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An operational approach to black hole entropy
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In this paper we calculate the entropy of a thin spherical shell that contracts reversibly from infinity down to
its event horizon. We find that, for a broad class of equations of state, the entropy of a non-extremal shell is
one-quarter of its area in the black hole limit. The considerations in this paper suggest the following opera-
tional definition for the entropy of a black hol&;, is the equilibrium thermodynamic entropy that would be
stored in the material which gathers to form the black hole, if all of this material were compressed into a thin
layer near its gravitational radius. Since the entropy for a given mass and area is maximized for thermal
equilibrium we expect that this is the maximum entropy that could be stored in the material before it crosses
the horizon. In the case of an extremal black hole the shell model does not assign an unambiguous value to the
entropy.[S0556-282(98)01710-X]

PACS numbeps): 04.70.Dy, 97.60.Lf

I. INTRODUCTION perimenj. The generalized second law of black hole thermo-
dynamics, which states th&;,, plus the external entropy is
As is well known[1] the classical laws of black hole non-decreasing, lends support to this view of black hole en-

dynamics together with the Hawking temperature tropy. Nevertheless, it is not possibles emphasized by
Kundt [2] more than 20 years agsimply to identify Sgy,
T _K (1) with the thermal entropy of all the matter which collapsed to
Ho2a form the black hole. Since this is an issue of principle, we

could, for instance, consider an idealized Oppenheimer-
lead to the Bekenstein-Hawking postulate that the entropy o§nyder collapse of cold, pressureless, viscous-free dust: here,
a black hole is given by no material entropy ever develops.

The view that entropy is somehow created in the process
of evaporation also meets with difficulties. Black hole evapo-
ration is very nearly, and can be made exactly, reversible.
We simply enclose the hole in a container, so that it comes
where k is the surface gravity of the hole aidis its area into equilibrium with its own radiation. We then poke a
(here we work in units wittG=c=#A=1). This expression small hole in the container and let the radiation leak out
for the black hole entropy has raised some important quesarbitrarily slowly. Since this process is reversible, no entropy
tions that still remain unanswered. At what stage in the blacks generated.
hole’s evolution is its entropy created? Is it created immedi- Another possible explanation of the entropy of a black
ately upon the formation by gravitational collapse or onlyhole stems from Frolov and Novikd®3]. This links Sz} with
gradually over the(typically) long course of evaporation? modes(produced by vacuum fluctuationgropagating “out-
What is the dynamical mechanism that masgg a univer-  wards” just inside and alongside the horizon. These modes
sal function, independent of the hole’s past history and dehave positive frequency but their energy is negative as cali-
tailed internal condition? There are a variety of possible anbrated for an observer at infinity.e. including the contribu-
swers. First the subtlest possibility: It is conceivable that ndion of gravitational potential energy Their spectrum is
guantum entropy is irreversibly created by the hole. No inthermal with temperaturd,. Detailed implementation of
formation is lost andSg}, is merely a measure of our own this picture is so far still plagued with divergences and am-
temporary loss of accedsluring the lifetime of the black biguities.
hole) to correlations beneath the horizon. When the black Finally we mention that Zurek and Thoriié] have sug-
hole finally evaporates these correlations will be fully visible gested thatSzy, should be interpreted as the logarithm of
to us. A black hole formed by the collapse of matter in a pure‘the number of quantum-mechanically distinct ways that the
state will evaporate into a radiation field whose distributionblack hole could have been made.” Assuming that the tech-
appears thermal on a coarse-grained level, but will be recogrical difficulties involved in making this statement precise
nized to be in a pure state once the last particles have left thean be overcome, the Zurek-Thorne interpretation uses an
hole. ensemble of black holes and thus simply accepts the univer-

Alternatively, it is possible that black hole formation and sality of Sz, without offering any dynamical explanation for
evaporation are accompanied by an irreversible increase dow it arises in a particular black hole.
entropy, and we come back to the questions how, where, and No direct insight into the statistical origins of black hole
when? The originalpre-1974 motivation for assigning an entropy can come from thermodynamics. But if entropy re-
entropy to a black hole was to keep account of the thermaklly is a meaningful state function for black hole equilibrium
entropy of objects thrown into a hol&heeler's teacup ex- states, then thermodynamics can tell us its value and provide

1
SBH:ZA, (2)
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an operational definition of it. To find the entropy of any (TUB) state” is constructed in thermal quantum field theory
thermodynamical state one invents a reversible procedsy periodically identifying the coordinatiein the Euclidean
which arrives at that state from a state of known entropy andector with period equal to the reciprocal of the shell’s red-
computes how the entropy changes in that process using tishifted acceleration temperatufe =T,.(R)f(R)¥2 Then
first law of thermodynamics. In this paper we examine thethe TUB state’s local temperature varies in accordance with
reversible contraction of a thin spherical shell down to itsTolman'’s law[6]

event horizon. To maintain reversibility, the shell must be in

equilibrium with the acceleration radiation seen by observers T(r)(—gy)Y?>=T..=const. (4)

on the shell. In addition to the classical stress-energy outside

the shell there will be a Boulware stress-energy created by The TUB state may be called a generalized Hartle-
the quantum fields that reside in the spacetime. To maintaipjawking (HH) state. Indeed, it becomes the HH state in the

thermal equilibrium we draw on a source of energy at infin-jimjt when the shell approaches its gravitational radius. Its
ity to “top up” the Boulware stress-energy to an appropriatesyress-energy

thermal environment. The pressure and surface density of the

shell follow from the junction conditions at the shell. Using (T,)rus=(T,,) s+ AT (5)
the first law we find that the entropy of the shelligt in the prITUBT A Tuv B mr
black hole limit for a large class of shell equations of state
These considerations lead us to suggest the following oper
tional definition for the entropy of a black hol&g is the

equilibrium thermodynamic entropy that would be stored INthe TUB state in a large spherical container of radRyg, .

D e o B e e Backreacton ' gl f e total cnery of e TUR
imagine a’ ; P Y state is small compared to the shell’'s massi.e. (in Planck
its gravitational radius.

units),

is, like the HH stress-energy, everywhere bounded and small
for a large black hole, but non-vanishing at infinity.
To keep effects of backreaction under control, we encase

Il. ENTROPY OF A CONTRACTING SHELL
TARE <M, (6)

In this section we consider compressing a spherical shell
reversibly from an infinite radius down to its event horizon. or in conventional units,
To maintain reversibility at each stage the shell must be in
equilibrium with the acceleration radiation that would be Roig/(2GM/c?)<(M/mp) 2P~ 107 M/M )23 (7)
measured by an observer on the shell. Thus the temperature

of the shell is determined by the local acceleration of statiQNe assume this condition satisfied, and we shall ignore

observers at the shell. Our interest is in the end-states of Backreaction and also the entropic contribution of the TUB

thermodynamic process: a state of infinite dispersion at in;State

finity and the final black hole state. The shell serves merely Phenomenology gives us the freedom of a dualistic ap-
as the working substance connecting these two states, a ?oach. The thermal equilibrium conditidiy, o= Trys COI-

:Eg ?i?:rlz v(\)/f (t)?ethrgfr:?orgilr:;lr:irceéevl?smeasu{a(:ig% aosf Itstsaiigsnﬁ esponds to the viewpoint of a locstiationaryobserver. On
volves two inde endentyvariabIeIS' theqshell’s locall mea—the other hand, for the stress-energy of the TUB state we
P ' y adopt the “objective” (gravitating value which appears on

sured mas$4 and radiusR. the right-hand side of the Einstein equations and corresponds

For the static spherical geometries inside and outside th{?o what is measured by a locite-falling observer, and we

shell it will be general enough for our purposes to take thetake this to be negligible for a large black hole. The TUB

metric to be of the form state would look very different to a stationary observer, for
d=dr2/f(r)+r2dQ2—f(r)dt2. 3) whom _the ground state is t_he Boulware st_ate._ln a statistical
analysis of the problem, this observer’s view is the one we
This covers as special cases Minkowski, Schwarzschildwould be forced to adopt, since no technique is currently
Reissner-Nordstra and de Sitter spacetimes. Of course, theavailable for analyzing the statistical thermodynamics of a
classical stress-energy associated the Einstein equations ~ System in anything other than its stationary rest frame. Such
with this metric is not the stress-energy of the ground stat@n analysis would lead to values for the TUB state’s apparent
for the quantum fields which reside in the spacetime. Weenergy and entropy which are large and divergent in the
know that this is the Boulware stafig], whose stress-energy black hole limit. The extensive literature devoted to this
(T..)e depends on the types and number of fields and i§roblem resorts to various procedurésg. “brick-wall”
unknown. For an ordinary staiT(,,)g is completely negli- cutoffs [7], renormalization of the gravitational coupling
gible, but as the shell approaches its gravitational radius i€onstan{8]) to tame these divergences.
generally grows without bound, and its backreaction cannot Now consider the surface stress-energy of the shell. The
be ignored. We cannot compute this backreaction, but wénterior and exterior metrics will be of the fort8) with
can compensate for it. By drawing from an energy reservoiif () =f1(r) and f=f,(r) respectively. The surface stress-
at infinity we fill up the shell’s surroundings with material energy is related to the “jump” in the extrinsic curvature via
whose stress-energyT ,, tops up [ ,,)s to form a thermal  [9]
bath which shares the shell's local acceleration temperature
Tac(R) at the point of contact. This “topped-up Boulware 87S,p=[Kap— 9apK] (8
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whereK,, is the extrinsic curvature and - -] denotes the where f; and V;=f? are evaluated at=R, the common

jump in the quantity in bracketd.atin indices,a,b, etc., run  radius of the two plates, argj=(—1)". The temperaturd;

from 1 to 3. A simple calculation gives of the plates is given by
4ro=—[Vf(R)/R] 9) _ KR 16
" 4nVi(R)
and

This givesT; as a function oM; andR.
167P=[f'/\f+2fIR] (10) Now consider the first law of thermodynamics, which
would usually relatedS to the quantity {M+PdA)/T in
whereo is the proper surface density of the shell & the  terms of the variables discussed so far. But since we are
surface pressure. Since the mass of the shell as seen by loealing an explicit functionT;(M;,R), the quantity M

free-falling observers i81 =47oR? we have +PdA)/T will not in general be an exact differential and
hence it cannot be a complete representation of the differen-
M= —[R\/?]. (11 tial dS. Thus we need to introduce another thermodynamic

variableN=N(M,R). Since the plates are merely abstract
It is instructive to see the explicit form of these expres-entropy-carrying devices, the physical significanceNofs
sions for a shell of charge and gravitational mas® with a  irrelevant. For convenience we interpiétas the number of
flat interior. We therefore seff;(r)=1 and f,(r)=1  particles in the shell. The first law now beconttsmporarily

—2m/r+e?/r? in Egs.(10) and(11) and find that dropping the index)
v 1 (MZ_eZ P M2—ge2? dS=BdM+ BPdA— adN, (17)
m=M- - and P=-——5 ="+~
2 R 16mR*(R—M) 5 where B=1/T, a=ul/T, and u is the chemical potential.
(12 Using the Gibbs-Duhem relation
These expressions have obvious Newtonian counterparts and S=B(M+PA)—aN (18)

simple intuitive meanings.
As discussed above, if the shell is to be contracted reverggives
ibly, it must be in equilibrium with the acceleration radiation
that would be seen by observers on the shell. Thus the shell's nda=BdP+(c+P)dg, (19

temperature must be given py0]
wheren=N/A. Using the formulag16) and (15) for T, P

T=al2n=f"(R) /4= f(R). (13 andoin terms ofM andR gives
For2 a Reissner-Nordstno space-time f(r)=1—2m/r nda= g (L) , (20)
+e?/r? and y 280y
2MR-M2-¢? where
T= TR (14) y
y'= 8wéaV’ (21)

Since the local gravitational acceleration is discontinuous
across the shell, the inner and outer TUB states in which th

shell is immersed are at different temperatures. To maintair?he functionsn anda can be chosen arbitrarily subject only

equilibrium an “adiabatic” diaphragm(impermeable to to the restriction imposed by E(R0). The simplest option is

hea) must be interposed between the faces. We can picturté) choose plate materials having the “canonical” equation of

the shell as a pair of concentric spherical plates, with inneF‘tate(denOt6d by an asterisk, and restoring the ingex
and outer massdel, andM,, separated by a massless and o

thermally inert interstitial layer of negligible thickness. How n*=— and o =(2&0,y;) % (22)
we distribute the total shell ma$d =M+ M, between the i

plates is arbitrary. We choo$é, so that the spacetime is flat
between the plates. This generally makég negative. The
two plates thus separate three concentric spherical zones: an T.=2¢ 019 23)
inner zone wheré(r)=f4(r), a very thin intermediate zone ! A
wheref(r)=1 and an outer zone whefér)=f,(r). Apply-
ing Egs.(10) and(11) to the inner and outer plates gives, for
the masse#/; and surface pressurés (i=1,2),

Now, from Egs.(16) and(21) we have

Thus the canonical chemical potentjaf =T;a;* obeys the
simple relation

LR ZM_) pint =, (24)

Mi=R§i(1—Vi(R)) and 1GTPiZ<W— ?

Substituting the above into Eq18) and noting from Egs.
(15 (15) and (21) that the surface pressures can be expressed as
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1 2
Pi=50i(7-1), 25

we obtain the entropy densigf = SF/A of the plates as

* 1 -2
Si :ﬁipizzgi(l_% ) (26)
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and dematerializes the lower plafen a more generdlrotat-

ing) context, evacuation will not flatten the cavity, but could
still reduce the acceleration temperature at the lower plate to
zero] With the shell’s entropy thus modified, the total en-
tropy at the end iS}; ;= Anew'4, Which isSgy for the final
black hole. In this specific sens8zy may be called “addi-

tive,” but it is perhaps more correct to say it is “forgetful”:
Sgy for the final configuration betrays no clue about the

When the slow contraction of the shell terminates it isentropy originally contained in the space now occupied by

hovering just outside the horizdm=r,, defined byf(rg)
=0] of the exterior geometry. Now consider the non-
extremal case where the surface grawty f,(r)/2#0 (the
extremal case will be examined in Sec). When Eq.(21)
shows thaty% diverges according to

Y~ "2\t with V2=2k(R—rp) (27
2 MZ/RZ 2 2 0
asR—rgy. Thus, from Eq(26),
lim s}=-. (29
R—>r0 2 4

That is, the entropy of the outer plate is one-quarter of its
area in Planck units in the black hole limiln the simplest

the hole.

These considerations suggest the following operational
definition: Sgy is the equilibrium thermodynamic entropy
that would be stored in the material which gathers to form
the black hole, if all of this material were compressed into a
thin layer near its gravitational radiusSince the entropy for
a given mass and area is maximized for thermal equilibrium
we expect that this is the maximum entropy that could be
stored in the material before it crosses the horizon.

Of course, this imagined process bears no resemblance to
any real scenario of black hole formation. But as mentioned
it can give a fair schematic description of the evaporation
process since Hawking’s mechanism of virtual pair creation
is a skin effect confined to a thin layer near the horizon. In
the real process, the horizon is a port where gravity tempo-
rarily detains the evaporating particles on their way out of

situation the spherical cavity inside the shell is flat andthe hole; the shell model assembles all of them there at one

empty. In this casd(r)=1, M;=P;=s5,=T,;=0 and the

time. Kundt's description oz as “evaporation entropy”

outer plate contributes all of the mass and entropy of th&UmS up the situation rather well, with the proviso that the

Ill. BLACK HOLE ENTROPY

evaporation process itsdlbeing virtually reversiblecannot
be thesourceof Sgy; it only acts as its conduit.

IV. ALTERNATIVE PLATE MATERIAL

In the previous section we found that the entropy of a . ) i
shell with a flat interior is one-quarter of its area in the black ~_TNe key result28) was established for a special “canoni-
hole limit. From an observer's perspective at infinity there isCal” form of the plate material. How sensitive are the results
nothing to distinguish the shell in its final stages of compres{© the properties of the material? The most general functions
sion from a black hole. We could even arrange for the shell anda satisfying Eq.(20) are obtained by replacing® by
to leak out energy and entropy in a simulated Hawkingan arbitrary function of itself;(«;"), and replacingn® with
evaporation. This suggests an operational definition for the; /g/ («"). This yields the general formulas

entropy of a black hole, namely the limiting entropy of the
associated shell.

But is this definition of entropy additive? Suppose that, in

the field of a pre-existing black hole with Bekenstein-
Hawking entropyS,,q (or of any object, e.g., a star, having
this entropy, we lower a shell of entrop$gei=S,+ S, to
the point where an outer black hole, of afea.,, is about to
form, so thatS,= A,,/4 for the outer plate according to Eq.

*

aizgi(ai ), ni:nrlgi,(ai*) (29)

and

Mmin;
Jj

E (30

(28). Is the new Bekenstein-Hawking entropy obtained by The most general expression for the entropy density of the
simple addition asS, 4+ Sshe? At this point certainly not. plates is
The upper plate by itself already accounts for the full
Bekenstein-Hawking entropy of the new configuration, and

so it would be necessary for the negative entropy of the inner

plate to cancel exactly the entropy of whatever was inside the

cavity initially; i.e., S;+Soq would need to be 0. This is Thys, Eq(28) is invariant under arbitrary transformations of
generally not true. However, we are still free to carry out aye form(29) which leaveu;n; bounded in the high tempera-

further reversible procedure: we can sweep all the materig|;re |imit. Indeed, we can allow transformations which are
inside the cavity onto the outer shfithis material includes singular in this limit, provided that

an inner black hole, this involves inflating the shell repre-
senting it until it merges with the lower plate of the new
shell—in effect, a(reversible “evaporation” of the inner

black holg. This “flattens” the cavity inside the new shell Tj—oe

si=‘1—1§i[1+ y 2(1=2mini/ay)]. (3D

L
lim ——=0,

T, (32
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recalling Eq.(23). Expression(28) is not invariant under state of the shell material. For arbitrary material, E8fl)
arbitrary singular transformations. At the root of this prob-gives the shell’s entropy density as

lem is the fact that the black hole end-state is a singular state 1
of the plate materialP and T become infinit¢ In these SextBH==
circumstances there is reopriori justification for excluding 2
or constraining asymptotically singular behavior of thermo'whose value can be made arbitrary by a choice of the func-
dynamic quantities. However, it is reassuring to note that the;,, g(a*) in Eq. (29). Thus no universal quantity can be
loose constrain32) guarantees_ that our conclusions are i”'assigned to the entropy of an extremal shell in any stage of
dependent of the plate material for a very broad class ofts compression. This suggests that the entropy of extremal

1- ,u_n) (34

o

equations of state. _ black holes may depend on their prior history.
The freedom contained in the transformatid®8) can be
used to “improve” the behavior of the plate material at low VI. CONCLUSION

temperatures. For canonical material the total entromt
the entropy densijygoes as T(tot)”R (R—x), since y?
~1—-M/R for R—«. By a suitable change @; in Eq. (29)

In this paper we calculated the entropy of a quasistatically
contracting spherical shell and discussed its relationship to
the entropy of the black hole that it forms.

we can arrange tha is finite in the limit R—e (and Outside the shell the classical stress-energy tensor will be
Ti—0). modified by the quantum fields that reside in the spacetime.
The Boulware stress-energy produced by these fields was

V. EXTREMAL BLACK HOLES AND THE THIRD LAW “topped up” to provide a thermal environment and reduce

the backreaction to negligible levels for large black holes.

There are essentially two distinct versions of the third lawSince the shell contracts reversibly, its temperature must be
of thermodynamics. The first version, proposed by Nernst irequal to the acceleration temperature seen by observers on
1906, states that isothermal processes become isentropic time shell. The surface pressure and density follow from the
the zero temperature limit. An essentially equivalent formjunction conditions. We reformulated the Gibbs relation in
states that the temperature of a system cannot be reducedttee form(20), involvingn=N/A anda= u/T whereN is the
zero in a finite number of operations. The second versionpumber of particlesi the areau the chemical potential and
proposed by Planck in 1911, states that the entropy of any the temperature of the shell. The entropy of the shell can
system tends, a§—0, to an absolute constant, which may easily be calculated onaeand « are found. The solution to
be taken as zero. the equation fon ande« is not unique, but we found a simple

In their 1973 paper on “the four laws of black hole dy- solution (the “canonical” solution. In the non-extremal
namics,” Bardeen, Carter and Hawkirig1] proposed a case the entropy of a shell made of canonical material ap-

form of the third law patterned after Nernst's unattainability proalchesﬂ\/4 ashthle ?hellnapplrogchefs its event horizon. This
principle: “It is impossible by any process, no matter how result does not hold for all solutions farandn. However, it

idealized, to reduce the surface gravity to zero in a finiteH0€S hold for all equations of state which satigfg/T— 0

sequence of operations.” A more specific fofa?], which ﬁ]si;rllifnistr)]e” approaches its event horizoate thafT —e in
T e W o S Th Consideratons i this paer e s 10 suggest e o
’ . , . ) lowing operational definition for the entropy of a black hole:
come ex_trema_l at finite advanced time in any continuou y Is the equilibrium thermodynamic entropy that would be
process in which the stress-energy of accreted matter stayg,req in the material which gathers to form the black hole, if
bounded and satisfies the weak energy condition.” From thigy|| of this material were compressed into a thin layer near its
formulation it is clear that quantum processes like evaporag gyitational radius. Since the entropy for a given mass and
tion, which typically involve the absorption of negative en- grea is maximized for thermal equilibrium, we expect that
ergy, can violate Nernst's form of the third law. this is the maximum entropy that could be stored in the ma-
For a long time it was believed that there is no black holeterial before it crosses the horizon.
analogue to Planck’s version of the third law. Recently, how- For the special case of an extremal sheharge equals
ever, this has become a matter of controversy. Argumentsass in relativistic unijsour approach gives ambiguous re-
based on black hole instanton topology and pair creqfi6h  sults; the limiting entropy of the shell depends on the equa-
suggest that the entropy of extremal black holes is zero. Otion of state of the material.
the other hand, the remarkable indirect calculations of black It should be noted that these conclusions go significantly
hole entropy by counting states of strings Drbranes gives beyond the verifications of the generalized second[ k5]
the valueSg=A/4 for extremal black holefl4]. which show that one-quarter of tlehangein area(when a
We can examine this question by considering the quasiblack hole slowly ingests materjals equal to the entropy
static contraction of an extremally charged spherical shelfbsorbed. Here, we have derived the entropy-area relation in
with a flat interior. Settinde|=m in Egs.(11) and(12) we integral form, eliminating the possibility of an additive con-
find thatM = |e| and P=0. If the shell is made of canonical Stant.
H H *
g:)a:;t'elrlea;laiﬁg.(é@ givess* =0 at all stages of the contrac ACKNOWLEDGMENTS
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