j , j = 3, . . . , N − 2 (4.34)

∆f
t (rφn

N ) = −µf
t

(
∆b

r (rφn
N )

)
(4.35)

4.3 Solutions and Analysis

4.3.1 Performance of the MIB Code

The coordinates appear to do their job in halting and dissipating the outgoing radiation.
The outgoing characteristic λ+ = 0 in the absorbing region and beyond it at all times.
The dissipation operator acts only on non-smooth regions. The absorbing region slows the
radiation, causing it to “bunch up” and become more susecptible to the dissipation.

Unfortunately, the implementation of the MIB coordinate system here does not perform
entirely as expected. Any ingoing radiation should be absorbed in addition to all the out-
going radiation. Immediately upon executing the evolutions, small oscillations take place
at the outer boundary (see fig. 4.3). The oscillations propagate inward and evidently are
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not halted by the absorbing region. This failure of the absorbing region is possibly due its
time-dependent nature. The characteristic velocity in the negative direction, λ−, does not
reach zero in the absorbing region until long after the start time of the evolution, allowing
the early ingoing radiation to penetrate into the interior of the domain where the oscillon
exists.

This problem was more or less continuous throughout the development phase of the
MIB code and could not be reconciled. Solving the wave equation in MIB coordinates
showed an instantaneous relationship between the solution at the inner boundary and at
the outer boundary. Clearly this is a not a physical problem that can be blamed on the
model, but instead it is an error in programming that seemed to always attach itself to the
implementation of the MIB coordinates.

The effect of this is contaminated data after only one crossing time. Figure 4.4 demon-
strates this behaviour at the origin.

4.3.2 Resonant Structure of Oscillons

Fortunately, the qualitative behaviour of the solutions is still intact, despite the inaccuracies.
Here, the oscillon phase of the solutions is explored. The initial conditions are designed to
omit the initial collapse of the bubble and start in the oscillon phase using

φ(0, r) = φ0 + (φc − φ0) exp
(−r2/r0

2
)

(4.36)

to essentially give the bubble no excess volume. We call r0 the initial radius of the bubble
calculate the lifetimes of the oscillons over this parameter space. The vacuum states inside
and outside the bubble respectively are φc = 1 and φ0 = −1.

The oscillon lifetimes asymptote at certain values of r0 (resonance states). The first
three are plotted in figure 4.7. Additionally, there is a scaling law for each resonance. That
is, the lifetimes depend linearly on log |r0 − r∗0 | where r∗0 is the value of r0 at the resonance
(or as close to it as can be estimated). This is shown in figure 4.8.
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Figure 4.3: Outer boundary. These are the (unintended) small oscillations that occur at
the outer boundary. The amplitude is O(10−4) whereas the interior solutions are O(1).
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Figure 4.4: Solution error. The above plot compares the error in a solution using MIB
coordinates (solid line) and a solution in regular (t, r) coordinates with Sommerfeld outgoing
boundary conditions (dashed line). This error is difference in the either of the two solutions
to a solution on a grid large enough to prevent any reflections off the outer boundary. The
MIB solution exhibits behaviour no better than the OBC solution due to the computational
problems at the outer boundary. The crossing time here is 30.
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Figure 4.5: Convergence test. Although not easily distinguished, there are two functions,
φh−φh/2 (solid line) and 4(φh/2−φh/4) (triangles). Their approximate equality demonstrates
that the code is convergent to O(h2) accuracy. This “snapshot” of the solution is taken at
t = 3.7.
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Figure 4.6: Above shows the difference in supercritical and subcritical behaviour of the
oscillon. Barely above resonance, the oscillon disperses after one final modulation for a total
of two modulations. Barely below, no final modulation is seen. This particular example is
the second resonance in fig. 4.7.
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Figure 4.7: This is the lifetime of the oscillon as a function of its initial radius r0.
The three peaks indicate the resonance states that the oscillon may exist in and are
shown to exihibit scaling laws of the form τ = γ log |r0 − r∗0 |. The resonances are at
r0 = 1.8833766, 1.88946771, 1.89228353. Below the first resonance, there are no modu-
lations in the amplitude of the field at the origin (see fig. 4.6). Between the first and the
second, there is one modulation. Between the second and the third, there are two, and so
on.
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Figure 4.8: The linearity of this data demonstrates their is a time scaling law associated
with associated each resonance. These slopes are the left and right side of resonance number
two as in fig. 4.7 and respectively are -37 and -31.
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Chapter 5

Conclusions

The solutions to the nonlinear Klein-Gordon (nlKG) equation implemented here show that
oscillons are localized, have a finite lifetimes, and can exist in resonance states (infinite
lifetime) depending on the their initial bubble radii. The critical behaviour of the resonances
is characterized by a time scaling law, τ = γ log |r0 − r∗0 |, where r0 is the inital radius, r∗0 is
the initial radius of a resonant oscillon, τ is the lifetime, and γ is a constant of proportionality
that is different for each side of each resonance.

The major source of error here is the computational problem at the outer boundary
in which small oscillations with no physical significance occur. These waves propagate
toward the interior region and contaminate the solution there, no longer conserving energy.
Although they are small enough to maintain the qualitative behaviour of the solution, it
cannot be trusted for it accuracy Figure 4.3 shows that the MIB code implemented here is
no better than a regular coordinate system with outgoing boundary conditions. The typical
bahaviour of the oscillon is to radiate energy at certain stages in its lifetime. The energy
travelling in from the outer boundary likely had the opposite effect and fed the oscillon,
lengthening its lifetime.

Honda’s [5] first three resonance values are r0 = 2.2805, 2.2838, 2.2876. Here they are
r0 = 1.8833, 1.8895, 1.8923, a difference of roughly 0.4 in each case. The lifetimes calculated
here are generally longer, but agree within an order of magnitude. The scaling law exponents,
γ, are similar depending on the resonance. Honda showed for the resonance at r0 = 2.335
that γ = −30 for both sides of the resonance. Here γ = −31, −37 for a different (the second)
resonance. This difference in the scaling exponent is likely due to the difference in precision
of the resonance positions in the parameter space r0. Honda’s were tuned to one part in
1014, whereas here they are tuned to one part in 107.
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Appendix A

Derivation of Finite-difference
Operators

Below are the derivations of some of the finite-difference (FD) operators used in this work.
Taylor series expansions are combined then truncated to O(h2) accuracy where h is the
discretization scale, a generalization of ∆t or ∆r. Subscripts are used to denote partial
differentiation.

Forward First Time Derivitive

Forward can be interpretted as an expansion about a point ahead of tn. In this case, it is
tn+1/2.

u(t + ∆t) = u

((
t +

∆t

2

)
+

∆t

2

)

= u

(
t +

∆t

2

)
+ ut

(
t +

∆t

2

)
·
(

∆t

2

)
+

1
2!
· utt

(
t +

∆t

2

)
·
(

∆t

2

)2

+
1
3!
· uttt

(
t +

∆t

2

)
·
(

∆t

2

)3

+ O(∆t4) (A.1)

u(t) = u

((
t +

∆t

2

)
− ∆t

2

)

= u

(
t +

∆t

2

)
− ut

(
t +

∆t

2

)
·
(

∆t

2

)
+

1
2!
· utt

(
t +

∆t

2

)
·
(

∆t

2

)2

− 1
3!
· uttt

(
t +

∆t

2

)
·
(

∆t

2

)3

+ O(∆t4) (A.2)

Subtracting equation (A.2) from (A.1) and dividing by ∆t,

u(t + ∆t)− u(t)
∆t

= ut

(
t +

∆t

2

)
+

1
24
· uttt

(
t +

∆t

2

)
·∆t2

︸ ︷︷ ︸
leading order
error term

+ O(∆t4).
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Then re-writing this in terms of n and j,

un+1
j − un

j

∆t
= ut

∣∣∣
n+1/2

j
+ O(∆t2) = ∆f

t(u
n
j ). (A.3)

Foward and Backward First Spatial Derivitives

The choice of expansions is slightly different here. A system of three Taylor expansions is
solved for ur(r) such that the next term is O(h2).

u(r) = u(r) (A.4)

u(r + ∆r) = u(r) + ur(r)∆r +
1
2!

urr(r)∆r2 +
1
3!

urrr(r)∆r3 + O(∆r4) (A.5)

u(r + 2∆r) = u(r) + 2ur(r)∆r +
4
2!

urr(r)∆r2 +
9
3!

urrr(r)∆r3 + O(∆r4) (A.6)

Solving for ur(r),

−3u(r) + 4u(r + ∆r)− u(r + 2∆r)
2∆r

= ur(r)− 1
4
urrr(r)∆r2

︸ ︷︷ ︸
leading order
error term

+O(∆r3)

Re-writing this in terms of n and j, the forward derivitive is

−3un
j + 4un

j+1 − un
j+2

2∆r
= ur

∣∣∣
n

j
+ O(∆t2) = ∆f

r(u
n
j ). (A.7)

The backward derivitive is found by reversing the minus signs in equations (A.5) and (A.6).

3u(r)− 4u(r + ∆r) + u(r + 2∆r)
2∆r

= ur(r) +
1
4
urrr(r)∆r2

︸ ︷︷ ︸
leading order
error term

+O(∆r3)

3un
j − 4un

j−1 + un
j−2

2∆r
= ur

∣∣∣
n

j
+ O(∆t2) = ∆f

r(u
n
j ) (A.8)

Centered First Spatial Derivitive

The centered spatial derivitive operator is determined as follows.

u(r + ∆r) = u(r) + ur(r)∆r +
1
2!

urr(r)∆r2 +
1
3!

urrr(r)∆r3 + O(∆r4) (A.9)

u(r −∆r) = u(r)− ur(r)∆r +
1
2!

urr(r)∆r2 − 1
3!

urrr(r)∆r3 + O(∆r4) (A.10)

Then subtracting equation (A.10) from (A.9) and dividing by 2∆r,

u(r + ∆r)− u(r −∆r)
2∆r

= ur(r) +
1
3
urrr(r)∆r2

︸ ︷︷ ︸
leading order
error term

+O(∆r4)

Re-writing this in terms of n and j,

un
j+1 − un

j−1

2∆r
= ur

∣∣∣
n

j
+ O(∆r2) = ∆c

r(u
n
j ). (A.11)
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Forward Time Average

The forward time averaging operator (expanded around the point tn+1/2) is developed iden-
tically to ∆f

t, except that (A.2) and (A.1) are averaged.

u(t + ∆t) + u(t)
2

= u

(
t +

∆t

2

)
+

1
8
utt

(
t +

∆t

2

)
∆t2

︸ ︷︷ ︸
leading order
error term

+O(∆t4)

This is re-written as

un+1
j + un

j

2
= u

∣∣∣
n+1/2

j
+ O(∆t2) = µf

t(u
n
j ). (A.12)
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Appendix B

RNPL Source Code

###########################################################

# Solution to spherically symmetric KG Equation

# MIB coordinates, symmetric double well potential

# 3 equations of motion

#

# John Homenuke

# June 17, 2004

###########################################################

###########################################################

# Parameters

###########################################################

# Maximum memory allowance. Necessary for Fortran code.

system parameter int memsiz:= 1000000

# Physical Inner and outer boundaries

parameter float rmin := 0.0

parameter float rmax := 20.0

# Other various parameters

parameter float pie := 3.14159265358979

parameter float rw := 16.67

parameter float r0 := 2.0

parameter float phi0 := -1.0

parameter float phic := 1.0

parameter float delr := 0.0893

parameter float sigma := 1.0

parameter float epsilon := 0.5

###########################################################

# Grid Definition

###########################################################
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# ’spherical’ is a user-specified name of the coordinate system.

# t and r are the independent variables. The first one is always

# the time coordinate.

spherical coordinates t,r

# ’uniform’ means the grid points are evenly spaced. A ’nonuniform’

# option has yet to be introduced into the language. ’g1’ is the

# name of the grid. ’[1:Nr]’ indexes the spatial grid points from

# 1 to Nr. In the temporal direction, the grid is bounded at run-

# time.

uniform spherical grid g1 [1:Nr] {rmin:rmax}

# ’phi’, ’pi’, etc. are the names of the grid functions. ’at 0,1’

# indicates the time-steps that the equations span at any one point

# in time, i.e. they contain terms indexed at n and n+1. If they

# included terms at n-1, n, and n+1, then the code would say,

# ’at -1,0,1’. The function ’ff’ is the function f(r). It is not

# evolved in time so the ’at 0,1’ is left out. ’{out_gf := 1}’ means

# the value function of the function is written to file while the

# computations happen. ’0’ means they are not.

float phi on g1 at 0,1 {out_gf := 1}

float pi on g1 at 0,1 {out_gf := 0}

float pp on g1 at 0,1 {out_gf := 0}

float ff on g1 {out_gf := 0}

###########################################################

# Finite-difference Operators

###########################################################

# Again, a relative notation is used here. The pointy brackets

# enclose the time-step relative to n and the square brackets

# enclose the spatial step relative to j. ’<1>f[0]’ is the

# same as saying ’f evaluated at n+1 and j’. The square brackets

# can enclose a vector for equations of higher spatial dimension.

# dt and dr are the spacings between neighbouring points.

operator DF(f,t) := (<1>f[0] - <0>f[0])/dt

operator MF(f,t) := (<1>f[0] + <0>f[0])/2

operator DC(f,r) := (<0>f[1] - <0>f[-1])/(2*dr)

operator DF(f,r) := (-3*<0>f[0] + 4*<0>f[1] - <0>f[2])/(2*dr)

operator DB(f,r) := ( 3*<0>f[0] - 4*<0>f[-1] + <0>f[-2])/(2*dr)

operator D3(f,r) := (<0>f[1] - <0>f[-1])/(r[1]^3 - r[-1]^3)

operator MD(f,t) := -epsilon*(6*<0>f[0] + <0>f[-2] + <0>f[2] - 4*(<0>f[-1]

+ <0>f[1]))/(16*dt)

###########################################################

# Equations of motion with BCs

###########################################################
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# Here, the discrete equations of motion are entered, telling the machine

# how to calulate the residual. The operators are used by replacing ’f’

# with a grid function or independent variable. The array indices at the

# left denote which grid points to apply the equations at the right to.

# The <> and [] need not be included if they are both 0.

evaluate residual pi {

[1:1] := DF(<1>pi[0],r) = 0;

[2:2] := DF(pi,t) = MF( 3/(1+ff*t/r)^2 * D3( (r+ff*t)^2*(pp+ff*pi)/

(1+DF(ff,r)*t) ,r) - 2*ff*pi/(r+ff*t) - phi^3 + phi ,t);

[3:Nr-2] := DF(pi,t) = MF( 3/(1+ff*t/r)^2 * D3( (r+ff*t)^2*(pp+ff*pi)/

(1+DC(ff,r)*t) ,r) - 2*ff*pi/(r+ff*t) - phi^3 + phi ,t)

+ MD(pi,t);

[Nr-1:Nr-1] := DF(pi,t) = MF( 3/(1+ff*t/r)^2 * D3( (r+ff*t)^2*(pp+ff*pi)/

(1+DB(ff,r)*t) ,r) - 2*ff*pi/(r+ff*t) - phi^3 + phi ,t);

[Nr:Nr] := DF(r*pi,t) + MF(DB(r*pi,r),t) = 0;

}

evaluate residual pp{

[1:1] := <1>pp[0] = 0;

[2:2] := DF(pp,t) = MF( DF( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,r) ,t);

[3:Nr-2] := DF(pp,t) = MF( DC( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,r) ,t)

+ MD(pp,t);

[Nr-1:Nr-1] := DF(pp,t) = MF( DB( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,r) ,t);

[Nr:Nr] := DF(r*pp,t) + MF(DB(r*pp,r),t) = 0;

}

evaluate residual phi {

[1:1] := DF(<1>phi[0],r) = 0;

[2:2] := DF(phi,t) = MF( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,t);

[3:Nr-2] := DF(phi,t) = MF( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,t) + MD(phi,t);

[Nr-1:Nr-1] := DF(phi,t) = MF( ( pi + ff*pp ) / ( 1 + DC(ff,r)*t ) ,t);

[Nr:Nr] := DF(r*phi,t) + MF(DB(r*phi,r),t) = 0;

}

###########################################################

# Initial Conditions

###########################################################

# These declarations follow the same rules as the residuals, but are expressions

# rather than equations.

initialize phi {

[1:Nr] := phi0 + (phic-phi0)*exp(-r^2/r0^2);

}

initialize ff {

[1:Nr] := (tanh((r-rw)/(delr*rw))+tanh(rw/(delr*rw)))/2;

}

initialize pi {
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[1:1] := 0;

[2:Nr-1] := sigma*DC(phi,r);

[Nr:Nr] := 0

}

initialize pp {

[1:1] := 0;

[2:Nr-1] := DC(phi,r);

[Nr:Nr] := 0

}

###########################################################

# Instructions

###########################################################

# Here the machine is told how to run the computations. ’looper iterative’

# is only necessary when the scheme is implicit. The initial conditions

# are always contained in a separate .sdf file, so can be supplied by the

# user. ’auto initialize’ automatically writes the file for the user from

# the ’initialize’ command above. ’auto update’ is the command that evolves

# the solution in time.

looper iterative

auto initialize phi, pi, pp, ff

auto update phi, pi, pp

###########################################################

# END of file

###########################################################
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