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Quantum interest for scalar fields in Minkowski spacetime

Frans Pretorius
Department of Physics and Astronomy, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia, Canada V8W

~Received 16 March 1999; published 18 February 2000!

The quantum interest conjecture of Ford and Roman states that any negative energy flux in a free quantum
field must be preceded or followed by a positive flux of greater magnitude, and the more the surplus of positive
energy grows the further the positive and negative fluxes are apart. In addition, the maximum possible sepa-
ration between the positive and negative energy decreases the larger the amount of negative energy. We prove
that the quantum interest conjecture holds for arbitrary fluxes of noninteracting scalar field energy in 4D
Minkowski spacetime, and discuss the consequences in attempting to violate the second law of thermodynam-
ics using negative energy. We speculate that quantum interest may also hold for the electromagnetic and Dirac
fields, and might be applied to certain curved spacetimes.

PACS number~s!: 04.62.1v, 03.70.1k
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I. INTRODUCTION

Quantum field theory permits the existence of sta
where the renormalized energy density can become a
trarily negative in regions of spacetime even though the t
energy is always positive@1#. Negative energy is an essenti
ingredient in many bizarre effects, including wormholes@2#,
warp drives@3#, and time machines@4#, and may be used to
violate the second law of thermodynamics@5#,@6#. Fortu-
nately ~or unfortunately! there appear to be severe restr
tions on the magnitude and duration of negative energies
might occur in a quantum field. One form of these restr
tions are the ‘‘quantum inequalities,’’ originally proposed b
Ford and Roman@7#,@8# and studied by numerous autho
since@9#, which essentially state that large amounts of ne
tive energy can only be ‘‘seen’’ for very short intervals
time. These inequalities have been used to place strin
limitations on warp drive and wormhole geometries@10#,
@11#.

Recently, Ford and Roman proposed the ‘‘quantum in
est conjecture’’ and proved it for delta function pulses
negative energy for massless scalar fields in 2D and
Minkowski spacetime@12#. This conjecture is a consequen
of the quantum inequalities~QI’s!, and states that any nega
tive energy pulse~the ‘‘loan’’ ! must be accompanied~‘‘re-
paid’’! by a positive energy pulse within a certain maximu
time interval, and the larger the separation of the pulses
larger the magnitude the positive pulse must be relative
the negative pulse~i.e., repaid with ‘‘interest’’!. At first
glance this statement may not seem too profound — afte
the total energy must be positive, so if there is a locat
with negative energy there will be compensating posit
energy somewhere in the spacetime. But the quantum in
est conjecture tells us a lot more about the nature of nega
energies in free-fields: negative energy is always in cl
proximity to an entourage of positive energy. This, for i
stance, has immediate consequences in attempts to vi
the second law of thermodynamics. For suppose nega
energies were ‘‘substantial’’ enough that one could in pr
ciple reflect only the negative energy part of the flux p
duced by an accelerating mirror as shown in Fig. 1~a variant
of a device first proposed by Davies@6# who used it to con-
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struct a reversible process that effectively transferred ene
from a cold body to a hot one without doing work!. The
resultant stream of negative energy could be sent far eno
away from the device so that one could reasonably apply
free-field quantum inequalities to the stream. Even thou
each pulse within the stream may be consistent with
original quantum inequality, the stronger quantum inter
conjecture strictly forbids such a flux of negative energ
This implies that the mirror device in Fig. 1 cannot exist;
we want to reflect negative energy we must reflect its supp
of positive energy, which is at least as large in magnitu
Thus one cannot subject a hot body to a pure flux of nega
energy to lower its entropy~at least using scalar quantum
fields!, as suggested in@6#.

In this paper, using a simple scaling argument, we pres

FIG. 1. A pair of mirrors~A and B! accelerate back and forth in
tandem, radiating negative energy in the direction of increas
acceleration and positive energy in the opposite direction. Betw
these two mirrors is a third mirror~C! that periodically flips so that
the negative energy parts of the flux generated by mirrors A an
are always reflected in the same direction. Such a device cou
principle produce a steady flow of negative energy,if it were pos-
sible to reflect just the negative part of the mirror flux.
©2000 The American Physical Society05-1
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FRANS PRETORIUS PHYSICAL REVIEW D 61 064005
a proof of quantum interest for arbitrary distributions
negative energy of scalar fields in 4D Minkowski spaceti
~slightly weaker results are obtained in 2D Minkows
spacetime!. We do this first for the massless scalar field
Sec. III, after introducing the quantum inequalities in Sec.
In Sec. IV we show that a massive scalar field has stron
constraints on the magnitude and duration of negative e
gies than a massless field, thus making the results of Sec
applicable to both types of scalar fields. In Sec. V we brie
comment on the possibility of extending quantum interes
the electromagnetic and Dirac fields, curved spacetimes
to situations in Minkowski space where mirror-like bounda
conditions are imposed on the fields.

II. QUANTUM INEQUALITIES

The quantum inequalities can be stated as follows.
inertial observer samples the local energy densityr(t) over a
period of time with a sampling functiong(t) to obtain an
average energy density^r&:

^r&5E
2`

`

g~ t !r~ t !dt. ~1!

The only conditions imposed upong(t) are that

E
2`

`

g~ t !dt51 andg~ t !>0 ;t. ~2!

Then,

^r&>^rmin&, ~3!

where^rmin& is a constant that depends upon the samp
function g(t) and the dimensionalityd of the spacetime.
Note that for a given energy densityr(t) Eq. ~3! must be
satisfied by all choices ofg(t). Flanagan’s optimal bound fo
a massless scalar field in 2D is@13#

^rmin&52
1

24pE2`

` g8~ t !2

g~ t !
dt, ~4!

while Fewster and Eveson obtained the following bounds
2D and 4D Minkowski spacetime@14#:

^rmin&52
1

16pE2`

` g8~ t !2

g~ t !
dt, ~2D! ~5!

^rmin&52
1

16p2E2`

`

„g1/2~ t !9…2dt, ~4D!. ~6!

Certain sampling functions will not give a lower bound,
particular if there are discontinuities ing(t) or g8(t). For
example the rectangular pulse function„g(t)51/t0 when
2t0/2,t,t0/2 and 0 elsewhere… doesn’t give a finite lower
bound ^rmin&. This makes sense if we recall the positiv
negative energy delta pulse pair produced by a mirror
instantaneously accelerates from rest~producing a negative
pulse!, then, after undergoing a period of uniform acc
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eration, decelerates to zero acceleration~emitting a positive
pulse! @12#. The magnitude of energy produced by the mirr
is proportional to its change in acceleration with time. W
can thus make the negative pulse as energetic as we w
but doing so shortens the time interval before the posit
pulse arrives~the mirror is decelerated before it crashes in
the observer!. If we sample the negative energy with th
rectangular function we can avoid measuring any posit
energy by timing the rectangular function to turn off befo
the positive pulse arrives.

More insight into the intimate relationship between t
sampling function and minimum bound can be obtained fr
the derivation of Fewster and Eveson. One can write Eq.~6!
as @14#

^rmin&52
1

16p3E0

`

„g1/2̂~w!…2w4dw, ~7!

whereg1/2̂(w) is the Fourier transform of the square root
g(t). Smooth sampling functions, like the Lorentzian fun
tion originally employed by Ford, decay rapidly in the fre
quency domain, smoothing over higher frequency~hence
higher energy! transient components of the flux. Negativ
energies in a free field appear to be coherence or interfere
effects produced by peculiar superpositions of the posi
mode quanta of the field. For example, the well-know
vacuum 1 2 particle stateuc&5au0&1bu2& has negative
energy at periodic intervals with appropriate choices ofa
and b: the frequency and energy density of the negat
regions are proportional to the frequency of the two-parti
modes@9#. This suggests that if we want to see a lot
negative energy we need to look at such high frequency t
sient phenomena, and the only way to ‘‘catch’’ the negat
energy is to use a sampling function with steep edges. Bu
discussed in the introduction the quantum interest conjec
seems to say that one cannot interact with this negative
ergy as one can with positive energy — ‘‘catch’’ may be
overstatement.

III. QUANTUM INTEREST FOR MASSLESS SCALAR
FIELDS

The key to obtaining useful information from the quantu
inequalities in light of the arbitrariness of the sampling fun
tion, and hence lower bound, is to choose an appropr
class of sampling function. To prove quantum interest,
will use a functiong(t) with compact support„g(t) is zero
outside the range@2t0/2,t0/2#…, that has a single maximum
at t50 and is sufficiently smooth such that a lower bound
Eqs.~4! – ~6! exists. For simplicity we will also assume tha
g(t) is symmetric aboutt50. For example, the following
sampling functions will do~though for the most part the
particular choice will not matter!:

g~ t !}cosnS pt

t0
D , 2

t0

2
,t,

t0

2
~n>2!, ~8!

0 elsewhere,
5-2
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FIG. 2. We sample a local distribution of negative energy with a functiong(t) and with a scaled version ofg(t), namely ḡ(t)
5g(t/x)/x. The quantum inequalities then tell us that there is a maximum scale factorxmax beyond which positive energy must be sampl

by ḡ(t).
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g~ t !}S t22
t0
2

4 D n

, 2
t0

2
,t,

t0

2
~n>2!, ~9!

0 elsewhere.

The minimum bounds are strongest~least negative! whenn
52; asn→` these functions approachd(t) which has no
lower bound.

Now consider the hypothetical situation shown in Fig.~2!.
We have an isolated distribution of negative energy flow
past the observer who samples it with a functiong(t) like ~8!
or ~9!, timed to snugly encompass the negative flux. W
want to answer two questions:

1! How isolated can the negative pulse be? In ot
words, how soon before or after the negative flux arriv
must one see positive energy.

2! When we do start sampling positive energy, must o
pay quantum interest? I.e., does the total positive energy
weigh the negative energy by an amount that increases
further the two pulses are apart.

To answer these questions we sample the distribu
again with a second functionḡ(t) that is merely a copy of
g(t) scaled by a factorx>1:

ḡ~ t !5
1

x
gS t

xD . ~10!

The support ofḡ(t) is thus@2xt0/2,xt0/2#, and the leading
factor of 1/x is a normalization constant to giveḡ unit inte-
gral. If we calculate the minimum negative energy dens

^r̄min& allowed by the quantum inequalities usingḡ in Eq.
~4! or ~5! for 2D and Eq.~6! in 4D Minkowski spacetime we
obtain the key result:

^r̄min&5
^rmin&

xd
. ~11!
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Here^rmin& is the lower bound associated withg(t) andd is
the spacetime dimension~2 or 4!. This expression immedi-
ately suggests the principle of quantum interest. We h
total negative energyEm5*

2t0/2
t0/2

r(t)dt and an average en

ergy density ofravg5Em /t0'^r&. If we now increase our
sampling range toxt0, and r(t) is zero outside of
@2t0/2,t0/2#, thenravg will scale as 1/x. But the maximum
allowed negative energy density scales as 1/xd, thus positive
energy~and probably quite a lot of it! is eventually needed to
satisfy the quantum inequalities.

We can make the preceding statement more precise.
fine a constanty, with 0,y<1, such that

^r&5E
2t0/2

t0/2

g~ t !r~ t !dt5y^rmin&. ~12!

Note that for most sampling functionsg(t) there will prob-
ably not be any quantum state that achieves the minim
(y51). Now stretchg(t) by the factorx.1, and to answer
the first question we will show that there is a largest poss
x5xmax allowed by the QI’s if we assume zero energy de
sity outside of the negative pulse, as illustrated in Fig. 2:

E
2xt0/2

xt0/2

r~ t !ḡ~ t !dt5
1

xE2t0/2

t0/2

r~ t !g~ t/x!dt>^r̄min&5
^rmin&

xd
.

~13!

Using Eq.~12! we can rewrite the inequality as

xd21<
1

y

E
2t0/2

t0/2

r~ t !g~ t !dt

E
2t0/2

t0/2

r~ t !g~ t/x!dt

. ~14!

This clearly shows that if we have some negative ene
(yÞ0) then there is an upper bound onx, for, recalling that
g(t) is positive with a single peak att50 so thatg(0)
>g(t/x)>g(t), one can see that the ratio of the two int
5-3
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FIG. 3. In this situation the positive flux arrives a timeDt5t12t0/2 after the negative pulse, and lasts for a timext0/22t1. The quantum
inequalities tell us that the total amount of positive energy must always be larger than the total amount of negative energy.
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grals in Eq. ~14! is <1 ~but is at least as large a
@*

2t0/2
t0/2

r(t)g(t)dt#/@g(0)*
2t0/2
t0/2

r(t)dt#). Thus we can write

xmax
d215

1

y

E
2t0/2

t0/2

r~ t !g~ t !dt

E
2t0/2

t0/2

r~ t !g~ t/xmax!dt

. ~15!

This upper bound depends on the sampling function an
general will over-estimate the maximum allowed separat
since a real distribution of energy must satisfy Eq.~15! for
all choices ofg(t).

Without a specific sampling function or energy distrib
tion we cannot reduce Eq.~15! any further, but we can se
that the range of possiblex is most strongly influenced byy.
If y51 @we have a state that actually achieves the minim
allowed byg(t)] then the only way Eq.~14! or ~15! can be
satisfied is ifx51; i.e., positive energy must immediate
follow and or precede the negative energy. Ify is close to
zero thenx can be large and we can approximate the integ
in the denominator of Eq.~15! by evaluatingg(t/x) at t
50:

xmax
d21'

1

y

^r&
g~0!Em

, 1/y@1. ~16!

In most situationŝ r&/g(0)Em will be a number of order
unity. If we have a delta function pulse of negative ener
centered att50 ~as considered by Ford and Roman! we
obtain a similar relation

xmax
d215

1

y
. ~17!

The above expressions~15! – ~17! all show that stronger
distributions of negative energy~larger y! are required to be
close to positive energy~smallerxmax). Also note that the
bound onx is stronger in four dimensional spacetime.
06400
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To answer the second question, namely whether the qu
tum intereste defined by

Ep

uEmu
5~11e! ~18!

is positive, consider the situation in Fig. 3~note that in this
figure we have omitted the 1/x normalization constants in th
plots of ḡ), whereEp is the total positive energy, i.e.,Ep

5* t1

xt0/2
r(t)dt. Here we stretchg(t) by a new factorx ~pos-

sibly larger thanxmax, which is the maximumx if we only
sample negative energy!, and the positive energy flux arrive
at time t1, with t0/2<t1<xmaxt0/2. For simplicity we only
consider positive energy that arrives after the negative
ergy, but this doesn’t affect the generality of the argume
Applying the QI’s and scaling relation to this situation yield

E
2xt0/2

xt0/2

r~ t !ḡ~ t !dt5
1

xE2t0/2

t0/2

r~ t !g~ t/x!dt

1
1

xEt1

xt0/2

r~ t !g~ t/x!dt>^r̄min&

5
^rmin&

xd
. ~19!

To simplify the appearance of this expression we assu
that r(t) is negative semi-definite in the range@2t0/2,t0/2#,
and positive semi-definite elsewhere~again this does no
qualitatively affect the conclusions!. Then we can find a
numbera, where 0<a,t0/2, such that*

2t0/2
t0/2

r(t)g(t/x)dt

5g(a/x)Em , and a numberb, wherea,t1<b,xt0/2, such
that* t1

xt0/2
r(t)g(t/x)dt5g(b/x)Ep ~see Fig. 3!. Thus we can

rewrite Eq.~19! as

2uEmug~a/x!1Epg~b/x!>2
u^rmin&u

xd21
. ~20!
5-4
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QUANTUM INTEREST FOR SCALAR FIELDS IN . . . PHYSICAL REVIEW D61 064005
~This expression is already quite suggestive: if the right h
side of Eq.~20! is close to zero thenEp will have to out-
weigh uEmu by roughlyg(a/x)/g(b/x) to satisfy the inequal-
ity!. Using Eq.~12! and ~15!, we can write Eq.~20! as

2uEmug~a/x!1Epg~b/x!

>S xmax

x D d21E
2t0/2

t0/2

g~ t/xmax!r~ t !dt. ~21!

As we did for Eq. ~19!, we can simplify Eq.~21! using
*

2t0/2
t0/2 g(t/xmax)r(t)dt52g(amax/xmax)uEmu, where 0

<amax,t0/2 @note thatamax simply labels the evaluation o
the integral whenx5xmax and doesn’t refer to any maximi
zation of the labela defined earlier; in particular, becaus
g(t) decreases monotonically away fromt50, x,xmax im-
plies that a.amax and henceg(a/x),g(amax/xmax), and
vice-versa#. This gives, after some rearrangement and uti
ing Eq. ~18!,

~11e!>
1

g~b/x! Fg~a/x!2g~amax/xmax!S xmax

x D d21G .
~22!

Inequality ~22! must be satisfied for all choices of th
scaling factorx. For smallerx (x&xmax) e can be negative
but we want to show that asx increases eventuallye must
become positive. Later we will choose a more restrict
distribution of positive energy to better illustrate quantu
interest, but first we will show that~at least whend54) the
total amount of positive energy is strictly greater than
total negative energy that passes the observer. To do
evaluate Eq.~22! in the limit as x→`. In this limit for t
5a/x and t5b/x we can accurately evaluateg(t) in a Tay-
lor series aboutt50:

g~ t !5g~0!2
ug9~0!u

2
t21O~ t4!. ~23!

There are no odd powers because of the assumed symm
in g, but even if we don’t requireg to be symmetric there
will not be anyt term in the series because of the peak at
50 ~which also forcesg9(0) to be negative!. Thus Eq.~22!
can be written as

e>
ug9~0!u
2g~0!

b22a2

x2
2

g~amax/xmax!

g~0! S xmax

x D d21

1O~1/x3!.

~24!

In the limit x→`, e→0 and when the dimensiond54, e is
strictly greater than 0 forx sufficiently large. In two dimen-
sional Minkowski space we can only conclude thate is at
least zero for arbitrary fluxes using the largex behavior of
the inequality~22!.

To gain more insight into inequality~22! it is useful to
restrict the positive flux to last for a timet0. Then

xt0
2

5t11t0 ~25!
06400
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and

t0

2
<t1<

xmaxt0

2
, ~26!

hence

3<x<xmax12. ~27!

To obtain a lower bound estimatee l for the quantum interes
e, seta5t0/2, amax50 andb5t1 in Eq. ~22! ~this will be a
good approximation for largerx; see Fig. 3!

11e l>
g~ t0/2x!2g~0!~xmax/x!d21

g@~ t0/2!~122/x!#
, ~28!

where we have used Eq.~25! to eliminatet1 from the expres-
sion. For a concrete example we will use the polynom
sampling function with n52 ~9!, i.e., g(t)}(t22t0

2/4)2. De-
fine

z[
Dt

t0
5

t12t0/2

t0
,

so z is the time interval separating the positive and negat
pulses divided byt0. Using Eq.~25! to Eq. ~27! we can find
the range ofz: 0<z<zmax, zmax5(xmax21)/2. When x
5xmax @and the exact inequality Eq.~22! gives e>21], z
5zmax21. With these definitions Eq.~28! becomes~after
some simplification!

11e l>
1

4 F ~z12!22
~z13/2!52d~zmax11/2!d21

~z11!2 G .

~29!

For largez andzmax,

e l*zS z

4
11D2

z32dzmax
d21

4 S 3~52d!24

2z
1

d21

2zmax
11D .

~30!

Whenz is in the range@zmax21,zmax#, Eq. ~30! is almost a
straight line, withe l ranging from a minimum of25/4 to a
maximum ofzmax/4 in 2D spacetime@compare Fig. 4 where
expression~29! is plotted#, and from29/8 to (3/4)zmax in
4D spacetime~compare Fig. 5!. This shows quite clearly tha
quantum interest grows~almost linearly! as the pulse sepa
ration increases. But a note of caution: this example will g
an accurate lower bound on the quantum interest only if
choice of sampling function doesn’t overestimate the ‘‘rea
xmax or zmax for a given distribution of negative energy
Recall that the ‘‘real’’xmax must satisfy inequality~15! for
any choice of sampling function. For example, a sharp
peaked sampling function@e.g. Eq.~9! with largen] will not
give very stringent lower bounds on̂rmin&, and conse-
quently Eq.~15! will overestimatexmax for a small pulse of
negative energy (y!1). A similar analysis to that above
would then seem to indicate that the quantum interest
verges in the limit asn→` at z5zmax, but in truth the value
of zmax was overestimated.
5-5
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IV. MASSIVE SCALAR FIELDS

In this section we will briefly show that the quantum i
terest inequalities~14! and~22! and hence all the results from
the previous section also apply to the massive scalar fiel
four dimensional Minkowski spacetime.

Fewster and Eveson@14# obtained the following expres
sion for ^rmin& in 4D Minkowski spacetime for a scalar fiel
of massm:

^rmin&52AE
0

`

dsE
m

`

dvkvk
2@vk

22m2#1/2ug1/2ˆ ~s1vk!u2,

~31!

whereA is a positive constant,g1/2̂(s) is the Fourier trans-
form of g1/2(t), and one integrates over the spectrum of fie
modes~i.e., vk5Auku21m2, kW is the three-momentum of
mode with frequencyvk).

If ^rmin&(m) denotes the minimum negative ener
bound for a field of massm with sampling functiong(t),
then

^r̄min&~m!5
^rmin&~mx!

x4
, ~32!

FIG. 4. A lower bound estimate~29! for the quantum intereste
as a function of pulse separationz5Dt/t0 in 2D Minkowski space-
time. Ten curves are plotted for values ofzmax from 1 to 10; the
range of each curve is@zmax21,zmax#. The largerzmax the less
negative energy was sampled, allowing greater separation of
fluxes. The estimate~29! is closer to the true lower bound for large
z. The width of the positive pulse in this example ist0, and the
sampling function~9! with n52 was used.

FIG. 5. The same information as shown in Fig.~4! but in 4D
Minkowski spacetime.
06400
in

where ^r̄min&(m) is the minimum bound with a samplin
function ḡ(t)5g(t/x)/x @the Fourier transform of the scalin

relation is ḡ1/2̂(s)5Axg1/2̂(sx)]. But notice from Eq.~31!
that ^rmin&(mx)>^rmin&(m) for x>1 ~due to them depen-
dance in the integrand and lower limit of the second in
gral!, hence

^r̄min&~m!>
^rmin&~m!

x4
. ~33!

Thus a massive scalar field will have tighter constraints
allowed negative energies than a massless field@compare Eq.
~11!#, and all the inequalities derived in the previous sect
remain valid for a massive field.@In 2D Minkowski space
Eq. ~32! holds withx4 replaced byx2, but one cannot con-
clude that Eq.~33! is valid ;x.#

V. BEYOND SCALAR FIELDS IN MINKOWSKI
SPACETIME

The scaling argument used to prove quantum interest
scalar fields might readily be applied to other quantum fiel
such as the electromagnetic~EM! field or Dirac field, and
possibly to certain curved spacetimes or Minkowski spa
with boundary conditions as in the Casimir effect.

Ford and Roman found a quantum inequality for E
fields in 4D Minkowski space using a Lorentzian sampli
function @15#:

^r&EM>2
3

16p2t0
4

. ~34!

This expression certainly indicates that a scaling relation
Eq. ~11! holds for EM fields. The only complication to ob
taining definitive results in this case is that the Lorentz
sampling function does not have compact support, so
cannot rule out the possibility that long distance interferen
effects may spoil quantum interest for arbitrary energy flux
of the EM field ~though this seems unlikely!.

There is some evidence that the Dirac field might a
satisfy negative energy inequalities similar to those of sca
and EM fields. Vollick has recently shown that a superpo
tion of two single particle electron states can exhibit negat
energy densities, but they are constrained by an inequa
identical in form to that of the EM and scalar fields@16#.

Fewster and Teo@17# have derived lower bounds of th
form ~31! for states of scalar quantum fields in static, curv
spacetimes~those with timelike killing vector fields that ar
hypersurface orthogonal!. The scaling argument will work in
certain static spacetimes. For example, one can easily s
that the scaling relation~33! holds in an open static
Robertson-Walker universe (ds252dt21a2@dj2

1sinh2(j)dV2#, a is constant!, as the lower bound for the
sampled energy density takes the form@17#:

^rmin&52AE
0

`

dsE
C

`

dvkvk
2@vk

22C2#1/2ug1/2̂~s1vk!u2,

~35!
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whereC5A1/a21m2 and m is the mass of the scalar fiel
@compare Eq.~31!#.

In a spacetime with a nonzero expectation valuer0 for the
ground state energy density, such as the Boulware state
side a static star or with the Casimir effect between t
conducting plates, one might expect a scaling relation of
form

^r̄min&5
^rmin&

xd
1r0 ~36!

to hold. In other words, perhaps one may be able prove
quantum interest conjecture for energies relative to
ground state energy – see@9# for examples where the quan
tum inequalities take on the from̂r&> free field term1
Casimir terms.1

VI. CONCLUSION

In this paper we have proven the quantum interest con
ture of Ford and Roman for arbitrary distributions of neg
tive energy of scalar fields in 4D Minkowski spacetim
~slightly weaker results hold in 2D!. Specifically, any flux of
negative energy flowing past an inertial observer must
followed or preceded by positive energy within a finite tim
interval that decreases the larger the amount of negative
ergy there is. In addition, the total amount of positive ene
seen (Ep) is always greater than the total amount of negat
energy (2uEmu). In a more restricted scenario where t

1In fact, such types of inequalities, called ‘‘difference inequa
ties,’’ have been derived before in several contexts@18#. I was
unaware of these results when I wrote this paper, and would lik
thank Tom Roman for pointing them out to me.
um
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duration of the positive and negative fluxes are equal,
showed that the quantum interest

e[S Ep

1uEmu
21D

grew almost linearly with pulse separation.
The nature of existing QI’s for EM fields, the Dirac fiel

and scalar fields in certain static spacetimes suggests
quantum interest may have broader application than free
lar fields in Minkowski spacetime. In a situation where t
ground state energy density of the field is nonzero~e.g., in
the Casimir effect! we may still expect quantum interest t
hold, but then ‘‘negative’’ energy would refer to energie
less than that of the ground state.

An important consequence of quantum interest is wha
tells us about the nature of negative energies in free fields
local pulse of negative energy is not an entity that can
manipulated or interacted with independently of the acco
panying positive energy that must be near by. Even if th
are states where the positive and negative energies are
rated by a sizeable distance@as suggested by Eq.~14! when
the amount of negative energy is very small#, one could still
only interact with the pulse pair as a single entity. For e
ample, absorbing, reflecting or scattering only the posit
part of the flux would create an isolated negative pulse, v
lating the quantum inequalities. Furthermore, this impl
that one cannot subject a hot body to a net flux of nega
energy that otherwise might have lowered its entropy in v
lation of the second law of thermodynamics.
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