
In part I, the assumption was made that the particles will stay in the
middle of the slab. This assumption will now be relaxed. The two particles
are at postitions (x1, y1) and (x2, y2). The potential V depends on y1, y2,
and |x2 − x1|. The effects of the ends of the slab in the x direction are
being ignored (periodicity is enforced instead of a boundary like in the y
direction). Therefore, the actual x positions do not matter, but only their
relative difference. We define x ≡ |x2−x1|. Also, to minimize subscripts, let
y ≡ y1 and z ≡ y2.

The Schrodinger equation now reads:

−∆x,y,zΨ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z) (1)

where

∆x,y,z =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2)

The discretized version of the equation computes the second derivative
with a second-order approximation that includes the nearest-neighbor sites
in each direction, for a total of nine terms. The laplacian is now (with explicit
x, y, z dependence suppressed):

∆i,j,k =
Ψi−1,j,k − 2Ψi,j,k + Ψi+1,j,k

h2
x

+

Ψi,j−1,k − 2Ψi,j,k + Ψi,j+1,k

h2
y

+

Ψi,j,k−1 − 2Ψi,j,k + Ψi,j,k+1

h2
z

(3)

where we use i, j, k to represent x, y, z coordinate lattice sites and hx, hy, hz
are the step sizes in the appropriate directions. (Of course, hy and hz are
always equal.)

The discretized Schrodinger equation is now:

Ψi−1,j,k − 2Ψi,j,k + Ψi+1,j,k

h2
x

+

Ψi,j−1,k − 2Ψi,j,k + Ψi,j+1,k

h2
y

+

Ψi,j,k−1 − 2Ψi,j,k + Ψi,j,k+1

h2
z

+ Vi,j,kΨi,j,k = EΨi,j,k (4)

Each particle has an infinite number of image particles associated with
it. The potential at particle 1 is a sum of all the interactions with particle
2 and its image particles, and likewise for particle 2 with particle 1’s image
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particles. There is also the potential on each particle due to its own images.
The total potential is the addition of these four interactions.

Let the image particles for particle 1 be at locations (x1, y1,i) where i =
...,−3,−2,−1, 0, 1, 2, 3, ..., and (x1, y1,0) is the location of the particle itself.
Similarly, let (x2, y2,j) be the location of the second particles images and
(x2, y2,0) be the location of the second particle.

The potential for two particles depends only on the distance between
them. Let z be the distance and U(z) be the potential between two particles.
Then we have

U(z) = K0(
z

λ
)−K0(

z

ξ
) (5)

where K0 is the 0th order bessel function, λ is the penetration depth and ξ
is the coherence length. The distance z is

z =
√

(x2 − x1)2 + (y2,i − y1,0)2 =
√
x2 + (y2,i − y1,0)2 (6)

or, for the other particle

z =
√
x2 + (y1,i − y2,0)2 (7)

Therefore, the total potential is

V (y1, y2, x) =
∞∑

i=−∞
U(
√
x2 + (y2,i − y1,0)2) +

∞∑

i=−∞
U(
√
x2 + (y1,i − y2,0)2)

+
∞∑

i=−∞,i6=0

U(|y1,i − y1,0|) +
∞∑

i=−∞,i6=0

U(|y2,i − y2,0|) (8)

Boundary conditions:

Ψ(y1, y2, x) = Ψ(y1, y2,−x) (9)

∂Ψ

∂x
(y1, y2, x = 0) = 0 (10)

Let the middle of the slab be coordinate y = 0, and w be the width of
the slab. Then the boundaries are at y = ±w

2
. The boundary conditions are

Ψ(y1 = ±w
2
, y2, x) = Ψ(y1, y2 = ±w

2
, x) = 0 (11)
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