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An operational approach to black hole entropy

F. Pretorius, D. Vollick, and W. Israel
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In this paper we calculate the entropy of a thin spherical shell that contracts reversibly from infinity down to
its event horizon. We find that, for a broad class of equations of state, the entropy of a non-extremal shell is
one-quarter of its area in the black hole limit. The considerations in this paper suggest the following opera-
tional definition for the entropy of a black hole:SBH is the equilibrium thermodynamic entropy that would be
stored in the material which gathers to form the black hole, if all of this material were compressed into a thin
layer near its gravitational radius. Since the entropy for a given mass and area is maximized for thermal
equilibrium we expect that this is the maximum entropy that could be stored in the material before it crosses
the horizon. In the case of an extremal black hole the shell model does not assign an unambiguous value to the
entropy.@S0556-2821~98!01710-X#

PACS number~s!: 04.70.Dy, 97.60.Lf
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I. INTRODUCTION

As is well known @1# the classical laws of black hol
dynamics together with the Hawking temperature

TH5
k

2p
~1!

lead to the Bekenstein-Hawking postulate that the entrop
a black hole is given by

SBH5
1

4
A, ~2!

wherek is the surface gravity of the hole andA is its area
~here we work in units withG5c5\51!. This expression
for the black hole entropy has raised some important qu
tions that still remain unanswered. At what stage in the bl
hole’s evolution is its entropy created? Is it created imme
ately upon the formation by gravitational collapse or on
gradually over the~typically! long course of evaporation
What is the dynamical mechanism that makesSBH a univer-
sal function, independent of the hole’s past history and
tailed internal condition? There are a variety of possible
swers. First the subtlest possibility: It is conceivable that
quantum entropy is irreversibly created by the hole. No
formation is lost andSBH is merely a measure of our ow
temporary loss of access~during the lifetime of the black
hole! to correlations beneath the horizon. When the bla
hole finally evaporates these correlations will be fully visib
to us. A black hole formed by the collapse of matter in a p
state will evaporate into a radiation field whose distributi
appears thermal on a coarse-grained level, but will be rec
nized to be in a pure state once the last particles have lef
hole.

Alternatively, it is possible that black hole formation an
evaporation are accompanied by an irreversible increas
entropy, and we come back to the questions how, where,
when? The original~pre-1974! motivation for assigning an
entropy to a black hole was to keep account of the ther
entropy of objects thrown into a hole~Wheeler’s teacup ex
570556-2821/98/57~10!/6311~6!/$15.00
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periment!. The generalized second law of black hole therm
dynamics, which states thatSBH plus the external entropy is
non-decreasing, lends support to this view of black hole
tropy. Nevertheless, it is not possible~as emphasized by
Kundt @2# more than 20 years ago! simply to identify SBH
with the thermal entropy of all the matter which collapsed
form the black hole. Since this is an issue of principle,
could, for instance, consider an idealized Oppenheim
Snyder collapse of cold, pressureless, viscous-free dust: h
no material entropy ever develops.

The view that entropy is somehow created in the proc
of evaporation also meets with difficulties. Black hole evap
ration is very nearly, and can be made exactly, reversi
We simply enclose the hole in a container, so that it com
into equilibrium with its own radiation. We then poke
small hole in the container and let the radiation leak o
arbitrarily slowly. Since this process is reversible, no entro
is generated.

Another possible explanation of the entropy of a bla
hole stems from Frolov and Novikov@3#. This linksSBH with
modes~produced by vacuum fluctuations! propagating ‘‘out-
wards’’ just inside and alongside the horizon. These mo
have positive frequency but their energy is negative as c
brated for an observer at infinity~i.e. including the contribu-
tion of gravitational potential energy!. Their spectrum is
thermal with temperatureTH . Detailed implementation of
this picture is so far still plagued with divergences and a
biguities.

Finally we mention that Zurek and Thorne@4# have sug-
gested thatSBH should be interpreted as the logarithm
‘‘the number of quantum-mechanically distinct ways that t
black hole could have been made.’’ Assuming that the te
nical difficulties involved in making this statement preci
can be overcome, the Zurek-Thorne interpretation uses
ensemble of black holes and thus simply accepts the uni
sality of SBH without offering any dynamical explanation fo
how it arises in a particular black hole.

No direct insight into the statistical origins of black ho
entropy can come from thermodynamics. But if entropy
ally is a meaningful state function for black hole equilibriu
states, then thermodynamics can tell us its value and pro
6311 © 1998 The American Physical Society
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6312 57F. PRETORIUS, D. VOLLICK, AND W. ISRAEL
an operational definition of it. To find the entropy of an
thermodynamical state one invents a reversible proc
which arrives at that state from a state of known entropy
computes how the entropy changes in that process using
first law of thermodynamics. In this paper we examine
reversible contraction of a thin spherical shell down to
event horizon. To maintain reversibility, the shell must be
equilibrium with the acceleration radiation seen by observ
on the shell. In addition to the classical stress-energy out
the shell there will be a Boulware stress-energy created
the quantum fields that reside in the spacetime. To main
thermal equilibrium we draw on a source of energy at infi
ity to ‘‘top up’’ the Boulware stress-energy to an appropria
thermal environment. The pressure and surface density o
shell follow from the junction conditions at the shell. Usin
the first law we find that the entropy of the shell isA/4 in the
black hole limit for a large class of shell equations of sta
These considerations lead us to suggest the following op
tional definition for the entropy of a black hole:SBH is the
equilibrium thermodynamic entropy that would be stored
the material which gathers to form the black hole, if w
imagine all of this material compressed into a thin layer n
its gravitational radius.

II. ENTROPY OF A CONTRACTING SHELL

In this section we consider compressing a spherical s
reversibly from an infinite radius down to its event horizo
To maintain reversibility at each stage the shell must be
equilibrium with the acceleration radiation that would
measured by an observer on the shell. Thus the tempera
of the shell is determined by the local acceleration of sta
observers at the shell. Our interest is in the end-states
thermodynamic process: a state of infinite dispersion at
finity and the final black hole state. The shell serves mer
as the working substance connecting these two states,
the nature of the material is irrelevant as long as it satis
the first law of thermodynamics. Its equation of state
volves two independent variables: the shell’s locally m
sured massM and radiusR.

For the static spherical geometries inside and outside
shell it will be general enough for our purposes to take
metric to be of the form

ds25dr2/ f ~r !1r 2dV22 f ~r !dt2. ~3!

This covers as special cases Minkowski, Schwarzsch
Reissner-Nordstro¨m and de Sitter spacetimes. Of course,
classical stress-energy associated~via the Einstein equations!
with this metric is not the stress-energy of the ground s
for the quantum fields which reside in the spacetime.
know that this is the Boulware state@5#, whose stress-energ
(Tmn)B depends on the types and number of fields and
unknown. For an ordinary star (Tmn)B is completely negli-
gible, but as the shell approaches its gravitational radiu
generally grows without bound, and its backreaction can
be ignored. We cannot compute this backreaction, but
can compensate for it. By drawing from an energy reserv
at infinity we fill up the shell’s surroundings with materi
whose stress-energyDTmn tops up (Tmn)B to form a thermal
bath which shares the shell’s local acceleration tempera
Tacc(R) at the point of contact. This ‘‘topped-up Boulwar
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~TUB! state’’ is constructed in thermal quantum field theo
by periodically identifying the coordinatet in the Euclidean
sector with period equal to the reciprocal of the shell’s re
shifted acceleration temperatureT`5Tacc(R) f (R)1/2. Then
the TUB state’s local temperature varies in accordance w
Tolman’s law@6#

T~r !~2gtt!
1/25T`5const. ~4!

The TUB state may be called a generalized Hart
Hawking ~HH! state. Indeed, it becomes the HH state in t
limit when the shell approaches its gravitational radius.
stress-energy

~Tmn!TUB5~Tmn!B1DTmn ~5!

is, like the HH stress-energy, everywhere bounded and s
for a large black hole, but non-vanishing at infinity.

To keep effects of backreaction under control, we enc
the TUB state in a large spherical container of radiusRbig .
Backreaction is negligible if the total energy of the TU
state is small compared to the shell’s massM , i.e. ~in Planck
units!,

T`
4 Rbig

3 !M , ~6!

or in conventional units,

Rbig /~2GM/c2!!~M /mPL!
2/3'1025~M /M (!2/3. ~7!

We assume this condition satisfied, and we shall ign
backreaction and also the entropic contribution of the TU
state.

Phenomenology gives us the freedom of a dualistic
proach. The thermal equilibrium conditionTshell5TTUB cor-
responds to the viewpoint of a localstationaryobserver. On
the other hand, for the stress-energy of the TUB state
adopt the ‘‘objective’’~gravitating! value which appears on
the right-hand side of the Einstein equations and correspo
to what is measured by a localfree-falling observer, and we
take this to be negligible for a large black hole. The TU
state would look very different to a stationary observer,
whom the ground state is the Boulware state. In a statist
analysis of the problem, this observer’s view is the one
would be forced to adopt, since no technique is curren
available for analyzing the statistical thermodynamics o
system in anything other than its stationary rest frame. S
an analysis would lead to values for the TUB state’s appa
energy and entropy which are large and divergent in
black hole limit. The extensive literature devoted to th
problem resorts to various procedures~e.g. ‘‘brick-wall’’
cutoffs @7#, renormalization of the gravitational couplin
constant@8#! to tame these divergences.

Now consider the surface stress-energy of the shell.
interior and exterior metrics will be of the form~3! with
f (r )5 f 1(r ) and f 5 f 2(r ) respectively. The surface stres
energy is related to the ‘‘jump’’ in the extrinsic curvature v
@9#

8pSab5@Kab2gabK# ~8!
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57 6313AN OPERATIONAL APPROACH TO BLACK HOLE ENTROPY
whereKab is the extrinsic curvature and@•••# denotes the
jump in the quantity in brackets~Latin indices,a,b, etc., run
from 1 to 3!. A simple calculation gives

4ps52@Af ~R!/R# ~9!

and

16pP5@ f 8/Af 12Af /R# ~10!

wheres is the proper surface density of the shell andP is the
surface pressure. Since the mass of the shell as seen by
free-falling observers isM54psR2 we have

M52@RAf #. ~11!

It is instructive to see the explicit form of these expre
sions for a shell of chargee and gravitational massm with a
flat interior. We therefore setf 1(r )51 and f 2(r )51
22m/r 1e2/r 2 in Eqs.~10! and ~11! and find that

m5M2
1

2 S M22e2

R D and P5
M22e2

16pR2~R2M !
.

~12!

These expressions have obvious Newtonian counterparts
simple intuitive meanings.

As discussed above, if the shell is to be contracted rev
ibly, it must be in equilibrium with the acceleration radiatio
that would be seen by observers on the shell. Thus the sh
temperature must be given by@10#

T5a/2p5 f 8~R!/4pAf ~R!. ~13!

For a Reissner-Nordstro¨m space-time f (r )5122m/r
1e2/r 2 and

T5
2MR2M22e2

4pR2~R2M !
. ~14!

Since the local gravitational acceleration is discontinuo
across the shell, the inner and outer TUB states in which
shell is immersed are at different temperatures. To main
equilibrium an ‘‘adiabatic’’ diaphragm~impermeable to
heat! must be interposed between the faces. We can pic
the shell as a pair of concentric spherical plates, with in
and outer massesM1 and M2 , separated by a massless a
thermally inert interstitial layer of negligible thickness. Ho
we distribute the total shell massM5M11M2 between the
plates is arbitrary. We chooseM1 so that the spacetime is fla
between the plates. This generally makesM1 negative. The
two plates thus separate three concentric spherical zone
inner zone wheref (r )5 f 1(r ), a very thin intermediate zon
wheref (r )51 and an outer zone wheref (r )5 f 2(r ). Apply-
ing Eqs.~10! and~11! to the inner and outer plates gives, f
the massesMi and surface pressuresPi ( i 51,2),

Mi5Rj i„12Vi~R!… and 16pPi5S j i f i8~R!

Vi~R!
2

2Mi

R2 D ,

~15!
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where f i and Vi5 f i
1/2 are evaluated atr 5R, the common

radius of the two plates, andj i5(21)i . The temperatureTi
of the plates is given by

Ti5
f i8~R!

4pVi~R!
. ~16!

This givesTi as a function ofMi andR.
Now consider the first law of thermodynamics, whic

would usually relatedS to the quantity (dM1PdA)/T in
terms of the variables discussed so far. But since we
using an explicit functionTi(Mi ,R), the quantity (dM
1PdA)/T will not in general be an exact differential an
hence it cannot be a complete representation of the diffe
tial dS. Thus we need to introduce another thermodynam
variable N5N(M ,R). Since the plates are merely abstra
entropy-carrying devices, the physical significance ofN is
irrelevant. For convenience we interpretN as the number of
particles in the shell. The first law now becomes~temporarily
dropping the indexi !

dS5bdM1bPdA2adN, ~17!

where b51/T, a5m/T, and m is the chemical potential
Using the Gibbs-Duhem relation

S5b~M1PA!2aN ~18!

gives

nda5bdP1~s1P!db, ~19!

wheren5N/A. Using the formulas~16! and ~15! for T, P
ands in terms ofM andR gives

nda5
s

g
dS 1

2jsg D , ~20!

where

g25
f 8

8pjsV
. ~21!

The functionsn anda can be chosen arbitrarily subject on
to the restriction imposed by Eq.~20!. The simplest option is
to choose plate materials having the ‘‘canonical’’ equation
state~denoted by an asterisk, and restoring the indexi !

ni* 5
s i

g i
and a i* 5~2j is ig i !

21. ~22!

Now, from Eqs.~16! and ~21! we have

Ti52j is ig i
2 . ~23!

Thus the canonical chemical potentialm i* 5Tia i* obeys the
simple relation

m i* ni* 5s i . ~24!

Substituting the above into Eq.~18! and noting from Eqs.
~15! and ~21! that the surface pressures can be expresse
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6314 57F. PRETORIUS, D. VOLLICK, AND W. ISRAEL
Pi5
1

2
s i~g i

221!, ~25!

we obtain the entropy densitysi* 5Si* /A of the plates as

si* 5b i Pi5
1

4
j i~12g i

22!. ~26!

When the slow contraction of the shell terminates it
hovering just outside the horizon@r 5r 0 , defined byf (r 0)
50# of the exterior geometry. Now consider the no
extremal case where the surface gravityk5 f 28(r 0)/2Þ0 ~the
extremal case will be examined in Sec. V!. Then Eq.~21!
shows thatg2

2 diverges according to

g2
2'

k2

M2 /R2 V2
21 with V2

252k~R2r 0! ~27!

asR→r 0 . Thus, from Eq.~26!,

lim
R→r 0

s2* 5
1

4
. ~28!

That is, the entropy of the outer plate is one-quarter of
area in Planck units in the black hole limit. In the simplest
situation the spherical cavity inside the shell is flat a
empty. In this casef 1(r )51, M15P15s15T150 and the
outer plate contributes all of the mass and entropy of
shell.

III. BLACK HOLE ENTROPY

In the previous section we found that the entropy o
shell with a flat interior is one-quarter of its area in the bla
hole limit. From an observer’s perspective at infinity there
nothing to distinguish the shell in its final stages of compr
sion from a black hole. We could even arrange for the sh
to leak out energy and entropy in a simulated Hawk
evaporation. This suggests an operational definition for
entropy of a black hole, namely the limiting entropy of th
associated shell.

But is this definition of entropy additive? Suppose that,
the field of a pre-existing black hole with Bekenstei
Hawking entropySold ~or of any object, e.g., a star, havin
this entropy!, we lower a shell of entropySshell5S21S1 to
the point where an outer black hole, of areaAnew, is about to
form, so thatS25Anew/4 for the outer plate according to Eq
~28!. Is the new Bekenstein-Hawking entropy obtained
simple addition asSold1Sshell? At this point certainly not.
The upper plate by itself already accounts for the f
Bekenstein-Hawking entropy of the new configuration, a
so it would be necessary for the negative entropy of the in
plate to cancel exactly the entropy of whatever was inside
cavity initially; i.e., S11Sold would need to be 0. This is
generally not true. However, we are still free to carry ou
further reversible procedure: we can sweep all the mate
inside the cavity onto the outer shell@if this material includes
an inner black hole, this involves inflating the shell rep
senting it until it merges with the lower plate of the ne
shell—in effect, a~reversible! ‘‘evaporation’’ of the inner
black hole#. This ‘‘flattens’’ the cavity inside the new she
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and dematerializes the lower plate.@In a more general~rotat-
ing! context, evacuation will not flatten the cavity, but cou
still reduce the acceleration temperature at the lower plat
zero.# With the shell’s entropy thus modified, the total e
tropy at the end isSshell8 5Anew/4, which isSBH for the final
black hole. In this specific sense,SBH may be called ‘‘addi-
tive,’’ but it is perhaps more correct to say it is ‘‘forgetful’’
SBH for the final configuration betrays no clue about t
entropy originally contained in the space now occupied
the hole.

These considerations suggest the following operatio
definition: SBH is the equilibrium thermodynamic entrop
that would be stored in the material which gathers to fo
the black hole, if all of this material were compressed into
thin layer near its gravitational radius. Since the entropy for
a given mass and area is maximized for thermal equilibri
we expect that this is the maximum entropy that could
stored in the material before it crosses the horizon.

Of course, this imagined process bears no resemblanc
any real scenario of black hole formation. But as mention
it can give a fair schematic description of the evaporat
process since Hawking’s mechanism of virtual pair creat
is a skin effect confined to a thin layer near the horizon.
the real process, the horizon is a port where gravity tem
rarily detains the evaporating particles on their way out
the hole; the shell model assembles all of them there at
time. Kundt’s description ofSBH as ‘‘evaporation entropy’’
sums up the situation rather well, with the proviso that t
evaporation process itself~being virtually reversible! cannot
be thesourceof SBH ; it only acts as its conduit.

IV. ALTERNATIVE PLATE MATERIAL

The key result~28! was established for a special ‘‘canon
cal’’ form of the plate material. How sensitive are the resu
to the properties of the material? The most general functi
n anda satisfying Eq.~20! are obtained by replacinga i* by
an arbitrary function of itselfgi(a i* ), and replacingni* with
ni* /gi8(a i* ). This yields the general formulas

a i5gi~a i* !, ni5ni* /gi8~a i* ! ~29!

and

m ini

s i
5

gi

a i* gi8
. ~30!

The most general expression for the entropy density of
plates is

si5
1

4
j i@11g22~122m ini /s i !#. ~31!

Thus, Eq.~28! is invariant under arbitrary transformations
the form~29! which leavem ini bounded in the high tempera
ture limit. Indeed, we can allow transformations which a
singular in this limit, provided that

lim
Ti→`

m ini

Ti
50, ~32!
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57 6315AN OPERATIONAL APPROACH TO BLACK HOLE ENTROPY
recalling Eq. ~23!. Expression~28! is not invariant under
arbitrary singular transformations. At the root of this pro
lem is the fact that the black hole end-state is a singular s
of the plate material~P and T become infinite!. In these
circumstances there is noa priori justification for excluding
or constraining asymptotically singular behavior of therm
dynamic quantities. However, it is reassuring to note that
loose constraint~32! guarantees that our conclusions are
dependent of the plate material for a very broad class
equations of state.

The freedom contained in the transformations~29! can be
used to ‘‘improve’’ the behavior of the plate material at lo
temperatures. For canonical material the total entropy~not
the entropy density! goes asSi (tot)* 'R (R→`), since g2

'12M /R for R→`. By a suitable change ofgi in Eq. ~29!
we can arrange thatSi (tot)* is finite in the limit R→` ~and
Ti→0!.

V. EXTREMAL BLACK HOLES AND THE THIRD LAW

There are essentially two distinct versions of the third l
of thermodynamics. The first version, proposed by Nerns
1906, states that isothermal processes become isentrop
the zero temperature limit. An essentially equivalent fo
states that the temperature of a system cannot be reduc
zero in a finite number of operations. The second vers
proposed by Planck in 1911, states that the entropy of
system tends, asT→0, to an absolute constant, which ma
be taken as zero.

In their 1973 paper on ‘‘the four laws of black hole d
namics,’’ Bardeen, Carter and Hawking@11# proposed a
form of the third law patterned after Nernst’s unattainabil
principle: ‘‘It is impossible by any process, no matter ho
idealized, to reduce the surface gravity to zero in a fin
sequence of operations.’’ A more specific form@12#, which
makes precise the meaning of ‘‘a finite sequence of op
tions,’’ states that ‘‘a non-extremal black hole cannot b
come extremal at finite advanced time in any continuo
process in which the stress-energy of accreted matter s
bounded and satisfies the weak energy condition.’’ From
formulation it is clear that quantum processes like evapo
tion, which typically involve the absorption of negative e
ergy, can violate Nernst’s form of the third law.

For a long time it was believed that there is no black h
analogue to Planck’s version of the third law. Recently, ho
ever, this has become a matter of controversy. Argume
based on black hole instanton topology and pair creation@13#
suggest that the entropy of extremal black holes is zero.
the other hand, the remarkable indirect calculations of bl
hole entropy by counting states of strings onD-branes gives
the valueSBH5A/4 for extremal black holes@14#.

We can examine this question by considering the qu
static contraction of an extremally charged spherical s
with a flat interior. Settingueu5m in Eqs.~11! and ~12! we
find thatM5ueu andP50. If the shell is made of canonica
material, Eq.~26! gives s* 50 at all stages of the contrac
tion, leading to

SextBH* 50. ~33!

This result is, however, quite sensitive to the equation
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state of the shell material. For arbitrary material, Eq.~31!
gives the shell’s entropy density as

sextBH5
1

2 S 12
mn

s D ~34!

whose value can be made arbitrary by a choice of the fu
tion g(a* ) in Eq. ~29!. Thus no universal quantity can b
assigned to the entropy of an extremal shell in any stag
its compression. This suggests that the entropy of extre
black holes may depend on their prior history.

VI. CONCLUSION

In this paper we calculated the entropy of a quasistatic
contracting spherical shell and discussed its relationship
the entropy of the black hole that it forms.

Outside the shell the classical stress-energy tensor wil
modified by the quantum fields that reside in the spaceti
The Boulware stress-energy produced by these fields
‘‘topped up’’ to provide a thermal environment and redu
the backreaction to negligible levels for large black hol
Since the shell contracts reversibly, its temperature mus
equal to the acceleration temperature seen by observer
the shell. The surface pressure and density follow from
junction conditions. We reformulated the Gibbs relation
the form~20!, involving n5N/A anda5m/T whereN is the
number of particles,A the area,m the chemical potential and
T the temperature of the shell. The entropy of the shell c
easily be calculated oncen anda are found. The solution to
the equation forn anda is not unique, but we found a simpl
solution ~the ‘‘canonical’’ solution!. In the non-extremal
case the entropy of a shell made of canonical material
proachesA/4 as the shell approaches its event horizon. T
result does not hold for all solutions fora andn. However, it
does hold for all equations of state which satisfymn/T→0
as the shell approaches its event horizon~note thatT→` in
this limit!.

The considerations in this paper led us to suggest the
lowing operational definition for the entropy of a black hol
SBH is the equilibrium thermodynamic entropy that would
stored in the material which gathers to form the black hole
all of this material were compressed into a thin layer near
gravitational radius. Since the entropy for a given mass
area is maximized for thermal equilibrium, we expect th
this is the maximum entropy that could be stored in the m
terial before it crosses the horizon.

For the special case of an extremal shell~charge equals
mass in relativistic units! our approach gives ambiguous r
sults; the limiting entropy of the shell depends on the eq
tion of state of the material.

It should be noted that these conclusions go significan
beyond the verifications of the generalized second law@4,15#
which show that one-quarter of thechangein area~when a
black hole slowly ingests material! is equal to the entropy
absorbed. Here, we have derived the entropy-area relatio
integral form, eliminating the possibility of an additive con
stant.
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