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Abstract

We present a study of Type I critical phenomena of a self-gravitating massive complex scalar

field (boson star) in spherical symmetry. Type I critical solutions were studied by colliding the

massive complex scalar field with a spherical shell of massless real scalar field, with the one-

parameter family of initial data constructed by tuning the amplitude of the real scalar field. We

reproduce the lifetime scaling law result in the supercritical regime studied by S. Hawley and

M. Choptuik [1, 2] in maximal isotropic coordinate, and further investigate the resulting unstable

critical solutions in the subcritical regime. In contrary to the conjecture that the final fate of the

subcritical solutions is to disperse most of the mass to infinity, we found that the end state of

marginally subcritical evolution is a stable boson star executing large amplitude oscillations, that

can largely be understood as excitations of the fundamental normal mode of the end-state star.

The oscillation frequency is in good agreement with that predicted for the fundamental normal

mode of the end-state star from linear perturbation theory.
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I. INTRODUCTION

Over the past decade, intricate and unexpected phenomena related to black holes have

been discovered through the detailed numerical study of various models for gravitational

collapse, starting with one of the authors’ investigation of the spherically symmetric collapse

of a massless scalar field [3]. These studies generally concern the threshold of black hole

formation (a concept described below), and the phenomena observed near threshold are

collectively called (black hole) critical phenomena, since they share many of the features

associated with critical phenomena in statistical mechanical systems. The study of critical

phenomena continues to be an active area of research in numerical relativity, and we refer

the interested reader to the recent review article by Gundlach [4] for full details on the

subject. Here we will simply summarize some key points that are most germane to the work

in this paper.

To understand black hole critical phenomena, one must understand the notion of the

“threshold of black hole formation”. The basic idea is to consider families of solutions of the

coupled dynamical equations for the gravitational field and the matter field that is undergo-

ing collapse (the complex scalar field, φ, in our case). Since we are considering a dynamical

problem, and since we assume that the overall dynamics is uniquely determined by the

initial conditions, we can view the families as being parametrized by the initial conditions—

variations in one or more of the parameters that fix the initial values will then generate

various solution families. We also emphasize that we are considering collapse problems.

This means that we will generically be studying the dynamics of systems that have length

scales comparable to their Schwarzschild radii, for at least some period of time during the

dynamical evolution. We also note that we will often take advantage of the complete freedom

we have as numerical experimentalists to choose initial conditions that lead to collapse, but

which may be highly unlikely to occur in an astrophysical setting.

We now focus attention on single parameter families of data, so that the specification of

the initial data is fixed up to the value of the family parameter, p. We will generally view p

as a non-linear control parameter that will be used to govern how strong the gravitational

field becomes in the subsequent evolution of the initial data, and in particular, whether a

black hole forms or not. Specifically, we will always demand that any one-parameter family

of solutions has the following properties:
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1. For sufficiently small values of p the dynamics remains regular for all time, and no

black hole forms.

2. For sufficiently large values of p, complete gravitational collapse sets in at some point

during the dynamical development of the initial data, and a black hole forms.

From the point of view of simulation, it turns out to be a relatively easy task for many

models of collapse to construct such families, and then to identify 2 specific parameter

values, p− (p+) which do not (do) lead to black hole formation. Once such a “bracket”

[p−, p+] has been found, it is straightforward in principle to use a technique such as binary

search to hone in on a critical parameter value, p?, such that all solutions with p < p?

(p > p?) do not (do) contain black holes. A solution corresponding to p = p? thus sits

at the threshold of black hole formation, and is known as a critical solution. It should be

emphasized that underlying the existence of critical solutions are the facts that (1) the end

states (infinite-time behaviour) corresponding to properties 1. and 2. above are distinct (a

spacetime containing a black hole vs a spacetime not containing a black hole) and (2) the

process characterizing the black hole threshold (i.e. gravitational collapse) is unstable. We

also note that we will term evolutions with p < p? subcritical, while those with p > p? will

be called supercritical.

Having discussed the basic concepts underlying black hole critical phenomena, we now

briefly describe the features of critical collapse that are most relevant to the work in this

paper.

First, critical solutions do exist for all matter models that have been studied to date,

and for any given matter model, almost certainly constitute discrete sets. In fact, for some

models, there may be only one critical solution, and we therefore have a form of universality.

Second, critical solutions tend to have additional symmetry beyond that which has been

adopted in the specification of the model (e.g. we will impose spherical symmetry in our

calculations).

Third, the critical solutions known thus far, and the black hole thresholds associated

with them, come in two broad classes. The first, dubbed Type I, is characterized by static

or periodic critical solutions (i.e. the additional symmetry is a continuous or discrete time-

translational symmetry), and by the fact that the black hole mass just above threshold is

finite (i.e. so that there is a minimum black hole mass that can be formed from the collapse).
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The second class, called Type II, is characterized by continuously or discretely self-similar

critical solutions (i.e. the additional symmetry is a continuous or discrete scaling symmetry),

and by the fact that the black hole mass just above threshold is infinitesimal (i.e. so that

there is no minimum for the black hole mass that can be formed). The nomenclature Type

I and Type II is by analogy with first and second order phase transitions in statistical

mechanics, and where the black hole mass is viewed as an order parameter.

Fourth, solutions close to criticality exhibit various scaling laws. For example, in the case

of Type I collapse, where the critical solution is an unstable, time-independent (or periodic)

compact object, the amount of time, τ , that the dynamically evolved configuration is well

approximated by the critical solution per se satisfies a scaling law of the form

τ(p) ∼ −γ ln |p− p?| , (1)

where γ is a universal exponent in the sense of not depending on which particular family of

initial data is used to generate the critical solution, and ∼ indicates that the relation (1) is

expected to hold in the limit p→ p?.

Fifth, and finally, much insight into critical phenomena comes from the observation that

although unstable, critical solutions tend to be minimally unstable, in the sense that they

tend to have only a few, and perhaps only one, unstable modes in perturbation theory. In

fact, if one assumes that a Type I solution, for example, has only a single unstable mode,

then the growth factor (Lyapunov exponent) associated with that mode can be immediately

related to the scaling exponent γ defined by (1).

In this paper we will be exclusively concerned with Type I critical phenomena, where the

threshold solutions will generally turn out to be unstable boson stars. Previous work relevant

to ours includes studies by Hawley [1] and Hawley & Choptuik [2] of boson stars in spher-

ically symmetry. We extend this work and show that, contrary to previous claims [2] that

subcritical solutions disperse most of the original mass of the boson star to large distances—

the late time behaviour of subcritical evolution is characterized by oscillation about a stable

boson star solution. We also apply a linear perturbation analysis similar to that in [2] and

confirm that the observed oscillation modes agree with the fundamental modes given by

perturbation theory. (We use a code provided by S. Hawley [5] to generate the frequencies

from the perturbation analysis.)

The outline of the rest of this paper is as follows: in Section II we describe the mathe-
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matical formulation for our numerical simulations, which includes IIA: the model of the

boson stars, and IIB: the initial value problem. In Section III we present results of our sim-

ulations: in IIIA we present the setup of numerical experiments, in III B type I character

of the critical solutions is demonstrated, in III C the end state in the subcritical regime is

discussed, followed by some perturbation analysis in IIID, which is then followed by conclu-

sions in Section IV. The finite difference approximation method used and convergence tests

are given in Appendices A and B respectively.

In what follows we base our work in the context of classical field theory, and we choose

units in which G = c = ~ = 1. Since we can always choose m = 1 by changing the length

scale in the problem, we will restrict ourselves to the case where m = 1.

II. MATHEMATICAL FORMULATION

A. The model

Our model of a boson star is described by a self-gravitating massive complex scalar field,

φ = φ1 + iφ2, minimally coupled to gravity as given by general relativity. An additional,

massless real scalar field, φ3, minimally coupled to gravity, is used to dynamically “perturb”

the boson star. The interaction between the massive complex scalar field and the massless

real scalar field is thus through gravity only. The whole system can be described by the

action

S =

∫

d4x
√−g

[

R

16π
− 1

2

(

∇µφ∇µφ
∗ +m2φφ∗

)

− 1

2
∇µφ3∇µφ3

]

, (2)

where R is the spacetime Ricci scalar and m is the bare (particle) mass of the bosonic

particle. Variations of the action with respect to the metric gµν, the complex scalar field φ,

and the real scalar field φ3, yield the equations of motion which are the Einstein equation,

Klein-Gordon equation and the wave equation respectively:

Rµν −
1

2
gµνR = 8πTµν , (3)

∇µ∇µφ−m2φ = 0 , (4)

and
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∇µ∇µφ3 = 0 , (5)

where

Tµν = T φ
µν + T φ3

µν , (6)

T φ
µν ≡ 1

2

[

(∇µφ∇νφ
∗ + ∇νφ∇µφ

∗) − gµν

(

∇αφ∇αφ
∗ +m2|φ|2

)]

, (7)

T φ3

µν = ∇µφ3∇νφ3 −
1

2
gµν ∇αφ3∇αφ3 . (8)

Equations (3) - (8) completely determine the system up to a certain coordinate degree of

freedom once the appropriate initial conditions and boundary conditions are specified.

To study the system numerically we adopt the standard “3+1” ADM formalism [6, 7].

Since we restrict ourselves to system in spherically symmetric spacetime, The metric can

be written in a much simpler form. Here we use maximal-isotropic coordinates, a different

coordinate system than that used in [2]. Although the accuracy of finite difference calcu-

lations in any given coordinate system can in principle be estimated using intrinsic means

(e.g. convergence tests), we feel that it is nonetheless useful to reproduce the calculations of

[1, 2] in a different coordinate system. In this coordinate system the metric can be written

as:

ds2 =
(

−α2 + ψ4β2
)

dt2 + 2ψ4β dt dr + ψ4
(

dr2 + r2dΩ2
)

, (9)

where α, β and ψ are the lapse function, r-component of the shift vector and the conformal

factor respectively, and all are functions of t and r. We further define new variables to

transform the Klein Gordon equation into a first order system:

Φi ≡ φ′

i , (10)

Πi ≡
ψ2

α

(

φ̇i − βφ′

i

)

, (11)

where i = 1, 2 or 3, ′ ≡ ∂/∂r and ˙≡ ∂/∂t.
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With these definitions, the Hamiltonian constraint and momentum constraints are given

by [8]:

3

ψ5

d

dr3

(

r2dψ

dr

)

+
3

16
Kr

r
2 = −π

(

∑3
i=1 (Φ2

i + Π2
i )

ψ4
+m2

2
∑

i=1

φi
2

)

, (12)

Kr
r
′ + 3

(rψ2)′

rψ2
Kr

r = −8π

ψ2

(

3
∑

i=1

ΠiΦi

)

, (13)

and the Klein-Gordon equations become:

φ̇i =
α

ψ2
Πi + βΦi , (14)

Φ̇i =

(

βΦi +
α

ψ2
Πi

)′

, (15)

Π̇i =
3

ψ4

d

dr3

[

r2ψ4

(

βΠi +
α

ψ2
Φi

)]

− αψ2m2φi (1 − δi3)

−
(

αKr
r + 2β

(rψ2)′

rψ2

)

Πi . (16)

In addition to equations (12) - (16), we need to enforce the coordinate choice we have used,

which is given by the maximal-isotropic condition. The maximal condition, which maximizes

the 3-volume of the slices, is equivalent to setting K ≡ K i
i = 0 or, computationally, we

implement maximal slicing by choosing initial data for the extrinsic curvature that satisfies

K = 0, and then demanding that

K̇(t, r) = 0 . (17)

for all t and r. The isotropic condition, which is implicitly used in writing (9), requires

that the spatial part of the metric is conformally flat. The coordinate choice gives the

followings [8]:

α′′ +
2

rψ2

d

dr2

(

r2ψ2
)

α′ +

(

4πm2ψ4

2
∑

i=1

φ2
i − 8π

3
∑

i=1

Π2
i −

3

2
(ψ2Kr

r)
2

)

α = 0 , (18)

r

(

β

r

)′

=
3

2
αKr

r . (19)

Equations (12) - (19) constitute the equations that we need to solve. Note that all our

simulations are based on constrained evolution, where the geometric variables ψ and K r
r
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are solved via the constraint equations (12) and (13), while the field variables φi,Φi and Πi

are solved via the Klein Gordon equations (14) to (16). To completely specify the system,

we impose the following regularity conditions in addition to the above equations:

ψ′(t, 0) = 0 , (20)

Kr
r(t, 0) = 0 , (21)

α′(t, 0) = 0 , (22)

φ′

i(t, 0) = 0 , (23)

Π′

i(t, 0) = 0 , (24)

where for the outer boundary, the conditions are:

lim
r→∞

ψ(t, r) = 1 +
C(t)

r
+O(r−2) , (25)

lim
r→∞

α(t, r) = lim
r→∞

2

ψ(t, r)
− 1 = 1 − 2C(t)

r
+O(r−2) , (26)

lim
r→∞

β(t, r) =
D(t)

r
+O(r−2) , (27)

and

Φ̇i + Φ′

i +
Φi

r
= 0 , (28)

Π̇i + Π′

i +
Πi

r
= 0 , (29)

for some functions C(t) and D(t). Eq. (12) - (29) now completely determine our system.

For diagnostic purpose, we also define the mass aspect function

M(t, r) ≡
(

ψ2r

2

)3

Kr
r

2 − 2ψ′r2 (ψ + rψ′) , (30)

which is equal to the ADM mass in vacuum region exterior to the support of matter. Also

note that the apparent horizon satisfy

4rψ′ + 2ψ +Kr rψ3r = 0 , (31)

8



in our coordinate choice. The above equation is needed for detection of formation of black

hole. Moreover, although ψ and Kr
r are solved via the constraint equations, the following

evolution equations are used for giving an initial guess for the constraint solver routines:

ψ̇ = −1

2
αψKr

r +
(ψ2β)

′

2ψ
, (32)

K̇r
r = βKr′

r −
2α

(rψ2)2
+

2

r2ψ6

[

αr
(

rψ2
)′
]′

+ 8πm2α|φ|2 . (33)

The details of the numerical scheme for finite differencing the equations and the boundary

conditions are described in appendix A.

B. The initial value problem

The primitive object in our model problem is a boson star, represented by the massive

complex scalar field, sitting at the origin. For simplicity, we study ground state boson stars

only. Ideally one would like a “star” to be described by a localized, time-independent matter

source that generates an everywhere regular (i.e. non-singular) gravitational field. However,

for the case of a complex scalar field, it can be shown that such regular, time-independent

configurations do not exist [9]. Despite this fact, since the stress-energy tensor (7) depends

only on the modulus of the scalar field (and the gradients of the modulus), one can construct

scalar field configurations with harmonic time-dependence that produce time-independent

metrics. Specifically, we adopt the following ansatz for boson stars in spherical symmetry:

φ(t, r) = φ0(r) e
−iωt , (34)

and then demand that the spacetime be static, i.e. we demand that the metric admits a

timelike Killing vector field χ which is orthogonal to the t = const. surfaces. Adapting

coordinate time to the timelike Killing vector field, we have

β = 0 , (35)

for all time t. Additionally, we have that the time derivatives of any of the geometrical

variables identically vanish. It then follows immediately that [8]

Kr
r = 0 . (36)
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As is necessary for the consistency of the ansatz (34), the isotropic condition for β (19)

is automatically satisfied, and we are left with geometrical variables α(0, r), ψ(0, r) and

φ0(r) that need to be determined from the maximal slicing condition (18), the Hamiltonian

constraint (12) and the Klein-Gordon equation (16) respectively:

ψ′ = Ψ , (37)

Ψ′ = −2Ψ

r
− π

[

ψΦ2 + ψ5

(

ω2

α2
+m2

)

φ2

]

, (38)

φ′ = Φ , (39)

Φ′ = −
(

2

r
+
A

α
+

2Ψ

ψ

)

Φ + ψ4

(

m2 − ω2

α2

)

φ , (40)

α′ = A , (41)

A′ = −2

(

1

r
+

Ψ

ψ

)

A+ 4πψ4α

(

2ω2

α2
−m2

)

φ2 . (42)

Here, in order to simplify notation, we have dropped the subscript “0”, making the identifi-

cations φ(r) ≡ φ0(r) and Φ(r) ≡ φ′(r) ≡ φ′

0(r). We have also introduced auxiliary variables

Ψ(r) ≡ ψ′(r), Φ(r) ≡ φ′(r) and A(r) ≡ α′(r) in order to cast the above system of nonlinear

ODEs in a canonical first-order form. We assert that for any given value of φ(0) ≡ φ0(0),

the system (37)-(42) constitutes an eigenvalue problem with eigenvalue ω = ω(φ(0)). That

is, for any specific value of φ(0) (which one can loosely view as being related to the central

density of the star), a solution of (34) that satisfies the appropriate regularity and bound-

ary conditions will only exist for some specific value of ω. The system (37)-(42) must be

supplemented by boundary conditions, some of which are naturally applied at r = 0, with

the rest naturally set at r = ∞. In particular, regularity at r = 0 implies

Ψ(0) = 0 , (43)

Φ(0) = 0 , (44)

A(0) = 0 , (45)

while at the outer boundary, we have

lim
r→∞

ψ(r) = 1 − C

r
, (46)

lim
r→∞

φ(r) ≈ 0 , (47)

lim
r→∞

α(r) =
2

ψ
− 1 . (48)
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Here the second condition follows from the expectation that φ should decay exponentially [10]

as r → 0.

We further note that due to the homogeneity and linearity of the slicing equation, we can

always arbitrarily (and conveniently) choose the central value of the lapse via

α(0) = 1 , (49)

and then, after integration of (37)-(42), can rescale α and ω simultaneously to satisfy the

outer boundary condition for α:

α(r) −→ c α(r) , (50)

ω(r) −→ c ω(r) . (51)

where c is given by

c =
2/ψ(rmax) − 1

α(rmax)
, (52)

and rmax is the radial coordinate of the outer boundary of the computational domain.

As mentioned above, any solution of (37)-(42) can be conveniently labelled by the central

value of the modulus of the scalar field, φ0(0) = φ(0). For any given value of φ0(0), we must

then determine the eigenvalue, ω, and in the current case of maximal-isotropic coordinate,

the central value of the conformal factor ψ(0), so that all of the boundary conditions are

satisfied. In principle, we can compute pairs [ω, ψ(0)] as a function of φ0(0) using a two-

parameter “shooting” technique [11, 12].

Alternatively, for some of the simulations we generate boson star initial data in maximal-

isotropic coordinates by first constructing the stars in so-called polar-areal coordinates, and

then performing a coordinate transformation.

Polar-areal coordinates, which have seen widespread use in spherically symmetric compu-

tations in numerical relativity, can be viewed as the generalization of the usual Schwarzschild

coordinates to time-dependent, spherically symmetric spacetimes. As with maximal slicing,

the slicing condition in this case—known as polar slicing—is expressed as a condition on the

mean extrinsic curvature:

K = Kr
r . (53)

Since in general we have K = K i
i = Kr

r +2Kθ
θ, this condition is implemented by requiring

Kθ
θ(t, r) = K̇θ

θ(t, r) = 0 , (54)
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for all t and r.

The spatial coordinates are fixed by demanding that the coordinate r measure proper

surface area (i.e. that it be an areal coordinate). The metric in polar-areal coordinates can

be written as:

ds2 = −α2dt2 + a2dr2 + r2dΩ2 . (55)

As before, to construct star-like solutions, we adopt the time-harmonic ansatz (34) for

the complex scalar field, adapt the time coordinate to the timelike Killing vector field, and

require the spacetime to be static. We again find that the extrinsic curvature tensor vanishes

identically (so that, for static data, the slicing is maximal as well as polar), and that the

momentum constraint (13) is automatically satisfied.

Again, considering the Hamiltonian constraint, the Klein-Gordon equation, and the slic-

ing condition

K̇θ
θ = 0 , (56)

at t = 0, we have (dropping the subscript 0’s as before):

a′ =
1

2

{

a

r

(

1 − a2
)

+ 4πra

[

φ2a2

(

m2 +
ω2

α2

)

+ Φ2

]}

, (57)

α′ =
α

2

{

a2 − 1

r
+ 4πr

[

a2φ2

(

ω2

α2
−m2

)

+ Φ2

]}

, (58)

φ′ = Φ , (59)

Φ′ = −
(

1 + a2 − 4πr2a2m2φ2
) Φ

r
−
(

ω2

α2
−m2

)

φa2 . (60)

In this case, the regularity conditions are

a(0) = 1 , (61)

Φ(0) = 0 , (62)

while the outer boundary conditions are

lim
r→∞

φ(r) ≈ 0 , (63)

lim
r→∞

α(r) =
1

a(r)
. (64)

As before, we can convert the last condition to an inner condition on α by taking advantage

of the linearity and homogeneity of the slicing equation. Specifically, we can again choose
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α(0) = 1, and then after integration of (57-60) simultaneously rescale α(r) as well as the

eigenvalue, ω, so that the outer boundary condition for α is satisfied.

We again consider the family of boson star solutions parametrized by the central value

of the modulus of the scalar field, φ0(0). In this case, given a value of φ0(0), and using

the conditions a(0) = 1, α(0) = 1, Φ(0) = 0, we need only adjust the eigenvalue ω itself

in order to generate a solution with the appropriate asymptotic behaviour (i.e. so that

limr→∞ φ(r) = 0). This is a classic 1-parameter shooting problem, which is comparatively

easier than the 2-parameter shooting method described above.

Once we have computed a solution in areal coordinates, we can perform a coordinate

transformation from areal coordinates to isotropic coordinates [13, 14] (recall that the max-

imal and polar slices coincide for the static case). Essentially this amounts to solving an

ODE of the form

r |R=Rmax
=

[

(

1 +
√
a

2

)2
R

a

]

R=Rmax

,

dr

dR
= a

r

R
. (65)

(37)-(42) or (57)-(60) are used for generating boson star initial data only. To drive the

boson star to criticality, we implode a (spherical) shell of massless scalar field on to it.

Specifically, we choose initial data for the massless field of the following “gaussian” form

φ3(0, r) = A3 exp

[

−
(

r − r0
σ

)2
]

, (66)

where A3, r0 and σ are adjustable parameters, controlling the overall amplitude, position

and width, respectively, of the imploding gaussian wave packet. To ensure that the massless

field is almost purely in-going at the initial time, we specify the “conjugate” variable Π3 ≡
ψ2/α

(

φ̇3 − βφ3
′

)

as follows:

Π3(0, r) = −
(

Φ3(0, r) +
φ3(0, r)

r

)

. (67)

In all of our studies described below, we have fixed r0 and σ in (66) to r0 = 40 and σ = 5.

This ensures that the support of the massless field is well separated from that of the complex

field (i.e. from the boson star per se) at the initial time.
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Once the complex scalar field φ and the real scalar field φ3 are generated, the initial

data for the functions ψ(0, r), Kr
r(0, r), α(0, r) and β(0, r) are determined by solving the

Hamiltonian constraint (12), the momentum constraint (13), the slicing condition (18), and

the isotropic condition (19) respectively.

III. RESULTS

A. Setup of numerical experiments

The PDEs solved in the simulations discussed here are those listed in the previous sec-

tion. We also provide a summary of the equations of motion of the system, the boundary

conditions, and details of the finite difference approximation used in App. A. Additionally,

results of convergence tests of the code are discussed in App. B.

In order to study critical behaviour in the model we start with initial data for the complex

field that represents a boson star on the stable branch (i.e. a star with a central scalar field

value φ0(0) < 0.08). We generally choose a configuration that is reasonably relativistic, i.e.

with φ0(0) bounded away from 0, but not too close to the instability point, φ(0) ≈ 0.08.

The setup of the initial data is described in II B. A typical evolution of initial data of the

form described above proceeds as follows. Once we have fixed the boson star configuration,

we complete the specification of the massless scalar field initial data by fixing the overall

amplitude factor, A3, and then start the simulation. Initially, the shell of massless scalar field

implodes towards r = 0 at the speed of light, while the boson star “sits” in its static state

centered at the origin. As the in-going massless shell reaches the region of space occupied by

the boson star, its contribution to the overall gravitational field tends to compress the boson

star to a higher mean density and smaller radius. The massless field passes through the

origin and then “explodes” outward, eventually propagating off the computational domain.

Depending on the strength of the perturbation from the massless field, we find that the

compressed boson star either relaxes to something resembling a stable boson star with large-

amplitude oscillations, or collapses to form a black hole. Thus by adjusting the massless

scalar amplitude factor, A3—which we generically use as the adjustable parameter, p, in

our study of critical behaviour in the model—we can tune the evolution to the threshold

of black hole formation. In practice we use a bisection search to refine our estimate of the
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critical value, A?
3, and can carry the search to machine precision (8-byte real arithmetic), so

that ∆A3/A3 ∼ 10−15. Typically we have chosen the mesh spacing ∆r = 50/1024 ≈ 0.049,

a Courant factor ∆t/∆r = 0.3, and the coefficient of Kreiss-Oliger dissipation εd = 0.5 (see

App. A for the definition of εd). Note that there is a whole family of critical solutions (see

Fig. 3) for different initial data. Therefore if we, for instance, changed r0 from r0 = 40 to

r0 = 35 in (66), we would find that A?
3 changes, i.e. A?

3 = A?
3(r0, σ), and therefore, in general,

the critical solution would also change.

In the following section we discuss results from detailed studies of black hole threshold

solutions generated from several distinct initial boson star states. Table IIIA summarizes the

values of φ0(0) that were used, the corresponding values of A3 required to generate a critical

solution, and the figures that display results associated with the respective calculations.

Since we will not dwell on this point below, we note that all of our calculations confirm the

basic picture previously reported that the black holes that form just above threshold in this

type of collapse generically have finite mass (i.e. that the critical transition is Type I).

Fig. φ0(0) A3 rmax

1 0.05 0.0032 50

2, 3 0.035, 0.04, 0.05 0.00471, 0.00342, 0.00316 50

4 0.02, 0.035, 0.04, 0.05 0.00915, 0.00471, 0.00342, 0.00316 50

5 0.04 0.00342 200

6 0.035, 0.04, 0.05 0.0083, 0.0061, 0.0031 100

7, 8 0.04 0.00342, 0.00603, 0.00623, 0.00632 50, 100, 200, 400

TABLE I: Summary of parameters used to generate the results displayed in Figs. 1-8. Listed

are the figure number, central amplitude of the complex field, φ0(0), the overall massless scalar

amplitude factor, A?
3 (see 66), and rmax that generates a marginally-critical solution in each case.

Other parameters defining the massless scalar initial profile (66) are held fixed at r0 = 40, σ = 5 for

all simulations. Other numerical parameters are chosen to be ∆r = 50/200 ≈ 0.049, ∆t/∆r = 0.3

and εd = 0.5.
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B. Critical phenomena

We start by examining results from a critically perturbed boson star having an unper-

turbed central field value φ0(0) = 0.05. As just described, the critical massless amplitude

factor, A?
3 ∼ 0.0032 was determined by performing a bisection search on A3, to roughly

machine precision. (Recall that each iteration in this search involves the solution of the

time-dependent PDEs for the model for a specific value of A3, with all other parameters

held fixed, and the criterion by which we adjust the bisection bracket is whether or not the

simulation results in black hole formation. )

A series of snapshots of ∂M(t, r)/∂r (where M(t, r) is the mass aspect function) for

a marginally subcritical evolution is shown in Fig. 1. Full analysis of the results of this

simulation indicate that the boson star enters what we identify as the critical state at

t ≈ 130, and remains in that state until t ≈ 510. It is worth noting that the boson star

actually completes its collapse into a more compact configuration well after the real scalar

field has dispersed from the boson star region. We also note that the amount of time, τ ,

spent in the critical state—τ ≈ 380 in this case—is a function of how closely the control

parameter has been tuned to criticality. Specifically, we expect τ to be linear in ln |A3 −A?
3|

(see (1)), and we will display evidence for this type of scaling below.

Fig. 2 shows the time evolution of the central modulus of the complex scalar field for

marginally subcritical evolutions generated from boson star initial states with φ0(0) =

0.035, 0.04 and 0.05. From the figure we can see that in all three cases the perturbed stars

enter an excited, critical state at t ≈ 100 and remain in that state for a finite time which is a

function of φ0(0) (i.e. of the initial state). Additionally, at least for the cases φ0(0) = 0.035,

φ0(0) = 0.04, the figure provides evidence that following the critical evolution phase, the

excited stars relax to states characterized by large amplitude oscillations of the complex

field. This behaviour will be examined in more detail below. Finally, also apparent in the

plot are the smaller-amplitude oscillations during the periods of critical evolution. Previous

work [1, 2] indicated that these oscillations can be interpreted as excitations of the (stable)

first harmonic mode of the unstable boson star that is acting as the critical solution—the

unstable fundamental mode is the one that determines whether or not the configuration will

evolve to a black hole. Although we have not studied this matter in any detail, we assume

that the same picture holds for our current calculations.
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FIG. 1: Critical evolution of a perturbed boson star with φ0(0) = 0.05 and mass MC = 0.62M 2
P l/m.

This figure shows the time development of contributions to ∂M/∂r from the complex (solid line)

and real (dashed line) scalar fields. Note that the temporal spacing between successive snapshots

is not constant—the time instants displayed have been chosen to illustrate the key features of the

near-critical evolution. Also note that we have multiplied the value of ∂M/∂r for the real scalar

field by a factor of 8 to aid in the visualization of that field’s dynamics. The evolution begins

with a stable boson star centered at the origin, and an in-going gaussian pulse (shell) of massless,

real scalar field that is used to perturb the star. The overall amplitude factor, A3, of the initial

real scalar field profile (see (66), is the control parameter for generating the one-parameter family

of solutions that interpolates through the black hole threshold. For the calculation shown here,

A3 has been tuned to a critical value A?
3 ≈ 0.0032 via a bisection search (and with a fractional

precision of ≈ 10−15). The other parameters defining the gaussian initial profile of the massless

fields are r0 = 40 and σ = 5. The snapshots show that the real scalar field enters the region

containing the bulk of boson star at t ≈ 22, implodes through the origin at t ≈ 45, leaves the

boson star region at t ≈ 70, and, finally, completely disperses from the computational domain at

t ≈ 100. The boson star enters the critical state at roughly the same time that the real field leaves

the domain, and remains in that state for a period of time which is long compared to the crossing

time of the massless field. At t ≈ 510, the boson star departs from the critical state.
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The results from our simulations of critically perturbed boson stars are thus in agreement

with the previous studies [1, 2] which identified the critical states as excited (primarily

in the first harmonic mode), unstable boson stars. Following that work we can display

an approximate correspondence between the initial boson stars and the critical solutions

as show in Fig. 3. The solid line shows the one-parameter family of static boson stars

(parameterized as usual by φ0(0)), where we have defined the radius, R, of a boson star so

that M(R) = 0.99MADM = 0.99M(∞). The triangles indicate the initial stable boson star

configurations, the squares indicate our best estimate of the corresponding unstable critical

boson star states, and each arrow schematically depicts the transition between the two states

that is induced by the perturbing scalar field. We note that to identify which unstable boson

star is acting as the critical solution—which is equivalent to identifying an effective value of

φ0(0)—we time average the central modulus of the complex field, |φ(t, 0)| during the period

of critical evolution. In addition, in accord with previous results, we observe that in all

cases, the mass of the unstable critical state is larger than that of the progenitor boson star,

indicating that a significant amount of mass-energy is extracted from the massless scalar

field through its purely gravitational interaction with the complex field.

As discussed previously, for both subcritical and supercritical simulations, the closer one

tunes A3 to the critical value A?
3, the longer the perturbed star will persist in the critical

state. Specifically, we observe scaling of the lifetime, τ , of the critical evolution of the form

τ(A3) ∼ −γ ln |A3 − A?
3| , (68)

where we define the lifetime to be the lapse of coordinate time from the start of the evolution,

t = 0, to the time of first detection of an apparent horizon, and where γ is a scaling exponent

that depends on which of the infinitely many one-mode unstable boson stars acts as the

critical solution in the particular scenario being simulated. We note that the details of

the definition of τ are not important to the determination of γ in (68) since γ actually

measures the differential in lifetime with respect to changes in A3 −A?
3, and this differential

is insensitive to precisely how we define τ , at least as A3 → A?
3. In addition, we note that

in using coordinate time in our definition of the scaling relationship (68), we are defining

the scaling with respect to proper time at spatial infinity. Another choice—arguably more

natural—would be to define τ in terms of the proper time measured by an observer at rest

at r = 0 (central proper time). Since the critical solutions are nearly static, the relation
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FIG. 2: Time evolution of central value of the modulus of scalar field for subcritical evolution of

perturbed boson stars. The figure shows the time evolution of |φ(t, 0)| for marginally subcritical

evolutions generated from boson star initial states with φ0(0) = 0.035, 0.04 and 0.05. See the text

for a description of key features of this plot.

between these two different definitions of time would be a specific factor for each distinct

value of φ0(0), and would thus lead to a φ0(0)-dependent “renormalization” of the scaling

exponents, γ.

Fig. 4 shows measured scaling laws from supercritical evolutions of perturbed boson

stars defined by φ0(0) = 0.02, 0.035, 0.04 and 0.05. It is clear from these plots that, at

least as A3 → A?
3, we have lifetime scaling of the form (68). Estimated values of γ—

computed from linear least-squares fits to the plotted data—are γ = 8.1, 11, 14, 17 for φ0(0) =

0.02, 0.035, 0.04, 0.05, respectively. We note that according to the now standard picture of

critical collapse (see for example [4]), each value of γ can be identified with the reciprocal

Lyapunov exponent (i.e. growth factors) of the single unstable mode associated with the

19



FIG. 3: Transition of perturbed boson stars in critical evolutions. The solid curve shows the

parametric mass vs radius plot of static boson stars (curve parameter, φ0(0)), where we have

defined the stellar radius, R, so that M(R) = 0.99M(∞) = 0.99MADM. Triangles label the initial

configurations, squares show the corresponding critical solutions (identified as one-mode-unstable

boson stars with oscillations—largely in fundamental mode), and the dashed arrows represent

schematically the transition between the initial and critical states. See the text for more details.

corresponding critical solution. Again, the reason that we observe different values of γ

for different choices of initial boson star (different values of φ0(0)) is that distinct critical

solutions are being generated in the various cases. That is, we cannot expect universality

(with respect to initial data) in this case because the model admits an entire family of

one-mode unstable solutions that sit at the threshold of black hole formation.

C. Final Fate of Sub-Critical Evolutions

In previous work on the problem of critically perturbed spherically symmetric boson

stars [1, 2], it was conjectured that the end state of subcritical evolution was characterized
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FIG. 4: Measured lifetime scaling laws for critically perturbed boson stars. This figure shows

the measured lifetimes of various near-critical evolutions of perturbed boson stars as a function of

ln |A3 −A?
3|, for cases with φ(0) = 0.02, 0.035, 0.04 and 0.05. Quoted scaling exponents, γ (see (68)

are computed from linear least-squares fits to the data. The apparent convergence of the data for

different φ0(0) as ln |A3 − A?
3| → 0 is not significant, as it reflects calculations far from criticality

i.e. far from the ln |A3 −A?
3| → −∞ limit. See the text for additional details.

by dispersal of the boson star to large distances (relative to the size of the initial, stable star).

This conjecture was at least partially influenced by the behaviour observed, for example, in

the collapse of a massless scalar field [3], where subcritical evolutions do involve complete

dispersal of the field. However, another key reason for what was claimed is a misidentification

of the true subcritical end-state was that the simulations described in [1, 2] simply were

not carried out for sufficient coordinate time to see the long-time behaviour. Our current

simulations strongly suggest that subcritical evolutions lead to a “relaxation” of the critically

perturbed state to something that approximates a boson star (not necessarily the original

star) undergoing large amplitude oscillations. As argued in the next sub-section, these
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oscillations can largely be identified with the fundamental perturbative mode associated

with the final boson star state. The numerical evidence also suggests that these oscillating

configurations eventually re-collapse in general; a “prompt” re-collapse can be seen in the

φ0(0) = 0.05 data in Fig. 2.

Fig. 5 shows the long-time behaviour of maxr(2M(t, r)/r), |φ(t, 0)| and ψ(t, 0) for a near-

critically perturbed boson star (φ0(0) = 0.04, A?
3 ≈ 0.00342) for rmax = 200 (with mesh

spacing ∆r = 200/4096 ≈ 0.049). Note that this is a subcritical evolution, so that a black

hole does not form. As shown in more detail in previous figures, the boson star enters a

critical state (well approximated by an unstable boson star) shortly after the real scalar field

leaves the computational domain (t ≈ 100), and while in the critical state, it oscillates with

the frequency of the fundamental mode as computed from perturbation theory using the

unstable boson star state as the background (see [1, 2]). At t ≈ 300 the star leaves the more

compact critical configuration, decreases in central density, expands in size, and starts to

pulsate with a different frequency. Although at late time the oscillation amplitudes are much

larger than those seen in the critical phase of evolution, we will show in the following section

that the oscillations can nonetheless be largely attributed to excitations of the fundamental

perturbative mode associated with the final boson star state.

Fig. 6 shows the long-time behaviour of the modulus of the central value of scalar field,

|φ(t, 0)|, for initial configurations with φ0(0) = 0.035, 0.04 and 0.05, with rmax = 100. The

resolution ∆r is held the same as that in Fig. 5, and again we use A3 to tune the evolution of

the boson stars to criticality (Fig. 6 shows the marginally subcritical evolution. ) In general,

the value A?
3 with different rmax will be different from that in Fig. 5, (see Table IIIA), and

will relax to different stable boson stars as the final end states after the critical states.

However, it strongly suggests that the end states of the perturbed boson stars are in fact

stable oscillatory boson stars and do not depend on the fact that the initial boson stars have

different central values.

Fig. 7 shows the long time behaviour of subcritical evolution of the modulus of the central

scalar field value, |φ(t, 0)| with initial configurations φ0(0) = 0.04 for rmax = 50, 100, 200

and 400. The resolution is again held fixed as in Fig. 5. Also we use A3 to tune the

evolution of the boson star to criticality for each individual rmax. (The values are tabulated

in Table IIIA.) The simulations show the convergence of the critical solutions, as well as the

critical parameter A3 for increasing rmax. Therefore the existence of the final oscillatory state
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FIG. 5: Long time behaviour of subcritical evolution for φ(0, 0) = 0.04 with rmax = 200. This

figure shows the long-time behaviour of maxr(2M(t, r)/r), |φ(t, 0)| and ψ(t, 0) for a near-critically

perturbed boson star (φ0(0) = 0.04, A?
3 ≈ 0.00342). The left side of the figure shows the evolution

of the perturbed star in its critical state (100 . t . 300), and the evolution shortly after the

star leaves its critical state. The right side of the figure focus on the late time oscillations from

t = 1000 to t = 7680. The figure provides evidence that the final state of subcritical evolution

is characterized by large amplitude oscillations about something approximating a boson star on

the stable branch, rather than dispersal of the complex field as suggested in [1, 2]. Detailed

calculation (see Sec. IIID) shows that the pulsation frequency is approximately the fundamental

mode frequency computed from perturbation theory about a background stable boson star solution

with φ0(0) = 0.023. Also note the overall lower-frequency modulation of the post-critical-phase

oscillations. This effect is not yet understood, although one possible explanation—namely that the

envelope modulation represents “beating” of the fundamental and first harmonic modes—appears

to be ruled out.

is not an artifact of the boundary effect. Fig. 8 shows the square of the discrete fast Fourier

transform, F [|φ(t, 0)|] of the modulus of the central scalar field value for the same set of

simulations as in Fig. 7. The transform is taken for data points within t ≈ 2500 and t ≈ 7700,

where the boson star have already left the critical states and enters the final oscillatory state.
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FIG. 6: Long time behaviour of subcritical evolution with initial configurations φ0(0) = 0.035, 0.04

and 0.05, for rmax = 100. The figures show the modulus of the central scalar field values, |φ(t, 0)|,
vs time, with the resolution ∆r held the same as that in Fig. 5. The perturbed boson stars are

driven to different critical solutions, with different final oscillatory boson stars. However, the figure

strongly suggests that the final end states of perturbed boson stars are not dispersal of the complex

field to infinity, and this fact is not a numerical artifact of boundary effects (i.e. the value of rmax).

See the text for further details.

The figure clearly shows the convergence of the fundamental mode oscillation, as well as a

first harmonic. We will present a more detail analysis of the fundamental mode in Sec.IIID.

D. Perturbation Analysis of Sub-Critical Oscillations

We now proceed to an application of perturbation theory to the oscillations seen in long-

time evolutions of marginally subcritical configurations, such as those shown in Fig. 5. Here

we follow [15] and [2], and refer the interested readers to those sources for details of the

approach that are not included here. In particular, we emphasize that we have not carried
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FIG. 7: Long time behaviour of subcritical evolution with initial configurations φ0(0) = 0.04,

for rmax = 50, 100, 200 and 400. The figures show the modulus of the central scalar field values,

|φ(t, 0)|, vs time, with the resolution ∆r held the same as that in Fig. 5. The evolutions are tuned

to criticality for different rmax (see Table IIIA). The top figure shows the overall evolutions for

rmax = 50, 100, 200 and 400 from t = 0 to t = 7680. The middle figure focus on the evolution of

the perturbed boson star in the critical state (the figure shows 70 ≤ t ≤ 270), and indicates that

the evolutions for rmax = 200 and 400 almost overlap. The bottom figure focus on the late time

evolution for rmax = 200 and 400 (200 ≤ t ≤ 7680). The figures show that while the subcritical

evolutions have different amplitudes and frequencies for different rmax, the solutions converge for

increasing rmax. This indicates that the final oscillatory state is not an artifact of having a finite

computational domain.

out the complete perturbation analysis ourselves, but are simply using a computer code

provided by Hawley [5] to analyze our current simulations. Nonetheless, to make contact

between the perturbative and simulation results, it is useful to briefly review the setup of

the perturbative problem.

To formulate the equations for the perturbation analysis, we first rewrite the complex
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FIG. 8: Long time behaviour of subcritical evolution with initial configurations φ0(0) = 0.04,

for rmax = 50, 100, 200 and 400. The figures show the square of (discrete) Fourier transform of

the modulus of central scalar field values, F [|φ(t, 0)|], of the same simulations as in Fig. 7 in

the frequency domain. The transform is taken from a data set with 691 data points starting at

t ≈ 2500 to t ≈ 7700, in which the critically perturbed boson star is in its final oscillatory state.

the resolution ∆r held the same as that in Fig. 5. The fundamental mode for rmax = 200 is

approximately ω ≈ 33 × 6 × 10−4 = 0.0198, in agreement with our estimation in Sec. IIID. The

figure shows that the fundamental modes converge for increasing rmax. Note also from the graph

that there is higher overtone which persists with increasing rmax. The inset of the graph shows the

overall amplitudes of the Fourier components.

scalar field as:

φ(t, r) = (ψ1(t, r) + iψ2(t, r)) e
−iωt , (69)

(Note that this representation is distinct from φ = φ1 + iφ2, and the reader should be careful

not to confuse the ψ’s used here with the conformal metric variable, ψ.) Additionally, the

spacetime metric is written in Schwarzschild-like (polar-areal) coordinates:

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (70)
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We further introduce four perturbation fields δλ(t, r), δν(t, r), δψ1(t, r) and δψ2(t, r) which

represent the perturbations about the equilibrium values λ0(r), ν0(r), φ0(r):

λ(t, r) = λ0(r) + δλ(t, r) , (71)

ν(t, r) = ν0(r) + δν(t, r) , (72)

ψ1(t, r) = φ0(r) (1 + δψ1(t, r)) , (73)

ψ2(t, r) = φ0(r)δψ2(t, r) . (74)

With the above definitions we can write the coupled Einstein-Klein-Gordon field equations

as a set of PDEs for the functions δλ, δν, δψ1 and δψ2. With some manipulation we can then

eliminate δν and δψ2 to produce a system of two coupled second-order PDEs for δψ1 and

δλ:

δψ1
′′ = −

(

2

r
+
ν0

′ − λ0
′

2

)

δψ1
′ − δλ′

rφ0
2 + eλ0−ν0 ¨δψ1

−
[

φ0
′

φ0

(

ν0
′ − λ0

′

2
+

1

r

)

+

(

φ0
′

φ0

)2

+
1 − rλ0

′

r2φ0
2 + eλ0−ν0ω2 − eλ0

]

δλ

+2eλ0

[

1 + e−ν0ω2 + e−λ0

(

φ0
′

φ0

)2

+ rφ0φ0
′

]

δψ1 , (75)

δλ′′ = −3

2
(ν0

′ − λ0
′) δλ′ +

[

4φ0
′2 + λ0

′′ +
2

r2
− (ν0

′ − λ0
′)2

2
− 2ν0

′ + λ0
′

r

]

δλ

+eν0−ν0 δ̈λ− 4
(

2φ0φ0
′ − reλ0φ0

2
)

δψ1
′

−4

[

2φ0
′2 − reλ0φ0

2

(

2
φ0

′

φ0

+
2ν0

′ + λ0
′

2

)]

δψ1 . (76)

Note that these equations involve only second time derivatives (i.e. there are no terms

involving ˙δψ1 or ˙δλ), and that they are linear in the second time derivatives. If we thus

assume a harmonic time-dependence for the perturbed fields:

δψ1(t, r) = δψ1(r)e
iσt , (77)

δλ1(t, r) = δλ1(r)e
iσt , (78)

then the equations for the perturbations contain σ only in the form σ2, and the sign of σ2,

as computed by solving a particular mode equation, determines the stability of that mode.

(Note that the system can be shown to be self-adjoint so that the values of σ2 must be

real.) If any of the values of σ2 are found to be negative, then the associated perturbations

will grow and the boson star will be unstable. Moreover, as the eigenvalues form an infinite
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discrete ordered sequence, examining the fundamental radial mode σ0
2 determines the overall

stability of any particular star with respect to radial perturbations.

In order to compare the simulation results with those given by perturbation theory, we

first observe that there is a difference in the choice of the time coordinates used in the two

calculations. Specifically, in the perturbative analysis [2, 15], the lapse was chosen to be

unity at the origin, so we have

σ2
∣

∣

∣

perturbative
→ σ2

α2

∣

∣

∣

simulation
.

We also note that there is a factor of 2 difference in the definitions of Tµν used in the

two calculations, and that the definition of the complex field, φ(t, r), in the perturbative

calculation includes a factor of
√

8π. We thus have

φ
∣

∣

∣

perturbative
→

√
4πφ

∣

∣

∣

simulation
.

The numerical technique for obtaining the fundamental mode and first harmonic mode

frequencies of boson stars has already been described in [2] and will not be repeated here;

again we will simply quote and use results from that study. From Fig. 5 we note that there are

10 oscillations between t = 2553.8 and t = 5583.8, giving a period T ≈ 333. Hence we have

an oscillation frequency σ = 2π/T ≈ 0.019. The time average of the lapse function 〈α(t, 0)〉
in the interval is 0.89, and so σ2/α2 ≈ 0.00045. We also compute the time average of φ(t, 0)

in the interval, and use the resulting value to identify the stable boson star solution about

which we perform the perturbation analysis. We find 〈φ0(t, 0)〉 ≈ 0.023 ×
√

4π = 0.0815.

For a boson star with φ0(0) = 0.0815, the perturbative calculations (see Fig. 7 of [2]) predict

σ2
0 = 0.00047, which is in reasonable agreement with the simulation results. Hence the

oscillations that occur in the post-critical regime appear to be largely fundamental mode

oscillations of a final-state, stable, boson star. We also remark that since the oscillations

are of such large amplitude, it does not appear possible to precisely identify an effective

background state (i.e. an effective value of φ0(0)), so the level of agreement in the oscillation

frequencies is possibly as good as one could expect.

IV. CONCLUSIONS

We have investigated type I critical phenomena of ground state boson stars in maximal-

isotropic coordinates by perturbing it with an in-going real scalar field. In particular, con-
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trary to some previous claims, we found that the end state of subcritical evolution is a stable

boson star executing large amplitude oscillations, that can largely be understood as excita-

tions of the fundamental normal mode of the end-state star. For the particular example that

we examined in detail, the oscillation frequency of the “post-critical” state was estimated

to be σ2/α2 ≈ 0.0013, in good agreement with the frequency of the fundamental mode,

σ2
0 = 0.0014,
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APPENDIX A: FINITE DIFFERENCE ALGORITHM

Here we present the details of the numerical method used in the simulations. We solve the

PDEs (12) - (19) by finite difference method. We replace the continuum by a discrete lattice

of grid points, and approximate the continuum field quantities F = {α, β, ψ,Kr
r, φi,Φi,Πi},

where i = 1, 2, 3, by a set of grid functions F
h = {αh, βh, ψh, Krh

r , φ
h
i ,Φ

h
i ,Π

h
i } which are

solutions of the finite difference approximation (FDA) of the PDEs. If we denote the regular

mesh spacing as ∆r in space and ∆t in time, the grids are given by (rj, t
n), where rj =

r0 + (j − 1)∆r, j = 1, · · · , Nr and tn = n∆t, n = 0, · · · , Nt. For any grid function uh ∈ F
h,

the value at (rj, t
n) is denoted by u

n

j
and is an approximation of the continuum value

u(xj, t
n).

In discretizing evolution equations (14)−(16) we make exclusive use of Crank-Nicholson

schemes, with second order spatial differences. The key idea of a Crank-Nicholson method

is to keep the differencing centred in time as well as in space. A stencil of the scheme is

given in Fig. 9. The constraint equations (12) and (13) are elliptic equations and are solved

by Newton’s iteration method. Finally, the maximal conditions (18) is linear and so can

be solved directly via a tridiagonal solver, while the isotropic condition (19) can then be

integrated once α is obtained.

To aid in the presentation of the finite difference equations, it is often convenient to define
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FIG. 9: Stencil for an O(h2) Crank-Nicholson scheme for a PDE in one space dimension and time.
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and the averaging operator
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We also define µ̄
r

±
which has the same definition as µ
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but has a higher precedence over

other algebraic operations, e.g.,
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The FDAs of the Klein-Gordon Equations can then be written as:
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where i = 1, 2, 3.

The FDA of the Hamiltonian constraint is:
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and the FDA for the momentum constraint is:
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Similarly, the FDAs for the maximal-isotropic conditions are:
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where r
j− 1

2

≡ (rj + rj−1)/2.

The regularity conditions are implemented as
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for all i and n. The outer boundary conditions are
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We also adopt a scheme for numerical dissipation given by Kreiss and Oliger [16]. In other

words an additional term
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Here, εd is an adjustable parameter satisfying 0 ≤ εd < 1, and is typically chosen to be

0.5. We note that the addition of Kreiss-Oliger dissipation changes the truncation error

of the FDAs at O(∆t3,∆r3) and thus does not effect the leading order error of a second

order (O(∆t2,∆r2)) scheme. The dissipation is useful for damping high frequency solution

components that are often associated with numerical instability.
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APPENDIX B: CONVERGENCE TEST

Here we present the results of a convergence test of the code that evolves boson stars in

spherical symmetry.

The ADM mass is one of the quantities which is most useful for diagnostic purposes.

In Fig. 10 we plot the mass aspect function at the outer boundary of the computational

domain, M(t, rmax), as a function of time, and from four computations with grid spacings,

∆r, in a 8:4:2:1 ratio. The simulation involves a pulse of massless scalar field imploding onto

a stable boson star as in the calculations of the black hole threshold described in Sec. III.

The boson star has a central field value, φ0 = 0.01, while the incoming massless scalar

field pulse is a gaussian of the form (66) with A3 = 0.001, r0 = 40 and σ = 3. The

outer boundary is rmax = 300, and Nr = 1025, 2049, 4097, 8193. During the time interval

40 ≤ t ≤ 50, the real scalar field is concentrated near the origin and interacts most strongly

with the complex field. This results in a localized fluctuation of the ADM mass that is

evident in the plots. However, M(t, rmax) clearly tends to a constant value as the resolution

is increased. In addition, from the differences of M(t, rmax) computed at different resolu-

tions (e.g. M∆r(t, rmax)−M2∆r(t, rmax), M
2∆r(t, rmax)−M4∆r(t, rmax), etc.), we find strong

evidence that the overall difference scheme is converging in a second order fashion.
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