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Quasi-spherical light cones of the Kerr geometry

Frans Pretorius and Werner Israel
Canadian Institute for Advanced Research Cosmology Program, Department of Physics and
Astronomy, University of Victoria, PO Box 3055 STN CSC, Victoria BC, Canada V8W 3P6

Received 6 April 1998

Abstract. Quasi-spherical light cones are lightlike hypersurfaces of the Kerr geometry that are
asymptotic to Minkowski light cones at infinity. We derive the equations of these surfaces and
examine their properties. In particular, we show that they are free of caustics for all positive
values of the Kerr radial coordinater. Useful applications include the propagation of high-
frequency waves, the definition of Kruskal-like coordinates for a spinning black hole and the
characteristic initial-value problem.

PACS numbers: 0240, 0420

1. Introduction

The Kerr geometry is a vacuum spacetime with a Weyl tensor of Petrov type D. According
to the Goldberg–Sachs theorem [1], it therefore possesses two congruences (ingoing and
outgoing) of shear-free lightlike geodesics. Historically, these congruences played an
essential role in the discovery of the Kerr solution [2], because the metric takes a simple
explicit form in coordinates adapted to them.

In the original [2, 3] (Eddington–Kerr) form of the metric, the ingoing congruence
consists of parametric curves of the Eddington–Kerr coordinatevEK , often referred to as an
‘advanced time’. This nomenclature can be misleading, because hypersurfaces of constant
vEK are actually timelike, not lightlike, if the Kerr rotational parametera is non-zero. In
fact, we havegαβ(∂αvEK)(∂βvEK) = a2 sin2 θ/(r2 + a2 cos2 θ). (The lightlike congruences
are ‘twisting’, i.e. not orthogonal to any hypersurfaces, and hence not tangent to lightlike
hypersurfaces ifa 6= 0.)

Thus, the Eddington–Kerr form of the metric, and the Boyer–Lindquist form [3] derived
from it by an elementary coordinate transformation, correspond to a ‘threading’ [4] (i.e. a
one-dimensional foliation) of the manifold by twisting lightlike geodesics. However, a
‘slicing’ (three-dimensional foliation), in particular a lightlike slicing, is for many purposes
more advantageous and often corresponds more closely to the physics.

Light cones of the Kerr geometry have not previously been the subject of systematic
study to our knowledge. Perhaps this stems in part from a feeling that such hypersurfaces
would quickly develop caustics because of the twist inherent in the metric. Yet as
characteristics these surfaces obviously play a key role in the physics of Kerr black holes,
e.g. in the propagation of wavefronts and high-frequency waves, and in characteristic initial-
value problems.

In this paper we first derive the general solution for axisymmetric lightlike hypersurfaces
of the Kerr geometry (section 2). We then focus on a particular foliation (invariant under
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time displacement) by (either ingoing or outgoing) ‘quasi-spherical’ light cones, defined as
degenerate 3-spaces whose spatial sections are asymptotically spherical at infinity. These
hypersurfaces become the standard Minkowski light cones when the Kerr mass parameter
m vanishes; ifa = 0, m 6= 0, they are the familiar spherical light cones,t ± r∗ = constant,
of Schwarzschild spacetime (wherer∗ is the ‘tortoise’ coordinate). Quite generally, for
arbitrarym > 0 anda, they have the remarkable property of being free of caustics for all
positive values of the Kerr radial coordinater.

These appealing features suggest that coordinates adapted to quasi-spherical surfaces
should be especially convenient and useful for the description of the Kerr geometry. The
drawback (and it is considerable) is that the metric is no longer expressible in an explicit
elementary form, because the new coordinates are elliptic functions of the Boyer–Lindquist
coordinates.

We now briefly outline the contents of this paper. We begin in section 2 by solving
the eikonal equation for axisymmetric lightlike hypersufaces of the Kerr geometry. The
general solution is expressed in terms of integrals of elliptic type, and involves an arbitrary
function f of one variable, to be fixed when the ‘initial’ (e.g. asymptotic) shape of the
surface is given. (Ifm = 0 the geometry becomes flat and the integrals can be reduced to
elementary form; in section 3 we digress briefly to illustrate this.) Some general properties
of axisymmetric lightlike surfaces are developed in section 4. In section 5, guided by the
results of section 3 for Minkowski light cones, we make the special choice off appropriate
for asymptotically spherical light cones in Kerr space. The key result, that these are free
of caustics forr > 0, is demonstrated in section 6. In sections 7 and 8 we show how the
‘quasi-spherical’ coordinatesr∗, θ∗ defined by these light cones can be used to construct
high-frequency solutions to the wave equation and Kruskal-like coordinates for Kerr black
holes. Section 9 summarizes the limiting cases that can provide serviceable approximations
for the elliptic functions which appear in the quasi-spherical form of the metric. Finally,
in section 10 we present some results of numerical integrations for the inward evolution of
the light cone generators.

2. Axisymmetric lightlike hypersurfaces

The equation of an arbitrary axially symmetric lightlike hypersurface of the Kerr geometry
is expressible in terms of elliptic integrals as we now proceed to show.

We write the Kerr metric in its standard (Boyer–Lindquist) form

ds2 = 6

1
dr2+6 dθ2+ R2 sin2 θ dφ2− 4mar sin2 θ

6
dφ dt −

(
1− 2mr

6

)
dt2, (1)

where

6 = r2+ a2 cos2 θ, R2 = r2+ a2+ 2ma2r sin2 θ

6
, 1 = r2+ a2− 2mr, (2)

and we note the useful identities

6R2 = (r2+ a2)2−1a2 sin2 θ, (3)

gφφgtt − g2
φt = −1 sin2 θ. (4)

The equation

v(t, r, θ) = t + εr∗(r, θ) = constant, ε = ±1 (5)
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represents an axisymmetric lightlike hypersurface (ingoing forε = 1, outgoing forε = −1)
if gαβ(∂αv)(∂βv) = 0, i.e. if

1(∂rr∗)2+ (∂θ r∗)2 = (r2+ a2)2/1− a2 sin2 θ. (6)

It is easy to obtain a particular (separable) solution of (6) depending on two arbitrary
constants (a ‘complete integral’) by adding and subtracting an arbitrary separation constant
a2λ on the right-hand side. Let us define

P 2(θ, λ) = a2(λ− sin2 θ), Q2(r, λ,m) = (r2+ a2)2− a2λ1. (7)

(Note the useful identity

Q2+1P 2 = 6R2, (8)

which follows from (3).) A complete integral

r∗ = ρ(r, θ, λ,m), (9)

of (6) is then obtained by integrating the exact differential

dr∗ = (Q/1) dr + P dθ (10)

at fixedλ. When (10) is integrated, a second, additive integration constant appears, which
we shall denote bya2f (λ)/2, wheref is an arbitrary function.

We next proceed in the usual way to promote this complete integral, depending upon
the arbitrary constantsλ andf (λ), to a general solution involving an arbitrary function.

In (9), ρ is a function of three independent variablesr, θ andλ (not countingm and
a), and a more complete expression for its differential is

dρ = (Q/1) dr + P dθ + (a2/2)F dλ, (11)

whereF is the partial derivative

(a2/2)F (r, θ, λ,m) = ∂λρ(r, θ, λ,m). (12)

Its explicit form may be taken to be

F(r, θ, λ,m) =
∫ θ

0

dθ ′

P(θ ′, λ)
+
∫ ∞
r

dr ′

Q(r ′, λ)
+ f ′(λ). (13)

Up to now, we have takenλ to be a constant, i.e. dλ = 0 in (11). But we achieve
the same effect (i.e. (11) still reduces to (10)) even when dλ 6= 0 provided we require that
F = 0. In other words: the functionr∗(r, θ), given by (9) withλ now a function λ(r, θ),
remains a solution of (6) provided its extra dependence onr, θ throughλ does not change
the algebraic form of the differential (10). This will indeed be so if we impose the constraint

F(r, θ, λ,m) = 0. (14)

This condition fixes the dependence ofλ on r, θ for any given choice off (λ). Thus we
now have a general solution, depending upon an arbitraryfunction f [λ(r, θ)].

The explicit form of the general solution (9) is then

ρ(r, θ, λ) =
∫
r2+ a2

1(r,m)
dr +

∫ ∞
r

r ′2+ a2−Q(r ′, λ,m)
1(r ′, m)

dr ′

+
∫ θ

0
dθ ′ P(θ ′, λ)+ 1

2a
2f (λ), (15)

where the radial dependence has been arranged to ensure convergence of the definite integral
at its upper limit. When performing the integrations in (13) and (15), we are allowed to treat
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λ as merely a passive constant parameter—it is in fact a function of the limits of integration
r,θ , not of the integration variables—with the constraint (14) imposeda posteriori. It is
possible, though not especially illuminating or useful, to express each of these integrals in
terms of standard elliptic integrals.

3. The casem = 0: light cones in Minkowski space

As a simple illustrative example (and because we shall need some of the results later), we
specialize in this section to the casem = 0. The Kerr line-element reduces to the metric of
flat spacetime expressed in terms of oblate spheroidal coordinatesr, θ—related to Cartesian
coordinates by

x2+ y2 = (r2+ a2) sin2 θ, z = r cosθ. (16)

The second integral in (13) can be reduced to the same general form as the first integral
whenm = 0. Assume that we are in a domain whereλ(r, θ) < 1. Setting

Q0(r
′, λ) = Q(r ′, λ,m = 0) =

√
r ′2+ a2

√
r ′2+ a2(1− λ), (17)

and making the substitution

r ′ = a√1− λ sinχ ′/
√
λ− sin2 χ ′, (18)

we find

dr ′/Q0 = dχ ′/a
√
λ− sin2 χ ′. (19)

Thus the two integrals in (13) can be combined into a single integral, to give

aF(r, θ, λ,m = 0) =
∫ θ

χ(r,λ)

dχ ′√
λ− sin2 χ ′

+ g′(λ), (20)

where

g(λ) = af (λ)+ 2
∫ θ∗

0

√
λ− sin2 χ ′ dχ ′, (21)

and the form ofχ(r, λ) is given by the ‘unprimed’ version of (18); equivalently,

tanθ∗ =
√
r2+ a2

r
tanχ, λ ≡ sin2 θ∗. (22)

The functiong(λ) is arbitrary. As an example, let us consider the simplest choice,
g(λ) = 0. The functional dependenceλ(r, θ) corresponding to this choice is determined
by the constraintF = 0, which requires thatχ(r, λ) = θ by inspection of (20). Thus (22)
gives

tanθ∗ =
√
r2+ a2

r
tanθ =

√
x2+ y2

z
(23)

by (16), showing thatθ∗ is the spherical polar angle. Withλ(r, θ) known from (23), it is
straightforward to integrate (10) to obtain

r∗ =
√
r2+ a2 sin2 θ. (24)

Thusr∗ is the usual spherical radius, and our solutionsv = t ± r∗ = constant of (6) are
in this case the Minkowski light cones.
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4. Axisymmetric lightlike hypersurfaces: general properties

Returning to the general case, we shall now derive a number of results applicable to all
axisymmetric lightlike hypersurfaces of Kerr spacetime.

Since the functionλ(r, θ) is determined by the constraintF = 0, the partial derivatives
of λ can be read off from dF = 0 (13):

µ dλ = −dr/Q+ dθ/P, µ ≡ −∂F/∂λ. (25)

It follows from (10) and (25) that∇r∗ · ∇λ = 0, i.e. thatr∗ andλ are orthogonal with
respect to the intrinsic 2-metric

dσ 2 = 6(dr2/1+ dθ2) (26)

of the spatial sections(φ, t) = constant of the Kerr geometry. Sinceλ is independent ofφ
and t , it follows further thatλ is constant along the lightlike generators, i.e.

`α∂αλ = 0, `α = −∂αv = −∂α(t + εr∗). (27)

(In fact, λ is just Carter’s ‘fourth constant of the motion’ for Kerr geodesics in the special
case where the geodesics are lightlike and have zero angular momentum.)

If r∗ andλ are adopted as coordinates in place ofr andθ , the 2-metric (26) becomes

dσ 2 = R−2(1 dr∗2+ L2 dλ2), L ≡ µPQ, (28)

where we have made use of (10), (25) and (8). The identity (4) can be re-arranged in the
form (

1− 2mr

6

)
+ ω2

BR
2 sin2 θ = 1

R2
, (29)

where

ωB = − gφt
gφφ
= 2mar

6R2
(30)

is the Bardeen or ZAMO angular velocity dφ/dt which characterizes orbits having zero
angular momentum. This enables us to recast the Kerr metric (1) in the form

ds2 = 1

R2
(dr∗2− dt2)+ L

2

R2
dλ2+ R2 sin2 θ(dφ − ωB dt)2. (31)

Thus

gr∗r∗ = R2/1 = −gtt , (32)

from which the null character of the 3-spacest ± r∗ = constant is directly evident. The
degenerate intrinsic metric of these 3-spaces is

(ds2)LL = (L/R)2 dλ2+ R2 sin2 θ(dφ − ωB dt)2, (33)

showing that the generators rotate with ZAMO angular velocity relative to stationary
observers at infinity. (This is directly obvious from (27), which shows that`φ = 0 for
an axisymmetric hypersurface). From (33) we see that caustics will develop when the
degenerate volume element tends to zero, i.e. whenL sinθ → 0 (recalling thatλ has a fixed
value along each generator.)

The integrability of (25) for the exact differential dλ provides a condition on the
integrating factorµ. This takes the form of an evolution equation forµ along the generators.
A straightforward calculation, which uses (7), (8), (13) and (25) itself, yields

(∂µ/∂r)λ = a2

2

6R2

P 2Q3
, (34)
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where the subscriptλ indicates that the partial derivative is being taken at fixedλ.
Inversion of the differential relations (10) and (25) gives

6R2 dr = 1Q(dr∗ − µP 2 dλ), 6R2 dθ = P(1 dr∗ + µQ2 dλ), (35)

which will be of use in subsequent sections.

5. Quasi-spherical light cones

From here on we confine attention to a special class, ‘quasi-spherical light cones’, defined
as lightlike hypersurfaces which asymptotically approach Minkowski spherical light cones
at infinity. Define an angleθ∗(r, θ) by

λ = sin2 θ∗. (36)

In Minkowski space, the generatorsλ = constant of light cones are radial straight lines,
suggesting (as we confirmed in section 3) thatθ∗ is the spherical polar angle. Forr � a,
the oblate coordinates(r, θ) become indistinguishable from spherical coordinates, so we
have the condition

θ∗(r = ∞, θ) = θ (37)

for spherical light cones in Minkowski space. This asymptotic condition must therefore
also hold for quasi-spherical surfaces in Kerr space. This fixes the arbitrary functionf ′(λ)
in (13). We conclude that

F(r, θ, λ,m) =
∫ ∞
r

dr ′

Q(r ′, λ,m)
−
∫ θ∗

θ

dθ ′

P(θ ′, λ)
(38)

generates the solution for quasi-spherical surfaces. The radial functionρ(r, θ, λ,m) is given
by (15) with (compare (21) withg(λ) = 0)

af (λ) = −2
∫ θ∗

0

√
λ− sin2 θ ′ dθ ′. (39)

The equation of the hypersurface is thenv = t ± r∗(r, θ) = constant, withr∗ =
ρ(r, θ, λ(r, θ)) and the functionλ(r, θ) ≡ sin2 θ∗ determined by the constraintF = 0.

6. No caustics for positiver

We now prove the rather remarkable result that quasi-spherical light cones are free of
caustics for all positive values of the Kerr radial coordinater.

This is trivially true ifm = 0, when these surfaces are simply light cones in Minkowski
space with vertices at the spatial origin, represented byr = 0, θ = 0 or π in oblate
spheroidal coordinates according to (16). We shall prove that it is truea fortiori for
m > 0 by effectively showing that whenm is larger, the generators convergeless rapidly
asr → 0+.

As noted in section 4, formation of a caustic along a generator is signalled by

µPQ sinθ → 0. (40)

We consider in turn the behaviour of each factor in (40) along an ingoing generator, so
that r is positive and decreasing, withλ fixed. Because of the equatorial symmetry we
need only consider ‘northern’ generators, i.e. we may assumeθ∗ (which specifies the initial,
asymptotic value ofθ when r = +∞) to be acute, andP(θ, λ) positive, at least initially.
(Note from (10) that the equatorial symmetry ofr∗(r, θ) impliesP(λ, π − θ) = −P(λ, θ).)
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Since θ decreases withr at fixed λ according to (25), the factorP = a
√
λ− sin2 θ

must increaseand remain positive. Any possible caustic in the Kerr positive-r sheet cannot
arise from the behaviour ofP .

We proceed to consider the other factors in (40). From the definition (7),

Q(r, λ,m) > Q(r, λ,m = 0) > 0 (r > 0, m > 0). (41)

We shall further show that

(∂θ/∂m)r,λ > 0 and (∂µ/∂m)r,λ > 0 (r > 0, θ∗ < π/2). (42)

Thus, none of the three factorsµ, Q and sinθ can reach zero sooner for positivem than
they do in flat space, and hence they do not reach zero for any positive value ofr.

To establish (42), we note that the functionθ(r, λ,m) is determined by the vanishing
of F(r, θ, λ,m) as given by (38). Taking the differential at fixedr,λ and using (7) gives

(∂θ/∂m)r,λ = a2λPI, I (r, λ,m) ≡
∫ ∞
r

r ′ dr ′/Q3(r ′, λ,m), (43)

which is manifestly positive. Turning toµ, this is defined as a function ofr, θ, λ andm
by µ = −∂F/∂λ according to (25). Inverting the order of partial differentiation and using
(38),

∂µ

∂m
= − ∂

∂λ

∂F

∂m
= ∂

∂λ
(a2λI), (44)

∂µ

∂θ
= − ∂

∂λ

∂F

∂θ
= − ∂

∂λ

1

P
= a2

2P 3
. (45)

Hence (
∂µ

∂m

)
r,λ

= ∂µ

∂m
+ ∂µ
∂θ

(
∂θ

∂m

)
r,λ

= a2

(
1+ 1

2

a2λ

P 2

)
I + 3

2a
4λJ, (46)

where

J (r, λ,m) =
∫ ∞
r

r ′1(r ′) dr ′/Q5(r ′, λ,m). (47)

Each term in (46) is manifestly positive. This completes the proof.
The fact that adding mass to the Kerr field shouldreducethe focusing of ingoing radial

light rays is at first sight paradoxical, but can be explained by the circumstance that the
material source is not at the origin, but located on the singular equatorial ringx2+y2 = a2,
z = 0 (see (16)). The source has a peculiar, ‘demi-pole’ structure [5], made possible by the
double-sheeted structure of the Kerr manifold: a ring of positive mass in the sheetr > 0 is
bonded to a ring of negative mass in the sheetr < 0. Light rays heading inwards toward
the origin in the sheetr > 0 are deflected outward by the ring and defocused. Repulsive
effects have become dominant by the time they pass through the diskr = 0: the rays
are then refocused and form a caustic in the sheetr < 0. This description is more than
just hand-waving: the Keres Newtonian analogue model of the Kerr field [6] has a source
structure and equations of motion closely resembling Kerr (apart from frame dragging), and
displays precisely this behaviour.

Figure 1 (a result of numerical integrations described in section 10) shows the ingoing
generators mapped onto the flat background of the Kerr–Schild decomposition, using the
rectangular coordinates defined in (16) (effects of frame dragging are not shown). According
to the Keres–Kerr model, the gravitational ‘force’ should become repulsive forr ≈ a, and,
indeed, the generators have inflection points near this radius.
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Figure 1. Null generators of the quasi-spherical light cones projected onto the Cartesian plane
for m = 1, a = 1

2 . The azimuthal twist (not shown in this two-dimensional representation)
depends on the choice of azimuthal coordinate; it is zero for the coordinateφε introduced in
section 8. In order to follow the generators through the equatorial diskr = 0 and into the
negative-r sheet, the ‘southern half’ (θ > π/2) of the positive-r sheet has been cut away, and
replaced by the ‘northern’ half (θ < π/2) of the negative-r sheet. Note that only well within
the outer horizon does the mass of the spacetime significantly affect ther, θ behaviour of the
generators (which would continue as straight lines intersecting the origin ifm were zero). One
branch of the caustic emerges from the singular ringr = 0, θ = π/2 (if m > 0) and creeps
inwards to the axis and ‘downwards’ toward increasingly negative values ofr. There it meets
a second branch, which runs down the negative-r segment of the axisθ = 0, beginning from
r = 0.

7. Eikonal solution of the wave equation

Since the quasi-spherical light conest ± r∗ = constant are characteristics of the wave
operator, the coordinatesr∗, λ are well adapted for representing asymptotically spherical
high-frequency modes.

The wave equation for9(r∗, λ, φ, t) on the Kerr background (31) is

1

R2
�9 = (∂2

r∗ − ∂2
t )9 + (∂r∗ ln γ )(∂r∗9)+ γ−1∂λ(γ

−11 sin2 θ∂λ9)

+
(

1− 2mr

6

)
1

R2 sin2 θ
∂2
φ9 − 2ωB∂φ∂t9 = 0 (48)

whereγ = µPQ sinθ gives the area element (degenerate volume element) on the light
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cone (33).
Introducing the ansatz

9 = 8(r∗, λ)eiω(t+εr∗)einφ (ε = ±1) (49)

into (48), we find

2εiω
[
∂r∗8+8

(
1
2∂r∗ ln γ − εinωB

)]+ B = 0, (50)

where

B = ∂2
r∗8+ (∂r∗ ln γ )(∂r∗8)+ γ−1∂λ(γ

−11 sin2 θ∂λ8)− n2

R2 sin2 θ

(
1− 2mr

6

)
8 (51)

has no explicitω-dependence. We can re-expressωB in (50) as a partial derivative with
respect tor∗. Defining an angular function

α(r, λ) =
∫ r 2mar ′

1(r ′)Q(r ′, λ)
dr ′ (52)

and recalling (35), we find(
∂α

∂r∗

)
λ

= 2mar

1Q

(
∂r

∂r∗

)
λ

= 2mar

6R2
= ωB. (53)

Therefore (50) can be rewritten as

2εiω∂r∗(
√
γe−εinα8) = −√γe−εinαB. (54)

If ω is large, we can apply an iterative procedure to (54) and (51) to develop the solution
for 8 in inverse powers ofω. In the lowest approximation, we simply equate the coefficient
of ω in (54) to zero. This yields the ‘eikonal approximation’

9 ≈ γ−1/2f (λ)eiω(t+εr∗)ein(φ+εα) (55)

with an arbitrary functionf (λ). By linear superposition we can build from this an arbitrary
high-frequency solution

9 ≈ γ−1/2F(λ, φ + εα, t + εr∗), (56)

whereF is an arbitrary function of its three arguments varying rapidly with time.
From (55) and (53) we see that crests of high-frequency azimuthal (φ-dependent) waves

twist about the axis with angular frequencyωB , the ZAMO angular velocity. BecauseωB
and α depend onλ, propagation of azimuthal waves produces latitude-dependent phase
shifts. The latitude dependence is, however, always bounded, even whenα → ±∞ at
horizons.

In particular, wave-tails propagating inwards from the event to the Cauchy horizon of
a spinning black hole experience a blueshift which is modulated by an oscillatory, latitude-
dependent factor whenn 6= 0—an effect first noted by Ori [7]. However, since|n| is no
larger than the multipole order̀, this effect is more than offset by the natural power-law
decay of the higher multipole wavemodes with advanced timev, 9 ∼ v−(2`+2). It does
not affect the uniformity of the leading-order divergence e|κ−|v of blueshift at the Cauchy
horizon, whereκ− (the inner-horizon surface gravity) is a constant. These features, which
are expected to extend at least qualitatively to waves having (initially) lower frequencies,
are important when considering the back-reaction of blueshifted wave-tails on the geometry
near the Cauchy horizon [8].
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8. Kruskal coordinates

It is straightforward to transform the Kerr metric (31) into a Kruskal-like form. We introduce
retarded and advanced timesu andv, and associated Kruskal coordinatesU andV , by the
definitions

− dU

κU
= du = d(t − r∗), dV

κV
= dv = d(t + r∗). (57)

Here, κ is the surface gravity of the horizon under consideration, defined for the outer
(r = r+) and inner (r = r−) horizons by

κ± = ±
√
m2− a2/(r2

± + a2). (58)

Then (31) becomes

ds2 = 1

κ2R2

1

UV
dU dV + L

2

R2
dλ2+ R2 sin2 θ(dφ − ωB dt)2 (59)

with

− UV = e2κr∗ and − V/U = e2κt . (60)

The first (dU dV ) term is manifestly regular at the horizon sheetsU = 0 andV = 0. The
last term, involving the Boyer–Lindquist coordinatesφ and t , is not. We therefore define
the advanced and retarded angular coordinatesφ+, φ− by

φε = φ + εα(r, λ) (ε = ±1) (61)

whereα was defined in (52). It is straightforward to show that

dα = ωB dr∗ −N dλ, N = µP 2ωB +ma3I (62)

with I defined as in (43). Thus the last term in (59) can be expressed in a manifestly regular
way as

dφ − ωB dt = dφε − ωB duε + εN dλ, (63)

with u+ = v, u− = u. In (63) we can choose either sign forε, depending on which sheet
of the horizon is of interest. For example,φ+ andu+ are regular on the ‘upward’ (future)
sheets of both outer and inner horizons, with the nice bonus feature thatu+ is constant over
each ingoing light cone andφ+ is constant along each ingoing generator.

Is there a single azimuthal coordinate which regularizes the metric simultaneously on
both past and future sheets of (say) the outer horizon, including the bifurcation surface?
SinceωB takes a constant valueωH = a/2mr+ over this horizon, a possible choice for the
desired coordinate is8 = φ−ωH t , and8 in fact agrees withφ+ on the future sheet andφ−
on the past sheet. But8 develops the undesirable features characteristic of rigidly rotating
axes in the outer regions of the space.

We briefly mention that following standard methods one could construct a Penrose
diagram of the Kerr spacetime using the Kruskal-like coordinates (60), valid up to formation
of the caustic surface. Such a diagram would not look any different from the usual textbook
examples, see for example [9], except that asingletwo-dimensional diagram is all that would
be needed to illustrate the causal structure of the spacetime. This is because the ingoing
(V = constant) and outgoing (U = constant) lightlike congruences intersect at surfaces of
constantr∗, represented by a single point on a diagram where the compactified coordinate
system is derived from (60). The causal future of observers on the surface of intersection
is entirely contained within the future-directed wedge ofU = constant,V = constant (as is
evident from (31) by noting that when|dr∗| > |dt | the line-element is spacelike).
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9. Limiting cases and approximations

The quasi-spherical coordinatesr∗ andλ = sin2 θ∗, and the coefficients in the quasi-spherical
forms (31) and (59) of the Kerr metric are complicated elliptic functions of the Kerr–Boyer–
Lindquist coordinatesr,θ . It may therefore be useful to record here the simple forms these
functions reduce to in the two opposite limiting cases,m/a→ 0 andm/a→∞.
(i) m = 0, a 6= 0: this was studied in section 3, and we simply list the results

r∗ =
√
r2+ a2 sin2 θ, tanθ∗ =

√
r2+ a2

r
tanθ, (64)

Q = r(r2+ a2)√
r2+ a2 sin2 θ

, P = a2 sinθ cosθ√
r2+ a2 sin2 θ

, µP = 1

2

sinθ cosθ

(sinθ∗ cosθ∗)2
, (65)

γ = 1

2

r2+ a2 sin2 θ

cosθ∗
. (66)

(ii) m 6= 0, a = 0: This is just Schwarzschild spacetime, and one readily finds

r∗ =
∫

dr

1− 2m/r
, θ∗ = θ, Q = r2, µP = 1

sin 2θ
, (67)

γ = 1

2

r2

cosθ
. (68)

Comparison with numerical results described in the next section suggests that them = 0,
a 6= 0 case functions can provide serviceable analytic approximations outside the outer
horizon for broad ranges ofm and a. For example, withm = 1 and a = 1

2, all of
the quantities exceptr∗ in (64)–(66) differ by no more than roughly 1–3% from the true
(numerically integrated) values, outside ofr+. (r∗ converges only logarithmically to the
Minkowski value in the limitr →∞, and of course diverges at the horizon.)

10. Numerical evolution of the generators

In figure 1 we illustrated the behaviour of the generators and the nature of the caustic that
forms in the negative-r sheet of the Kerr manifold. Theλ = constant curves were obtained
by numerically integrating the evolution equations of the null generators of the hypersurface:

`α = dxα/dτ = −gαβ∂βv, (69)

with affine parameterτ . In particular

ṙ ≡ dr/dτ = −εQ/6, θ̇ ≡ dθ/dτ = −εP/6. (70)

To detect the formation of a caustic (see 40) we track the evolution ofµ, and to
reconstruct surfaces of constantr∗ in the r, θ plane we calculate the change ofr∗ along the
generators. If we treatr as the independent variable, from (70), (15), (25) and (34) we find

(∂θ/∂r)λ = P

Q
, (71)

(∂r∗/∂r)λ = 6R2/1Q, (72)

and

(∂µ/∂r)λ = a2

2

6R2

P 2Q3
. (73)
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At the horizonsr∗ and its derivative with respect tor diverge. These divergences are
coordinate singularities which can be avoided numerically by subtracting off the infinities
that occur there. Thus definẽr as

r̃ = r∗ − ln |r − r+|
2κ+

− ln |r − r−|
2κ−

, (74)

whereκ+ (κ−) is the surface gravity at the outer (r+) (inner (r−)) horizon as defined in (58).
So we actually integratẽr along the generators and retriever∗ from the result using (74).

For asymptotic intitial conditions forµ and θ , we use the relations listed in (64)
and (65) for a sufficiently large initialr. Using (43) and (46) one can show that
µ(r, λ,m) − µ(r, λ,m = 0) ≈ (a2λm/8 sinθ cosθ)(1/r2) and θ(r, λ,m) − θ(r, λ,m =
0) ≈ (a4λm sinθ cosθ/4)(1/r5) for large r along a given generator. The initial condition
for r∗ is arbitrary (r∗ + constant is still a solution to (6)).

Figure 2 is a close-up within the inner horizon of the case illustrated in figure 1, showing
the projections of surfaces of constantr∗ onto the

√
x2+ y2, z plane. This is the only region

wherer∗ = constant surfaces start showing significant deviations from the spheres of the
massless scenario. Note that the caustic surface does not coincide with a hypersurface
slice r∗ = constant: following the generators inward a caustic first develops where the
hypersurface meets the ring singularity, after which it quickly ‘unravels’. We only present
plots form = 1 anda = 1

2; except for variations in scale there are no qualitative differences
in the shapes of the curves and surfaces for arbitrary non-zeroa and positivem.
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Figure 2. Null generators and surfaces of constantr∗ projected onto the Cartesian plane
(m = 1, a = 1

2). This is a close-up of figure 1 focusing on the region between the inner
horizon and caustic. As in figure 1, the northern half of the negative-r sheet replaces the
southern half of the positive-r sheet to illustrate the evolution of the generators through the
equatorial disk.

11. Concluding remarks

Despite the complexity of the coordinate transformations linking them to the familiar Boyer–
Lindquist coordinates, the quasi-spherical coordinatesr∗, θ∗ introduced in this paper and
the light cones associated with them provide new and useful insights into the structure of
the Kerr geometry and wave propagation in Kerr spacetime. We anticipate that they will
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find increasing use as their special advantages become apparent, in particular for numerical
schemes to evolve characteristic initial-value data in problems involving spinning black
holes [10].
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