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Quantum interest for scalar fields in Minkowski spacetime
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The quantum interest conjecture of Ford and Roman states that any negative energy flux in a free quantum
field must be preceded or followed by a positive flux of greater magnitude, and the more the surplus of positive
energy grows the further the positive and negative fluxes are apart. In addition, the maximum possible sepa-
ration between the positive and negative energy decreases the larger the amount of negative energy. We prove
that the quantum interest conjecture holds for arbitrary fluxes of noninteracting scalar field energy in 4D
Minkowski spacetime, and discuss the consequences in attempting to violate the second law of thermodynam-
ics using negative energy. We speculate that quantum interest may also hold for the electromagnetic and Dirac
fields, and might be applied to certain curved spacetimes.

PACS numbd(s): 04.62+v, 03.70:+k

[. INTRODUCTION struct a reversible process that effectively transferred energy
from a cold body to a hot one without doing workrhe

Quantum field theory permits the existence of stategesultant stream of negative energy could be sent far enough
where the renormalized energy density can become arbRway from the device so that one could reasonably apply the
trarily negative in regions of spacetime even though the totairee-field quantum inequalities to the stream. Even though
energy is always positivEl]. Negative energy is an essential €ach pulse within the stream may be consistent with the
ingredient in many bizarre effects, including wormhdgg ~ original quantum inequality, the stronger quantum interest
warp drives[3], and time machineft], and may be used to conjecture strictly forbids such a flux of negative energy.
violate the second law of thermodynamifs],[6]. Fortu- This implies that the mirror device in Fig. 1 cannot exist; if
nately (or unfortunately there appear to be severe restric- We want to reflect negative energy we must reflect its support
tions on the magnitude and duration of negative energies th&f positive energy, which is at least as large in magnitude.
might occur in a quantum field. One form of these restric-Thus one cannot subject a hot body to a pure flux of negative
tions are the “quantum inequalities,” originally proposed by €nergy to lower its entropyat least using scalar quantum
Ford and Romarj7][8] and studied by numerous authors fields), as suggested if6]. _
since[9], which essentially state that large amounts of nega- [N this paper, using a simple scaling argument, we present
tive energy can only be “seen” for very short intervals of

time. These inequalities have been used to place stringer*
limitations on warp drive and wormhole geometrigl],
[11]. negative energy flux

Recently, Ford and Roman proposed the “quantum inter-
est conjecture” and proved it for delta function pulses of
negative energy for massless scalar fields in 2D and 4C
Minkowski spacetimé12]. This conjecture is a consequence
of the quantum inequalitie®I’s), and states that any nega-

o]
tive energy pulsdthe “loan”) must be accompanie(re- = / j

paid”) by a positive energy pulse within a certain maximum [ — 9) [\ —
time interval, and the larger the separation of the pulses the A B

. - . (
larger the magnitude the positive pulse must be relative to
mirrors A and B accelerate

the negative pulsdi.e., repaid with “interest’). At first bainks a7 forthinsynG
glance this statement may not seem too profound — after alwith mirror C which flips
the total energy must be positive, so if there is a Iocationgﬁgfgﬁzlzvsvg;:f;g;%:;"/e
with negative energy there will be compensating positive «yargs

energy somewhere in the spacetime. But the quantum inter positive energy flux

est conjecture tells us a lot more about the nature of negative

energies in free-fields: negative energy is always in close [ 1 A pair of mirrors(A and B) accelerate back and forth in
proximity to an entourage of positive energy. This, for in-angem, radiating negative energy in the direction of increasing
stance, has immediate consequences in attempts to violajgceleration and positive energy in the opposite direction. Between
the second law of thermodynamics. For suppose negativ@ese two mirrors is a third mirrdiC) that periodically flips so that
energies were “substantial” enough that one could in prin-the negative energy parts of the flux generated by mirrors A and B
ciple reflect only the negative energy part of the flux pro-are always reflected in the same direction. Such a device could in
duced by an accelerating mirror as shown in FigaYariant  principle produce a steady flow of negative enerifyt were pos-

of a device first proposed by Davigs] who used it to con- sible to reflect just the negative part of the mirror flux.
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a proof of quantum interest for arbitrary distributions of eration, decelerates to zero acceleratiemitting a positive
negative energy of scalar fields in 4D Minkowski spacetimepulse [12]. The magnitude of energy produced by the mirror
(slightly weaker results are obtained in 2D Minkowski is proportional to its change in acceleration with time. We
spacetimg We do this first for the massless scalar field incan thus make the negative pulse as energetic as we want,
Sec. lll, after introducing the quantum inequalities in Sec. Il.but doing so shortens the time interval before the positive
In Sec. IV we show that a massive scalar field has strongegoulse arrivegthe mirror is decelerated before it crashes into
constraints on the magnitude and duration of negative enethe observer If we sample the negative energy with the
gies than a massless field, thus making the results of Sec. ltectangular function we can avoid measuring any positive
applicable to both types of scalar fields. In Sec. V we brieflyenergy by timing the rectangular function to turn off before
comment on the possibility of extending quantum interest tahe positive pulse arrives.

the electromagnetic and Dirac fields, curved spacetimes and More insight into the intimate relationship between the
to situations in Minkowski space where mirror-like boundary sampling function and minimum bound can be obtained from

conditions are imposed on the fields. the derivation of Fewster and Eveson. One can write(&x.
as[14]
Il. QUANTUM INEQUALITIES
The quantum inequalities can be stated as follows. An {Pmin)="— ! 3J (@¥?(w))2whdw, @)
inertial observer samples the local energy densfty over a 16m7°/0
period of time with a sampling functiog(t) to obtain an _
average energy densify): whereg¥4(w) is the Fourier transform of the square root of
. g(t). Smooth sampling functions, like the Lorentzian func-
_ tion originally employed by Ford, decay rapidly in the fre-
() f_xg(t)p(t)dt. @ quency domain, smoothing over higher frequeribgnce
higher energy transient components of the flux. Negative
The only conditions imposed upa(t) are that energies in a free field appear to be coherence or interference
effects produced by peculiar superpositions of the positive
fw g(t)dt=1 andg(t)=0 Vt. ) mode quanta of_the field. For example, the well-k_nown
—c vacuum + 2 particle state)=«|0)+B|2) has negative

energy at periodic intervals with appropriate choicesaof

Then, and B: the frequency and energy density of the negative

_ 3 regions are proportional to the frequency of the two-particle

{P)=(Pmin), C) modes[9]. This suggests that if we want to see a lot of
egative energy we need to look at such high frequency tran-

ient phenomena, and the only way to “catch” the negative
energy is to use a sampling function with steep edges. But as
discussed in the introduction the quantum interest conjecture
seems to say that one cannot interact with this negative en-

ergy as one can with positive energy — “catch” may be an

1 (= g'(t)? overstatement.

(Pmin>:_E _OO g(t) dt! (4)

where(pnin) is a constant that depends upon the samplin
function g(t) and the dimensionalityd of the spacetime.
Note that for a given energy densip(t) Eq. (3) must be
satisfied by all choices @f(t). Flanagan’s optimal bound for
a massless scalar field in 2D[i$3]

IIl. QUANTUM INTEREST FOR MASSLESS SCALAR

while Fewster and Eveson obtained the following bounds in FIELDS

2D and 4D Minkowski spacetimeL4]: The key to obtaining useful information from the quantum

1 (= g'(1)? iljequalities in light of the arbitrariness of the sampling fun.c—
<Pmin>:__f dt, (2D) (5)  tion, and hence lower bound, is to choose an appropriate
167 ) - g(1) class of sampling function. To prove quantum interest, we
will use a functiong(t) with compact suppor€g(t) is zero
ST outside the range—1ty/2t,/2]), that has a single maximum
zﬁx(g (t)")°dt, (4D). (6)  att=0 and is sufficiently smooth such that a lower bound in
Eqgs.(4) — (6) exists. For simplicity we will also assume that

Certain sampling functions will not give a lower bound, in 9(t) iS symmetric about=0. For example, the following
particular if there are discontinuities im(t) or g’(t). For ~ Sampling functions will do(though for the most part the
example the rectangular pulse functigg(t)=1/, when Particular choice will not mattgr

—1p/2<t<ty/2 and O elsewhejedoesn’t give a finite lower ; ; ;

bound(ppin). This makes sense if we recall the positive/ g(t)occoé‘(l), —2<t<2 (n=2), )
negative energy delta pulse pair produced by a mirror that to 2 2

instantaneously accelerates from rgatoducing a negative

pulse, then, after undergoing a period of uniform accel- 0 elsewhere,

1
167

(Pmin)=—
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positive flux
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FIG. 2. We sample a local distribution of negative energy with a functj¢r) and with a scaled version aj(t), namerE(t)
=g£t/x)/x. The quantum inequalities then tell us that there is a maximum scale fagtpbeyond which positive energy must be sampled

by g(t).

or Here(pmin is the lower bound associated wigfit) andd is
the spacetime dimensiaf2 or 4). This expression immedi-
ately suggests the principle of quantum interest. We have

total negative energ¥,,= [ t_oltilzp(t)dt and an average en-

ergy density ofp,,q=En/to~(p). If we now increase our
0 elsewhere. sampling range toxty,, and p(t) is zero outside of
o ] [ —to/21t0/2], thenp,,q Will scale as IX. But the maximum
The minimum bounds are strongélast negativewhenn  gjlowed negative energy density scales ad,lthus positive
=2; asn— these functions approac(t) which has no  energy(and probably quite a lot ofjiis eventually needed to
lower bound. satisfy the quantum inequalities.
Now consider the hypothetical situation shown in RR). We can make the preceding statement more precise. De-
We have an isolated distribution of negative energy flowinggine a constany, with 0<y<1, such that
past the observer who samples it with a functigh) like (8)
or (9), timed to snugly encompass the negative flux. We to/2
want to answer two questions: (p)= f_t /zg(t)P(t)dt:)’<Pmin>- (12)
1) How isolated can the negative pulse be? In other 0

words, how soon before or after the negative flux arrivesygie that for most sampling functiomg(t) there will prob-

must one see positive energy. o ably not be any quantum state that achieves the minimum
2) When we do start sampling positive energy, must on y=1). Now stretchg(t) by the factorx>1, and to answer

pay quantum interest? I.e., does the total positive energy ouqe first question we will show that there is a largest possible
weigh the negative energy by an amount that increases t@gzxmax allowed by the QlI's if we assume zero energy den-
further the two pulses are apart. ... sity outside of the negative pulse, as illustrated in Fig. 2:
To answer these questions we sample the distribution
1ft°/2 (Pmin)

again with a second functiog(t) that is merely a copy of Xtg/2 _ _
g(t) scaled by a factox=1: f lzp(t)g(t)dtz X lzp(t)g(t/x)dt><Pmin>: N
(]

) tB\" tg to
g(t)oc t—z , —E<t<5 (n22), (9)

_ 1/t (13
9()=-9| /- (10 , : : :
XT\X Using Eq.(12) we can rewrite the inequality as
The support ofy(t) is thus[ —xty/2 xto/2], and the leading f‘O’Z (Dg(t)dt
factor of 1k is a normalization constant to gieunit inte- - 0/2p J

1
x4 1< y (14)

gral. If we calculate the minimum negative energy density

Jie t/2
{pmin) allowed by the quantum inequalities usiggin Eq. ﬁt /Zp(t)g(t/X)dt
(4) or (5) for 2D and Eq.{6) in 4D Minkowski spacetime we 0

obtain the key result: This clearly shows that if we have some negative energy

(y#0) then there is an upper bound wnfor, recalling that
<;min>: <pm‘”>_ (11) g(t) is positive with a single peak at=0 so thatg(0)
d =g(t/x)=g(t), one can see that the ratio of the two inte-
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p(b)

A

range of a, amar

A

t| xmaxto X tU

 / range of b

«

FIG. 3. In this situation the positive flux arrives a tilé=t, —t,/2 after the negative pulse, and lasts for a txtg2—t,. The quantum
inequalities tell us that the total amount of positive energy must always be larger than the total amount of negative energy.

grals in Eqg.(14) is <1 (but is at least as large as  To answer the second question, namely whether the quan-
[['92 o(t)g(t)dt]/[g(0)S'9? p(t)dt]). Thus we can write tum intereste defined by

~tyf2 ~tyf2
E
tof2 =P =(1+ 18
7 pwaar Eal 1€ 9
N S . (15
maxy fto/Z (g%t is positive, consider the situation in Fig.(Bote that in this
_to,zp ma figure we have omitted thexX hormalization constants in the

_ _ _ _plots ofE), whereE, is the total positive energy, i.eE,
This upper bound depends on the sampling function and l&f?tolzp(t)dt. Here we stretcly(t) by a new factomx (pos-
general will over-estimate the maximum allowed separation

1
since a real distribution of energy must satisfy Etp) for Sibly larger th'anxmax, which is the Mmaximurnx if we only
all choices ofg(t). sample negative energyand the positive energy flux arrives

Without a specific sampling function or energy distribu- ?E)rt:;];etrl’ \évétig\/tg/i?éigx%ﬁog'ﬁ\fgsr Zlf?(;[r)“tﬂ(tay r\:(\;e aC;R/lZ on-
tion we cannot reduce E@15) any further, but we can see P 9y 9

that the range of possibleis most strongly influenced by ergy, but this doesn't affect the generality of the argument.

If y=1 [we have a state that actually achieves the minimumApplylng the QI's and scaling relation to this situation yields

allowed byg(t)] then the only way Eq(14) or (15) can be o 1 (o2

satisfied is ifx=1; i.e., positive energy must immediately 0 Ha(tdt= = 0 Hat/x)dt
. p(t)g(t) p(H)g(t/x)

follow and or precede the negative energyylfs close to —xty/2 XJ —tor2

zero therx can be large and we can approximate the integral

. . . 1 (xto/2 _
Tghe denominator of Eq(15) by evaluatingg(t/x) at t +;J't 0 p(H It/ X)dt=(prmir)
=0: 1
1 <p> _ <Pmin> (19)
d-1_ = s .
Xmax™ § G(0)E." 1y>1. (16) »d
In most situations(p)/g(0)E,, will be a number of order To simplify the appearance of this expression we assume

unity. If we have a delta function pulse of negative energythatp(t) is negative semi-definite in the ranfie to/2to/2],
centered at=0 (as considered by Ford and Romame and positive semi-definite elsewhefagain this does not

obtain a similar relation qualitatively affect the conclusiohsThetnlzwe can find a
numbera, where O=a<ty/2, such thatf_otolzp(t)g(t/x)dt

xd*1:E 17 =g(a/x)E,,, and a numbeb, wherea<t;<b<xty/2, such

max-y- thatffltolzp(t)g(t/x)dt=g(b/x)Ep (see Fig. 3. Thus we can

] rewrite Eq.(19) as
The above expressiond5) — (17) all show that stronger

distributions of negative enerdjarger y) are required to be pmin)|
close to positive energysmallerXma,. Also note that the —|Enlg(a/x)+ E g(b/x)=— <p;“”i> _ (20)
bound onx is stronger in four dimensional spacetime. X"
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(This expression is already quite suggestive: if the right hanénd
side of EQ.(20) is close to zero theit, will have to out-

weigh|E,| by roughlyg(a/x)/g(b/x) to satisfy the inequal- to i Xmaxto 26)
ity). Using Eq.(12) and (15), we can write Eq(20) as 2 0 2 ¢
—|Emlg(a/x) + Epg(b/x) hence
Xmax| @ F [to/2 3X<Xat 2. 2
>( ’;) [ gtrmaptdt. (@1 max @0
—to

To obtain a lower bound estimagg for the quantum interest
€, seta=1ty/2, ama=0 andb=t, in Eq. (22) (this will be a

As we did for Eq.(19), we can simplify Eq.(21) usin ) “ma .
a.(19 plify Eq.(21 g good approximation for larger;, see Fig. 3

[ 29t Ximap) P A=~ §(@max/Xmad |[Enl,  where 0

<an<to/2 [note thata,,,x Simply labels the evaluation of 9(tg/2X) — g(0) (Xmax/¥)9 2
the integral whenx=x,,,, and doesn’t refer to any maximi- 1+e= gl (to/2)(1—2/%)] '
zation of the label defined earlier; in particular, because

g(t) decreases monotonically away fram 0, X<X,.xim-  Where we have used E5) to eliminatet; from the expres-
plies thata>a,, ., and henceg(a/x) <g(amax/Xmay. and  sion. For a concrete example we will use the polynomial
vice-versa. This gives, after some rearrangement and utiliz-sampling function with r=2 (9), i.e., g(t) < (t2—t5/4)2. De-

ing Eq. (18), fine

(28)

d-1
Xoay _At ty—tgf2
(1+e)=——— (b/ X g(arx)— g(amax/Xmax)(_ - Tty ty

22
22 sozis the time interval separating the positive and negative
Inequality (22) must be satisfied for all choices of the pulses divided by,. Using Eq.(25) to Eq.(27) we can find

scaling factorx. For smallerx (Xx<Xpya,) € can be negative, the range ofz 0<7<Zna.x, Zmax=(Xmax—1)/2. Whenx
but we want to show that asincreases eventually must  =x_ . [and the exact inequality E422) gives e=—1], z
become positive. Later we will choose a more restrictive=z_ —1. With these definitions Eq28) becomes(after
distribution of positive energy to better illustrate quantumsome simplification
interest, but first we will show thght least wherd=4) the

total amount of positive energy is strictly greater than the 1 (z+3/2)° Yzt 1120971
total negative energy that passes the observer. To do so, 1+ G'ZZ (z+2)%- 1)2 .
evaluate Eq(22) in the limit asx—o. In this limit for t (z+1) (29
=a/x andt=Db/x we can accurately evaluatgt) in a Tay- )
lor series about=0: For largez andz,,ay
|g”( ) 3-d,d-1 B
9(1)=g(0)— —5—t2+0(t). (23 qzg| Zaq| o fmax(3G7d)74 d7l L)
4 4 2z 2Znax
(30)

There are no odd powers because of the assumed symmetry
in g, but even if we don't requirgy to be symmetric there \whenzis in the rangd zmax— 1.Zmaxl, EQ. (30) is almost a
will not be anyt term in the series because of the peak at strajght line, withe, ranging from a minimum of-5/4 to a
=0 (which also forceg)”(0) to be negative Thus EQ.(22)  maximum ofz,,,/4 in 2D spacetimécompare Fig. 4 where

can be written as expression(29) is plotted, and from —9/8 to (3/4%max iN
, ) 41 4D spacetimécompare Fig. b This shows quite clearly that
|9 (0)] b*—a®  g(@max/Xmax) (Xmax o1 quantum interest grow&lmost linearly as the pulse sepa-
29(0) %2 g(0) X ' ration increases. But a note of caution: this example will give

(24) an accurate lower bound on the quantum interest only if our
choice of sampling function doesn’t overestimate the “real”
In the limit x—, e—0 and when the dimensiai=4, €iS X, Or Z,ax fOr a given distribution of negative energy.
strictly greater than O fox sufficiently large. In two dimen- Recall that the “real”x,,,, must satisfy inequality15) for
sional Minkowski space we can only conclude tleais at  any choice of sampling function. For example, a sharply
least zero for arbitrary fluxes using the largdehavior of  peaked sampling functidre.g. Eq.(9) with largen] will not

the inquality(22)._ R _ o give very stringent lower bounds ofpnn), and conse-
To gain more insight into inequality22) it is useful to  quently Eq.(15) will overestimatexya, for a small pulse of
restrict the positive flux to last for a timg. Then negative energy y(<1). A similar analysis to that above
would then seem to indicate that the quantum interest di-
Xty verges in the limit ag— o atz=z,,,, but in truth the value
—=t1+1g (25 ;
2 of z,,ax Was overestimated.
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2.00

] where (;minxm) is the minimum bound with a sampling
00— 1/ / functiong(t) =g(t/x)/x [the Fourier transform of the scaling
e ] ./ / / / / relation is g4(s) = Vxg”¥(sx)]. But notice from Eq.(31)
000 that { pmin) (MX) ={pmin) (M) for x=1 (due to them depen-
] / / / / / / / dance in the integrand and lower limit of the second inte-
R S A R S S —[———— gral), hence
0.00 250 5.00 7.50 10.00

(Pmin)(M)
x4

(Pminy(M)= (33)

z
FIG. 4. A lower bound estimate&9) for the quantum interest
as a function of pulse separatian At/ty in 2D Minkowski space-
time. Ten curves are plotted for values f,, from 1 to 10; the
range of each curve 5z, 1Zmayl. The largerz,,, the less

Thus a massive scalar field will have tighter constraints on
allowed negative energies than a massless fictpare Eq.
(11)], and all the inequalities derived in the previous section

negative energy was sampled, allowing greater separation of themain valid for_a rrlasswe flelc[anZD Minkowski space
fluxes. The estimat&9) is closer to the true lower bound for larger Eq. (32) holds W'thx replaced byx®, but one cannot con-
2z The width of the positive pulse in this exampletis and the  clude that Eq(33) is valid Vx.]
sampling function(9) with n=2 was used.

V. BEYOND SCALAR FIELDS IN MINKOWSKI

IV. MASSIVE SCALAR FIELDS SPACETIME

In this section we will briefly show that the quantum in- ~ The scaling argument used to prove quantum interest for
terest inequalities14) and(22) and hence all the results from scalar fields might readily be applied to other quantum fields,
the previous section also apply to the massive scalar field ifuch as the electromagnetigM) field or Dirac field, and
four dimensional Minkowski spacetime. possibly to certain curved spacetimes or Minkowski space

Fewster and Evesofl4] obtained the following expres- With boundary conditions as in the Casimir effect.

sion for{pmin) in 4D Minkowski spacetime for a scalar field ~ Ford and Roman found a quantum inequality for EM
of massm: fields in 4D Minkowski space using a Lorentzian sampling

function[15]:

<Pmin> = _Afo dsfm dwkwﬁ[wﬁ_ m2] l/2| 91/2(5+ wy) | 2!
(3D

(P)em=— (34)

1672ty
This expression certainly indicates that a scaling relation like
Eqg. (11) holds for EM fields. The only complication to ob-
taining definitive results in this case is that the Lorentzian
) -~ S sampling function does not have compact support, so one
modes(i.e., w=[k|*+m?, kis the three-momentum of & 5nn6¢ ryle out the possibility that long distance interference

mode with frequencyy). o _ effects may spoil quantum interest for arbitrary energy fluxes
If (pmin)(M) denotes the minimum negative energy o the EM field (though this seems unlikely
bound for a field of massn with sampling functiong(t), There is some evidence that the Dirac field might also
then satisfy negative energy inequalities similar to those of scalar
and EM fields. Vollick has recently shown that a superposi-
_ {(Pmin(MX) tion of two single particle electron states can exhibit negative
(Pminy(M)= ——7—, (32 energy densities, but they are constrained by an inequality
X identical in form to that of the EM and scalar fielfts).
Fewster and Te@l17] have derived lower bounds of the
form (31) for states of scalar quantum fields in static, curved
Ly / spacetimesgthose with timelike killing vector fields that are
/ / / / hypersurface orthogonalThe scaling argument will work in
£ certain static spacetimes. For example, one can easily show
/ / / / / / that the scaling relation(33) holds in an open static
7 7717 7 Robertson-Walker universe  d&=—dt’+a?[d&?
L L N A +sint?(£)dQ?], a is constant as the lower bound for the
0.00 2.50 5.00 7.50 10.00 sampled energy density takes the fdrbi7]:

whereA is a positive constant}sz(s) is the Fourier trans-
form of g¥4(t), and one integrates over the spectrum of field

7.50

5.00

250

0.00

_ o 20 2 ~2912 <12 2
o | | pmin=—A | ds| " doyail o -G+ w
FIG. 5. The same information as shown in Fid) but in 4D < mm> 0 @ KL Tk | k |
Minkowski spacetime. (35
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whereC=\/1/a?+ m? andm is the mass of the scalar field duration of the positive and negative fluxes are equal, we
[compare Eq(31)]. showed that the quantum interest
In a spacetime with a nonzero expectation valyéor the
ground state energy density, such as the Boulware state out- Ep —1)
+|Enl

E=

side a static star or with the Casimir effect between two
conducting plates, one might expect a scaling relation of the
form grew almost linearly with pulse separation.
The nature of existing Ql's for EM fields, the Dirac field
<;min>: (Pmin) +pg (36) and scala_lr fields in certain static spaC(_atim_es suggests that
x4 quantum interest may have broader application than free sca-
lar fields in Minkowski spacetime. In a situation where the
to hold. In other words, perhaps one may be able prove thground state energy density of the field is nonzer@., in
quantum interest conjecture for energies relative to thehe Casimir effegtwe may still expect quantum interest to
ground state energy — s¢@| for examples where the quan- hold, but then “negative” energy would refer to energies
tum inequalities take on the frofp)= free field term+  |ess than that of the ground state.
Casimir terms. An important consequence of quantum interest is what it
tells us about the nature of negative energies in free fields. A
VI. CONCLUSION local pulse of negative energy is not an entity that can be
) ) ._manipulated or interacted with independently of the accom-
In this paper we have proven Fhe quantum interest ConJecf)anying positive energy that must be near by. Even if there
ture of Ford and Roman for arbitrary distributions of nega-, 4 states where the positive and negative energies are sepa-

tive energy of scalar fields in 4D Minkowski spacetime rated b ; ;
) : o, y a sizeable distanfas suggested by E¢l4) when
(slightly weaker results hold in 2DSpecifically, any flux of the amount of negative energy is very srhatine could stil

negative energy flowing past an inertial observer must bey interact with the pulse pair as a single entity. For ex-
followed or preceded by positive energy within a finite time ample, absorbing, reflecting or scattering only the positive
interval that decreases the larger the amount of negative ep, of1 the flux wo,uld create an isolated negative pulse, vio-
ergy there is. In addition, the total amount of positive energ ating the quantum inequalities. Furthermore, this imiolies

seen Ep) is always greater than the total amount of negativey, 4t one cannot subject a hot body to a net flux of negative
energy (-|En[). In a more restricted scenario where the gnerqy that otherwise might have lowered its entropy in vio-
lation of the second law of thermodynamics.

Yn fact, such types of inequalities, called “difference inequali- ACKNOWLEDGMENTS
ties,” have been derived before in several conte)i8]. | was
unaware of these results when | wrote this paper, and would like to | would like to thank Werner Israel for many stimulating
thank Tom Roman for pointing them out to me. discussions.
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