OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Second Edition

The Official Guide to
Learning OpenGL, Version 1.1

Silicon Graphics, the Silicon Graphics logo, OpenGL and IRIS are registered trademarks, and IRIS
Graphics Library is atrademark of Silicon Graphics, Inc.

X Window System is atrademark of Massachusetts Institute of Technology. Display PostScript isa
registered trademark of Adobe Systems Incorporated.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital letters or all capital |etters.

46138-2 1. Computer graphics. 2. OpenGL. |. Neider, Jackie. Il. Davis, Tom. I11. Title.
T385.N435 1996

006.6'93-dc21 96-39420

CIP

Copyright © 1997 by Silicon Graphics, Inc.
A-W Developers Pressisadivision of Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in

aretrieval system, or transmitted, in any form or by any means, el ectronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. Published ssmultaneously in Canada.

Sponsoring Editor: Mary Treseler
Project Manager: John Fuller

Production Assistant: MelissaLima
Cover Design: Jean Seal

Online Book Production: Michael Dixon
123456789-MA- 0099989796
First printing, January 1997

Addison-Wesley books are available for bulk purchases by corporations, institutions, and other
organizations. For more information please contact the Corporate, Government, and Special Sales

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...GL_PG/@Generic__BookTextView/10;cs=fullhtml;pt=4 (1 of 2) [4/28/2000 9:43:49 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/4;cs=fullhtml;pt=10
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/69;cs=fullhtml;pt=10

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Department at (800) 238-9682.

Find A-W Developers Press on the World Wide Web at:
http://www.aw.com/devpress/

For my family - Ellyn, Ricky, and Lucy.
To Tom Doeppner and Andy van Dam, who started me along this path.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...GL_PG/@Generic__BookTextView/10;cs=fullhtml;pt=4 (2 of 2) [4/28/2000 9:43:49 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/4;cs=fullhtml;pt=10
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/69;cs=fullhtml;pt=10

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

About This Guide

The OpenGL graphics system is a software interface to graphics hardware. (The GL stands for Graphics
Library.) It allows you to create interactive programs that produce color images of moving
three-dimensional objects. With OpenGL, you can control computer-graphics technology to produce
realistic pictures or ones that depart from reality in imaginative ways. This guide explains how to
program with the OpenGL graphics system to deliver the visual effect you want.

What This Guide Contains

This guide has 14 chapters, one more than the ideal number. The first five chapters present basic
information that you need to understand to be able to draw a properly colored and lit three-dimensional
object on the screen.

o Chapter 1, " Introduction to OpenGL," provides a glimpse into the kinds of things OpenGL can

do. It also presents a simple OpenGL program and explains essential programming details you
need to know for subsequent chapters.

o Chapter 2, " State Management and Drawing Geometric Objects," explains how to create a
three-dimensional geometric description of an object that is eventually drawn on the screen.

o Chapter 3, " Viewing," describes how such three-dimensional models are transformed before

being drawn onto a two-dimensional screen. Y ou can control these transformations to show a
particular view of amodel.

« Chapter 4, " Color," describes how to specify the color and shading method used to draw an
object.

« Chapter 5, " Lighting,” explains how to control the lighting conditions surrounding an object and

how that object respondsto light (that is, how it reflects or absorbs light). Lighting is an important
topic, since objects usually don't ook three-dimensional until they're lit.

The remaining chapters explain how to optimize or add sophisticated features to your three-dimensional
scene. Y ou might choose not to take advantage of many of these features until you're more comfortable
with OpenGL. Particularly advanced topics are noted in the text where they occur.

« Chapter 6, " Blending, Antialiasing, Fog, and Polygon Offset," describes techniques essential to

creating arealistic scene - alpha blending (to create transparent objects), antialiasing (to eliminate
Jagged edges), atmospheric effects (to simulate fog or smog), and polygon offset (to remove visua
artifacts when highlighting the edges of filled polygons).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (1 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/69;cs=fullhtml;pt=73
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%13_624_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_12802_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

o Chapter 7, " Display Lists," discusses how to store a series of OpenGL commands for execution at
alater time. Y ou'll want to use this feature to increase the performance of your OpenGL program.

« Chapter 8, " Drawing Pixels, Bitmaps, Fonts, and Images,” discusses how to work with sets of

two-dimensional data as bitmaps or images. One typical use for bitmaps is describing charactersin
fonts.

« Chapter 9, " Texture Mapping," explains how to map one- and two-dimensional images called
textures onto three-dimensional objects. Many marvelous effects can be achieved through texture
mapping.

o Chapter 10, " The Framebuffer," describes all the possible buffers that can exist in an OpenGL

implementation and how you can control them. Y ou can use the buffers for such effects as
hidden-surface elimination, stenciling, masking, motion blur, and depth-of-field focusing.

e Chapter 11, " Tessellators and Quadrics,” shows how to use the tessellation and quadrics
routines in the GLU (OpenGL Utility Library).

» Chapter 12, " Evaluatorsand NURBS," gives an introduction to advanced techniques for
efficiently generating curves or surfaces.

o Chapter 13, " Selection and Feedback," explains how you can use OpenGL's selection

mechanism to select an object on the screen. It also explains the feedback mechanism, which
allows you to collect the drawing information OpenGL produces rather than having it be used to
draw on the screen.

o Chapter 14, " Now That You Know," describes how to use OpenGL in severa clever and

unexpected ways to produce interesting results. These techniques are drawn from years of
experience with both OpenGL and the technological precursor to OpenGL, the Silicon Graphics
IRIS Graphics Library.

In addition, there are several appendices that you will likely find useful.

« Appendix A, " Order of Operations,”, gives atechnical overview of the operations OpenGL
performs, briefly describing them in the order in which they occur as an application executes.

« Appendix B, " State Variables," liststhe state variables that OpenGL maintains and describes
how to obtain their values.

o Appendix C, " OpenGL and Window Systems," briefly describes the routines available in

window-system specific libraries, which are extended to support OpenGL rendering. Window
system interfaces to the X Window System, Apple Maclntosh, IBM OS/2, and Microsoft Windows

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (2 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_17385_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_23087_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_26956_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_28088_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_29480_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_29706_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_34577_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

NT and Windows 95 are discussed here.

o Appendix D, "Basicsof GLUT: The OpenGL Utility Toolkit," discussesthe library that handles

window system operations. GLUT is portable and it makes code examples shorter and more
comprehensible.

« Appendix E, " Calculating Normal Vectors," tells you how to calculate normal vectors for
different types of geometric objects.

« Appendix F, " Homogeneous Coor dinates and Transformation Matrices,” explains some of the
mathematics behind matrix transformations.

o Appendix G, " Programming Tips," lists some programming tips based on the intentions of the
designers of OpenGL that you might find useful.

« Appendix H, " OpenGL Invariance,” describes when and where an OpenGL implementation
must generate the exact pixel values described in the OpenGL specification.

« Appendix |, " Color Plates,” contains the color plates that appear in the printed version of this
guide.

Finally, an extensive Glossary defines the key terms used in this guide.

What's New in This Edition

To the question, "What's new in this edition?" the wiseacre answer is"About 100 pages." The more
informative answer follows.

« Detailed information about the following new features of OpenGL Version 1.1 has been added.

o Vertex arrays

0 Texturing enhancements, including texture objects (including residency and prioritization),
internal texture image format, texture subimages, texture proxies, and copying textures from
frame buffer data

o Polygon offset

0 Logical operation in RGBA mode

« Program examples have been converted to Mark Kilgard's GLUT, which stands for Graphics

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (3 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_36443_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_37101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_37453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_38020_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_38392_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_38416_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_38711_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Library Utility Toolkit. GLUT is an increasingly popular windowing toolkit, whichis
well-documented and has been ported to different window systems.

« More detail about some topics that were in the first edition, especially coverage of the OpenGL
Utility (GLU) Library.

o Anentire chapter on GLU tessellators and quadrics

0 A section (in Chapter 3) on the use of gluProject() and gluUnPr oject(), which mimics or
reverses the operations of

the geometric processing pipeline (This has been the subject of frequent discussions on the
Internet newsgroup on OpenGL, comp.graphics.api.opengl.)

o Expanded coverage (and more diagrams) about images
o Changesto GLU NURBS properties
o Error handling and vendor-specific extensions to OpenGL

o Appendix C expanded to include OpenGL interfaces to several window/operating systems

The first edition's appendix on the OpenGL Utility Library was removed, and itsinformation has
been integrated into other chapters.

« A much larger and more informative index

« Bug fixes and minor topic reordering. Moving the display list chapter is the most noticeable
change.

What You Should Know Before Reading This Guide

This guide assumes only that you know how to program in the C language and that you have some
background in mathematics (geometry, trigonometry, linear algebra, calculus, and differential geometry).
Even if you have little or no experience with computer-graphics technology, you should be able to follow
most of the discussionsin this book. Of course, computer graphicsis a huge subject, so you may want to
enrich your learning experience with supplemental reading.

o Computer Graphics: Principles and Practice by James D. Foley, Andries van Dam, Steven K.
Feiner, and John F. Hughes (Reading, MA: Addison-Wesley, 1990) - This book is an encyclopedic
treatment of the subject of computer graphics. It includes a wealth of information but is probably
best read after you have some experience with the subject.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (4 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_34577_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

o 3D Computer Graphics: A User's Guide for Artists and Designers by Andrew S. Glassner (New
York: Design Press, 1989) - This book is a nontechnical, gentle introduction to computer graphics.
It focuses on the visual effects that can be achieved rather than on the techniques needed to
achieve them.

Once you begin programming with OpenGL, you might want to obtain the OpenGL Reference Manual
by the OpenGL Architecture Review Board (Reading, MA: Addison-Wesley Developers Press, 1996),
which is designed as a companion volume to this guide. The Reference Manual provides atechnical view
of how OpenGL operates on data that describes a geometric object or an image to produce an image on
the screen. It also contains full descriptions of each set of related OpenGL commands - the parameters
used by the commands, the default values for those parameters, and what the commands accomplish.
Many OpenGL implementations have this same material on-line, in the form of man pages or other help
documents, and it's probably more up-to-date. There is also a http version on the World Wide Web;
consult Silicon Graphics OpenGL Web Site (http://www.sgi.com/Technology/openGL) for the latest

pointer.

OpenGL isreally a hardware-independent specification of a programming interface, and you use a
particular implementation of it on a particular kind of hardware. This guide explains how to program
with any OpenGL implementation. However, since implementations may vary dightly - in performance
and in providing additional, optional features, for example - you might want to investigate whether
supplementary documentation is available for the particular implementation you're using. In addition,
you might have OpenGL-related utilities, toolkits, programming and debugging support, widgets, sample
programs, and demos available to you with your system.

How to Obtain the Sample Code

This guide contains many sample programs to illustrate the use of particular OpenGL programming
techniques. These programs make use of Mark Kilgard's OpenGL Utility Toolkit (GLUT). GLUT is
documented in OpenGL Programming for the X Window System by Mark Kilgard (Reading, MA:
Addison-Wesley Developers Press, 1996). The section "OpenGL -Related Libraries' in Chapter 1 and
Appendix D gives more information about using GLUT. If you have accessto the Internet, you can

obtain the source code for both the sample programs and GLUT for free via anonymous ftp (file-transfer
protocol).

For the source code examples found in this book, grab thisfile:
ftp://sgigate.sgi.conifpub/opengl/opengll 1l.tar.Z

Thefiles you receive are compressed tar archives. To uncompress and extract thefiles, type

unconpress opengl1_1.tar
tar xf opengll 1.tar

For Mark Kilgard's source code for an X Window System version of GLUT, you need to know what the
most current version is. The filename will be glut-i.j.tar.Z, wherei isthe major revision number and j is
the minor revision number of the most recent version. Check the directory for the right numbers, then
grab thisfile:

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (5 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%13_466_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%14_1425_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%15_36443_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
ftp://sgigate.sgi.com pub/opengl/xjournal/GQUT/glut-i.j.tar.Z

Thisfile must also be uncompressed and extracted by using the tar command. The sample programs and
GLUT library are created as subdirectories from wherever you are in the file directory structure.

Other portsof GLUT (for example, for Microsoft Windows NT) are springing up. A good place to start
searching for the latest developmentsin GLUT and for OpenGL, in general, is Silicon Graphics OpenGL
Web Site:

http://ww. sqgi.conf Technol ogy/ openG

Many implementations of OpenGL might also include the code samples as part of the system. This
source code is probably the best source for your implementation, because it might have been optimized
for your system. Read your machine-specific OpenGL documentation to see where the code samples can
be found.

Errata

Although this book isideal and perfec in every conceivable way, thereis aa pointer to an erratalist from
the Silicon Graphics OpenGL Web Site:

http://www.sgi.com/Technol ogy/openGL

The authors are quite certain there will be alittle note there to reassure the reader of the pristeen quality
of this book.

Style Conventions

These style conventions are used in this guide:
» Bold - Command and routine names and matrices

« ltalics- Variables, arguments, parameter names, spatial dimensions, matrix components, and the
first occurrence of key terms

« Regular - Enumerated types and defined constants

Code examples are set off from the text in a monospace font, and command summaries are shaded with
gray boxes.

In acommand summary, braces are used to identify choices among data types. In the following example,
glCommand has four possible suffixes: s, i, f, and d, which stand for the data types GLshort, GLint,
GLfloat, and GLdouble. In the function prototype for gilCommand, TY PE isawildcard that represents
the data type indicated by the suffix.

void glCommand{sifd}(TYPEX1, TYPEy1, TYPEx2, TYPEY2);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (6 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=73?target=%25N%13_466_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...L_PG/@Generic__BookTextView/73;cs=fullhtml;pt=69 (7 of 7) [4/28/2000 9:43:56 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@Generic__BookTextView/69;cs=fullhtml;pt=73

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Acknowledgments

The second edition of this book required the support of many individuals. The impetus for the second
edition began with Paula Womack and Tom McReynolds of Silicon Graphics, who recognized the need
for arevision and also contributed some of the new material. John Schimpf, OpenGL Product Manager at
Silicon Graphics, was instrumental in getting the revision off and running.

Thanks to many people at Silicon Graphics: Allen Akin, Brian Cabral, Norman Chin, Kathleen
Danielson, Craig Dunwoody, Michael Gold, Paul Ho, Deanna Hohn, Brian Hook, Kevin Hunter, David
Koller, Zicheng Liu, Rob Mace, Mark Segal, Pierre Tardif, and David Y u for putting up with intrusions
and inane questions. Thanks to Dave Orton and Kurt Akeley for executive-level support. Thanks to Kay
Maitz and Renate Kempf for document production support. And thanks to Cindy Ahuna, for always
keeping an eye out for free food.

Special thanks are due to the reviewers who volunteered and trudged through the six hundred pages of
technical material that constitute the second edition: Bill Armstrong of Evans & Sutherland, Patrick
Brown of IBM, Jim Cobb of Parametric Technology, Mark Kilgard of Silicon Graphics, Dale Kirkland of
Intergraph, and Andy Vesper of Digital Equipment. Their careful diligence has greatly improved the
quality of this book.

Thanks to Mike Heck of Template Graphics Software, Gilman Wong of Microsoft, and Suzy Deffeyes of
IBM for their contributions to the technical information in Appendix C.

The continued success of the OpenGL owes much to the commitment of the OpenGL Architecture
Review Board (ARB) participants. They guide the evolution of the OpenGL standard and update the
specification to reflect the needs and desires of the graphics industry. Active contributors of the OpenGL
ARB include Fred Fisher of AccelGraphics; Bill Clifford, Dick Coulter, and Andy Vesper of Digita
Equipment Corporation; Bill Armstrong of Evans & Sutherland; Kevin LeFebvre and Randi Rost of
Hewlett-Packard; Pat Brown and Bimal Poddar of IBM; Igor Sinyak of Intel; Dale Kirkland of
Intergraph; Henri Warren of Megatek; Otto Berkes, Drew Bliss, Hock San Lee, and Steve Wright of
Microsoft; Ken Garnett of NCD; Jim Cobb of Parametric Technology; Craig Dunwoody, Chris Frazier,
and Paula Womack of Silicon Graphics; Tim Misner and Bill Sweeney of Sun Microsystems; Mike Heck
of Template Graphics Software; and Andy Bigos, Phil Huxley, and Jeremy Morris of 3Dlabs.

The second edition of this book would not have been possible without the first edition, and neither
edition would have been possible without the creation of OpenGL.

Thanks to the chief architects of OpenGL: Mark Segal and Kurt Akeley. Special recognition goes to the
pioneers who heavily contributed to the initial design and functionality of OpenGL: Allen Akin, David
Blythe, Jim Bushnell, Dick Coulter, John Dennis, Raymond Drewry, Fred Fisher, Chris Frazier, Momi
Furuya, Bill Glazier, Kipp Hickman, Paul Ho, Rick Hodgson, Simon Hui, Lesley Kalmin, Phil Karlton,
On Lee, Randi Rost, Kevin P. Smith, Murali Sundaresan, Pierre Tardif, Linas V epstas, Chuck Whitmer,
Jm Winget, and Wei Yen.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw..._PG/@Generic__BookTextView/532;cs=fullhtml;pt=73 (1 of 3) [4/28/2000 9:43:59 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_34577_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Assembling the set of colorplates was no mean feat. The sequence of plates based on the cover image
(Plate 1 through Plate 9) was created by Thad Beier, Seth Katz, and Mason Woo. Plate 10 through Plate

12 are snapshots of programs created by Mason. Gavin Bell, Kevin Goldsmith, Linda Roy, and Mark
Daly created the fly-through program used for Plate 24. The model for Plate 25 was created by Barry
Brouillette of Silicon Graphics; Doug Voorhies, also of Silicon Graphics, performed some image
processing for the final image. Plate 26 was created by John Rohlf and Michael Jones, both of Silicon
Graphics. Plate 27 was created by Carl Korobkin of Silicon Graphics. Plate 28 is a snapshot from a
program written by Gavin Bell with contributions from the Open Inventor team at Silicon Graphics -
Alain Dumesny, Dave Immel, David Mott, Howard L ook, Paul Isaacs, Paul Strauss, and Rikk Carey.
Plate 29 and 30 are snapshots from a visual simulation program created by the Silicon Graphics IRIS
Performer team - Craig Phillips, John Rohlf, Sharon Clay, JJm Helman, and Michael Jones - from a
database produced for Silicon Graphics by Paradigm Simulation, Inc. Plate 31 is a snapshot from skyfly,
the precursor to Performer, which was created by John Rohlf, Sharon Clay, and Ben Garlick, all of
Silicon Graphics.

Several other people played special rolesin creating this book. If we were to list other names as authors
on the front of this book, Kurt Akeley and Mark Segal would be there, as honorary yeoman. They helped
define the structure and goals of the book, provided key sections of material for it, reviewed it when
everybody else wastoo tired of it to do so, and supplied that all-important humor and support throughout
the process. Kay Maitz provided invaluable production and design assistance. Kathy Gochenour very
generously created many of theillustrations for this book. Susan Riley copyedited the manuscript, which
Is abrave task, indeed.

And now, each of the authors would like to take the 15 minutes that have been allotted to them by Andy
Warhol to say thank you.

I'd like to thank my managers at Silicon Graphics - Dave Larson and Way Ting - and the members of my
group - Patricia Creek, Arthur Evans, Beth Fryer, Jed Hartman, Ken Jones, Robert Reimann, Eve
Stratton (aka Margaret-Anne Halse), John Stearns, and Josie Wernecke - for their support during this
lengthy process. Last but surely not least, | want to thank those whose contributions toward this project
are too deep and mysterious to elucidate: Yvonne Leach, Kathleen Lancaster, Caroline Rose, Cindy
Kleinfeld, and my parents, Florence and Ferdinand Neider.

-JLN

In addition to my parents, Edward and Irene Davis, I'd like to thank the people who taught me most of
what | know about computers and computer graphics - Doug Engelbart and Jim Clark.

- TRD

I'd like to thank the many past and current members of Silicon Graphics whose accommodation and
enlightenment were essential to my contribution to this book: Gerald Anderson, Wendy Chin, Bert
Fornaciari, Bill Glazier, Jill Huchital, Howard Look, Bill Mannel, David Marsland, Dave Orton, Linda
Roy, Keith Seto, and Dave Shreiner. Very special thanks to Karrin Nicol, Leilani Gayles, Kevin
Dankwardt, Kiyoshi Hasegawa, and Rg Singh for their guidance throughout my career. | also bestow
much gratitude to my teammates on the Stanford B ice hockey team for periods of glorious distraction
throughout the initial writing of this book. Finally, I'd like to thank my family, especially my mother, Bo,

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw..._PG/@Generic__BookTextView/532;cs=fullhtml;pt=73 (2 of 3) [4/28/2000 9:43:59 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38424_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38503_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38513_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38533_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38533_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38641_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38650_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38661_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38670_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38679_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38690_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=532?target=%25N%15_38702_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
and my late father, Henry.

- MW

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw..._PG/@Generic__BookTextView/532;cs=fullhtml;pt=73 (3 of 3) [4/28/2000 9:43:59 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 1
Introduction to OpenGL

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Appreciatein general termswhat OpenGL does

« ldentify different levels of rendering complexity

« Understand the basic structure of an OpenGL program

« Recognize OpenGL command syntax

« |dentify the sequence of operations of the OpenGL rendering pipeline

« Understand in general terms how to animate graphics in an OpenGL program

This chapter introduces OpenGL. It has the following major sections:
o "What Is OpenGL?' explains what OpenGL is, what it does and doesn't do, and how it works.

« "A Smidgen of OpenGL Code" presents a small OpenGL program and briefly discussesit. This section also defines afew
basic computer-graphics terms.

« "OpenGL Command Syntax" explains some of the conventions and notations used by OpenGL commands.

» "OpenGL as a State Machine" describes the use of state variables in OpenGL and the commands for querying, enabling,
and disabling states.

« "OpenGL Rendering Pipeline” shows atypical sequence of operations for processing geometric and image data.

« "OpenGL-Related Libraries' describes sets of OpenGL-related routines, including an auxiliary library specifically written
for this book to simplify programming examples.

« "Animation” explainsin general terms how to create pictures on the screen that move.

What Is OpenGL?

OpenGL is a software interface to graphics hardware. This interface consists of about 150 distinct commands that you use to
specify the objects and operations needed to produce interactive three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be implemented on many different hardware platforms.
To achieve these qualities, no commands for performing windowing tasks or obtaining user input are included in OpenGL;
instead, you must work through whatever windowing system controls the particular hardware you're using. Similarly, OpenGL
doesn't provide high-level commands for describing models of three-dimensional objects. Such commands might allow you to
specify relatively complicated shapes such as automobiles, parts of the body, airplanes, or molecules. With OpenGL, you must

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (1 of 16) [4/28/2000 9:44:15 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_690_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_879_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1004_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1198_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1274_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1425_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1848_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

build up your desired model from a small set of geometric primitives - points, lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of OpenGL. The OpenGL Utility Library
(GLU) provides many of the modeling features, such as quadric surfaces and NURBS curves and surfaces. GLU is a standard
part of every OpenGL implementation. Also, there is a higher-level, object-oriented toolkit, Open Inventor, which is built atop
OpenGL, and is available separately for many implementations of OpenGL. (See "OpenGL-Related Libraries’ for more

information about Open Inventor.)

Now that you know what OpenGL doesn't do, here's what it does do. Take alook at the color plates - they illustrate typical uses
of OpenGL. They show the scene on the cover of this book, rendered (which isto say, drawn) by a computer using OpenGL in
successively more complicated ways. The following list describes in general terms how these pictures were made.

"Plate 1" shows the entire scene displayed as awireframe model - that is, asif all the objects in the scene were made of

wire. Each line of wire corresponds to an edge of a primitive (typically a polygon). For example, the surface of thetableis
constructed from triangular polygons that are positioned like slices of pie.

Note that you can see portions of objects that would be obscured if the objects were solid rather than wireframe. For
example, you can see the entire model of the hills outside the window even though most of this model is normally hidden
by the wall of the room. The globe appears to be nearly solid because it's composed of hundreds of colored blocks, and you
see the wireframe lines for all the edges of all the blocks, even those forming the back side of the globe. The way the globe
is constructed gives you an idea of how complex objects can be created by assembling lower-level objects.

"Plate 2" shows a depth-cued version of the same wireframe scene. Note that the lines farther from the eye are dimmer,

just asthey would bein real life, thereby giving avisua cue of depth. OpenGL uses atmospheric effects (collectively
referred to as fog) to achieve depth cueing.

"Plate 3" shows an antialiased version of the wireframe scene. Antialiasing is atechnique for reducing the jagged edges

(also known as jaggies) created when approximating smooth edges using pixels - short for picture elements - which are
confined to arectangular grid. Such jaggies are usually the most visible with near-horizontal or near-vertical lines.

"Plate 4" shows aflat-shaded, unlit version of the scene. The objects in the scene are now shown as solid. They appear

"flat" in the sense that only one color is used to render each polygon, so they don't appear smoothly rounded. There are no
effects from any light sources.

"Plate 5" shows alit, smooth-shaded version of the scene. Note how the scene looks much more realistic and

three-dimensiona when the objects are shaded to respond to the light sources in the room asif the objects were smoothly
rounded.

"Plate 6" adds shadows and textures to the previous version of the scene. Shadows aren't an explicitly defined feature of
OpenGL (thereis no "shadow command"), but you can create them yourself using the techniques described in Chapter 14.
Texture mapping alows you to apply atwo-dimensional image onto a three-dimensional object. In this scene, the top on
the table surface is the most vibrant example of texture mapping. The wood grain on the floor and table surface are all
texture mapped, as well as the wallpaper and the toy top (on the table).

"Plate 7" shows a motion-blurred object in the scene. The sphinx (or dog, depending on your Rorschach tendencies)
appears to be captured moving forward, leaving a blurred trace of its path of motion.

"Plate 8" shows the scene asit's drawn for the cover of the book from a different viewpoint. This plate illustrates that the
image really is a snapshot of models of three-dimensional objects.

"Plate 9" brings back the use of fog, which was seenin "Plate 2," to show the presence of smoke particlesin the air. Note
how the same effect in "Plate 2" now has a more dramatic impact in "Plate 9."

"Plate 10" shows the depth-of-field effect, which simulates the inability of a cameralensto maintain all objectsin a

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (2 of 16) [4/28/2000 9:44:15 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1425_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38424_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38442_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38462_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38474_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_28088_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38483_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38492_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38503_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38503_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_38513_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

photographed scene in focus. The camerafocuses on a particular spot in the scene. Objects that are significantly closer or
farther than that spot are somewhat blurred.

The color plates give you an idea of the kinds of things you can do with the OpenGL graphics system. The following list briefly
describes the major graphics operations which OpenGL performs to render an image on the screen. (See "OpenGL Rendering
Pipeline" for detailed information about this order of operations.)

1. Construct shapes from geometric primitives, thereby creating mathematical descriptions of objects. (OpenGL considers
points, lines, polygons, images, and bitmaps to be primitives.)

2. Arrange the objects in three-dimensional space and select the desired vantage point for viewing the composed scene.

3. Calculate the color of al the objects. The color might be explicitly assigned by the application, determined from specified
lighting conditions, obtained by pasting a texture onto the objects, or some combination of these three actions.

4. Convert the mathematical description of objects and their associated color information to pixels on the screen. This process
is caled rasterization.

During these stages, OpenGL might perform other operations, such as eliminating parts of objects that are hidden by other
objects. In addition, after the scene is rasterized but before it's drawn on the screen, you can perform some operations on the pixel
dataif you want.

In some implementations (such as with the X Window System), OpenGL is designed to work even if the computer that displays
the graphics you create isn't the computer that runs your graphics program. This might be the case if you work in a networked
computer environment where many computers are connected to one another by a digital network. In this situation, the computer
on which your program runs and issues OpenGL drawing commands is called the client, and the computer that receives those
commands and performs the drawing is called the server. The format for transmitting OpenGL commands (called the protocol)
from the client to the server is always the same, so OpenGL programs can work across a network even if the client and server are
different kinds of computers. If an OpenGL program isn't running across a network, then there's only one computer, and it is both
the client and the server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an OpenGL program can be complicated. However, the
basic structure of auseful program can be simple: Its tasks are to initialize certain states that control how OpenGL renders and to
specify objects to be rendered.

Before you look at some OpenGL code, let's go over afew terms. Rendering, which you've already seen used, is the process by
which a computer creates images from models. These models, or objects, are constructed from geometric primitives - points,
lines, and polygons - that are specified by their vertices.

The final rendered image consists of pixels drawn on the screen; a pixel isthe smallest visible element the display hardware can
put on the screen. Information about the pixels (for instance, what color they're supposed to be) is organized in memory into
bitplanes. A bitplaneis an area of memory that holds one bit of information for every pixel on the screen; the bit might indicate
how red a particular pixel is supposed to be, for example. The bitplanes are themsel ves organized into a framebuffer, which holds
all the information that the graphics display needsto control the color and intensity of all the pixels on the screen.

Now look at what an OpenGL program might look like. Example 1-1 renders a white rectangle on a black background, as shown
in Figure 1-1.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (3 of 16) [4/28/2000 9:44:15 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1274_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1274_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_929_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_919_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code
#i ncl ude <what ever YouNeed. h>

mai n() {
InitializeAW ndowPl ease() ;

glClearColor (0.0, 0.0, 0.0, 0.0);
gl dear (G_CO.OR BUFFER BIT);
gl Col or3f (1.0, 1.0, 1.0);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
gl Begi n(GL_POLYGON) ;

gl Vertex3f (0.25, 0.25, 0.0);

gl Vertex3f (0.75, 0.25, 0.0);

gl Vertex3f (0.75, 0.75, 0.0);

gl Vertex3f (0.25, 0.75, 0.0);
gl End() ;
gl Fl ush();

Updat eTheW ndowAndCheckFor Event s() ;
}

Thefirst line of the main() routine initializes a window on the screen: The I nitializeAWindowPlease() routine is meant as a
placeholder for window system-specific routines, which are generally not OpenGL calls. The next two lines are OpenGL
commands that clear the window to black: glClear Color () establishes what color the window will be cleared to, and glClear ()
actually clears the window. Once the clearing color is set, the window is cleared to that color whenever glClear () iscalled. This
clearing color can be changed with another call to glClear Color (). Similarly, the glColor 3f() command establishes what color to
use for drawing objects - in this case, the color iswhite. All objects drawn after this point use this color, until it's changed with
another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL assumes as it draws the
final image and how the image gets mapped to the screen. The next calls, which are bracketed by glBegin() and glEnd(), define
the object to be drawn - in this example, a polygon with four vertices. The polygon's "corners' are defined by the glVertex3f()
commands. As you might be able to guess from the arguments, which are (x, y, z) coordinates, the polygon is arectangle on the
z=0 plane.

Finaly, glFlush() ensures that the drawing commands are actually executed rather than stored in a buffer awaiting additional
OpenGL commands. The UpdateT heWindowAndCheckFor Events() placeholder routine manages the contents of the window
and begins event processing.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (4 of 16) [4/28/2000 9:44:15 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Actually, this piece of OpenGL codeisn't well structured. Y ou may be asking, "What happensif | try to move or resize the
window?' Or, "Do | need to reset the coordinate system each time | draw the rectangle?' Later in this chapter, you will see
replacements for both I nitializeAWindowPlease() and UpdateT heWindowAndCheckFor Events() that actually work but will
require restructuring the code to make it efficient.

OpenGL Command Syntax

Asyou might have observed from the ssmple program in the previous section, OpenGL commands use the prefix gl and initial
capital letters for each word making up the command name (recall glClear Color (), for example). Similarly, OpenGL defined
constants begin with GL _, use all capital letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT).

Y ou might also have noticed some seemingly extraneous | etters appended to some command names (for example, the 3f in
glColor 3f() and glVertex3f()). It's true that the Color part of the command name glColor 3f() is enough to define the command
as one that sets the current color. However, more than one such command has been defined so that you can use different types of
arguments. In particular, the 3 part of the suffix indicates that three arguments are given; another version of the Color command
takes four arguments. The f part of the suffix indicates that the arguments are floating-point numbers. Having different formats
allows OpenGL to accept the user's datain his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters used as suffixes to specify
these data types for 1ISO C implementations of OpenGL are shown in Table 1-1, along with the corresponding OpenGL type

definitions. The particular implementation of OpenGL that you're using might not follow this scheme exactly; an implementation
in C++ or Ada, for example, wouldn't need to.

Table 1-1 : Command Suffixes and Argument Data Types

Suffix Data Type Typical Corresponding C-Language Type OpenGL Type Definition
b 8-hit integer signed char GLbyte

S 16-bit integer short GLshort

[32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GL clampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer | unsigned short GLushort

ui 32-bit unsigned integer | unsigned int or unsigned long GLuint, GLenum, GLbitfield

Thus, the two commands

gl Vertex2i (1, 3);
gl Vertex2f (1.0, 3.0);

are equivalent, except that the first specifies the vertex's coordinates as 32-bit integers, and the second specifies them as
single-precision floating-point numbers.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (5 of 16) [4/28/2000 9:44:15 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1164_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Note: Implementations of OpenGL have leeway in selecting which C data type to use to represent OpenGL data types. If you
resolutely use the OpenGL defined data types throughout your application, you will avoid mismatched types when porting your
code between different implementations.

Some OpenGL commands can take afinal letter v, which indicates that the command takes a pointer to a vector (or array) of
values rather than a series of individual arguments. Many commands have both vector and nonvector versions, but some
commands accept only individual arguments and others require that at least some of the arguments be specified as a vector. The
following lines show how you might use a vector and a nonvector version of the command that sets the current color:

gl Col or3f (1.0, 0.0, 0.0);

G.float color_array[] = {1.0, 0.0, 0.0};
gl Col or 3fv(col or _array);

Finally, OpenGL defines the typedef GLvoid. Thisis most often used for OpenGL commands that accept pointersto arrays of
values.

In the rest of this guide (except in actual code examples), OpenGL commands are referred to by their base names only, and an
asterisk isincluded to indicate that there may be more to the command name. For example, glColor*() stands for al variations of
the command you use to set the current color. If we want to make a specific point about one version of a particular command, we
include the suffix necessary to define that version. For example, glVertex*v() refersto all the vector versions of the command
you use to specify vertices.

OpenGL as a State Machine

OpenGL isastate machine. You put it into various states (or modes) that then remain in effect until you change them. Asyou've
already seen, the current color is a state variable. Y ou can set the current color to white, red, or any other color, and thereafter
every object is drawn with that color until you set the current color to something else. The current color is only one of many state
variables that OpenGL maintains. Others control such things as the current viewing and projection transformations, line and
polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions and characteristics of lights, and material
properties of the objects being drawn. Many state variables refer to modes that are enabled or disabled with the command
glEnable() or glDisable().

Each state variable or mode has a default value, and at any point you can query the system for each variable's current value.
Typically, you use one of the six following commands to do this: gilGetBooleanv(), gilGetDoublev(), glGetFloatv(),
glGetlntegerv(), glGetPointerv(), or gll sEnabled(). Which of these commands you select depends on what data type you want
the answer to be given in. Some state variables have a more specific query command (such as glGetL ight*(), gilGetError (), or
glGetPolygonStipple()). In addition, you can save a collection of state variables on an attribute stack with glPushAttrib() or
glPushClientAttrib(), temporarily modify them, and later restore the values with glPopAttrib() or giPopClientAttrib(). For
temporary state changes, you should use these commands rather than any of the query commands, since they're likely to be more
efficient.

See Appendix B for the complete list of state variables you can query. For each variable, the appendix also lists a suggested
glGet* () command that returns the variable's value, the attribute class to which it belongs, and the variable's default value.

OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of processing stages called the OpenGL rendering
pipeline. This ordering, as shown in Figure 1-2, is not a strict rule of how OpenGL isimplemented but provides areliable guide

for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description may seem like drinking water out of afire hose. Y ou can
skim this now, but come back to Figure 1-2 as you go through each chapter in this book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL takes to processing data. Geometric data
(vertices, lines, and polygons) follow the path through the row of boxes that includes evaluators and per-vertex operations, while

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (6 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_29706_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1292_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1292_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

pixel data (pixels, images, and bitmaps) are treated differently for part of the process. Both types of data undergo the same final
steps (rasterization and per-fragment operations) before the final pixel datais written into the framebuffer.

Vertex Per-wertex
clata operations

Evaluato rs | &hd primitive

T
J assembly 1
Display Fer-fragrment

Rastarization e operations

list —l
| 1EI _‘_Te:-:ture L Frarrebuffer

(—- [0 perations -7 lassermbly
Piwel S i | __ oo ______It=%
data

Figure 1-2 : Order of Operations

— -~
-~

Now you'll see more detail about the key stagesin the OpenGL rendering pipeline.
Display Lists

All data, whether it describes geometry or pixels, can be saved in adisplay list for current or later use. (The alternative to
retaining datain adisplay list is processing the dataimmediately - also known as immediate mode.) When adisplay listis
executed, the retained datais sent from the display list just asif it were sent by the application in immediate mode. (See Chapter

7 for more information about display lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be initially described by
control points and polynomial functions called basis functions. Evaluators provide a method to derive the vertices used to
represent the surface from the control points. The method is a polynomia mapping, which can produce surface normal, texture
coordinates, colors, and spatial coordinate values from the control points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next isthe "per-vertex operations’ stage, which converts the vertices into primitives. Some vertex data (for
example, spatial coordinates) are transformed by 4 x 4 floating-point matrices. Spatial coordinates are projected from a position
in the 3D world to a position on your screen. (See Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture coordinates may be generated and
transformed here. If lighting is enabled, the lighting cal culations are performed using the transformed vertex, surface normal,
light source position, material properties, and other lighting information to produce a color value.

Primitive Assembly

Clipping, amajor part of primitive assembly, is the elimination of portions of geometry which fall outside a half-space, defined
by a plane. Point clipping simply passes or rejects vertices; line or polygon clipping can add additional vertices depending upon
how the line or polygon is clipped.

In some cases, thisis followed by perspective division, which makes distant geometric objects appear smaller than closer objects.

Then viewport and depth (z coordinate) operations are applied. If culling is enabled and the primitive is a polygon, it then may be
rejected by a culling test. Depending upon the polygon mode, a polygon may be drawn as points or lines. (See "Polygon Details"

in Chapter 2.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (7 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_3932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_3932_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The results of this stage are complete geometric primitives, which are the transformed and clipped vertices with related color,
depth, and sometimes texture-coordinate values and guidelines for the rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel datatakes a different route. Pixels from an
array in system memory are first unpacked from one of avariety of formats into the proper number of components. Next the data
is scaled, biased, and processed by a pixel map. The results are clamped and then either written into texture memory or sent to
the rasterization step. (See "Imaging Pipeline" in Chapter 8.)

If pixel datais read from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clamping) are performed. Then
these results are packed into an appropriate format and returned to an array in system memory.

There are specia pixel copy operations to copy data in the framebuffer to other parts of the framebuffer or to the texture memory.
A single pass is made through the pixel transfer operations before the data is written to the texture memory or back to the
framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look more realistic. If several
texture images are used, it's wise to put them into texture objects so that you can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. There may be specialized,
high-performance texture memory. If thismemory is available, the texture objects may be prioritized to control the use of this
limited and valuable resource. (See Chapter 9.)

Rasterization

Rasterization is the conversion of both geometric and pixel datainto fragments. Each fragment square correspondsto a pixel in
the framebuffer. Line and polygon stipples, line width, point size, shading model, and coverage cal culations to support
antialiasing are taken into consideration as vertices are connected into lines or the interior pixels are calculated for afilled
polygon. Color and depth values are assigned for each fragment square.

Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are performed that may alter or even throw out
fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, where atexel (texture element) is generated from texture memory for
each fragment and applied to the fragment. Then fog cal culations may be applied, followed by the scissor test, the aphatest, the
stencil test, and the depth-buffer test (the depth buffer is for hidden-surface removal). Failing an enabled test may end the
continued processing of afragment's square. Then, blending, dithering, logical operation, and masking by a bitmask may be
performed. (See Chapter 6 and Chapter 10) Finally, the thoroughly processedfragment is drawn into the appropriate buffer,
whereit has finally advanced to be a pixel and achieved itsfinal resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all higher-level drawing must be done in terms of
these commands. Also, OpenGL programs have to use the underlying mechanisms of the windowing system. A number of
libraries exist to allow you to simplify your programming tasks, including the following:

« The OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL commands to perform such
tasks as setting up matrices for specific viewing orientations and projections, performing polygon tessellation, and
rendering surfaces. Thislibrary is provided as part of every OpenGL implementation. Portions of the GLU are described in
the OpenGL Reference Manual. The more useful GLU routines are described in this guide, where they're relevant to the
topic being discussed, such asin all of Chapter 11 and in the section "The GLU NURBS Interface" in Chapter 12. GLU

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (8 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_16147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_17385_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_12802_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_26182_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
routines use the prefix glu.

« For every window system, thereis alibrary that extends the functionality of that window system to support OpenGL
rendering. For machines that use the X Window System, the OpenGL Extension to the X Window System (GLX) is
provided as an adjunct to OpenGL. GLX routines use the prefix glX. For Microsoft Windows, the WGL routines provide
the Windows to OpenGL interface. All WGL routines use the prefix wgl. For IBM 0S/2, the PGL is the Presentation
Manager to OpenGL interface, and its routines use the prefix pgl.

All these window system extension libraries are described in more detail in both Appendix C. In addition, the GLX
routines are also described in the OpenGL Reference Manual.

« The OpenGL Utility Toolkit (GLUT) isawindow system-independent toolkit, written by Mark Kilgard, to hide the
complexities of differing window system APIs. GLUT isthe subject of the next section, and it's described in more detail in
Mark Kilgard's book OpenGL Programming for the X Window System (ISBN 0-201-48359-9). GLUT routines use the
prefix glut. "How to Obtain the Sample Code" in the Preface describes how to obtain the source code for GLUT, using

ftp.

« Open Inventor is an object-oriented toolkit based on OpenGL which provides objects and methods for creating interactive
three-dimensional graphics applications. Open Inventor, which is written in C++, provides prebuilt objects and a built-in
event model for user interaction, high-level application components for creating and editing three-dimensional scenes, and
the ability to print objects and exchange data in other graphics formats. Open Inventor is separate from OpenGL.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file. Almost all OpenGL applications use GLU, the
aforementioned OpenGL Utility Library, which requiresinclusion of the glu.h header file. So ailmost every OpenGL sourcefile
begins with

#i ncl ude <@/ gl . h>

#i ncl ude <@/ gl u. h>

If you are directly accessing awindow interface library to support OpenGL, such as GLX, AGL, PGL, or WGL, you must
include additional header files. For example, if you are calling GL X, you may need to add these lines to your code

#i ncl ude <X11/ Xli b. h>
#i ncl ude <G/ gl x. h>

If you are using GLUT for managing your window manager tasks, you should include
#i ncl ude <G/ glut. h>

Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all threefilesis redundant. GLUT for Microsoft
Windows includes the appropriate header file to access WGL .

GLUT, the OpenGL Utility Toolkit

Asyou know, OpenGL contains rendering commands but is designed to be independent of any window system or operating
system. Consequently, it contains no commands for opening windows or reading events from the keyboard or mouse.
Unfortunately, it's impossible to write a complete graphics program without at least opening a window, and most interesting
programs require a bit of user input or other services from the operating system or window system. In many cases, complete
programs make the most interesting examples, so this book uses GLUT to simplify opening windows, detecting input, and so on.
If you have an implementation of OpenGL and GLUT on your system, the examples in this book should run without change
when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple geometric primitives (points, lines, and
polygons), GLUT includes severa routines that create more complicated three-dimensional objects such as a sphere, atorus, and
ateapot. Thisway, snapshots of program output can be interesting to look at. (Note that the OpenGL Utility Library, GLU, also
has quadrics routines that create some of the same three-dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...PG/@Generic__BookTextView/622;cs=fullhtml;pt=532 (9 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_34577_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_404_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find it a useful starting point for learning
OpenGL. Therest of this section briefly describes a small subset of GLUT routines so that you can follow the programming
examplesin the rest of this book. (See Appendix D for more details about this subset of GLUT, or see Chapters 4 and 5 of

OpenGL Programming for the X Window System for information about the rest of GLUT.)
Window Management

Five routines perform tasks necessary to initialize a window.

« glutlnit(int *argc, char **argv) initializes GLUT and processes any command line arguments (for X, this would be options
like -display and -geometry). glutl nit() should be called before any other GLUT routine.

« glutlnitDisplayM ode(unsigned int mode) specifies whether to use an RGBA or color-index color model. Y ou can also
specify whether you want a single- or double-buffered window. (If you're working in color-index mode, you'll want to load
certain colorsinto the color map; use glutSetColor () to do this.) Finally, you can use this routine to indicate that you want
the window to have an associated depth, stencil, and/or accumulation buffer. For example, if you want a window with
double buffering, the RGBA color model, and a depth buffer, you might call glutl nitDisplayM ode(GLUT_DOUBLE |
GLUT_RGB | GLUT_DEPTH).

« glutlnitWindowPosition(int X, int y) specifies the screen location for the upper-left corner of your window.
« glutlnitWindowSize(int width, int size) specifiesthe size, in pixels, of your window.

« int glutCreateWindow(char *string) creates a window with an OpenGL context. It returns a unique identifier for the new
window. Be warned: Until glutMainL oop() is called (see next section), the window is not yet displayed.

The Display Callback

glutDisplayFunc(void (*func)(void)) is the first and most important event callback function you will see. Whenever GLUT
determines the contents of the window need to be redisplayed, the callback function registered by glutDisplayFunc() is
executed. Therefore, you should put all the routines you need to redraw the scene in the display callback function.

If your program changes the contents of the window, sometimes you will have to call glutPostRedisplay(void), which gives
glutM ainL oop() a nudge to call the registered display callback at its next opportunity.

Running the Program

The very last thing you must do is call glutM ainL oop(void). All windows that have been created are now shown, and rendering
to those windows is now effective. Event processing begins, and the registered display callback is triggered. Once thisloop is
entered, it is never exited!

Example 1-2 shows how you might use GLUT to create the simple program shown in Example 1-1. Note the restructuring of the
code. To maximize efficiency, operations that need only be called once (setting the background color and coordinate system) are
now in a procedure called init(). Operations to render (and possibly re-render) the scene are in the display() procedure, which is
the registered GLUT display callback.

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#i ncl ude <@/ gl . h>
#i ncl ude <G/ glut. h>

voi d di splay(voi d)
{

/[* <clear all pixels */
gl dear (G_COLOR BUFFER BIT);

/* draw white polygon (rectangle) with corners at
* (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (10 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_36443_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1658_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%13_929_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
*/
gl Col or3f (1.0, 1.0, 1.0);
gl Begi n(G._POLYGON) ;
gl Vertex3f (0.25, 0.25, 0.0);
gl Vertex3f (0.75, 0.25, 0.0);
gl Vertex3f (0.75, 0.75, 0.0);
gl Vertex3f (0.25, 0.75, 0.0);
gl End() ;

/[* don't wait!
* start processing buffered OpenG. routines

*/
gl Fl ush ();
}
void init (void)
{
/* select clearing (background) col or */

gl earColor (0.0, 0.0, 0.0, 0.0);

/[* initialize view ng values */
gl Mat ri xMode(G._PROQIECTI ON) ;
gl Loadl dentity();
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

}
/*
* Declare initial wi ndow size, position, and di splay node
* (single buffer and RGBA). Open wi ndow with "hell 0"
* inits title bar. Call initialization routines.
* Register callback function to display graphics.
* Enter main |l oop and process events.
*

nt main(int argc, char** argv)

glutlnit(&rgc, argv);

glutlnitD spl ayMde (GLUT_SINGLE | GLUT_RGB);

gl utl ni t WndowSi ze (250, 250);

gl ut I ni t WndowPosition (100, 100);

gl ut Creat eW ndow (" hel |l 0");

init ();

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O; /[* 1SO Crequires main to return int. */

}
Handling Input Events

Y ou can use these routines to register callback commands that are invoked when specified events occur.
« glutReshapeFunc(void (*func)(int w, int h)) indicates what action should be taken when the window is resized.

« glutKeyboardFunc(void (*func)(unsigned char key, int X, int y)) and glutM ouseFunc(void (*func)(int button, int state,
int x, inty)) alow you to link akeyboard key or a mouse button with aroutine that's invoked when the key or mouse
button is pressed or released.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (11 of 16) [4/28/2000 9:44:16 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

« glutMotionFunc(void (*func)(int x, int y)) registers aroutine to call back when the mouse is moved while a mouse button
isalso pressed.

Managing a Background Process

Y ou can specify afunction that's to be executed if no other events are pending - for example, when the event loop would
otherwise beidle - with glutldleFunc(void (*func)(void)). This routine takes a pointer to the function as its only argument. Pass
in NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot
cube octahedron tetrahedron
dodecahedron sphere torus

Y ou can draw these objects as wireframes or as solid shaded objects with surface normals defined. For example, the routines for
acube and a sphere are as follows:

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);
void glutWireSpher e(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSpher e(GL double radius, GLint slices, GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See for information on the prototypes of all
these drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw pictures that move. Whether you're an engineer trying
to see all sides of a mechanical part you're designing, a pilot learning to fly an airplane using asimulation, or merely a
computer-game aficionado, it's clear that animation is an important part of computer graphics.

In amovie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per second on the screen. Each
frame is moved into position behind the lens, the shutter is opened, and the frame is displayed. The shutter is momentarily closed
while the film is advanced to the next frame, then that frame is displayed, and so on. Although you're watching 24 different
frames each second, your brain blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames
per second and are noticeably jerky.) In fact, most modern projectors display each picture twice at arate of 48 per second to
reduce flickering. Computer-graphics screens typically refresh (redraw the picture) approximately 60 to 76 times per second, and
some even run at about 120 refreshes per second. Clearly, 60 per second is smoother than 30, and 120 is marginally better than
60. Refresh rates faster than 120, however, are beyond the point of diminishing returns, since the human eyeis only so good.

The key reason that motion picture projection worksis that each frame is complete when it is displayed. Suppose you try to do
computer animation of your million-frame movie with a program like this:
open_wi ndow() ;
for (i = 0; i < 1000000; i++) {
cl ear _the_w ndow() ;
draw frame(i);
wait_until_a 24th_of a second _is _over();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (12 of 16) [4/28/2000 9:44:16 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

If you add the time it takes for your system to clear the screen and to draw atypical frame, this program gives more and more
disturbing results depending on how close to 1/24 second it takes to clear and draw. Suppose the drawing takes nearly afull 1/24
second. Items drawn first are visible for the full 1/24 second and present a solid image on the screen; items drawn toward the end
are instantly cleared as the program starts on the next frame. They present at best a ghostlike image, since for most of the 1/24
second your eyeis viewing the cleared background instead of the items that were unlucky enough to be drawn last. The problem
isthat this program doesn't display completely drawn frames; instead, you watch the drawing as it happens.

Most OpenGL implementations provide double-buffering - hardware or software that supplies two complete color buffers. Oneis
displayed while the other is being drawn. When the drawing of aframe is complete, the two buffers are swapped, so the one that
was being viewed is now used for drawing, and vice versa. Thisis like amovie projector with only two framesin aloop; while
oneis being projected on the screen, an artist is desperately erasing and redrawing the frame that's not visible. Aslong asthe
artist is quick enough, the viewer notices no difference between this setup and one where all the frames are already drawn and the
projector is simply displaying them one after the other. With double-buffering, every frame is shown only when the drawing is
complete; the viewer never sees a partialy drawn frame.

A modified version of the preceding program that does display smoothly animated graphics might ook like this:
open_wi ndow_i n_doubl e_buffer_node();
for (i = 0; i < 1000000; i++) {

cl ear _the_w ndow();

draw frame(i);

swap_t he buffers();

}
The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the viewable and drawable buffers, the swap_the buffers()
routine waits until the current screen refresh period is over so that the previous buffer is completely displayed. This routine also
allows the new buffer to be completely displayed, starting from the beginning. Assuming that your system refreshes the display
60 times per second, this means that the fastest frame rate you can achieve is 60 frames per second (fps), and if all your frames
can be cleared and drawn in under 1/60 second, your animation will run smoothly at that rate.

What often happens on such a system is that the frame is too complicated to draw in 1/60 second, so each frame is displayed
more than once. If, for example, it takes 1/45 second to draw aframe, you get 30 fps, and the graphics are idle for
1/30-1/45=1/90 second per frame, or one-third of the time.

In addition, the video refresh rate is constant, which can have some unexpected performance consequences. For example, with
the 1/60 second per refresh monitor and a constant frame rate, you can run at 60 fps, 30 fps, 20 fps, 15 fps, 12 fps, and so on
(60/1, 60/2, 60/3, 60/4, 60/5, ...). That meansthat if you're writing an application and gradually adding features (say it's aflight
simulator, and you're adding ground scenery), at first each feature you add has no effect on the overall performance - you still get
60 fps. Then, al of a sudden, you add one new feature, and the system can't quite draw the whole thing in 1/60 of a second, so
the animation slows from 60 fps to 30 fps because it misses the first possible buffer-swapping time. A similar thing happens
when the drawing time per frame is more than 1/30 second - the animation drops from 30 to 20 fps.

If the scene's complexity is close to any of the magic times (1/60 second, 2/60 second, 3/60 second, and so on in this example),
then because of random variation, some frames go slightly over the time and some slightly under. Then the framerateis
irregular, which can be visually disturbing. In this case, if you can't simplify the scene so that al the frames are fast enough, it
might be better to add an intentional, tiny delay to make sure they all miss, giving a constant, slower, frame rate. If your frames
have drastically different complexities, a more sophisticated approach might be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ too much from this description. Usually, it is easier to redraw the entire
buffer from scratch for each frame than to figure out which parts require redrawing. Thisis especially true with applications such
as three-dimensional flight ssmulators where atiny change in the plane's orientation changes the position of everything outside
the window.

In most animations, the objects in a scene are simply redrawn with different transformations - the viewpoint of the viewer moves,
or acar moves down the road a bit, or an object isrotated slightly. If significant recomputation is required for non-drawing

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (13 of 16) [4/28/2000 9:44:16 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

operations, the attainable frame rate often slows down. Keep in mind, however, that the idle time after the swap_the buffers()
routine can often be used for such calculations.

OpenGL doesn't have aswap_the buffers() command because the feature might not be available on all hardware and, in any
casg, it's highly dependent on the window system. For example, if you are using the X Window System and accessing it directly,
you might use the following GL X routine:

void glXSwapBuffers(Display *dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)
If you are using the GLUT library, you'll want to call this routine:
void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning sguare as shown in Figure 1-3. The
following example also shows how to use GLUT to control an input device and turn on and off an idle function. In this example,
the mouse buttons toggle the spinning on and off.

NIV,

Frame 0O Frame 10 Frame 20 Frame 30 Frame 40

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 : Double-Buffered Program: double.c

#i ncl ude <@/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdlib. h>

static Gfloat spin = 0.0;

voi d init(void)

{
gl ClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}

voi d di spl ay(voi d)

{

gl d ear (G._COLOR BUFFER BIT);

gl PushMatri x();

gl Rotatef(spin, 0.0, 0.0, 1.0);

gl Color3f(1.0, 1.0, 1.0);

gl Rectf(-25.0, -25.0, 25.0, 25.0);
gl PopMat ri x();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (14 of 16) [4/28/2000 9:44:16 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%15_34577_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1958_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=622?target=%25N%14_1948_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
gl ut SwapBuf fers();

}
voi d spi nDi spl ay(voi d)
{
spin = spin + 2.0;
if (spin > 360.0)
spin = spin - 360.0;
gl ut Post Redi spl ay();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gl Otho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity();
}
voi d nmouse(int button, int state, int x, int y)
{
swtch (button) {
case GLUT_LEFT_BUTTON
if (state == GLUT_DOWN)
gl ut I dl eFunc(spi nD spl ay) ;
br eak;
case GLUT_M DDLE BUTTON
if (state == GLUT_DOWN)
gl ut 1 dl eFunc(NULL) ;
br eak;
defaul t:
br eak;
}
}
/*

* Request doubl e buffer display node.
* Regi ster nouse input call back functions
*/
int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD spl ayMbde (GLUT_DOUBLE | GLUT_RGB);
gl utl ni t WndowSi ze (250, 250);
gl utl ni t WndowPosi tion (100, 100);
gl ut Creat eW ndow (argv[O0]);
init ();
gl ut D spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(r eshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (15 of 16) [4/28/2000 9:44:16 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...G/@Generic__BookTextView/622;cs=fullhtml;pt=532 (16 of 16) [4/28/2000 9:44:16 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 2
State Management and Drawing Geometric Objects

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Clear the window to an arbitrary color

« Force any pending drawing to complete

« Draw with any geometric primitive - points, lines, and polygons - in two or three dimensions
o Turn states on and off and query state variables

« Control the display of those primitives - for example, draw dashed lines or outlined polygons
« Specify normal vectors at appropriate points on the surface of solid objects

« Usevertex arrays to store and access alot of geometric data with only afew function calls

« Save and restore several state variables at once

Although you can draw complex and interesting pictures using OpenGL, they're all constructed from a small number of primitive graphical items.
This shouldn't be too surprising - look at what Leonardo da Vinci accomplished with just pencils and paintbrushes.

At the highest level of abstraction, there are three basic drawing operations: clearing the window, drawing a geometric object, and drawing a raster
object. Raster objects, which include such things as two-dimensional images, bitmaps, and character fonts, are covered in Chapter 8. In this chapter,
you learn how to clear the screen and to draw geometric objects, including points, straight lines, and flat polygons.

Y ou might think to yourself, "Wait a minute. |'ve seen lots of computer graphicsin movies and on television, and there are plenty of beautifully
shaded curved lines and surfaces. How are those drawn, if all OpenGL can draw are straight lines and flat polygons?' Even the image on the cover
of this book includes around table and objects on the table that have curved surfaces. It turns out that all the curved lines and surfaces you've seen
are approximated by large numbers of little flat polygons or straight lines, in much the same way that the globe on the cover is constructed from a
large set of rectangular blocks. The globe doesn't appear to have a smooth surface because the blocks are relatively large compared to the globe.
Later in this chapter, we show you how to construct curved lines and surfaces from lots of small geometric primitives.

This chapter has the following major sections:

« "A Drawing Survival Kit" explains how to clear the window and force drawing to be completed. It also gives you basic information about
controlling the color of geometric objects and describing a coordinate system.

« "Describing Points, Lines, and Polygons' shows you what the set of primitive geometric objects is and how to draw them.

» "Basic State Management" describes how to turn on and off some states (modes) and query state variables.

« "Displaying Points, Lines, and Polygons' explains what control you have over the details of how primitives are drawn - for example, what
diameter points have, whether lines are solid or dashed, and whether polygons are outlined or filled.

« "Normal Vectors' discusses how to specify normal vectors for geometric objects and (briefly) what these vectors are for.

« "Vertex Arrays' showsyou how to put lots of geometric datainto just afew arrays and how, with only afew function calls, to render the
geometry it describes. Reducing function calls may increase the efficiency and performance of rendering.

« "Attribute Groups' reveals how to query the current value of state variables and how to save and restore several related state values all at
once.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (1 of 34) [4/28/2000 9:44:38 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2079_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2543_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3547_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3708_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4319_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4468_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6045_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

» "Some Hints for Building Polygonal Models of Surfaces' explores the issues and techniques involved in constructing polygonal
approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless you specify otherwise, every time you issue adrawing
command, the specified object is drawn. This might seem obvious, but in some systems, you first make alist of things to draw. When your list is
complete, you tell the graphics hardware to draw theitemsin thelist. The first styleis called immediate-mode graphics and is the default OpenGL
style. In addition to using immediate mode, you can choose to save some commandsin alist (caled adisplay list) for later drawing.
Immediate-mode graphics are typically easier to program, but display lists are often more efficient. Chapter 7 tells you how to use display lists and
why you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color of objects that are to be drawn, and force drawing to be
completed. None of these subjects has anything to do with geometric objectsin adirect way, but any program that draws geometric objects hasto
deal with these issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts out white, and al you have to do is draw the picture. On a
computer, the memory holding the picture is usualy filled with the last picture you drew, so you typically need to clear it to some background color
before you start to draw the new scene. The color you use for the background depends on the application. For aword processor, you might clear to
white (the color of the paper) before you begin to draw the text. If you're drawing aview from a spaceship, you clear to the black of space before
beginning to draw the stars, planets, and alien spaceships. Sometimes you might not need to clear the screen at al; for example, if the imageisthe
inside of aroom, the entire graphics window gets covered as you draw all the walls.

At this point, you might be wondering why we keep talking about clearing the window - why not just draw a rectangle of the appropriate color that's
large enough to cover the entire window? First, a special command to clear awindow can be much more efficient than a general-purpose drawing
command. In addition, as you'll seein Chapter 3, OpenGL allows you to set the coordinate system, viewing position, and viewing direction
arbitrarily, so it might be difficult to figure out an appropriate size and location for a window-clearing rectangle. Finally, on many machines, the
graphics hardware consists of multiple buffersin addition to the buffer containing colors of the pixels that are displayed. These other buffers must
be cleared from time to time, and it's convenient to have a single command that can clear any combination of them. (See Chapter 10 for a discussion
of al the possible buffers.)

Y ou must also know how the colors of pixels are stored in the graphics hardware known as bitplanes. There are two methods of storage. Either the
red, green, blue, and apha (RGBA) values of apixel can be directly stored in the bitplanes, or asingle index value that references a color lookup
tableis stored. RGBA color-display mode is more commonly used, so most of the examplesin this book use it. (See Chapter 4 for more information

about both display modes.) Y ou can safely ignore al references to alpha values until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

gl earColor(0.0, 0.0, 0.0, 0.0);
gl A ear (GL_COLOR BUFFER BIT);

Thefirst line sets the clearing color to black, and the next command clears the entire window to the current clearing color. The single parameter to
glClear () indicates which buffers are to be cleared. In this case, the program clears only the color buffer, where the image displayed on the screen is
kept. Typically, you set the clearing color once, early in your application, and then you clear the buffers as often as necessary. OpenGL keeps track
of the current clearing color as a state variable rather than requiring you to specify it each time a buffer is cleared.

Chapter 4 and Chapter 10 talk about how other buffers are used. For now, all you need to know is that clearing them is simple. For example, to clear
both the color buffer and the depth buffer, you would use the following sequence of commands:
glCearColor(0.0, 0.0, 0.0, 0.0);

gl C ear Dept h(1.0);
gl d ear (G._COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

In this case, the call to glClear Color () is the same as before, the glClear Depth() command specifies the value to which every pixel of the depth
buffer isto be set, and the parameter to the glClear () command now consists of the bitwise OR of all the buffers to be cleared. The following
summary of glClear () includes atable that lists the buffers that can be cleared, their names, and the chapter where each type of buffer is discussed.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Setsthe current clearing color for usein clearing color buffersin RGBA mode. (See Chapter 4 for more information on RGBA mode.) The
red, green, blue, and alpha values are clamped if necessary to the range [0,1] . The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask);
Clears the specified buffersto their current clearing values. The mask argument is a bitwise-ORed combination of the values listed in Table
2-1.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (2 of 34) [4/28/2000 9:44:38 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6388_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_12802_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2264_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2264_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Table 2-1: Clearing Buffers

Buffer Name Reference
Color buffer GL_COLOR_BUFFER BIT Chapter 4
Depth buffer GL_DEPTH _BUFFER BIT Chapter 10

Accumulation buffer | GL_ACCUM_BUFFER_BIT Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT | Chapter 10

Before issuing acommand to clear multiple buffers, you have to set the values to which each buffer isto be cleared if you want something other
than the default RGBA color, depth value, accumulation color, and stencil index. In addition to the glClear Color () and glClear Depth() commands
that set the current values for clearing the color and depth buffers, glClear Index(), glClear Accum(), and glClear Stencil () specify the color index,
accumulation color, and stencil index used to clear the corresponding buffers. (See Chapter 4 and Chapter 10 for descriptions of these buffers and

their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow operation, since every pixel in the window (possibly millions)
is touched, and some graphics hardware allows sets of buffers to be cleared simultaneously. Hardware that doesn't support simultaneous clears
performs them sequentially. The difference between

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

and

gl Cl ear (G._COLOR BUFFER BIT);
gl A ear (G._DEPTH_BUFFER_BI T) ;

is that although both have the same final effect, the first example might run faster on many machines. It certainly won't run more slowly.
Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of the description of its color. Whenever a particular geometric
object isdrawn, it's drawn using the currently specified coloring scheme. The coloring scheme might be as simple as "draw everything in
fire-engine red,” or might be as complicated as "assume the object is made out of blue plastic, that there's ayellow spotlight pointed in such and
such adirection, and that there's a general low-level reddish-brown light everywhere else.” In general, an OpenGL programmer first sets the color or
coloring scheme and then draws the objects. Until the color or coloring scheme is changed, all objects are drawn in that color or using that coloring
scheme. This method helps OpenGL achieve higher drawing performance than would result if it didn't keep track of the current color.

For example, the pseudocode

set _current _col or(red);
draw _obj ect (A);

draw_obj ect (B);

set _current_col or (green);
set _current _col or (bl ue);
draw obj ect (O);

draws objects A and B in red, and object C in blue. The command on the fourth line that sets the current color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections devoted to them. To draw geometric primitives that can be
seen, however, you need some basic knowledge of how to set the current color; thisinformation is provided in the next paragraphs. (See Chapter 4

and Chapter 5 for details on these topics.)

To set acolor, use the command glColor 3f(). It takes three parameters, all of which are floating-point numbers between 0.0 and 1.0. The parameters
are, in order, the red, green, and blue components of the color. Y ou can think of these three values as specifying a"mix" of colors: 0.0 means don't
use any of that component, and 1.0 means use all you can of that component. Thus, the code

gl Col or3f (1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All zeros makes black; in contrast, all ones makes white. Setting all
three components to 0.5 yields gray (hafway between black and white). Here are eight commands and the colors they would set.

gl Col or3f (0.0, 0.0, 0.0); bl ack

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (3 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Col or3f (1.0, 0.0, 0.0); red

gl Col or3f (0.0, 1.0, 0.0); green

gl Color3f (1.0, 1.0, 0.0); yel | ow
gl Color3f (0.0, 0.0, 1.0); bl ue

gl Color3f(1.0, 0.0, 1.0); nmagent a
gl Col or3f (0.0, 1.0, 1.0); cyan

gl Color3f (1.0, 1.0, 1.0); white

Y ou might have noticed earlier that the routine to set the clearing color, glClear Color (), takes four parameters, the first three of which match the
parameters for glColor 3f(). The fourth parameter isthe alphavalue; it's covered in detail in "Blending" in Chapter 6. For now, set the fourth
parameter of glClear Color () to 0.0, which isits default value.

Forcing Completion of Drawing

Asyou saw in "OpenGL Rendering Pipeline" in Chapter 1, most modern graphics systems can be thought of as an assembly line. The main central
processing unit (CPU) issues a drawing command. Perhaps other hardware does geometric transformations. Clipping is performed, followed by
shading and/or texturing. Finally, the values are written into the bitplanes for display. In high-end architectures, each of these operationsis
performed by a different piece of hardware that's been designed to perform its particular task quickly. In such an architecture, there's no need for the
CPU to wait for each drawing command to complete before issuing the next one. While the CPU is sending a vertex down the pipeline, the
transformation hardware is working on transforming the last one sent, the one before that is being clipped, and so on. In such asystem, if the CPU
waited for each command to complete before issuing the next, there could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example, suppose that the main program is running elsewhere (on a
machine called the client) and that you're viewing the results of the drawing on your workstation or terminal (the server), which is connected by a
network to the client. In that case, it might be horribly inefficient to send each command over the network one at atime, since considerable
overhead is often associated with each network transmission. Usually, the client gathers a collection of commands into a single network packet
before sending it. Unfortunately, the network code on the client typically has no way of knowing that the graphics program is finished drawing a
frame or scene. In the worst case, it waits forever for enough additional drawing commandsto fill a packet, and you never see the completed
drawing.

For this reason, OpenGL provides the command glFlush(), which forces the client to send the network packet even though it might not be full.
Where there is no network and all commands are truly executed immediately on the server, glFlush() might have no effect. However, if you're
writing a program that you want to work properly both with and without a network, include acal to glFlush() at the end of each frame or scene.
Note that glFlush() doesn't wait for the drawing to complete - it just forces the drawing to begin execution, thereby guaranteeing that all previous
commands execute in finite time even if no further rendering commands are executed.

There are other situations where glFlush() is useful.
« Software renderers that build image in system memory and don't want to constantly update the screen.

« Implementations that gather sets of rendering commands to amortize start-up costs. The aforementioned network transmission example is one
instance of this.
void glFlush(void);
Forces previoudly issued OpenGL commands to begin execution, thus guaranteeing that they complete in finite time.

A few commands - for example, commands that swap buffers in double-buffer mode - automatically flush pending commands onto the network
before they can occur.

If glFlush() isn't sufficient for you, try glFinish(). This command flushes the network as glFlush() does and then waits for notification from the
graphics hardware or network indicating that the drawing is complete in the framebuffer. Y ou might need to use glFinish() if you want to
synchronize tasks - for example, to make sure that your three-dimensional rendering is on the screen before you use Display PostScript to draw
labels on top of the rendering. Another example would be to ensure that the drawing is complete before it begins to accept user input. After you
issue aglFinish() command, your graphics process is blocked until it receives notification from the graphics hardware that the drawing is complete.
Keep in mind that excessive use of glFinish() can reduce the performance of your application, especially if you're running over a network, because
it requires round-trip communication. If glFlush() is sufficient for your needs, use it instead of glFinish().

void glFinish(void);
Forces all previously issued OpenGL commands to complete. This command doesn't return until all effects from previous commands are fully
realized.

Coordinate System Survival Kit

Whenever you initially open awindow or later move or resize that window, the window system will send an event to notify you. If you are using
GLUT, the notification is automated; whatever routine has been registered to glutReshapeFunc() will be called. Y ou must register a callback
function that will

« Reestablish the rectangular region that will be the new rendering canvas

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (4 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_1274_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

« Define the coordinate system to which objects will be drawn

In Chapter 3 you'll see how to define three-dimensional coordinate systems, but right now, just create a simple, basic two-dimensional coordinate
system into which you can draw afew objects. Call glutReshapeFunc(reshape), where reshape() is the following function shown in Example 2-1.

Example 2-1 : Reshape Callback Function
void reshape (int w, int h)

{

gl Viewport (0, 0, (GLsizei) w, (GLsizei) h);

gl Matri xMode (G._PRQJIECTI ON);

gl Loadl dentity ();

gl uOrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}

Theinternals of GLUT will pass this function two arguments. the width and height, in pixels, of the new, moved, or resized window. glViewport()
adjusts the pixel rectangle for drawing to be the entire new window. The next three routines adjust the coordinate system for drawing so that the
lower-l€eft corner is (0, 0), and the upper-right corner is (w, h) (See Figure 2-1).

To explain it another way, think about a piece of graphing paper. The w and h valuesin reshape() represent how many columns and rows of sguares
are on your graph paper. Then you have to put axes on the graph paper. The gluOrtho2D() routine puts the origin, (0, 0), al the way in the lowest,
leftmost square, and makes each sguare represent one unit. Now when you render the points, lines, and polygons in the rest of this chapter, they will
appear on this paper in easily predictable squares. (For now, keep all your objects two-dimensional.)

(50, 50)

{a, 0)

Figure 2-1: Coordinate System Defined by w = 50, h =50

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric primitives are eventually described in terms of their vertices -
coordinates that define the points themsel ves, the endpoints of line segments, or the corners of polygons. The next section discusses how these
primitives are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

Y ou probably have afairly good idea of what a mathematician means by the terms point, line, and polygon. The OpenGL meanings are similar, but
not quite the same.

One difference comes from the limitations of computer-based calculations. In any OpenGL implementation, floating-point calculations are of finite
precision, and they have round-off errors. Consequently, the coordinates of OpenGL points, lines, and polygons suffer from the same problems.

Another more important difference arises from the limitations of araster graphics display. On such a display, the smallest displayable unitis a pixel,
and although pixels might be less than 1/100 of an inch wide, they are still much larger than the mathematician's concepts of infinitely small (for
points) or infinitely thin (for lines). When OpenGL performs calculations, it assumes points are represented as vectors of floating-point numbers.
However, apoint istypically (but not always) drawn as asingle pixel, and many different points with slightly different coordinates could be drawn
by OpenGL on the same pixel.

Points

A point is represented by a set of floating-point numbers called avertex. All internal calculations are done asif vertices are three-dimensional .
Vertices specified by the user as two-dimensiona (that is, with only x and y coordinates) are assigned a z coordinate equal to zero by OpenGL.

Advanced

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (5 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2499_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2535_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL works in the homogeneous coordinates of three-dimensional projective geometry, so for internal calculations, all vertices are represented
with four floating-point coordinates (X, y, z, w). If w is different from zero, these coordinates correspond to the Euclidean three-dimensional point
(x/w, ylw, z/w). Y ou can specify the w coordinate in OpenGL commands, but that's rarely done. If the w coordinate isn't specified, it's understood to
be 1.0. (See Appendix F for more information about homogeneous coordinate systems.)

Lines

In OpenGL, the term line refers to aline segment, not the mathematician's version that extendsto infinity in both directions. There are easy waysto
specify a connected series of line segments, or even a closed, connected series of segments (see Figure 2-2). In all cases, though, the lines
constituting the connected series are specified in terms of the vertices at their endpoints.

Figure 2-2 : Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed |oops of line segments, where the line segments are specified by the vertices at their endpoints.
Polygons are typically drawn with the pixelsin the interior filled in, but you can also draw them as outlines or a set of points. (See "Polygon

Details.")

In general, polygons can be complicated, so OpenGL makes some strong restrictions on what constitutes a primitive polygon. First, the edges of
OpenGL polygons can't intersect (a mathematician would call apolygon satisfying this condition a simple polygon). Second, OpenGL polygons
must be convex, meaning that they cannot have indentations. Stated precisely, aregion is convex if, given any two pointsin the interior, the line
segment joining them is also in the interior. See Figure 2-3 for some examples of valid and invalid polygons. OpenGL, however, doesn't restrict the
number of line segments making up the boundary of a convex polygon. Note that polygons with holes can't be described. They are nonconvex, and
they can't be drawn with a boundary made up of asingle closed loop. Be aware that if you present OpenGL with anonconvex filled polygon, it
might not draw it as you expect. For instance, on most systems no more than the convex hull of the polygon would be filled. On some systems, less
than the convex hull might be filled.

IO X E<Q

Valid Invalid

Figure2-3: Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon typesis that it's smpler to provide fast polygon-rendering hardware for that restricted class
of polygons. Simple polygons can be rendered quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL
crosses its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons with holes. Since all such polygons can be formed from
unions of simple convex polygons, some routines to build more complex objects are provided in the GLU library. These routines take complex
descriptions and tessellate them, or break them down into groups of the smpler OpenGL polygons that can then be rendered. (See "Polygon
Tessellation" in Chapter 11 for more information about the tessellation routines.)

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a particular polygon don't necessarily lie on the same
planein space. (Of course, they do in many cases - if all the z coordinates are zero, for example, or if the polygon isatriangle.) If apolygon's
vertices don't lie in the same plane, then after various rotations in space, changes in the viewpoint, and projection onto the display screen, the points
might no longer form a simple convex polygon. For example, imagine afour-point quadrilateral where the points are slightly out of plane, and ook
at it aimost edge-on. Y ou can get a nonsimple polygon that resembles a bow tie, as shown in Figure 2-4, which isn't guaranteed to be rendered
correctly. This situation isn't all that unusual if you approximate curved surfaces by quadrilaterals made of points lying on the true surface. Y ou can
always avoid the problem by using triangles, since any three points aways lie on a plane.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (6 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_37453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2651_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2689_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_23157_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_23157_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2727_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

FE IS

‘ _J_f—r:r ,r ?L;: =
—i T+ T

Figure 2-4 : Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides afilled-rectangle drawing primitive, glRect*(). You can draw a
rectangle as a polygon, as described in "OpenGL Geometric Drawing Primitives," but your particular implementation of OpenGL might have

optimized glRect*() for rectangles.

void glRect{sifd}(TYPEX1, TYPEy1, TYPEX2, TYPEY2);

void glRect{sifd}v(TYPE*Vv1, TYPE*V2);
Draws the rectangle defined by the corner points (x1, y1) and (X2, y2). Therectangle liesin the plane z=0 and has sides parallel to the x- and
y-axes. If the vector form of the function is used, the corners are given by two pointersto arrays, each of which contains an (x, y) pair.

Note that although the rectangle begins with a particular orientation in three-dimensional space (in the x-y plane and parallel to the axes), you can
change this by applying rotations or other transformations. (See Chapter 3 for information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated - to any arbitrary degree of accuracy - by short line segments or small polygonal regions.
Thus, subdividing curved lines and surfaces sufficiently and then approximating them with straight line segments or flat polygons makes them
appear curved (see Figure 2-5). If you're skeptical that this really works, imagine subdividing until each line segment or polygon is so tiny that it's
smaller than a pixel on the screen.

& ./ ' 3 :,- -\r : |
! t K
. \ %
Figure 2-5 : Approximating Curves

Even though curves aren't geometric primitives, OpenGL does provide some direct support for subdividing and drawing them. (See Chapter 12 for
information about how to draw curves and curved surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of vertices. Y ou use the glVertex* () command to specify avertex.
void glVertex{234}{sifd}[v] (TYPEcoords);

Soecifies a vertex for usein describing a geometric object. You can supply up to four coordinates (X, y, z, w) for a particular vertex or as few
as two (X, y) by selecting the appropriate version of the command. If you use a version that doesn't explicitly specify zor w, zis understood to
be 0 and w is understood to be 1. Callsto glVertex* () are only effective between a glBegin() and glEnd() pair.

Example 2-2 provides some examples of using glVertex* ().

Example 2-2 : Legal Uses of glVertex*()
gl Vertex2s(2, 3);

gl Vertex3d(0.0, O.
gl Vertex4f (2.3, 1

3.1415926535898) ;

Oy
0, -2.2, 2.0);

GLdoubl e dvect[3] = {5.0, 9.0, 1992.0};
gl Vert ex3dv(dvect);

Thefirst example represents a vertex with three-dimensional coordinates (2, 3, 0). (Remember that if it isn't specified, the z coordinate is understood
to be 0.) The coordinates in the second example are (0.0, 0.0, 3.1415926535898) (double-precision floating-point numbers). The third example

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (7 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2939_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2836_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2908_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

represents the vertex with three-dimensional coordinates (1.15, 0.5, -1.1). (Remember that the X, y, and z coordinates are eventually divided by the
w coordinate.) In the final example, dvect is a pointer to an array of three double-precision floating-point numbers.

On some machines, the vector form of glVertex*() is more efficient, since only a single parameter needs to be passed to the graphics subsystem.
Special hardware might be able to send awhole series of coordinatesin a single batch. If your machineis like this, it's to your advantage to arrange
your data so that the vertex coordinates are packed sequentially in memory. In this case, there may be some gain in performance by using the vertex
array operations of OpenGL. (See"Vertex Arrays."

OpenGL Geometric Drawing Primitives

Now that you've seen how to specify vertices, you still need to know how to tell OpenGL to create a set of points, aline, or a polygon from those
vertices. To do this, you bracket each set of vertices between acall to glBegin() and acall to glEnd(). The argument passed to glBegin() determines
what sort of geometric primitive is constructed from the vertices. For example, Example 2-3 specifies the vertices for the polygon shown in Figure

2-6.

Example 2-3: Filled Polygon
gl Begi n(GL_PCLYGON) ;

gl Vertex2f (0.0, 0.0):
gl Vertex2f (0.0, 3.0);
gl Vertex2f (4.0, 3.0);
gl Vertex2f (6.0, 1.5);
gl Vertex2f (4.0, 0.0);
gl End() ;

. L] L]

N -

/

L] L]
GL_POLYGON GL_POINTS

Figure 2-6 : Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLY GON, the primitive would have been simply the five points shown in Figure 2-6. Table 2-2in
the following function summary for glBegin() lists the ten possible arguments and the corresponding type of primitive.
void glBegin(GLenum mode);

Marks the beginning of a vertex-data list that describes a geometric primitive. The type of primitive is indicated by mode, which can be any of
the values shown in Table 2-2.

Table 2-2 : Geometric Primitive Names and Meanings

Value Meaning
GL_POINTS individua points
GL_LINES pairs of vertices interpreted as individual line segments
GL_LINE_STRIP series of connected line segments
GL_LINE_LOOP same as above, with a segment added between last and first vertices
GL_TRIANGLES triples of vertices interpreted astriangles

GL_TRIANGLE_STRIP | linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles
GL_QUADS quadruples of vertices interpreted as four-sided polygons
GL_QUAD_STRIP linked strip of quadrilaterals

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (8 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4468_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2964_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2970_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2970_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_2970_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3095_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3095_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_POLYGON boundary of asimple, convex polygon

void glEnd(void);
Marks the end of a vertex-data list.

Figure 2-7 shows examples of all the geometric primitives listed in Table 2-2. The paragraphs that follow the figure describe the pixels that are
drawn for each of the objects. Note that in addition to points, several types of lines and polygons are defined. Obviously, you can find many ways to
draw the same primitive. The method you choose depends on your vertex data.

[0
wibe L]
vie wy2

GL_POINTS

vl
w3,
‘,Mﬂ i vz

vﬂi‘;}iﬂ
va
GL_LINES GL_LINE_STRIP GL_UNE_LOOF
) w2 wd 'y -
il V6
N .
¥
i v2 v b vB ik
GL_TRIANGLES GL_TRIAMGLE_STRIP GL_TRIANGLE_FAN
vh w7
e i "
wl
. v v vE 'ﬂu
i 3
GL_OUADS GL_QUAD_STRIP GL_POLYGON

Figure 2-7 : Geometric Primitive Types

Asyou read the following descriptions, assume that n vertices (v0O, v1, v2, ..., vn-1) are described between a glBegin() and glEnd() pair.

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

Draws a point at each of the n vertices.

Draws a series of unconnected line segments. Segments are drawn between vO and v1, between v2 and v3, and so
on. If nisodd, the last segment is drawn between vn-3 and vn-2, and vn-1 isignored.

Draws a line segment from vO to v1, then from v1 to v2, and so on, finally drawing the segment from vn-2 to vn-1.
Thus, atotal of n-1 line segments are drawn. Nothing is drawn unless nis larger than 1. There are no restrictions on
the vertices describing aline strip (or aline loop); the lines can intersect arbitrarily.

Same as GL_LINE_STRIP, except that afinal line segment is drawn from vn-1 to vO, completing a loop.

Draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v3, v4, v5, and so on. If nisn't an
exact multiple of 3, the final one or two vertices are ignored.

Draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v2, v1, v3 (note the order), then
v2, v3, v4, and so on. The ordering isto ensure that the triangles are all drawn with the same orientation so that the
strip can correctly form part of a surface. Preserving the orientation isimportant for some operations, such as
culling. (See "Reversing and Culling Polygon Faces") n must be at least 3 for anything to be drawn.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (9 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3118_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3095_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3988_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the vertices are v0, v1, v2, then v0, v2, v3, then v0, v3, v4, and so on
(see Figure 2-7).

GL_QUADS Draws a series of quadrilaterals (four-sided polygons) using vertices v0, v1, v2, v3, then v4, v5, v6, v7, and so on.
If nisn't amultiple of 4, thefina one, two, or three vertices are ignored.

GL_QUAD_STRIP Draws a series of quadrilaterals (four-sided polygons) beginning with v0, v1, v3, v2, then v2, v3, v5, v4, then v4,
v5, v7, v6, and so on (see Figure 2-7). n must be at least 4 before anything is drawn. If nisodd, thefinal vertex is

ignored.

GL_POLYGON Draws a polygon using the points v0, ..., vn-1 as vertices. n must be at least 3, or nothing is drawn. In addition, the
polygon specified must not intersect itself and must be convex. If the vertices don't satisfy these conditions, the

results are unpredictable.

Restrictions on Using glBegin() and glEnd()

The most important information about verticesis their coordinates, which are specified by the glVertex* () command. Y ou can also supply
additional vertex-specific data for each vertex - acolor, anormal vector, texture coordinates, or any combination of these - using special commands.
In addition, afew other commands are valid between a glBegin() and glEnd() pair. Table 2-3 contains a complete list of such valid commands.

Table 2-3 : Valid Commands between glBegin() and glEnd()

Command Purpose of Command Reference
glVertex*() set vertex coordinates Chapter 2
glColor*() set current color Chapter 4
glindex* () set current color index Chapter 4
glNormal*() set normal vector coordinates | Chapter 2
gl TexCoord* () set texture coordinates Chapter 9
glEdgeFlag* () control drawing of edges Chapter 2
glMaterial* () set material properties Chapter 5
glArrayElement() extract vertex array data Chapter 2
glEvalCoord*(), glEvalPoint*() | generate coordinates Chapter 12
glCalList(), glCallLists() execute display list(s) Chapter 7

No other OpenGL commands are valid between a glBegin() and glEnd() pair, and making most other OpenGL calls generates an error. Some vertex
array commands, such as glEnableClientState() and glVertexPointer (), when called between glBegin() and glEnd(), have undefined behavior but
do not necessarily generate an error. (Also, routines related to OpenGL, such as gl X*() routines have undefined behavior between glBegin() and
olEnd().) These cases should be avoided, and debugging them may be more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include other programming-language constructs (except for calls,
such as the aforementioned gl X* () routines). For example, Example 2-4 draws an outlined circle.

Example 2-4 : Other Constructs between glBegin() and glEnd()
#define Pl 3.1415926535898

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (10 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3118_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3118_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3415_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_17385_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3463_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Glint circle_points = 100;

gl Begi n(GL_LI NE_LOOP) ;

for (i =0; i <circle_points; i++) {
angle = 2*Pl*i/circle_points;
gl Vertex2f (cos(angle), sin(angle));

}
gl End() ;

Note: This exampleisn't the most efficient way to draw acircle, especially if you intend to do it repeatedly. The graphics commands used are
typically very fast, but this code calculates an angle and calls the sin() and cos() routines for each vertex; in addition, there's the loop overhead.
(Another way to calculate the vertices of acircleisto use a GLU routine; see "Quadrics: Rendering Spheres, Cylinders, and Disks" in Chapter 11.)
If you need to draw lots of circles, calculate the coordinates of the vertices once and save them in an array and create a display list (see Chapter 7),
or use vertex arrays to render them.

Unlessthey are being compiled into adisplay list, al glVertex* () commands should appear between some glBegin() and glEnd() combination. (If
they appear elsewhere, they don't accomplish anything.) If they appear in adisplay list, they are executed only if they appear between a glBegin()
and aglEnd(). (See Chapter 7 for more information about display lists.)

Although many commands are allowed between glBegin() and glEnd(), vertices are generated only when aglVertex* () command isissued. At the
moment glVertex*() is called, OpenGL assigns the resulting vertex the current color, texture coordinates, normal vector information, and so on. To
seethis, look at the following code sequence. The first point is drawn in red, and the second and third ones in blue, despite the extra color
commands.

gl Begi n(GL_PQO NTS) ;

gl Col or3f (0.0, 1.0, 0.0); [* green */
gl Col or3f (2.0, 0.0, 0.0); /* red */

gl Vertex(...);

gl Col or3f (1.0, 1.0, 0.0); /* yellow */
gl Color3f(0.0, 0.0, 1.0); /* blue */
gl Vertex(...);

gl Vertex(...);

gl End() ;

Y ou can use any combination of the 24 versions of the glVertex* () command between glBegin() and glEnd(), although in real applications al the
callsin any particular instance tend to be of the same form. If your vertex-data specification is consistent and repetitive (for example, glColor*,
glVertex*, glColor*, glVertex*,...), you may enhance your program's performance by using vertex arrays. (See"Vertex Arrays.")

Basic State Management

In the previous section, you saw an example of a state variable, the current RGBA color, and how it can be associated with a primitive. OpenGL
maintains many states and state variables. An object may be rendered with lighting, texturing, hidden surface removal, fog, or some other states
affecting its appearance.

By default, most of these states are initially inactive. These states may be costly to activate; for example, turning on texture mapping will almost
certainly slow down the speed of rendering a primitive. However, the quality of the image will improve and look more realistic, due to the enhanced
graphics capabilities.

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenum cap);
void glDisable(GLenum cap);

glEnable() turns on a capability, and glDisable() turnsit off. There are over 40 enumerated values that can be passed as a parameter to
glEnable() or gIDisable(). Some examples of these are GL_BLEND (which controls blending RGBA values), GL_DEPTH_TEST (which
controls depth comparisons and updates to the depth buffer), GL_FOG (which controls fog), GL_LINE_STIPPLE (patterned lines),
GL_LIGHTING (you get theidea), and so forth.

You can also check if astate is currently enabled or disabled.
GLboolean gll sEnabled(GLenum capability)
Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is currently activated.
The states you have just seen have two settings: on and off. However, most OpenGL routines set values for more complicated state variables. For

example, the routine glColor 3f() sets three values, which are part of the GL_ CURRENT_COLOR state. There are five querying routines used to
find out what values are set for many states:

void glGetBool eanv(GLenum pname, GLboolean * params);
void gl Getl ntegerv(GLenum pname, GLint * params);
void gl GetFloatv(GLenum pname, GLfloat * params);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (11 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_24197_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4468_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

void glGetDoublev(GLenum pname, GLdouble * params);

void gl GetPointerv(GLenum pname, GLvoid ** params);
Obtains Boolean, integer, floating-point, double-precision, or pointer state variables. The pname argument is a symbolic constant indicating
the state variable to return, and paramsis a pointer to an array of the indicated type in which to place the returned data. See the tablesin
Appendix B for the possible values for pname. For example, to get the current RGBA color, a table in Appendix B suggests you use
gl Getl ntegerv(GL_CURRENT_COLOR, params) or glGetFloatv(GL_CURRENT_COLOR, params). A type conversion is performed if
necessary to return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state information. (See " The Query Commands" in Appendix B for an
additional 16 querying routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, alineis drawn solid and one pixel wide, and polygons are drawn solidly filled in. The
following paragraphs discuss the details of how to change these default display modes.

Point Details

To control the size of arendered point, use glPointSize() and supply the desired size in pixels as the argument.
void glPointSize(GLfloat size);
Sets the width in pixels for rendered points; size must be greater than 0.0 and by default is 1.0.

The actual collection of pixels on the screen which are drawn for various point widths depends on whether antialiasing is enabled. (Antiaiasing isa
technique for smoothing points and lines as they're rendered; see "Antialiasing” in Chapter 6 for more detail.) If antialiasing is disabled (the default),
fractional widths are rounded to integer widths, and a screen-aligned square region of pixelsis drawn. Thus, if the width is 1.0, the squareis 1 pixel
by 1 pixel; if the width is 2.0, the square is 2 pixels by 2 pixels, and so on.

With antialiasing enabled, a circular group of pixelsisdrawn, and the pixels on the boundaries are typically drawn at less than full intensity to give
the edge a smoother appearance. In this mode, non-integer widths aren't rounded.

Most OpenGL implementations support very large point sizes. The maximum size for antialiased pointsis queryable, but the sasmeinformationis
not available for standard, aliased points. A particular implementation, however, might limit the size of standard, aliased points to not less than its
maximum antialiased point size, rounded to the nearest integer value. Y ou can obtain this floating-point value by using GL_POINT_SIZE_RANGE
with glGetFloatv().

Line Detalils

With OpenGL, you can specify lines with different widths and lines that are stippled in various ways - dotted, dashed, drawn with alternating dots
and dashes, and so on.

Wide Lines

void glLineWidth(GLfloat width);
Sets the width in pixels for rendered lines; width must be greater than 0.0 and by default is 1.0.

The actual rendering of linesis affected by the antialiasing mode, in the same way as for points. (See"Antialiasing” in Chapter 6.) Without
antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixels wide. With antialiasing enabled, non-integer line widths are possible, and pixels on
the boundaries are typically drawn at less than full intensity. Aswith point sizes, a particular OpenGL implementation might limit the width of
nonantialiased lines to its maximum antialiased line width, rounded to the nearest integer value. Y ou can obtain this floating-point value by using
GL_LINE_WIDTH_RANGE with glGetFloatv().

Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on lower-resolution screens. For computer displays, thisisn't
typically an issue, but if you're using OpenGL to render to a high-resolution plotter, 1-pixel lines might be nearly invisible. To obtain
resol ution-independent line widths, you need to take into account the physical dimensions of pixels.

Advanced

With nonantialiased wide lines, the line width isn't measured perpendicular to the line. Instead, it's measured in the y direction if the absolute value
of the dlopeislessthan 1.0; otherwise, it's measured in the x direction. The rendering of an antialiased line is exactly equivalent to the rendering of
afilled rectangle of the given width, centered on the exact line.

Stippled Lines

To make stippled (dotted or dashed) lines, you use the command glL ineStipple() to define the stipple pattern, and then you enable line stippling
with glEnable().

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (12 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_29706_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_29706_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_29724_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_13383_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl LineStipple(l, 0x3F07);
gl Enabl e(G__LI NE_STI PPLE) ;

void glLineStipple(GLint factor, GLushort pattern);

Sets the current stippling pattern for lines. The pattern argument is a 16-bit series of Os and 1s, and it's repeated as necessary to stipple a
givenline. A 1 indicates that drawing occurs, and O that it does not, on a pixel-by-pixel basis, beginning with the low-order bit of the pattern.
The pattern can be stretched out by using factor, which multiplies each subseries of consecutive 1s and Os. Thus, if three consecutive 1s
appear in the pattern, they're stretched to six if factor is 2. factor is clamped to lie between 1 and 255. Line stippling must be enabled by
passing GL_LINE_STIPPLE to glEnable(); it's disabled by passing the same argument to glDisable().

With the preceding example and the pattern 0x3F07 (which translates to 0011111100000111 in binary), aline would be drawn with 3 pixels on,
then 5 off, 6 on, and 2 off. (If this seems backward, remember that the low-order bit isused first.) If factor had been 2, the pattern would have been
elongated: 6 pixels on, 10 off, 12 on, and 4 off. Figure 2-8 shows lines drawn with different patterns and repeat factors. If you don't enable line
stippling, drawing proceeds asif pattern were OxFFFF and factor 1. (Use glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that
stippling can be used in combination with wide lines to produce wide stippled lines.

PATTERN FACTOR

Ox00FF 1

Ox00FF g —

DxOCOF L — = SR — —

DxOCOF g — -

OXAAAA] o e o e e) e e e e e e e £
DxAAAA o e g
DxAAAR S S R S
DxAAAA 4 S

Figure 2-8: Stippled Lines

One way to think of the stippling isthat asthe line is being drawn, the pattern is shifted by 1 bit each time a pixel is drawn (or factor pixelsare
drawn, if factor isn't 1). When a series of connected line segmentsis drawn between a single glBegin() and glEnd(), the pattern continues to shift as
one segment turnsinto the next. This way, a stippling pattern continues across a series of connected line segments. When glEnd() is executed, the
patternis reset, and - if more lines are drawn before stippling is disabled - the stippling restarts at the beginning of the pattern. If you're drawing
lineswith GL_LINES, the pattern resets for each independent line.

Example 2-5 illustrates the results of drawing with a couple of different stipple patterns and line widths. It also illustrates what happens if the lines
aredrawn as a series of individual segments instead of a single connected line strip. The results of running the program appear in Figure 2-9.

Figure 2-9: Wide Stippled Lines

Example 2-5: Line Stipple Patterns: lines.c

#i nclude <CG./gl.h>
#i ncl ude <G/ glut. h>

#def i ne drawOneLi ne(x1,yl,x2,y2) glBegin(G_LINES); \
gl Vertex2f ((x1),(yl)); gl Vertex2f ((x2),(y2)); gl End();

void init(void)

{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

}

voi d di spl ay(voi d)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (13 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3877_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3924_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3914_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
int i;

gl Cear (G._CO.OR BUFFER BIT);
/* select white for all lines */
gl Col or3f (1.0, 1.0, 1.0);

/[* in 1st row, 3 lines, each with a different stipple */
gl Enabl e (GL_LI NE_STI PPLE);

gl Li neStipple (1, 0x0101); /* dotted */
drawOneli ne (50.0, 125.0, 150.0, 125.0);
gl LineStipple (1, OxO0FF); [/* dashed */
drawOneli ne (150.0, 125.0, 250.0, 125.0);
gl LineStipple (1, 0x1C47); [* dash/dot/dash */
dr awOnelLi ne (250.0, 125.0, 350.0, 125.0);

/* in 2nd row, 3 wide lines, each with different stipple */
gl LineWdth (5.0);
gl LineStipple (1, 0x0101); /* dotted */
drawOnelLi ne (50.0, 100.0, 150.0, 100.0);
gl LineStipple (1, OxO00FF); /* dashed */
dr awOnelLi ne (150.0, 100.0, 250.0, 100.0);
gl LineStipple (1, 0x1c47); [* dash/dot/dash */
dr awOnelLi ne (250.0, 100.0, 350.0, 100.0);
gl LineWdth (1.0);

/* in 3rd row, 6 lines, with dash/dot/dash stipple */
/* as part of a single connected line strip */
gl Li neStipple (1, 0x1c47); [* dash/dot/dash */

gl Begin (GL_LI NE_STRI P);
for (i =0; i <7; i++)

gl Vertex2f (50.0 + ((G.float) i * 50.0), 75.0);
gl End ();

/* in 4th row, 6 independent lines with sane stipple */
for (i =0; i <6; i++) {
drawOneline (50.0 + ((G.float) i * 50.0), 50.0,
50.0 + ((GQ.float)(i+1) * 50.0), 50.0);
}

/* in 5th row, 1 line, with dash/dot/dash stipple */
/* and a stipple repeat factor of 5 */
gl LineStipple (5, 0x1C47); [/* dash/dot/dash */

drawOnelLi ne (50.0, 25.0, 350.0, 25.0);

gl Di sabl e (G._LI NE_STI PPLE) ;

gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (CGsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON);
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}
int main(int argc, char** argv)
{

glutlnit(&rgc, argv);

gl utlnitDisplayMde (G.UT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (400, 150);

gl utl nitWndowPosition (100, 100);

gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (14 of 34) [4/28/2000 9:44:39 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

}
Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but you can also draw them as outlined polygons or simply as
points at the vertices. A filled polygon might be solidly filled or stippled with a certain pattern. Although the exact details are omitted here, filled
polygons are drawn in such away that if adjacent polygons share an edge or vertex, the pixels making up the edge or vertex are drawn exactly once
- they'reincluded in only one of the polygons. Thisis done so that partially transparent polygons don't have their edges drawn twice, which would
make those edges appear darker (or brighter, depending on what color you're drawing with). Note that it might result in narrow polygons having no
filled pixelsin one or more rows or columns of pixels. Antialiasing polygonsis more complicated than for points and lines. (See "Antialiasing" in

Chapter 6 for details.)

Polygons as Points, Outlines, or Solids

A polygon has two sides - front and back - and might be rendered differently depending on which sideis facing the viewer. This allows you to have
cutaway views of solid objects in which there is an obvious distinction between the parts that are inside and those that are outside. By default, both
front and back faces are drawn in the same way. To change this, or to draw only outlines or vertices, use glPolygonM ode().
void glPolygonM ode(GLenum face, GLenum mode);
Controls the drawing mode for a polygon's front and back faces. The parameter face can be GL_FRONT_AND_BACK, GL_FRONT, or
GL_BACK; mode can be GL_POINT, GL_LINE, or GL_FILL to indicate whether the polygon should be drawn as points, outlined, or filled.
By default, both the front and back faces are drawn filled.

For example, you can have the front faces filled and the back faces outlined with two calls to this routine:

gl Pol ygonMode(GL_FRONT, G._FI LL);
gl Pol ygonMode(GL_BACK, G._LI NE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen are called front-facing. Y ou can construct the surface of
any "reasonable" solid - a mathematician would call such a surface an orientable manifold (spheres, donuts, and teapots are orientable; Klein bottles
and Mobius strips aren't) - from polygons of consistent orientation. In other words, you can use al clockwise polygons, or all counterclockwise
polygons. (Thisis essentially the mathematical definition of orientable.)

Suppose you've consistently described a model of an orientable surface but that you happen to have the clockwise orientation on the outside. Y ou
can swap what OpenGL considers the back face by using the function glFrontFace(), supplying the desired orientation for front-facing polygons.

void glFrontFace(GLenum mode);

Controls how front-facing polygons are determined. By default, mode is GL_CCW, which corresponds to a counter clockwise orientation of
the ordered vertices of a projected polygon in window coordinates. If mode is GL_CW, faces with a clockwise orientation are considered
front-facing.

In acompletely enclosed surface constructed from opague polygons with a consistent orientation, none of the back-facing polygons are ever visible
- they're always obscured by the front-facing polygons. If you are outside this surface, you might enable culling to discard polygons that OpenGL
determines are back-facing. Similarly, if you are inside the object, only back-facing polygons are visible. To instruct OpenGL to discard front- or
back-facing polygons, use the command gl CullFace() and enable culling with glEnable&().

void gl CullFace(GLenum mode);

Indicates which polygons should be discarded (culled) before they're converted to screen coordinates. The mode is either GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK to indicate front-facing, back-facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled with glDisable() and the same argument.

Advanced

In more technical terms, the decision of whether aface of a polygon is front- or back-facing depends on the sign of the polygon's area computed in
window coordinates. One way to computethisareais

n-1

_ 1
=T EVirla Tl
i=0

where xi and yi are the x and y window coordinates of the ith vertex of the n-vertex polygon and

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (15 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_13383_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
il 18 (i+]) mod =

Assuming that GL_CCW has been specified, if a0, the polygon corresponding to that vertex is considered to be front-facing; otherwise, it's
back-facing. If GL_CW is specified and if a<0, then the corresponding polygon is front-facing; otherwise, it's back-facing.

Try This

Modify Example 2-5 by adding some filled polygons. Experiment with different colors. Try different polygon modes. Also enable culling to seeits
effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a 32-hit by 32-bit window-aligned stipple pattern, which you
specify with glPolygonStipple().
void glPolygonStipple(const GLubyte * mask);
Defines the current stipple pattern for filled polygons. The argument mask is a pointer to a 32 x 32 bitmap that's interpreted as a mask of 0Os
and 1s. Where a 1 appears, the corresponding pixel in the polygon is drawn, and where a 0 appears, nothing is drawn. Figure 2-10 shows

how a stipple pattern is constructed from the charactersin mask. Polygon stippling is enabled and disabled by using glEnable() and
glDisable() with GL_POLYGON_STIPPLE as the argument. The interpretation of the mask data is affected by the glPixel Store* ()
GL_UNPACK* modes. (See "Controlling Pixel-Sorage Modes' in Chapter 8.)

In addition to defining the current polygon stippling pattern, you must enable stippling:
gl Enabl e(GL_POLYGON_STI PPLE) ;

Use glDisable() with the same argument to disable polygon stippling.

Figure 2-11 shows the results of polygons drawn unstippled and then with two different stippling patterns. The program is shown in Example 2-6.
The reversal of white to black (from Figure 2-10 to Figure 2-11) occurs because the program draws in white over a black background, using the
pattern in Figure 2-10 as a stencil.

1296 3216 8 4 2 1128 §0 3215 8 4 2 118843216 8 4 2 11BE1 3216 B 4 T 1

/
/

/
/
/

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (16 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3924_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4190_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_16289_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4197_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4207_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4190_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4197_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4190_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

/ \

128 64 32 16 8 4 2 1

,\//

By default, for each byte the moat significant bit Is firat,
Bit ordering can be changed by calling glFixelStore*(}.

Figure 2-10 : Constructing a Polygon Stipple Pattern

AN

NN

Lemm) Lmdnd Limds

Figure2-11: Stippled Polygons

Example 2-6 : Polygon Stipple Patterns. polys.c

#i nclude <@&./gl. h>

#i nclude <@/ gl ut. h>

voi d di spl ay(voi d)

{

GLubyte fly[] = {
0x00, 0x00, 0x00, O0x00, 0x00, 0Ox00, 0x00, 0Oxo00,
0x03, 0x80, 0x01, OxCO, 0x06, 0OxCO, 0x03, 0x60,
0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xCO0, O0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, OxCC,
0x19, 0x81, 0x81, 0x98, 0x0C, 0xCl, 0x83, 0x30,
0x07, Oxel, 0x87, OxeO0, 0x03, O0x3f, Oxfc, O0xcO,
0x03, 0x31, 0x8c, 0OxcO0, 0x03, 0x33, Oxcc, 0xcO,
0x06, 0x64, 0x26, 0x60, Ox0c, Oxcc, 0x33, 0x30,
0x18, Oxcc, 0x33, 0x18, 0x10, Oxc4, 0x23, 0x08,
0x10, O0x63, 0xC6, 0x08, 0x10, 0x30, Ox0c, 0x08,
0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};
GLubyte hal ftone[] = {

OxAA, OxAA, OxAA, O0xAA, 0xb55, 0xb55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA OxAA, 0xb5, 0xb55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, O0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb5, 0xb55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb5, 0xb55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb55, 0xb55, 0x55, 0x55,
OxAA, OxAA, OxAA, OxAA, 0xb5, 0x55, 0x55, 0x55,
OxAA, OxAA, OxAA OxAA, 0xb5, 0xb55, 0x55, 0x55,
OXAA, OxAA, OxAA, OxAA, 0x55, 0x55, 0x55, 0x55};

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (17 of 34) [4/28/2000 9:44:39 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl dear (G._CO.OR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);

/* draw one solid, unstippled rectangle, */
/* then two stippled rectangles */

gl Rectf (25.0, 25.0, 125.0, 125.0);

gl Enabl e (GL_POLYGON _STI PPLE);

gl Pol ygonStipple (fly);

gl Rectf (125.0, 25.0, 225.0, 125.0);

gl Pol ygonSti ppl e (hal ftone);

gl Rectf (225.0, 25.0, 325.0, 125.0);

gl Di sabl e (GL_POLYGON _STI PPLE) ;

gl Fl ush ();
}
void init (void)
{
gl dearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);
}
voi d reshape (int w, int h)
{
gl Viewport (0, O, (GLsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON);
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}
int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
gl utlnitDisplayMde (GUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (350, 150);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;
}

Y ou might want to use display liststo store polygon stipple patterns to maximize efficiency. (See "Display-List Design Philosophy" in Chapter 7.)

Marking Polygon Boundary Edges

Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in practice. To draw these nonconvex polygons, you typically
subdivide them into convex polygons - usually triangles, as shown in Figure 2-12 - and then draw the triangles. Unfortunately, if you decompose a
general polygon into triangles and draw the triangles, you can't really use glPolygonM ode() to draw the polygon's outline, since you get all the
triangle outlines inside it. To solve this problem, you can tell OpenGL whether a particular vertex precedes a boundary edge; OpenGL keeps track
of thisinformation by passing along with each vertex a bit indicating whether that vertex is followed by a boundary edge. Then, when apolygonis
drawn in GL_LINE mode, the nonboundary edges aren't drawn. In Figure 2-12, the dashed lines represent added edges.

Figure 2-12 : Subdividing a Nonconvex Polygon

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (18 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4243_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4243_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

By default, all vertices are marked as preceding a boundary edge, but you can manually control the setting of the edge flag with the command
glEdgeFlag* (). This command is used between glBegin() and glEnd() pairs, and it affects al the vertices specified after it until the next
glEdgeFlag() call is made. It applies only to vertices specified for polygons, triangles, and quads, not to those specified for strips of triangles or
quads.

void glEdgeFlag(GLboolean flag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered asinitializing a boundary edge of a polygon. If flag is GL_TRUE, the edge flag is set to
TRUE (the default), and any vertices created are considered to precede boundary edges until this function is called again with flag being
GL_FALSE.

As an example, Example 2-7 draws the outline shown in Figure 2-13.

2

/.

Yo

Figure 2-13 : Outlined Polygon Drawn Using Edge Flags

Example 2-7 : Marking Polygon Boundary Edges

gl Pol ygonMode(GL_FRONT_AND BACK, G._LINE);
gl Begi n(GL_PCLYGON) ;

gl EdgeFl ag(G._TRUE) ;

gl Vertex3fv(V0);

gl EdgeFl ag(G._FALSE) ;

gl Vertex3fv(V1);

gl EdgeFl ag(G._TRUE) ;

gl Vertex3fv(V2);
gl End() ;

Normal Vectors

A normal vector (or normal, for short) is a vector that pointsin adirection that's perpendicular to a surface. For aflat surface, one perpendicular

direction is the same for every point on the surface, but for a general curved surface, the normal direction might be different at each point on the
surface. With OpenGL, you can specify a normal for each polygon or for each vertex. Vertices of the same polygon might share the same normal
(for aflat surface) or have different normals (for a curved surface). But you can't assign normals anywhere other than at the vertices.

An object's normal vectors define the orientation of its surface in space - in particular, its orientation relative to light sources. These vectors are used
by OpenGL to determine how much light the object receives at its vertices. Lighting - alarge topic by itself - is the subject of Chapter 5, and you
might want to review the following information after you've read that chapter. Normal vectors are discussed briefly here because you define normal
vectors for an object at the same time you define the object's geometry.

Y ou use gINormal* () to set the current normal to the value of the argument passed in. Subsequent callsto glVertex* () cause the specified vertices
to be assigned the current normal. Often, each vertex has a different normal, which necessitates a series of alternating calls, asin Example 2-8.

Example 2-8 : Surface Normals at Vertices
gl Begin (G._POLYGON);
gl Nor mal 3f v(n0);
gl Vertex3fv(v0);
gl Nor mal 3fv(nl);
gl Vertex3fv(vl);
gl Nor mal 3f v(n2);
gl Vertex3fv(v2);
gl Nor mal 3f v(n3);
gl Vertex3fv(v3);

gl End();

void gINormal 3{bsidf} (TYPEnx, TYPEny, TYPENZ);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (19 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4313_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4303_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4358_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
void glNormal 3{bsidf}v(const TYPE *v);
Sets the current normal vector as specified by the arguments. The nonvector version (without the v) takes three arguments, which specify an

(nx, ny, nz) vector that's taken to be the normal. Alternatively, you can use the vector version of this function (with the v) and supply a single
array of three elements to specify the desired normal. The b, s, and i versions scale their parameter values linearly to the range [-1.0,1.0].

There's no magic to finding the normals for an object - most likely, you have to perform some calculations that might include taking derivatives -
but there are several techniques and tricks you can use to achieve certain effects. Appendix E explains how to find normal vectors for surfaces. If
you aready know how to do this, if you can count on always being supplied with normal vectors, or if you don't want to use the lighting facility
provided by OpenGL lighting facility, you don't need to read this appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and they point in opposite directions. By convention, the normal
is the one that points to the outside of the surface being modeled. (If you get inside and outside reversed in your model, just change every normal
vector from (X, y, 2) to (- &xgr; , -y, -2)).

Also, keep in mind that since normal vectors indicate direction only, their length is mostly irrelevant. Y ou can specify normals of any length, but
eventually they have to be converted to having alength of 1 before lighting calculations are performed. (A vector that has alength of 1 is said to be
of unit length, or normalized.) In general, you should supply normalized normal vectors. To make a normal vector of unit length, divide each of its
X, ¥, z components by the length of the normal:

Length = &7+ v

Normal vectors remain normalized as long as your model transformations include only rotations and translations. (See Chapter 3 for a discussion of
transformations.) If you perform irregular transformations (such as scaling or multiplying by a shear matrix), or if you specify nonunit-length
normals, then you should have OpenGL automatically normalize your normal vectors after the transformations. To do this, call glEnable() with
GL_NORMALIZE asits argument. By default, automatic normalization is disabled. Note that automatic normalization typically requires additional
calculations that might reduce the performance of your application.

Vertex Arrays

Y ou may have noticed that OpenGL requires many function calls to render geometric primitives. Drawing a 20-sided polygon requires 22 function
cals: one call to gIBegin(), one call for each of the vertices, and afinal call to gilEnd(). In the two previous code examples, additional information
(polygon boundary edge flags or surface normals) added function calls for each vertex. This can quickly double or triple the number of function
calls required for one geometric object. For some systems, function calls have a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between adjacent polygons. For example, the cube in Figure 2-14 has

six faces and eight shared vertices. Unfortunately, using the standard method of describing this object, each vertex would have to be specified three
times. once for every face that usesit. So 24 vertices would be processed, even though eight would be enough.

Figure 2-14 : Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify alot of vertex-related data with just afew arrays and to access that data with equally
few function calls. Using vertex array routines, all 20 verticesin a 20-sided polygon could be put into one array and called with one function. If
each vertex also had a surface normal, all 20 surface normals could be put into another array and aso called with one function.

Arranging datain vertex arrays may increase the performance of your application. Using vertex arrays reduces the number of function calls, which
improves performance. Also, using vertex arrays may allow non-redundant processing of shared vertices. (Vertex sharing is not supported on all
implementations of OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the OpenGL 1.0 specification. With OpenGL 1.0, some vendors
have implemented vertex arrays as an extension.

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex coordinates, RGBA colors, color indices, surface normals,
texture coordinates, or polygon edge flags.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (20 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_37101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4486_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

2. Put datainto the array or arrays. The arrays are accessed by the addresses of (that is, pointers to) their memory locations. In the client-server
model, this datais stored in the client's address space.

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays by dereferencing the pointers. In the client-server model, the
dataistransferred to the server's address space. There are three waysto do this:

1. Accessing individual array elements (randomly hopping around)
2. Creating alist of individual array elements (methodically hopping around)

3. Processing sequential array elements
The dereferencing method you choose may depend upon the type of problem you encounter.

Interleaved vertex array data is another common method of organization. Instead of having up to six different arrays, each maintaining a different
type of data (color, surface normal, coordinate, and so on), you might have the different types of data mixed into asingle array. (See "Interleaved

Arrays' for two methods of solving this.)

Step 1: Enabling Arrays

Thefirst stepisto call glEnableClientState() with an enumerated parameter, which activates the chosen array. In theory, you may need to call this
up to six times to activate the six available arrays. In practice, you'll probably activate only between one to four arrays. For example, it is unlikely
that you would activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, since your program's display mode supports either RGBA mode or
color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenum array)

Soecifies the array to enable. Symbolic constants GL_VERTEX_ARRAY, GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, and GL_EDGE_FLAG_ARRAY are acceptable parameters.

If you use lighting, you may want to define a surface normal for every vertex. (See "Normal Vectors.") To use vertex arrays for that case, you
activate both the surface normal and vertex coordinate arrays:

gl Enabl ed i ent St at e(GL_NORVAL_ARRAY) ;
gl Enabl ed i ent St at e(GL_VERTEX_ARRAY) ;

Suppose that you want to turn off lighting at some point and just draw the geometry using asingle color. Y ou want to call glDisable&() to turn of f
lighting states (see Chapter 5). Now that lighting has been deactivated, you also want to stop changing the values of the surface normal state, which
iswasted effort. To do that, you call
gl D sabl el i ent St at e(G._NORMAL_ ARRAY) ;
void glDisableClientState(GLenum array);

Soecifies the array to disable. Accepts the same symbolic constants as glEnableClientState().

Y ou might be asking yourself why the architects of OpenGL created these new (and long!) command names, gl* ClientState(). Why can't you just
call glEnable() and glDisable()? One reason is that glEnable() and glDisable() can be stored in a display list, but the specification of vertex arrays
cannot, because the data remains on the client's side.

Step 2: Specifying Data for the Arrays

There is astraightforward way by which a single command specifies asingle array in the client space. There are six different routines to specify

arrays - one routine for each kind of array. Thereis also acommand that can specify several client-space arrays at once, al originating from asingle

interleaved array.

void glVertexPointer (GLint size, GLenumtype, GLsizei stride,

const GLvoid * pointer);
Soecifies where spatial coordinate data can be accessed. pointer isthe memory address of the first coordinate of the first vertex in the array.
type specifies the data type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each coordinate in the array. size is the number of
coordinates per vertex, which must be 2, 3, or 4. stride is the byte offset between consecutive vertexes. If strideis 0, the vertices are
understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer (GLint size, GLenum type, GLsizel stride,

const GLvoid * pointer);

void gll ndexPointer (GLenum type, GLsizei stride, const GLvoid * pointer);
void gINormal Pointer (GLenum type, GLsizei stride,

const GLvoid * pointer);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (21 of 34) [4/28/2000 9:44:39 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5229_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5229_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4319_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

void gl TexCoordPointer (GLint size, GLenum type, GLsizel stride,
const GLvoid * pointer);
void glEdgeFlagPointer (GLsizei stride, const GLvoid * pointer);

The main differences among the routines are whether size and type are unique or must be specified. For example, a surface normal aways has three
components, so it is redundant to specify its size. An edge flag is always a single Boolean, so neither size nor type needs to be mentioned. Table 2-4

displayslegal valuesfor size and data types.
Table 2-4: Vertex Array Sizes (Vaues per Vertex) and Data Types(continued)

Command Sizes Valuesfor type Argument
glVertexPointer 2,3,4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE
glNormal Pointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE
glColorPointer 3,4 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,

GL_UNSIGNED_INT, GL_FLOAT, GL_DOUBLE

glIndexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glTexCoordPointer | 1,2,3,4 | GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be GLboolean)

Example 2-9 uses vertex arrays for both RGBA colors and vertex coordinates. RGB floating-point values and their corresponding (X, y) integer
coordinates are loaded into the GL_COLOR_ARRAY and GL_VERTEX_ARRAY.

Example 2-9 : Enabling and Loading Vertex Arrays. varray.c
static GLint vertices[] = {25, 25,

100, 325,
175, 25,
175, 325,
250, 25,
325, 325};

static G.float colors[] = {1.0, 0.2, 0.2,
0.2, 0.2, 1.0,
0.8, 1.0, 0.2,
0.75, 0.75, 0.75,
0.35, 0.35, 0.35,
0.5, 0.5, 0.5};

gl Enabl eC ientState (G _COLOR _ARRAY);
gl Enabl ed i ent St at e (G._VERTEX_ARRAY) ;

gl Col or Poi nter (3, G._FLOAT, 0, colors);
gl VertexPointer (2, GL_INT, 0, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex coordinate, and so on) must be tightly packed. The datain the array
must be homogeneous; that is, the data must be all RGB color values, all vertex coordinates, or all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved arrays. In the following array of GLfloats, there are six
vertices. For each vertex, there are three RGB color values, which alternate with the (x, y, z) vertex coordinates.

static GLfloat intertwi ned[] =

{1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
0.2, 1.0, 0.2, 200.0, 300.0, 0.0

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (22 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4813_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4826_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
0.2, 0.2, 1.0, 200.0, 100.0, O0.0};

Stride allows a vertex array to access its desired data at regular intervalsin the array. For example, to reference only the color valuesin the
intertwined array, the following call starts from the beginning of the array (which could also be passed as & intertwined[0]) and jumps ahead 6 *
sizeof (GLfloat) bytes, which is the size of both the color and vertex coordinate values. This jump is enough to get to the beginning of the data for
the next vertex.

gl Col or Poi nter (3, G._FLOAT, 6 * sizeof (Gfloat), intertw ned);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth element of intertwined (remember that C programmers
start counting at zero).

gl VertexPoi nter (3, G._FLOAT, 6*si zeof (GLfloat), & ntertw ned[3]);

Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client side, and their contents are easily changed. In Step 3,
contents of the arrays are obtained, sent down to the server, and then sent down the graphics processing pipeline for rendering.

There are three ways to obtain data: from a single array element (indexed location), from a sequence of array elements, and from an ordered list of
array elements.

Dereference a Single Array Element

void glArrayElement(GLint ith)

Obtains the data of one (theith) vertex for all currently enabled arrays. For the vertex coordinate array, the corresponding command would
be glVertex[size] [type] v(), where size is one of [2,3,4], and type is one of [s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively.
Both size and type were defined by glVertexPointer(). For other enabled arrays, glArrayElement() calls glEdgeFlagv(),

gl TexCoord[size][type] v(), gl Color[size][type] W), gll ndex[type] v(), and giNormal[type] v(). If the vertex coordinate array is enabled, the
glVertex*v() routine is executed last, after the execution (if enabled) of up to five corresponding array values.

glArrayElement() isusualy called between glBegin() and glEnd(). (If called outside, glArrayElement() sets the current state for all enabled
arrays, except for vertex, which has no current state.) In Example 2-10, atriangle is drawn using the third, fourth, and sixth vertices from enabled

vertex arrays (again, remember that C programmers begin counting array |ocations with zero).

Example 2-10 : Using glArrayElement() to Define Colors and Vertices

gl Enabl eCientState (G _COLOR _ARRAY);

gl Enabl e i ent St ate (G._VERTEX_ ARRAY);

gl Col or Poi nter (3, GL_FLOAT, 0, colors);
gl VertexPointer (2, GL_INT, 0, vertices);

gl Begi n(GL_TRI ANGLES) ;
gl ArrayEl ement (2);

gl ArrayEl ement (3);

gl ArrayEl ement (5);

gl End();

When executed, the | atter five lines of code has the same effect as
gl Begi n(GL_TRI ANGLES) ;

gl Col or 3f v(col ors+(2*3*si zeof (G.fl oat));

gl Vertex3fv(vertices+(2*2*si zeof (GLint));

gl Col or 3f v(col ors+(3*3*si zeof (G.fl oat))
gl Vertex3fv(vertices+(3*2*si zeof (Gint)
gl Col or 3f v(col ors+(5*3*si zeof (G.fl oat))
gl Vertex3fv(vertices+(5*2*si zeof (GLi nt)
gl End() ;

)
5.

Since glArrayElement() is only asingle function call per vertex, it may reduce the number of function calls, which increases overall performance.

Be warned that if the contents of the array are changed between glBegin() and glEnd(), there is no guarantee that you will receive original data or
changed data for your requested element. To be safe, don't change the contents of any array element which might be accessed until the primitiveis
completed.

Dereference a List of Array Elements

glArrayElement() is good for randomly "hopping around” your data arrays. A similar routine, glDrawElements(), is good for hopping around your
data arrays in a more orderly manner.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (23 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4979_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
void glDrawElements(GLenum mode, GLsizel count, GLenum type,
void *indices);
Defines a sequence of geometric primitives using count number of elements, whose indices are stored in the array indices. type must be one of
GL_UNSGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNS GNED_INT, indicating the data type of the indices array. mode specifies

what kind of primitives are constructed and is one of the same values that is accepted by glBegin(); for example, GL_POLYGON,
GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect of glDrawElements() is amost the same as this command sequence:

int i;

gl Begi n (node);

for (i =0; i < count; i++)
gl ArrayEl erent (i ndi ces[i]);

gl End() ;

glDrawElements() additionally checks to make sure mode, count, and type are valid. Also, unlike the preceding sequence, executing
glDrawElements() leaves several states indeterminate. After execution of glDrawElements(), current RGB color, color index, normal coordinates,
texture coordinates, and edge flag are indeterminate if the corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in an array of indices. Example 2-11 shows two waysto use
glDrawElements() to render the cube. Figure 2-15 shows the numbering of the vertices used in Example 2-11.

3 2

Back

Front

4 5

Figure 2-15 : Cube with Numbered Vertices

Example 2-11 : Two Waysto Use glDrawElements()

static GLubyte frontindices = {4, 5, 6, 7};
static GLubyte rightindices = {1, 2, 6, 5};
static GLubyte bottom ndices = {0, 1, 5, 4};
static GLubyte backl ndi ces {0, 3, 2, 1};
static GLubyte | eftlndices {0, 4, 7, 3};
static GLubyte toplndices = {2, 3, 7, 6};

gl Dr awEl enent s(GL_QUADS,
gl Dr awkl enent s(GL_QUADS,
gl Dr awEl enent s(GL_QUADS,
gl Dr awEl enent s(GL_QUADS,
gl Dr awEl enent s(GL_QUADS,
gl Dr awEl enent s(GL_QUADS,

GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,

frontlndices);
ri ghtlndices);
bott ol ndi ces) ;
backl ndi ces) ;
| ef t I ndices);
t opl ndi ces) ;

Or better still, crunch all the indices together:

static GLubyte alllndices = {4, 5, 6, 7,
Ol 1! 51 4! 0! 31 2l 1!

O! 41 71 3! 21 31 7! 6};

1, 2, 6, 5,

gl Dr awEl enent s(GL_QUADS, 24, GL_UNSI GNED BYTE, all I ndices);
Note: Itisan error to encapsulate glDrawElements() between a gIBegin()/glEnd() pair.

With both glArrayElement() and glDrawElements(), it is aso possible that your OpenGL implementation caches recently processed vertices,
allowing your application to "share" or "reuse" vertices. Take the aforementioned cube, for example, which has six faces (polygons) but only eight
vertices. Each vertex is used by exactly three faces. Without glArrayElement() or glDrawElements(), rendering all six faces would require
processing twenty-four vertices, even though sixteen vertices would be redundant. Y our implementation of OpenGL may be able to minimize
redundancy and process as few as eight vertices. (Reuse of vertices may be limited to all vertices within asingle glDrawElements() call or, for
glArrayElement(), within one glBegin()/glEnd() pair.)

Dereference a Sequence of Array Elements

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (24 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5106_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5096_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5106_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
While glArrayElement() and glDrawElements() "hop around" your data arrays, glDrawArrays() plows straight through them.
void glDrawArrays(GLenum mode, GLint first, GLsizel count);

Constructs a sequence of geometric primitives using array elements starting at first and ending at first+ count-1 of each enabled array. mode
specifies what kinds of primitives are constructed and is one of the same values accepted by glBegin(); for example, GL_POLYGON,
GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect of glDrawArrays() isamost the same as this command sequence:

int i;

gl Begi n (node);

for (i =0; i < count; i++)
gl ArrayEl ement (first + i);

gl End() ;

Asisthe case with gIDrawElements(), giDrawArrays() also performs error checking on its parameter values and leaves the current RGB color,
color index, normal coordinates, texture coordinates, and edge flag with indeterminate values if the corresponding array has been enabled.

Try This
« Change the icosahedron drawing routine in Example 2-13 to use vertex arrays.

Interleaved Arrays

Advanced

Earlier in this chapter (in "Stride"), the special case of interleaved arrays was examined. In that section, the array intertwined, which interleaves
RGB color and 3D vertex coordinates, was accessed by callsto glColor Pointer () and glVertexPointer (). Careful use of stride helped properly
specify the arrays.

static GLfloat intertwined[] =

{1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
0.2, 0.2, 1.0, 200.0, 100.0, O0.0};

There is aso abehemoth routine, glinterleavedArrays(), that can specify several vertex arrays at once. gl nterleavedArrays() aso enables and
disables the appropriate arrays (so it combines both Steps 1 and 2). The array intertwined exactly fits one of the fourteen data interleaving
configurations supported by glinterleavedArrays(). So to specify the contents of the array intertwined into the RGB color and vertex arrays and
enable both arrays, call

gl I nterl eavedArrays (G._C3F V3F, 0, intertw ned);

Thiscall to glinterleavedArrays() enablesthe GL_COLOR_ARRAY and GL_VERTEX_ARRAY arrays. It disablesthe GL_INDEX_ARRAY,
GL_TEXTURE_COORD_ARRAY, GL_NORMAL_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calling glColor Pointer () and glVertexPointer () to specify the values for six vertices into each array. Now you
areready for Step 3: Calling glArrayElement(), glDrawElements(), or giDrawArrays() to dereference array elements.
void gll nterleavedArrays(GLenum format, GLsizei stride, void * pointer)
Initializes all six arrays, disabling arrays that are not specified in format, and enabling the arrays that are specified. format is one of 14
symbolic constants, which represent 14 data configurations; Table 2-5 displays format values. stride specifies the byte offset between

consecutive vertexes. If stride is 0, the vertexes are understood to be tightly packed in the array. pointer isthe memory address of the first
coordinate of the first vertex in the array.

Note that gll nterleavedArrays() does not support edge flags.

The mechanics of gllnterleavedArrays() are intricate and require reference to Example 2-12 and Table 2-5. In that example and table, you'll see e,
ec, and en, which are the boolean values for the enabled or disabled texture coordinate, color, and normal arrays, and you'll see &, sc, and sv, which

are the sizes (number of components) for the texture coordinate, color, and vertex arrays. tc is the data type for RGBA color, which isthe only array
that can have non-float interleaved values. pc, pn, and pv are the calculated strides for jumping over individual color, normal, and vertex values, and
sisthe stride (if oneis not specified by the user) to jump from one array element to the next.

The effect of glinterleavedArrays() is the same as calling the command sequence in Example 2-12 with many values defined in Table 2-5. All
pointer arithmetic is performed in units of sizeof(GL_UNSIGNED BYTE).

Example 2-12 : Effect of glinterleavedArrays(format, stride, pointer)

int str;
/* set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (25 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6461_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_4833_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6018_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5397_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6018_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_5397_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6018_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
* as a function of Table 2-5 and the val ue of format

*/

str = stride;

if (str == 0)
str = s;

gl Di sabl ed i ent St at e(G._EDGE_FLAG_ARRAY) ;

gl Di sabl ed i ent St at e(G._| NDEX_ARRAY) ;

if (et) {
gl Enabl ed i ent St at e(GL_TEXTURE_COORD_ARRAY) ;
gl TexCoordPoi nter(st, G._FLQAT, str, pointer);

}
el se
gl Di sabl ed i ent St at e(G._TEXTURE_COORD_ARRAY) ;
if (ec) {
gl Enabl ed i ent St at e(G._COLOR_ARRAY) ;
gl Col or Poi nter(sc, tc, str, pointer+pc);
}
el se
gl Di sabl ed i ent St at e(G._COLOR_ARRAY) ;
if (en) {
gl Enabl ed i ent St at e(GL_NORMAL_ARRAY) ;
gl Nor mal Poi nter (G._FLOAT, str, pointer+pn);
}
el se

gl Di sabl ed i ent St at e(G._NORVAL_ARRAY) ;
gl Enabl ed i ent St at e(GL_VERTEX_ARRAY) ;
gl VertexPoi nter(sv, G._FLQOAT, str, pointer+pv);

InTable 2-5, T and F are True and False. f is sizeof(GL_FLOAT). cis4 times sizeof(GL_UNSIGNED_BY TE), rounded up to the nearest multiple
of f.

Table 2-5: (continued) Variables that Direct glInterleavedArrays()

format et [ec |en | st | sc | sv tc pc | pn pv s
GL_V2F FIlF |F 2 0 2f
GL_V3F FIF [|F 3 0 3f
GL_CAUB_V2F F|T|F 4 | 2 | GL_UNSIGNED BYTE | 0 c c+2f
GL_CAUB_V3F F|T |F 4 | 3 | GL_UNSIGNED BYTE | 0 c c+3f
GL_C3F V3F F|T|F 3 | 3 | GL_FLOAT 0 3f 6f
GL_N3F V3F FIlF | T 3 0 | 3f 6f
GL_CAF N3F V3F F T |T 4 | 3 | GL_FLOAT 0 | 4 | 7 10f
GL_T2F V3F T|F |F |2 3 2f 5f
GL_T4F V4F T|F |F |4 4 4f 8f

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (26 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6018_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6018_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_T2F CAUB_V3F T|T|F | 2 | 4 | 3 | GL_UNSIGNED BYTE | 2f | | c+2f | C+5f
GL_T2F C3F V3F T|T|F |2 |3 |3 | GLFLOAT of 5f 8f
GL_T2F N3F V3F T|F |T |2 3 2f | sf 8f
GLT2FCAFN3FV3F | T [T | T |2 |4 |3 | GLFLOAT 2f | 6f | of 12f
GLTAFCAFN3FVAF | T [T | T |4 |4 |4 | GLLFLOAT 4 | o | 12f | 15f

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use any of the formats with C4UB, you may have to use a
struct data type or do some delicate type casting and pointer math to pack four unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase application performance. With an interleaved array, the exact layout of
your datais known. Y ou know your dataistightly packed and may be accessed in one chunk. If interleaved arrays are not used, the stride and size
information has to be examined to detect whether datais tightly packed.

Note: glinterleavedArrays() only enables and disables vertex arrays and specifies values for the vertex-array data. It does not render anything. You
must still complete Step 3 and call glArrayElement(), glDrawElements(), or glDrawArrays() to dereference the pointers and render graphics.

Attribute Groups

In "Basic State Management,” you saw how to set or query an individual state or state variable. Well, you can aso save and restore the values of a
collection of related state variables with a single command.

OpenGL groups related state variables into an attribute group. For example, the GL_LINE_BIT attribute consists of five state variables: the line
width, the GL_LINE_STIPPLE enable status, the line stipple pattern, the line stipple repeat counter, and the GL_LINE_SMOOTH enable status.
(See"Antialiasing” in Chapter 6.) With the commands glPushAttrib() and glPopAttrib(), you can save and restore al five state variables, all at

once.

Some state variables are in more than one attribute group. For example, the state variable, GL_CULL_FACE, is part of both the polygon and the
enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the original attribute stack (which saves the values of server state
variables), thereis also a client attribute stack, accessible by the commands glPushClientAttrib() and glPopClientAttrib().

In general, it's faster to use these commands than to get, save, and restore the values yourself. Some values might be maintained in the hardware,
and getting them might be expensive. Also, if you're operating on aremote client, all the attribute data has to be transferred across the network
connection and back asit is obtained, saved, and restored. However, your OpenGL implementation keeps the attribute stack on the server, avoiding
unnecessary network delays.

There are about twenty different attribute groups, which can be saved and restored by glPushAttrib() and glPopAttrib(). There are two client
attribute groups, which can be saved and restored by glPushClientAttrib() and glPopClientAttrib(). For both server and client, the attributes are
stored on a stack, which has a depth of at |east 16 saved attribute groups. (The actual stack depths for your implementation can be obtained using
GL_MAX_ATTRIB_STACK_DEPTH and GL_MAX_CLIENT_ATTRIB_STACK_DEPTH with glGetlIntegerv().) Pushing afull stack or
popping an empty one generates an error.

(Seethetablesin Appendix B to find out exactly which attributes are saved for particular mask values; that is, which attributes are in a particular
attribute group.)
void glPushAttrib(GLbitfield mask);
void gl PopAttrib(void);
glPushAttrib() saves all the attributes indicated by bits in mask by pushing them onto the attribute stack. glPopAttrib() restores the values of
those state variables that were saved with the last glPushAttrib(). Table 2-7 lists the possible mask bits that can be logically ORed together to

save any combination of attributes. Each bit corresponds to a collection of individual state variables. For example, GL_LIGHTING_BIT
refersto all the state variables related to lighting, which include the current material color, the ambient, diffuse, specular, and emitted light,
alist of the lights that are enabled, and the directions of the spotlights. When glPopAttrib() is called, all those variables are restored.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (27 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_3547_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_29706_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6381_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state variablesin al the attribute groups.

Table 2-6 : (continued) Attribute Groups

Mask Bit Attribute Group
GL_ACCUM_BUFFER BIT accum-buffer
GL_ALL_ATTRIB_BITS =
GL_COLOR BUFFER_BIT color-buffer
GL_CURRENT BIT current
GL_DEPTH_BUFFER BIT depth-buffer
GL_ENABLE BIT enable
GL_EVAL_BIT eva
GL_FOG _BIT fog
GL_HINT BIT hint
GL_LIGHTING BIT lighting
GL_LINE BIT line
GL_LIST BIT list
GL_PIXEL_MODE BIT pixel
GL_POINT BIT point
GL_POLYGON_BIT polygon
GL_POLYGON_STIPPLE BIT | polygon-stipple
GL_SCISSOR BIT scissor
GL_STENCIL_BUFFER BIT stencil-buffer
GL_TEXTURE_ BIT texture
GL_TRANSFORM _BIT transform
GL_VIEWPORT BIT viewport

void glPushClientAttrib(GLbitfield mask);

void glPopClientAttrib(void);
glPushClientAttrib() saves all the attributes indicated by bits in mask by pushing them onto the client attribute stack. glPopClientAttrib()
restores the values of those state variables that were saved with the last glPushClientAttrib(). Table 2-7 lists the possible mask bits that can

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (28 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6381_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

be logically ORed together to save any combination of client attributes.
There are two client attribute groups, feedback and select, that cannot be saved or restored with the stack mechanism.

Table 2-7 : Client Attribute Groups

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE BIT pixel-store

GL_CLIENT_VERTEX_ARRAY BIT | vertex-array

GL_ALL_CLIENT ATTRIB_BITS -

can't be pushed or popped feedback

can't be pushed or popped select

Some Hints for Building Polygonal Models of Surfaces

Following are some techniques that you might want to use as you build polygonal approximations of surfaces. Y ou might want to review this
section after you've read Chapter 5 on lighting and Chapter 7 on display lists. The lighting conditions affect how models look once they're drawn,
and some of the following techniques are much more efficient when used in conjunction with display lists. As you read these techniques, keep in
mind that when lighting cal culations are enabled, normal vectors must be specified to get proper results.

Constructing polygonal approximations to surfacesis an art, and there is no substitute for experience. This section, however, lists afew pointers that
might make it a bit easier to get started.

« Keep polygon orientations consistent. Make sure that when viewed from the outside, al the polygons on the surface are oriented in the same
direction (all clockwise or al counterclockwise). Consistent orientation isimportant for polygon culling and two-sided lighting. Try to get
thisright the first time, sinceit's excruciatingly painful to fix the problem later. (If you use glScale* () to reflect geometry around some axis of
symmetry, you might change the orientation with glFrontFace() to keep the orientations consistent.)

« When you subdivide a surface, watch out for any nontriangular polygons. The three vertices of atriangle are guaranteed to lie on a plane; any
polygon with four or more vertices might not. Nonplanar polygons can be viewed from some orientation such that the edges cross each other,
and OpenGL might not render such polygons correctly.

« There's always atrade-off between the display speed and the quality of the image. If you subdivide a surface into a small number of polygons,
it renders quickly but might have ajagged appearance; if you subdivide it into millions of tiny polygons, it probably looks good but might
take along time to render. Ideally, you can provide a parameter to the subdivision routines that indicates how fine a subdivision you want,
and if the object is farther from the eye, you can use a coarser subdivision. Also, when you subdivide, use large polygons where the surfaceis
relatively flat, and small polygonsin regions of high curvature.

« For high-quality images, it's a good idea to subdivide more on the silhouette edges than in the interior. If the surface isto be rotated relative to
the eye, thisis tougher to do, since the silhouette edges keep moving. Silhouette edges occur where the normal vectors are perpendicular to
the vector from the surface to the viewpoint - that is, when their vector dot product is zero. Y our subdivision algorithm might choose to
subdivide more if this dot product is near zero.

o Trytoavoid T-intersectionsin your models (see Figure 2-16). As shown, there's no guarantee that the line segments AB and BC lie on
exactly the same pixels as the segment AC. Sometimes they do, and sometimes they don't, depending on the transformations and orientation.
This can cause cracks to appear intermittently in the surface.

A AN
N

Undesirabla OK

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (29 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6432_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Figure 2-16 : Modifying an Undesirable T-intersection

« If you're constructing a closed surface, make sure to use exactly the same numbers for coordinates at the beginning and end of a closed loop,
or you can get gaps and cracks due to numerical round-off. Here's atwo-dimensional example of bad code:

/* don't use this code */
#define Pl 3.14159265
#defi ne EDGES 30

/* draw a circle */
gl Begi n(G._LI NE_STRI P) ;
for (i = 0; i <= EDCES; i++)
gl Vertex2f (cos((2*Pl *i)/EDGES), sin((2*Pl*i)/EDGES));
gl End() ;

The edges meet exactly only if your machine manages to calculate the sine and cosine of 0 and of (2* PI* EDGES/EDGES) and gets exactly
the same values. If you trust the floating-point unit on your machine to do this right, the authors have a bridge they'd like to sell you.... To
correct the code, make sure that when i == EDGES, you use O for the sine and cosine, not 2* PI* EDGES/EDGES. (Or simpler still, use
GL_LINE_LOOP instead of GL_LINE_STRIP, and change the loop termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let's look at some example code sequences. This code concerns the
vertices of aregular icosahedron (which isaPlatonic solid composed of twenty faces that span twelve vertices, each face of which is an equilateral
triangle). Anicosahedron can be considered a rough approximation for a sphere. Example 2-13 defines the vertices and triangles making up an
icosahedron and then draws the icosahedron.

Example 2-13 : Drawing an |cosahedron

#define X .525731112119133606
#define Z .850650808352039932

static G.float vdata[12][3] = {
{-X, 0.0, Z}, {X 0.0, Z}, {-X 0.0, -2}, {X 0.0, -2},
{0.0, Z, X}, {0.0, Z -X}, {0O0.0, -Z, X}, {0.0, -2, -X},
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X 0.0}, {-Z, -X 0.0}

}s
static Guint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8, 10, 1}, {8, 3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0, 1, 6},
{6,1, 10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
int i;

gl Begi n(GL_TRI ANGLES) ;

for (i =0; i <20; i++) {
/* color information here */
gl Vertex3fv(&vdata[tindices[i][0]][O0]);
gl Vertex3fv(&vdata[tindices[i][1]][0]);
gl Vertex3fv(&vdata[tindices[i][2]]][0]);

}
gl End() ;

The strange numbers X and Z are chosen so that the distance from the origin to any of the vertices of theicosahedron is 1.0. The coordinates of the
twelve vertices are given in the array vdata[][], where the zeroth vertex is{- & Xgr; , 0.0, &Zgr; }, thefirst is{ X, 0.0, Z}, and so on. The array
tindiced[][] tells how to link the vertices to make triangles. For example, the first triangle is made from the zeroth, fourth, and first vertex. If you
take the vertices for triangles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a command that sets the color of the ith face. If no code appears here, al faces are
drawn in the same color, and it'll be impossible to discern the three-dimensional quality of the object. An aternative to explicitly specifying colors
isto define surface normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface isto be drawn only once, you should probably save the calculated vertex and
normal coordinates so that the calculations don't need to be repeated each time that the surface is drawn. This can be done using your own data

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (30 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6461_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
structures or by constructing display lists. (See Chapter 7.)

Calculating Normal Vectors for a Surface

If asurfaceisto belit, you need to supply the vector normal to the surface. Calculating the normalized cross product of two vectors on that surface
provides normal vector. With the flat surfaces of an icosahedron, all three vertices defining a surface have the same normal vector. In this case, the
normal needs to be specified only once for each set of three vertices. The code in Example 2-14 can replace the "color information here" linein

Example 2-13 for drawing the icosahedron.

Example 2-14 : Generating Normal Vectors for a Surface
G.float d1[3], d2[3], norni3];

for (j =0; j <3; j++) {
di[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]]1[]]:
d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]]1[]];
}

nor ncrossprod(dl, d2, norm;
gl Nor mal 3f v(norm;

The function normcr ossprod() produces the normalized cross product of two vectors, as shown in Example 2-15.

Example 2-15 : Calculating the Normalized Cross Product of Two Vectors
void normalize(float v[3]) {
Gfloat d = sqrt(v[O]*v[O]+v[1]*v[1]+v[2]*Vv[2]);
if (d==0.0) {
error("zero length vector");
return;

}
v[0] /=4d; v[1] /=d; v[2] /= d;

}
voi d norncrossprod(float vi[3], float v2[3], float out[3])
{
Gint i, j;
GLfl oat |ength;
out[0] = v1[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] - v1[O0]*v2[2];
out[2] = v1[0]*v2[1] - v1[1]*v2[O0];
nornal i ze(out) ;
}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use normal vectors that are perpendicular to the true surface
of the sphere, rather than being perpendicular to the faces. For a sphere, the normal vectors are simple; each pointsin the same direction as the
vector from the origin to the corresponding vertex. Since the icosahedron vertex datais for an icosahedron of radius 1, the normal and vertex datais
identical. Here is the code that would draw an icosahedral approximation of a smoothly shaded sphere (assuming that lighting is enabled, as
described in Chapter 5):

gl Begi n(GL_TRI ANGLES)

for (i =0; i <20; i++) {
gl Normal 3f v(&data[tindices[i][0]][0]);
gl Vertex3fv(&data[tindices[i][0]][0]);
gl Normal 3fv(&vdata[tindices[i][1]]1[0]);
gl Vertex3fv(&vdata[tindices[i][1]]1][0]);
gl Normal 3f v(&vdata[tindices[i][2]]][0]);
gl Vertex3fv(&vdata[tindices[i][2]]][0]);

}
gl End() ;
Improving the Model

A twenty-sided approximation to a sphere doesn't look good unless the image of the sphere on the screen is quite small, but there's an easy way to
increase the accuracy of the approximation. Imagine the icosahedron inscribed in a sphere, and subdivide the triangles as shown in Figure 2-17. The
newly introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing them (dividing them by afactor to make them
have length 1). This subdivision process can be repeated for arbitrary accuracy. The three objects shown in Figure 2-17 use 20, 80, and 320
approximating triangles, respectively.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (31 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6515_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6461_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6531_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6556_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6556_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 2-17 : Subdividing to Improve a Polygonal Approximation to a Surface

Example 2-16 performs a single subdivision, creating an 80-sided spherical approximation.

Example 2-16 : Single Subdivision
void drawtriangl e(float *vi1, float *v2, float *v3)

gl Begi n(GL_TRI ANGLES) ;
gl Normal 3fv(vl); vl Vertex3fv(vl);
gl Nor mal 3fv(v2); vl Vertex3fv(v2);
gl Normal 3f v(v3); vl Vertex3fv(v3);

gl End();
}
voi d subdivide(float *vl1, float *v2, float *v3)
{
G.float v12[3], v23[3], v31[3];
aint i;
for (i =0; i <3; i++) {
v12[i] = v1[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+vi[i];
}
normal i ze(v12);
normal i ze(v23);
nornmal i ze(v31);
drawtri angl e(vl, v12, v31);
drawtri angl e(v2, v23, v12);
drawt ri angl e(v3, v31l, v23);
drawt ri angl e(v12, v23, v3l);
}

for (i =0; i <20; i++) {
subdi vi de(&vdata[tindices[i][0]][0O],
&data[tindices[i][1]][0],
&data[tindices[i][2]]1[0]);
}
Example 2-17 is a slight modification of Example 2-16 which recursively subdivides the triangles to the proper depth. If the depth valueis 0, no

subdivisions are performed, and the triangle isdrawn asis. If the depth is 1, asingle subdivision is performed, and so on.

Example 2-17 : Recursive Subdivision
voi d subdivide(float *v1, float *v2, float *v3, |ong depth)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (32 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6570_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6586_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6570_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

{
GLfloat v12[3], v23[3], v31[3];
Gint i;
if (depth == 0) {
drawtri angl e(vl, v2, v3);
return;
}
for (i =0; i <3; i++) {
v12[i] = v1[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+vi[i];
normal i ze(v12);
normal i ze(v23);
nornmal i ze(v31);
subdi vi de(v1, v12, v31, depth-1);
subdi vi de(v2, v23, v12, depth-1);
subdi vi de(v3, v31, v23, depth-1);
subdi vi de(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-17 can be used for other types of surfaces. Typically, the recursion ends
either if acertain depth is reached or if some condition on the curvatureis satisfied (highly curved parts of surfaces look better with more
subdivision).

To look at amore general solution to the problem of subdivision, consider an arbitrary surface parameterized by two variables u[0] and u[1].
Suppose that two routines are provided:

void surf(G.float u[2], G.float vertex[3], G.float normal[3]);
float curv(G.float u[2]);

If surf() is passed u[], the corresponding three-dimensional vertex and normal vectors (of length 1) are returned. If u[] is passed to curv(), the
curvature of the surface at that point is calculated and returned. (See an introductory textbook on differential geometry for more information about
measuring surface curvature.)

Example 2-18 shows the recursive routine that subdivides a triangle either until the maximum depth is reached or until the maximum curvature at
the three vertices is | ess than some cutoff.

Example 2-18 : Generalized Subdivision

voi d subdivide(float ul[2], float u2[2], float u3[2],
float cutoff, |ong depth)
{

GLfloat v1[3], v2[3], v3[3], nl[3], n2[3], n3[3];
GLfloat ul2[2], u23[2], u32[2];
AQint i;

if (depth == maxdepth || (curv(ul) < cutoff &&
curv(u2) < cutoff && curv(u3) < cutoff)) {
surf(ul, v1, nl); surf(u2, v2, n2); surf(u3, v3, n3);
gl Begi n(GL_POLYGON) ;
gl Normal 3fv(nl); gl Vertex3fv(vl);
gl Normal 3fv(n2); gl Vertex3fv(v2);
gl Nor mal 3fv(n3); gl Vertex3fv(v3);
gl End();
return;

}
for (i =0; i <2; i++) {

ul2[i] = (ul[i] + u2[i])/2.0;
u23[i] = (u2[i] + u3[i])/2.0;
uslf[i] = (u3[i] + ul[i])/2.0;

}
subdi vi de(ul, ul2, u3l, cutoff, depth+l);
subdi vi de(u2, u23, ul2, cutoff, depth+l);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (33 of 34) [4/28/2000 9:44:40 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6586_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=1963?target=%25N%14_6631_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
subdi vi de(u3, u3l, u23, cutoff, depth+l);
subdi vi de(ul2, u23, u3l, cutoff, depth+l);

}

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...G/@Generic__BookTextView/1963;cs=fullhtml;pt=622 (34 of 34) [4/28/2000 9:44:40 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 3
Viewing
Chapter Objectives

After reading this chapter, you'll be able to do the following:
« View ageometric model in any orientation by transforming it in three-dimensional space

« Control the location in three-dimensional space from which the model is viewed
« Clip undesired portions of the model out of the scene that's to be viewed

« Manipulate the appropriate matrix stacks that control model transformation for viewing and
project the model onto the screen

o Combine multiple transformations to mimic sophisticated systems in motion, such as a solar
system or an articulated robot arm

» Reverse or mimic the operations of the geometric processing pipeline

Chapter 2 explained how to instruct OpenGL to draw the geometric models you want displayed in your
scene. Now you must decide how you want to position the models in the scene, and you must choose a
vantage point from which to view the scene. Y ou can use the default positioning and vantage point, but
most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained asingle
geometric description of abuilding block. Each block was carefully positioned in the scene: Some blocks
were scattered on the floor, some were stacked on top of each other on the table, and some were
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wanted to
look at the corner of the room containing the globe. But how far away from the scene - and where exactly
- should the viewer be? We wanted to make sure that the final image of the scene contained a good view
out the window, that a portion of the floor was visible, and that all the objects in the scene were not only
visible but presented in an interesting arrangement. This chapter explains how to use OpenGL to
accomplish these tasks. how to position and orient models in three-dimensional space and how to
establish the location - also in three-dimensional space - of the viewpoint. All of these factors help
determine exactly what image appears on the screen.

Y ou want to remember that the point of computer graphicsisto create a two-dimensional image of
three-dimensional objects (it has to be two-dimensional because it's drawn on aflat screen), but you need
to think in three-dimensional coordinates while making many of the decisions that determine what gets

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (1 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_1965_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

drawn on the screen. A common mistake people make when creating three-dimensional graphicsisto
start thinking too soon that the final image appears on aflat, two-dimensional screen. Avoid thinking
about which pixels need to be drawn, and instead try to visualize three-dimensional space. Create your
models in some three-dimensional universe that lies deep inside your computer, and let the computer do
its job of calculating which pixelsto color.

A series of three computer operations convert an object's three-dimensional coordinatesto pixel positions
on the screen.

« Transformations, which are represented by matrix multiplication, include modeling, viewing, and
projection operations. Such operations include rotation, translation, scaling, reflecting,
orthographic projection, and perspective projection. Generally, you use a combination of severa
transformations to draw a scene.

« Sincethe sceneis rendered on arectangular window, objects (or parts of objects) that lie outside
the window must be clipped. In three-dimensional computer graphics, clipping occurs by throwing
out objects on one side of a clipping plane.

« Finadly, a correspondence must be established between the transformed coordinates and screen
pixels. Thisis known as aviewport transformation.

This chapter describes all of these operations, and how to control them, in the following major sections:

« "Overview: The Camera Analogy" gives an overview of the transformation process by describing

the analogy of taking a photograph with a camera, presents a simple example program that
transforms an object, and briefly describes the basic OpenGL transformation commands.

« "Viewing and Modeling Transformations' explainsin detail how to specify and to imagine the

effect of viewing and modeling transformations. These transformations orient the model and the
camera relative to each other to obtain the desired final image.

« "Projection Transformations' describes how to specify the shape and orientation of the viewing
volume. The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped out of the
scene.

« "Viewport Transformation” explains how to control the conversion of three-dimensional model
coordinates to screen coordinates.

« "Troubleshooting Transformations” presents some tips for discovering why you might not be
getting the desired effect from your modeling, viewing, projection, and viewport transformations.

« "Manipulating the Matrix Stacks' discusses how to save and restore certain transformations. This
is particularly useful when you're drawing complicated objects that are built up from simpler ones.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (2 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6752_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7359_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8192_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8567_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8754_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8878_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

« "Additional Clipping Planes' describes how to specify additional clipping planes beyond those
defined by the viewing volume.

« "Examples of Composing Several Transformations' walks you through a couple of more
complicated uses for transformations.

» "Reversing or Mimicking Transformations' shows you how to take a transformed point in window

coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can aso be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a photograph
with a camera. As shown in Figure 3-1, the steps with a camera (or a computer) might be the following.

1. Set up your tripod and pointing the camera at the scene (viewing transformation).
2. Arrange the scene to be photographed into the desired composition (modeling transformation).
3. Choose a cameralens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph to be - for example, you might want it
enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (3 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9045_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9222_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9421_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6784_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

With a Camera With a Computer

viewing

™~

a pozitiening the viewing valume
in the world

el modeling

\%‘a

posiioning the models
In the world

lngl projection

determining shape of viewing valums
photograph viewport

L

Figure 3-1: The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in your

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (4 of 49) [4/28/2000 9:45:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

program, not necessarily the order in which the relevant mathematical operations are performed on an
object's vertices. The viewing transformations must precede the modeling transformations in your code,
but you can specify the projection and viewport transformations at any point before drawing occurs.
Figure 3-2 shows the order in which these operations occur on your computer.

T Modalview *-. Perapectve . Yiewport =,
I‘LI'EFITE?!R | Matrix e Division l\-':' ransfarmation ()
- / ! o ¥

clip normalized device window
coordingtes coordinates coordingtes coordingetes

T H = W
T —

object
coordinates

Figure 3-2: Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a4 x 4 matrix M, which is
then multiplied by the coordinates of each vertex v in the scene to accomplish the transformation

v'=Mv

(Remember that vertices always have four coordinates (X, y, z, w), though in most casesw is 1 and for
two-dimensional dataz is0.) Note that viewing and modeling transformations are automatically applied
to surface normal vectors, in addition to vertices. (Normal vectors are used only in eye coordinates.) This
ensures that the normal vector's relationship to the vertex datais properly preserved.

The viewing and modeling transformations you specify are combined to form the modelview matrix,
which is applied to the incoming object coordinates to yield eye coordinates. Next, if you've specified
additional clipping planes to remove certain objects from the scene or to provide cutaway views of
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yield clip coordinates. This transformation defines a
viewing volume; objects outside this volume are clipped so that they're not drawn in the final scene.
After this point, the perspective division is performed by dividing coordinate values by w, to produce
normalized device coordinates. (See Appendix F for more information about the meaning of the w
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are converted
to window coordinates by applying the viewport transformation. Y ou can manipulate the dimensions of
the viewport to cause the final image to be enlarged, shrunk, or stretched.

Y ou might correctly suppose that the x and y coordinates are sufficient to determine which pixels need to
be drawn on the screen. However, all the transformations are performed on the z coordinates as well.
Thisway, at the end of this transformation process, the z values correctly reflect the depth of a given

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (5 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6798_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_37453_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

vertex (measured in distance away from the screen). One use for this depth value isto eliminate
unnecessary drawing. For example, suppose two vertices have the same x and y values but different z
values. OpenGL can use thisinformation to determine which surfaces are obscured by other surfaces and
can then avoid drawing the hidden surfaces. (See Chapter 10 for more information about this technique,

which is called hidden-surface removal.)

Asyou've probably guessed by now, you need to know afew things about matrix mathematics to get the
most out of this chapter. If you want to brush up on your knowledge in this area, you might consult a
textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that's scaled by a modeling transformation (see Figure 3-3). The viewing

transformation, gluL ook At(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section walks
you through Example 3-1 and briefly explains the transformation commands it uses. The succeeding

sections contain the complete, detailed discussion of all OpenGL's transformation commands.

Figure 3-3: Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#i ncl ude <G./gl. h>
#i ncl ude <G&./ gl u. h>
#i ncl ude <G/ gl ut. h>

void init(void)

{
gl CearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

}

voi d di spl ay(voi d)

{

gl O ear (GL_COLOR BUFFER BIT);

gl Color3f (1.0, 1.0, 1.0);

gl Loadl dentity (); /* clear the matrix */
/* view ng transformation */

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (6 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6922_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gl Scalef (1.0, 2.0, 1.0); /* nmodeling transformation */
gl ut WreCube (1.0);

gl Flush ();

}

voi d reshape (int w, int h)

{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMbde (G._PRQIECTI ON);
gl Loadl dentity ();
gl Frustum(-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
gl Mat ri xMbde (G._MODELVI EW ;

}

i nt main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitDi splayMdde (GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (500, 500);
gl ut I ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut D spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop();
return O;

}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this code
example, before the viewing transformation can be specified, the current matrix is set to the identity
matrix with glL oadl dentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. If you
don't clear the current matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to perform such
combinations, but you also need to clear the matrix sometimes.

In Example 3-1, after the matrix isinitialized, the viewing transformation is specified with gluL ook At().

The arguments for this command indicate where the camera (or eye position) is placed, whereit is aimed,
and which way is up. The arguments used here place the cameraat (0, O, 5), aim the camera lens towards
(0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientation for the camera.

If gluL ook At() was not called, the camera has a default position and orientation. By default, the camera
is situated at the origin, points down the negative z-axis, and has an up-vector of (0, 1, 0). So in Example

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (7 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

3-1, the overall effect isthat gluL ook At() moves the camera 5 units along the z-axis. (See "Viewing and
Modeling Transformations' for more information about viewing transformations.)

The Modeling Transformation

Y ou use the modeling transformation to position and orient the model. For example, you can rotate,
trandlate, or scale the model - or perform some combination of these operations. In Example 3-1,

glScalef() is the modeling transformation that is used. The arguments for this command specify how
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effect. In
Example 3-1, the cube is drawn twice as large in the y direction. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of
this modeling transformation is to transform the cube so that it isn't a cube but a rectangular box.

Try This

Change the gluL ook At() call in Example 3-1 to the modeling transformation gl Transatef() with

parameters (0.0, 0.0, -5.0). The result should look exactly the same as when you used gluL ook At(). Why
are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation). This
duality in the nature of viewing and modeling transformations is why you need to think about the effect
of both types of transformations simultaneoudly. It doesn't make sense to try to separate the effects, but
sometimes it's easier to think about them one way rather than the other. Thisis also why modeling and
viewing transformations are combined into the modelview matrix before the transformations are applied.
(See"Viewing and Modeling Transformations' for more detail on how to think about modeling and

viewing transformations and how to specify them to get the result you want.)

Also note that the modeling and viewing transformations are included in the display() routine, along with
the call that's used to draw the cube, glutWireCube(). Thisway, display() can be used repeatedly to
draw the contents of the window if, for example, the window is moved or uncovered, and you've ensured
that each time, the cube is drawn in the desired way, with the appropriate transformations. The potential
repeated use of display() underscores the need to load the identity matrix before performing the viewing
and modeling transformations, especially when other transformations might be performed between calls

to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. Y ou can think of this
transformation as determining what the field of view or viewing volume is and therefore what objects are
inside it and to some extent how they look. Thisis equivalent to choosing among wide-angle, normal,

and telephoto lenses, for example. With awide-angle lens, you can include a wider scene in the final
photograph than with atelephoto lens, but a telephoto lens allows you to photograph objects as though
they're closer to you than they actually are. In computer graphics, you don't have to pay $10,000 for a
2000-millimeter telephoto lens; once you've bought your graphics workstation, all you need to doisuse a
smaller number for your field of view.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (8 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7359_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7359_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7359_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

In addition to the field-of -view considerations, the projection transformation determines how objects are
projected onto the screen, as its name suggests. Two basic types of projections are provided for you by
OpenGL, along with several corresponding commands for describing the relevant parameters in different
ways. One type is the perspective projection, which matches how you see thingsin daily life. Perspective
makes objects that are farther away appear smaller; for example, it makes railroad tracks appear to
converge in the distance. If you're trying to make realistic pictures, you'll want to choose perspective
projection, which is specified with the glFrustum() command in this code example.

The other type of projection is orthographic, which maps objects directly onto the screen without
affecting their relative size. Orthographic projection is used in architectural and computer-aided design
applications where the final image needs to reflect the measurements of objects rather than how they
might look. Architects create perspective drawings to show how particular buildings or interior spaces
look when viewed from various vantage points; the need for orthographic projection arises when
blueprint plans or elevations are generated, which are used in the construction of buildings. (See
"Projection Transformations' for a discussion of ways to specify both kinds of projection

transformations.)

Before glFrustum() can be called to set the projection transformation, some preparation needs to happen.
As shown in the reshape() routine in Example 3-1, the command called giM atrixM ode() is used first,
with the argument GL_PROJECTION. Thisindicates that the current matrix specifies the projection
transformation; the following transformation calls then affect the projection matrix. Asyou can see, a
few lineslater giMatrixM ode() is called again, this time with GL_MODELVIEW as the argument. This
indicates that succeeding transformations now affect the modelview matrix instead of the projection
matrix. (See "Manipulating the Matrix Stacks' for more information about how to control the projection

and modelview matrices.)

Note that glL oadl dentity() is used to initialize the current projection matrix so that only the specified
projection transformation has an effect. Now glFrustum() can be called, with arguments that define the
parameters of the projection transformation. In this example, both the projection transformation and the
viewport transformation are contained in the reshape() routine, which is called when the window isfirst
created and whenever the window is moved or reshaped. This makes sense, since both projecting (the
width to height aspect ratio of the projection viewing volume) and applying the viewport relate directly
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change the glFrustum() call in Example 3-1 to the more commonly used Utility Library routine

gluPer spective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially for fovy and aspect.

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene gets
mapped onto the computer screen. The projection transformation specifies the mechanics of how the
mapping should occur, and the viewport indicates the shape of the available screen areainto which the
scene is mapped. Since the viewport specifies the region the image occupies on the computer screen, you
can think of the viewport transformation as defining the size and location of the final processed

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (9 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8192_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8878_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6932_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

photograph - for example, whether the photograph should be enlarged or shrunk.

The arguments to glViewport() describe the origin of the available screen space within the window - (0,
0) in this example - and the width and height of the available screen area, all measured in pixels on the
screen. Thisiswhy this command needs to be called within reshape() - if the window changes size, the
viewport needs to change accordingly. Note that the width and height are specified using the actual width
and height of the window; often, you want to specify the viewport this way rather than giving an absolute
size. (See "Viewport Transformation” for more information about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, take the
photograph). Asthe sceneis drawn, OpenGL transforms each vertex of every object in the scene by the
modeling and viewing transformations. Each vertex is then transformed as specified by the projection
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are divided by w and mapped onto the
viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desired
transformations. Y ou've already seen a couple of these commands, gIM atrixM ode() and

glL oadl dentity(). The other two commands described here - glL oadM atrix* () and gIMultM atrix*() -
allow you to specify any transformation matrix directly and then to multiply the current matrix by that
specified matrix. More specific transformation commands - such as gluL ook At() and glScale* () - are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the modelview or
projection matrix before supplying a transformation command. Y ou choose the matrix with

glM atrixM ode(). When you use nested sets of OpenGL commands that might be called repeatedly,
remember to reset the matrix mode correctly. (The gIM atrixM ode() command can also be used to
indicate the texture matrix; texturing is discussed in detail in "The Texture Matrix Stack™ in Chapter 9.)

void glMatrixM ode(GLenum mode);

Soecifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE for mode. Subsequent
transfor mation commands affect the specified matrix. Note that only one matrix can be modified at
a time. By default, the modelview matrix is the one that's modifiable, and all three matrices
contain the identity matrix.

Y ou use the glL oadl dentity() command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you always call
this command before specifying projection or viewing transformations, but you might also call it before
specifying a modeling transformation.

void glL oadl dentity(void);
Sets the currently modifiable matrix to the 4 x 4 identity matrix.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (10 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8567_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_21071_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix* (). Similarly, use giMultM atrix* () to multiply the current matrix by the matrix passed in
as an argument. The argument for both these commands is a vector of sixteen values (m1, m2, ..., m16)
that specifiesamatrix M asfollows:

M1 W5 MG M3
Mg Pig M0 W14
W3 M7] S
ERC RV

Remember that you might be able to maximize efficiency by using display liststo store frequently used
matrices (and their inverses) rather than recomputing them. (See "Display-List Design Philosophy" in
Chapter 7.) (OpenGL implementations often must compute the inverse of the modelview matrix so that
normals and clipping planes can be correctly transformed to eye coordinates.)

Caution: If you're programming in C and you declare a matrix as m[4][4], then the element m[i][j] isin
the ith column and jth row of the OpenGL transformation matrix. Thisisthe reverse of the standard C
convention in which m[i][j] isinrow i and column j. To avoid confusion, you should declare your
matrices as m[16].

void glLoadMatrix{fd}(const TYPE * m);
Sets the sixteen values of the current matrix to those specified by m.
void glMultMatrix{fd}(const TYPE *m);

Multiplies the matrix specified by the sixteen values pointed to by m by the current matrix and
stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matrix is C and the
matrix specified with gIMultM atrix* () or any of the transformation commandsis M. After
multiplication, the final matrix is always CM. Since matrix multiplication isn't generally commuitative,
the order makes a difference.

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combined into
asingle modelview matrix. (See"A Simple Example: Drawing a Cube.") One of the toughest problems
newcomers to computer graphics face is understanding the effects of combined three-dimensional
transformations. Asyou've aready seen, there are alternative ways to think about transformations - do
you want to move the camerain one direction, or move the object in the opposite direction? Each way of
thinking about transformations has advantages and disadvantages, but in some cases one way more
naturally matches the effect of the intended transformation. If you can find a natural approach for your
particular application, it's easier to visualize the necessary transformations and then write the
corresponding code to specify the matrix manipulations. The first part of this section discusses how to
think about transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you've aready seen. Finally, keep in mind that you must call

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (11 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6904_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

glMatrixM ode() with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transformations

Let's start with a simple case of two transformations: a 45-degree counterclockwise rotation about the
origin around the z-axis, and a translation down the x-axis. Suppose that the object you're drawing is
small compared to the trandlation (so that you can see the effect of the trandlation), and that it's originally
located at the origin. If you rotate the object first and then trandlate it, the rotated object appears on the
x-axis. If you trandlate it down the x-axis first, however, and then rotate about the origin, the object ison
the line y=x, as shown in Figure 3-4. In general, the order of transformationsis critical. If you do
transformation A and then transformation B, you almost always get something different than if you do
them in the opposite order.

\

Rotate then Translate Translate then Rotate

Figure 3-4 : Rotating First or Tranglating First

Now let's talk about the order in which you specify a series of transformations. All viewing and modeling
transformations are represented as 4 x 4 matrices. Each successive giIMultM atrix* () or transformation
command multipliesanew 4 x 4 matrix M by the current modelview matrix C to yield CM. Finaly,
vertices v are multiplied by the current modelview matrix. This process means that the last
transformation command called in your program is actually the first one applied to the vertices. CMv.
Thus, one way of looking at it isto say that you have to specify the matrices in the reverse order. Like
many other things, however, once you've gotten used to thinking about this correctly, backward will

seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

gl Mat ri xMode(G._MODELVI EW ;

gl Loadl dentity();

gl Mul t Matri xf (N); /* apply transformation N */
gl Mul t Matri xf(M; /* apply transformation M */

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (12 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7398_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Mul t Matri xf (L); /* apply transformation L */

gl Begi n(G._PA NTS) ;

gl Vertex3f(v); /* draw transfornmed vertex v */
gl End() ;

With this code, the modelview matrix successively contains |, N, NM, and finally NML, where |
represents the identity matrix. The transformed vertex isNMLv. Thus, the vertex transformation is
N(M(LV)) - that is, vismultiplied first by L, the resulting Lv ismultiplied by M, and the resulting MLv
iIsmultiplied by N. Notice that the transformations to vertex v effectively occur in the opposite order than
they were specified. (Actually, only a single multiplication of avertex by the modelview matrix occurs;
in this example, the N, M, and L matrices are already multiplied into a single matrix before it's applied to
V.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system - in which matrix multiplications
affect the position, orientation, and scaling of your model - you have to think of the multiplications as
occurring in the opposite order from how they appear in the code. Using the simple example shown on
the left side of Figure 3-4 (arotation about the origin and a translation along the x-axis), if you want the
object to appear on the axis after the operations, the rotation must occur first, followed by the trandation.
To do this, you'll need to reverse the order of operations, so the code |looks something like this (where R
isthe rotation matrix and T is the trandation matrix):

gl Mat ri xMode(G._MODELVI EW ;

gl Loadl dentity();

gl Mul t Matri xf(T); /* translation */
gl Mul t Matri xf(R); /* rotation */
draw_t he_obj ect ();

Moving a Local Coordinate System

Another way to view matrix multiplications isto forget about a grand, fixed coordinate system in which
your model is transformed and instead imagine that alocal coordinate system istied to the object you're
drawing. All operations occur relative to this changing coordinate system. With this approach, the matrix
multiplications now appear in the natural order in the code. (Regardless of which analogy you're using,
the code is the same, but how you think about it differs.) To see thisin the trand ation-rotation example,
begin by visualizing the object with a coordinate system tied to it. The translation operation moves the
object and its coordinate system down the x-axis. Then, the rotation occurs about the (now-translated)
origin, so the object rotates in place in its position on the axis.

This approach is what you should use for applications such as articulated robot arms, where there are
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips of the
fingers go relative to the body, you'd like to start at the shoulder, go down to the wrist, and so on,
applying the appropriate rotations and tranglations at each joint. Thinking about it in reverse would be far
more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especially so
when the scaling is nonuniform (scaling different amounts along the different axes). After uniform

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (13 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7398_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

scaling, translations move a vertex by a multiple of what they did before, since the coordinate system is
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate system
nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program before any
modeling transformations. Thisway, avertex in amodel isfirst transformed into the desired orientation
and then transformed by the viewing operation. Since the matrix multiplications must be specified in
reverse order, the viewing commands need to come first. Note, however, that you don't need to specify
either viewing or modeling transformationsif you're satisfied with the default conditions. If there's no
viewing transformation, the "camera" is left in the default position at the origin, pointed toward the
negative z-axis; if there's no modeling transformation, the model isn't moved, and it retains its specified
position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations are discussed first, even if viewing transformations are
actually issued first. This order for discussion aso matches the way many programmers think when
planning their code: Often, they write all the code necessary to compose the scene, which involves
transformations to position and orient objects correctly relative to each other. Next, they decide where
they want the viewpoint to be relative to the scene they've composed, and then they write the viewing
transformations accordingly.

Modeling Transformations

The three OpenGL routines for modeling transformations are gl Translate* (), glRotate* (), and
glScale* (). Asyou might suspect, these routines transform an object (or coordinate system, if you're
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three commands
are equivalent to producing an appropriate translation, rotation, or scaling matrix, and then calling
glMultMatrix* () with that matrix as the argument. However, these three routines might be faster than
using giIMultMatrix* (). OpenGL automatically computes the matrices for you. (See Appendix F if

you're interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what it does
to the vertices of a geometric object using the fixed coordinate system approach, and in terms of what it
does to the local coordinate system that's attached to an object.

Translate

void gl Trandate{fd} (TYPEX, TYPE y, TYPEZ);

Multiplies the current matrix by a matrix that moves (translates) an object by the given x, y, and z
values (or moves the local coordinate system by the same amounts).

Figure 3-5 shows the effect of gl Translate*().

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (14 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_37453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7608_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 3-5: Trandlating an Object

Note that using (0.0, 0.0, 0.0) as the argument for gl Translate* () is the identity operation - that is, it has
no effect on an object or itslocal coordinate system.

Rotate

void glRotate{fd}(TYPE angle, TYPE x, TYPE Yy, TYPE 2);

Multiplies the current matrix by a matrix that rotates an object (or the local coordinate system) in
a counter clockwise direction about the ray from the origin through the point (X, y, z). The angle
parameter specifiesthe angle of rotation in degrees.

The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is arotation of 45 degrees about the z-axis, is shown in
Figure 3-6.

¥
A

Figure 3-6 : Rotating an Object

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (15 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7667_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has alarger
orbit) than an object drawn near the axis. Also, if the angle argument is zero, the glRotate* () command
has no effect.

Scale

void glScale{fd}(TYPEX, TYPE y, TYPE2);

Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along the
axes. Each x, y, and z coordinate of every point in the object is multiplied by the corresponding
argument x, y, or z. With the local coordinate system approach, the local coordinate axes are
stretched, shrunk, or reflected by the x, y, and z factors, and the associated object is transformed
with them.

Figure 3-7 shows the effect of glScalef(2.0, -0.5, 1.0).

¥

A

=

¥

Figure 3-7 : Scaling and Reflecting an Object

glScale* () is the only one of the three modeling transformations that changes the apparent size of an
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0 shrinksiit.
Scaling with a-1.0 value reflects an object across an axis. The identity values for scaling are (1.0, 1.0,
1.0). In general, you should limit your use of glScale* () to those cases where it is necessary. Using

gl Scale* () decreases the performance of lighting cal culations, because the normal vectors have to be
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axisto zero. It's usually not a good
idea to do this, because such an operation cannot be undone. Mathematically speaking, the matrix cannot
be inverted, and inverse matrices are required for certain lighting operations. (See Chapter 5.) Sometimes
collapsing coordinates does make sense, however; the calculation of shadows on a planar surfaceisa

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (16 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7745_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_10433_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

typical application. (See "Shadows' in Chapter 14.) In general, if a coordinate system is to be collapsed,
the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-2 isaportion of a program that renders a triangle four times, as shown in Figure 3-8. These
are the four transformed triangles.

« A solid wireframe triangle is drawn with no modeling transformation.

« The sametriangle isdrawn again, but with a dashed line stipple and translated (to the left - along
the negative x-axis).

« A triangleisdrawn with along dashed line stipple, with its height (y-axis) halved and its width
(x-axis) increased by 50%.

« A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 : Modeling Transformation Example

Example 3-2 : Using Modeling Transformations. model.c
gl Loadl dentity();

gl Color3f (1.0, 1.0, 1.0);
draw triangl e(); /* solid lines */

gl Enabl e(GL_LI NE_STI PPLE) ; /* dashed lines */
gl Li neSti ppl e(1, OxFOFO);

gl Loadl dentity();

gl Transl atef (-20.0, 0.0, 0.0);

draw triangl e();

gl Li neSti ppl e(1, OxFOOF); /*1 ong dashed |ines */
gl Loadl dentity();

gl Scalef (1.5, 0.5, 1.0);

draw_triangl e();

gl Li neSti ppl e(1, 0x8888); /* dotted lines */

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (17 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_29063_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7816_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7806_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Loadl dentity();

gl Rotatef (90.0, 0.0, 0.0, 1.0);
draw triangle ();

gl Di sabl e (G._LI NE_STI PPLE) ;

Note the use of glL oadldentity() to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even though using
glL oadl dentity() repeatedly has the desired effect, it may be inefficient, because you may have to
respecify viewing or modeling transformations. (See "Manipulating the Matrix Stacks" for a better way

to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this by
repeatedly applying arotation matrix that has small values. The problem with this technique is that
because of round-off errors, the product of thousands of tiny rotations gradually drifts away from the
value you really want (it might even become something that isn't arotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new angle at each update

step.
Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the camera
analogy, the viewing transformation positions the camera tripod, pointing the cameratoward the model.
Just as you move the camera to some position and rotate it until it pointsin the desired direction, viewing
transformations are generally composed of translations and rotations. Also remember that to achieve a
certain scene composition in the final image or photograph, you can either move the camera or move all
the objects in the opposite direction. Thus, a modeling transformation that rotates an object
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, for
example. Finally, keep in mind that the viewing transformation commands must be called before any
modeling transformations are performed, so that the modeling transformations take effect on the objects
first.

Y ou can manufacture a viewing transformation in any of several ways, as described next. Y ou can aso
choose to use the default location and orientation of the viewpoint, which is at the origin, looking down
the negative z-axis.
« Use one or more modeling transformation commands (that is, gl Translate* () and glRotate* ().
Y ou can think of the effect of these transformations as moving the camera position or as moving
all the objectsin the world, relative to a stationary camera

o Usethe Utility Library routine gluL ook At() to define aline of sight. This routine encapsulates a
series of rotation and translation commands.

« Create your own utility routine that encapsulates rotations and translations. Some applications
might require custom routines that allow you to specify the viewing transformation in a convenient
way. For example, you might want to specify the roll, pitch, and heading rotation angles of a plane
in flight, or you might want to specify atransformation in terms of polar coordinates for a camera
that's orbiting around an object.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (18 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8878_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations, you're trying to
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint isinitially located at the origin and since objects are often most easily constructed there as
well (see Figure 3-9), in general you have to perform some transformation so that the objects can be
viewed. Note that, as shown in the figure, the camerainitially points down the negative z-axis. (You're
seeing the back of the camera.)

¥

A

[T

=
_Z
-

Z

Figure 3-9: Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the same
effect as moving the objects forward, or away from the viewpoint. Remember that by default forward is
down the negative z-axis; if you rotate the viewpoint, forward has a different meaning. So, to put 5 units
of distance between the viewpoint and the objects by moving the viewpoint, as shown in Figure 3-10, use

gl Transl atef (0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units along the z axis. Thisis also equivalent to moving the
camera +5 units along the z axis.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (19 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7880_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7906_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

¥
¥
A A =k
. 'II - _,J
= — X
Ty, \ T
- B+

Figure 3-10 : Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command before or
after the translate command? If you're thinking in terms of a grand, fixed coordinate system, first imagine
both the object and the camera at the origin. Y ou could rotate the object first and then move it away from
the camera so that the desired side is visible. Since you know that with the fixed coordinate system
approach, commands have to be issued in the opposite order in which they should take effect, you know
that you need to write the translate command first in your code and follow it with the rotate command.

Now let's use the local coordinate system approach. In this case, think about moving the object and its
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in which they're
applied, so once again the translate command comes first. Thus, the sequence of transformation
commands to produce the desired result is

gl Transl atef (0.0, 0.0, -5.0);
gl Rotatef (90.0, 0.0, 1.0, 0.0);

If you're having trouble keeping track of the effect of successive matrix multiplications, try using both
the fixed and local coordinate system approaches and see whether one makes more sense to you. Note
that with the fixed coordinate system, rotations always occur about the grand origin, whereas with the
local coordinate system, rotations occur about the origin of the local system. Y ou might also try using the
gluL ook At() utility routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, then they

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (20 of 49) [4/28/2000 9:45:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

want to look at it from an arbitrary point to get agood view of it. Asits name suggests, the gluL ook At()
utility routine is designed for just this purpose. It takes three sets of arguments, which specify the
location of the viewpoint, define a reference point toward which the camerais aimed, and indicate which
direction is up. Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If you've built your scene at the origin, the reference
point is probably the origin.) It might be alittle trickier to specify the correct up-vector. Again, if you've
built some real-world scene at or around the origin and if you've been taking the positive y-axis to point
upward, then that's your up-vector for gluL ook At(). However, if you're designing aflight ssmulator, up
Is the direction perpendicular to the plane's wings, from the plane toward the sky when the planeis
right-side up on the ground.

The gluL ook At() routine is particularly useful when you want to pan across a landscape, for instance.
With aviewing volume that's symmetric in both x and y, the (eyex, eyey, eyez) point specified is aways
in the center of the image on the screen, so you can use a series of commands to move this point slightly,
thereby panning across the scene.

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multipliesit to the right of the current matrix. The desired viewpoint
Is specified by eyex, eyey, and eyez. The centerx, centery, and centerz arguments specify any point
along the desired line of sight, but typically they're some point in the center of the scene being
looked at. The upx, upy, and upz arguments indicate which direction is up (that is, the direction
from the bottom to the top of the viewing volume).

In the default position, the camerais at the origin, islooking down the negative z-axis, and has the
positive y-axis as straight up. Thisis the same as calling

gl uLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

The z value of the reference point is-100.0, but could be any negative z, because the line of sight will
remain the same. In this case, you don't actually want to call gluL ookAt(), because thisis the default (see
Figure 3-11) and you are already there! (The lines extending from the camera represent the viewing

volume, which indicatesitsfield of view.)

¥
up
vechor |
= ":'1| Ll
O L s
Jd
':_

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (21 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8041_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Figure 3-11 : Default Camera Position

Figure 3-12 shows the effect of atypica gluL ookAt() routine. The camera position (eyex, eyey, eyez) is
a (4, 2, 1). Inthis case, the cameraislooking right at the model, so the reference point isat (2, 4, -3). An
orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-degree angle.

Figure 3-12 : Using gluLookAt()

So, to achieve this effect, call
gl uLookAt (4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluL ook At() is part of the Utility Library rather than the basic OpenGL library. Thisisn't
because it's not useful, but because it encapsulates several basic OpenGL commands - specifically,
glTrandate* () and glRotate* (). To see this, imagine a cameralocated at an arbitrary viewpoint and
oriented according to aline of sight, both as specified with gluL ook At() and a scene located at the
origin. To "undo" what gluL ook At() does, you need to transform the camera so that it sits at the origin
and points down the negative z-axis, the default position. A simple translate moves the camerato the
origin. You can easily imagine a series of rotations about each of the three axes of afixed coordinate
system that would orient the camera so that it pointed toward negative z values. Since OpenGL alows
rotation about an arbitrary axis, you can accomplish any desired rotation of the camerawith asingle
glRotate* () command.

Note: Y ou can have only one active viewing transformation. Y ou cannot try to combine the effects of
two viewing transformations, any more than a camera can have two tripods. If you want to change the
position of the camera, make sure you call glL oadl dentity() to wipe away the effects of any current
viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for instance, the

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (22 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8059_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

negative z-axis), you need to do alittle mathematics. The axis about which you want to rotate is given by
the cross product of the two normalized vectors. To find the angle of rotation, normalize theinitial two
vectors. The cosine of the desired angle between the vectorsis equal to the dot product of the normalized
vectors. The angle of rotation around the axis given by the cross product is aways between 0 and 180
degrees. (See Appendix E for definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of their dot
product is not very accurate, especially for small angles. But it should work well enough to get you
started.

Creating a Custom Utility Routine

Advanced

For some specialized applications, you might want to define your own transformation routine. Since this
israrely done and in any caseisafairly advanced topic, it's left mostly as an exercise for the reader. The
following exercises suggest two custom viewing transformations that might be useful.

Try This
« Suppose you're writing aflight ssmulator and you'd like to display the world from the point of
view of the pilot of aplane. The world is described in a coordinate system with the origin on the
runway and the plane at coordinates (X, Yy, z). Suppose further that the plane has someroll, pitch,
and heading (these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

voi d pilotView{ G.doubl e pl anex, G.doubl e pl aney,
GLdoubl e pl anez, G.double roll,
GLdoubl e pitch, G.doubl e headi ng)

{

gl Rotated(roll, 0.0, 0.0, 1.0);

gl Rotated(pitch, 0.0, 1.0, 0.0);

gl Rot at ed(heading, 1.0, 0.0, 0.0);

gl Transl at ed(- pl anex, -planey, -planez);
}

« Suppose your application involves orbiting the camera around an object that's centered at the
origin. In this case, you'd like to specify the viewing transformation by using polar coordinates.
L et the distance variable define the radius of the orbit, or how far the camerais from the origin.
(Initially, the camerais moved distance units along the positive z-axis.) The azimuth describes the
angle of rotation of the camera about the object in the x-y plane, measured from the positive
y-axis. Similarly, elevation is the angle of rotation of the camerain the y-z plane, measured from
the positive z-axis. Finally, twist represents the rotation of the viewing volume around its line of
sight.

Show that the following routine could serve as the viewing transformation:

voi d pol arVi ew{ GLdoubl e di stance, G.double tw st,
GLdoubl e el evati on, G.doubl e azi mut h)
{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (23 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_37101_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Transl ated(0.0, 0.0, -distance);

gl Rotated(-twst, 0.0, 0.0, 1.0);

gl Rot ated(-el evation, 1.0, 0.0, 0.0);
gl Rotated(azinmuth, 0.0, 0.0, 1.0);

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the correct
modeling and viewing transformations are applied. This section explains how to define the desired
projection matrix, which is also used to transform the vertices in your scene. Before you issue any of the
transformation commands described in this section, remember to call

gl Mat ri xMbde(G._PRQIECTI ON) ;
gl Loadl dentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that you avoid
compound projection transformations. Since each projection transformation command completely
describes a particular transformation, typically you don't want to combine a projection transformation
with another transformation.

The purpose of the projection transformation is to define a viewing volume, which is used in two ways.
The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects are clipped
out of the final image. Y ou can think of the viewpoint we've been talking about as existing at one end of
the viewing volume. At this point, you might want to reread "A Simple Example: Drawing a Cube” for

its overview of all the transformations, including projection transformations.

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an object is
from the camera, the smaller it appears in the final image. This occurs because the viewing volume for a
perspective projection is a frustum of a pyramid (atruncated pyramid whose top has been cut off by a
plane paralel to its base). Objects that fall within the viewing volume are projected toward the apex of
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear larger
because they occupy a proportionally larger amount of the viewing volume than those that are farther
away, in the larger part of the frustum. This method of projection is commonly used for animation, visual
simulation, and any other applications that strive for some degree of realism because it's similar to how
our eye (or acamera) works.

The command to define a frustum, glFrustum(), calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall that the
viewing volume is used to clip objects that lie outside of it; the four sides of the frustum, itstop, and its
base correspond to the six clipping planes of the viewing volume, as shown in Figure 3-13. Objects or
parts of objects outside these planes are clipped from the final image. Note that glFrustum() doesn't
require you to define a symmetric viewing volume.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (24 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_6904_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8237_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

"" reear P

-t — =

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum's viewing volume is defined by the parameters:. (left, bottom, -near) and (right, top, -near)
specify the (X, y, 2) coordinates of the lower-left and upper-right corners of the near clipping
plane; near and far give the distances from the viewpoint to the near and far clipping planes. They
should always be positive.

The frustum has a default orientation in three-dimensional space. Y ou can perform rotations or
trandlations on the projection matrix to alter this orientation, but thisis tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn't have to be symmetrical, and its axisisn't necessarily aligned with the z-axis.
For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular
window of a house, where the window was above and to the right of you. Photographers use such a
viewing volume to create fal se perspectives. Y ou might useit to have the hardware calcul ate images at
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image
that has twice the resolution of your screen, draw the same picture four times, each time using the
frustum to cover the entire screen with one-quarter of the image. After each quarter of theimageis
rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8

for more information about reading pixel data.)

Although it's easy to understand conceptually, glFrustum() isn't intuitive to use. Instead, you might try
the Utility Library routine gluPer spective(). This routine creates a viewing volume of the same shape as
glFrustum() does, but you specify it in adifferent way. Rather than specifying corners of the near
clipping plane, you specify the angle of the field of view (& THgr; , or theta, in Figure 3-14) inthey

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (25 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8345_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

direction and the aspect ratio of the width to height (x/y). (For a square portion of the screen, the aspect
ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the line of
sight, as shown in Figure 3-14. Y ou also specify the distance between the viewpoint and the near and far
clipping planes, thereby truncating the pyramid. Note that gluPer spective() islimited to creating
frustums that are symmetric in both the x- and y-axes along the line of sight, but thisis usually what you
want.

- T -
|

-

[13

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPer spective(GLdoubl e fovy, GLdouble aspect,
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.
fovy isthe angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z-axis. They should
always be positive.

Just as with glFrustum(), you can apply rotations or translations to change the default orientation of the
viewing volume created by gluPer spective(). With no such transformations, the viewpoint remains at the
origin, and the line of sight points down the negative z-axis.

With gluPer spective(), you need to pick appropriate values for the field of view, or the image may look
distorted. For example, suppose you're drawing to the entire screen, which happens to be 11 inches high.
If you choose afield of view of 90 degrees, your eye has to be about 7.8 inches from the screen for the
image to appear undistorted. (Thisis the distance that makes the screen subtend 90 degrees.) If your eye
is farther from the screen, asit usually is, the perspective doesn't look right. If your drawing area
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure out
how far your eye normally is from the screen and how big the window is, and calculate the angle the
window subtends at that size and distance. It's probably smaller than you would guess. Another way to
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimeter lens,
which isavery wide-angle lens. (See " Troubleshooting Transformations” for more details on how to

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (26 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8345_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8754_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with
OpenGL? The answer is, in aword, no. The projection and other transformations are inherently unitless.
If you want to think of the near and far clipping planes aslocated at 1.0 and 20.0 meters, inches,
kilometers, or leagues, it's up to you. The only ruleisthat you have to use a consistent unit of
measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,
abox (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn't change
from one end to the other, so distance from the camera doesn't affect how large an object appears. This
type of projection is used for applications such as creating architectural blueprints and computer-aided
design, whereit's crucial to maintain the actual sizes of objects and angles between them as they're
projected.

top

= r

AL

toward I"-.
the “L riaht

near far

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by
it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,
bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same
respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint faces

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (27 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8432_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

toward the negative z-axis. Note that this means that the values passed in for far and near are used as
negative z values if these planes are in front of the viewpoint, and positive if they're behind the
viewpoint.

For the special case of projecting atwo-dimensional image onto atwo-dimensional screen, use the Utility
Library routine gluOrtho2D(). Thisroutine isidentical to the three-dimensional version, glOrtho(),
except that all the z coordinates for objects in the scene are assumed to lie between -1.0 and 1.0. If you're
drawing two-dimensional objects using the two-dimensional vertex commands, all the z coordinates are
zero; thus, none of the objects are clipped because of their z values.

void gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top);

Creates a matrix for projecting two-dimensional coordinates onto the screen and multiplies the
current projection matrix by it. The clipping region is a rectangle with the lower-left corner at
(Ieft, bottom) and the upper-right corner at (right, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and projection
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes used are
those that define the sides and ends of the viewing volume. Y ou can specify additional clipping planes
and locate them wherever you choose. (See "Additiona Clipping Planes’ for information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that get
clipped.

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds to the stage where
the size of the developed photograph is chosen. Do you want a wallet-size or a poster-size photograph?
Since thisis computer graphics, the viewport is the rectangular region of the window where theimageis
drawn. Figure 3-16 shows a viewport that occupies most of the screen. The viewport is measured in
window coordinates, which reflect the position of pixels on the screen relative to the lower-left corner of
the window. Keep in mind that all vertices have been transformed by the modelview and projection
matrices by this point, and vertices outside the viewing volume have been clipped.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (28 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9045_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8579_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 3-16 : Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, isresponsible for opening a window on the screen. However, by
default the viewport is set to the entire pixel rectangle of the window that's opened. Y ou use the
glViewport() command to choose a smaller drawing region; for example, you can subdivide the window
to create a split-screen effect for multiple views in the same window.

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

Defines a pixel rectangle in the window into which the final image is mapped. The (X, y) parameter
specifies the lower-left corner of the viewport, and width and height are the size of the viewport
rectangle. By default, theinitial viewport values are (0, O, winWidth, winHeight), where winWidth
and winHeight are the size of the window.

The aspect ratio of aviewport should generally equal the aspect ratio of the viewing volume. If the two
ratios are different, the projected image will be distorted when mapped to the viewport, as shown in
Figure 3-17. Note that subsequent changes to the size of the window don't explicitly affect the viewport.

Y our application should detect window resize events and modify the viewport appropriately.

undistorted distorted

Figure 3-17 : Mapping the Viewing Volume to the Viewport

In Figure 3-17, the left figure shows a projection that maps a square image onto a square viewport using
these routines:

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (29 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8642_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8642_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl uPer spective(fovy, 1.0, near, far);
gl Vi ewport (0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewport, but
the projection is unchanged. The image appears compressed along the x-axis.

gl uPerspective(fovy, 1.0, near, far);
gl Viewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gl uPer spective(fovy, 2.0, near, far);
gl Vi ewport (0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. Y ou might draw the
object with different projection and/or viewing transformations for each viewport. To create two
side-by-side viewports, you might issue these commands, along with the appropriate modeling, viewing,
and projection transformations:

gl Viewport (0O, O, sizex/2, sizey),

gl Vi ewport (sizex/2, | 0, sizex/2, sizey);
The Transformed Depth Coordinate

The depth (2) coordinate is encoded during the viewport transformation (and later stored in the depth
buffer). Y ou can scale z values to lie within a desired range with the glDepthRange() command.
(Chapter 10 discusses the depth buffer and the corresponding uses for the depth coordinate.) Unlike x
and y window coordinates, z window coordinates are treated by OpenGL as though they always range
from 0.0 to 1.0.

void glDepthRange(GLclampd near, GLclampd far);

Defines an encoding for z coordinates that's performed during the viewport transformation. The
near and far values represent adjustments to the minimum and maximum values that can be stored
in the depth buffer. By default, they're 0.0 and 1.0, respectively, which work for most applications.
These parameters are clamped to liewithin [0,1] .

In perspective projection, the transformed depth coordinate (like the x and y coordinates) is subject to
perspective division by the w coordinate. As the transformed depth coordinate moves farther away from
the near clipping plane, its location becomes increasingly less precise. (See Figure 3-18.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (30 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8744_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

S N

depth coordinate spacing

Figure 3-18 : Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transformed depth
coordinate, especialy depth-buffering, which is used for hidden surface removal.

Troubleshooting Transformations

It's pretty easy to get a camera pointed in the right direction, but in computer graphics, you have to
specify position and direction with coordinates and angles. As we can attest, it's all too easy to achieve
the well-known black-screen effect. Although any number of things can go wrong, often you get this
effect - which results in absolutely nothing being drawn in the window you open on the screen - from
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar problem arises
if you don't choose afield of view that's wide enough to view your objects but narrow enough so they
appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.
1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you're drawing
your objects with a color that's different from the color with which you're clearing the screen.
Make sure that whatever states you're using (such as lighting, texturing, alpha blending, logical
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure distance from
the viewpoint and that (by default) you're looking down the negative z axis. Thus, if the near value
IS 1.0 and the far 3.0, objects must have z coordinates between -1.0 and -3.0 in order to be visible.
To ensure that you haven't clipped everything out of your scene, temporarily set the near and far
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alters
appearance for operations such as depth-buffering and fog, but it might uncover inadvertently
clipped objects.

3. Determine where the viewpoint is, in which direction you're looking, and where your objects are.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (31 of 49) [4/28/2000 9:45:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

It might help to create areal three-dimensional space - using your hands, for instance - to figure
these things out.

4. Make sure you know where you're rotating about. Y ou might be rotating about some arbitrary
location unless you translated back to the origin first. It's OK to rotate about any point unless
you're expecting to rotate about the origin.

5. Check your aim. Use gluL ook At() to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and use gl Translate* () as a viewing transformation to move the
camerafar enough in the z direction only so that the objects fall within the viewing volume. Once
you've managed to make your objects visible, try to change the viewing volume incrementally to
achieve the exact result you want, as described next.

Even after you've aimed the camerain the correct direction and you can see your objects, they might
appear too small or too large. If you're using gluPer spective(), you might need to alter the angle defining
the field of view by changing the value of the first parameter for this command. Y ou can use
trigonometry to calculate the desired field of view given the size of the object and its distance from the
viewpoint: The tangent of half the desired angle is half the size of the object divided by the distance to
the object (see Figure 3-19). Thus, you can use an arctangent routine to compute half the desired angle.
Example 3-3 assumes such aroutine, atan2(), which calculates the arctangent given the length of the
opposite and adjacent sides of aright triangle. This result then needs to be converted from radians to
degrees.

- Distance -

Figure 3-19 : Using Trigonometry to Calculate the Field of View

Example 3-3 : Calculating Field of View
#define Pl 3.1415926535

doubl e cal cul at eAngl e(doubl e si ze, doubl e distance)

{
doubl e radt heta, degtheta;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (32 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8818_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8828_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

radtheta = 2.0 * atan2 (size/ 2.0, distance);
degtheta = (180.0 * radtheta) / PI;
return (degtheta);

}

Of course, typically you don't know the exact size of an object, and the distance can only be determined
between the viewpoint and a single point in your scene. To obtain afairly good approximate value, find
the bounding box for your scene by determining the maximum and minimum X, y, and z coordinates of
all the objectsin your scene. Then calculate the radius of a bounding sphere for that box, and use the
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equations -1 ≤ x ≤ 3,5 &lej y
≤ 7, and -5 ≤ z ≤ 5. Then the center of the bounding box is (1, 6, 0), and the radius of a
bounding sphere is the distance from the center of the box to any corner - say (3, 7, 5) - or

Jon?e g-6f+5- 02 = f50= 5477

If the viewpoint isat (8, 9, 10), the distance between it and the center is

J(Es-1;11+ 9- 62 +(10- 02 = J58=12.570

The tangent of the half angleis 5.477 divided by 12.570, which equals 0.4357, so the half angle is 23.54
degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if you're trying to
achieve aredlistic image. For example, if your calculations indicate that you need a 179-degree field of
view, the viewpoint must be afraction of an inch from the screen to achieve realism. If your calcul ated
field of view istoo large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you've been creating, loading, and multiplying have only been
the visible tips of their respective icebergs. Each of these matrices is actually the topmost member of a
stack of matrices (see Figure 3-20).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (33 of 49) [4/28/2000 9:45:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8888_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

—
madalvisw o Ergjﬁx !Ir:ilﬂrilﬂll

" matrix steck " {2 40 matricas

_.._L: {32 44 matrices) - {)

Figure 3-20 : Modelview and Projection Matrix Stacks

A stack of matricesis useful for constructing hierarchical models, in which complicated objects are
constructed from simpler ones. For example, suppose you're drawing an automobile that has four wheels,
each of which is attached to the car with five bolts. Y ou have a single routine to draw awheel and
another to draw abolt, since al the wheels and all the bolts ook the same. These routines draw a wheel
or a bolt in some convenient position and orientation, say centered at the origin with its axis coincident
with the z axis. When you draw the car, including the wheels and bolts, you want to call the
wheel-drawing routine four times with different transformations in effect each time to position the
wheels correctly. Asyou draw each wheel, you want to draw the bolts five times, each time translated
appropriately relative to the whesl.

Suppose for aminute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this:

« Draw the car body. Remember where you are, and translate to the right front wheel. Draw the
wheel and throw away the last translation so your current position is back at the origin of the car
body. Remember where you are, and trand ate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successively
translate to each of the positions that bolts are drawn, throwing away the transformations after each bolt
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism for doing
this sort of successive remembering, trandating, and throwing away. All the matrix operations that have
been described so far (glL cadM atrix(), giMultMatrix(), glL oadl dentity() and the commands that
create specific transformation matrices) deal with the current matrix, or the top matrix on the stack. You
can control which matrix is on top with the commands that perform stack operations. glPushM atrix(),
which copies the current matrix and adds the copy to the top of the stack, and glPopMatrix(), which
discards the top matrix on the stack, as shown in Figure 3-21. (Remember that the current matrix is

aways the matrix on thetop.) In effect, glPushM atrix() means "remember where you are" and
glPopMatrix() means "go back to where you were."

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (34 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8936_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 3-21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);

Pushes all matrices in the current stack down one level. The current stack is determined by
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the top and
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was the

second-from-the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix() generates an error.

Example 3-4 draws an automobile, assuming the existence of routines that draw the car body, a wheel,
and a bolt.

Example 3-4 : Pushing and Popping the Matrix
draw wheel and _bolts()
{

long i ;

dr aw_wheel () ;
for(i=0;i<5;i++){
gl PushMatri x();
gl Rotatef (72.0*i,0.0,0.0,1.0);
gl Transl atef (3.0,0.0,0.0);
draw bol t();
gl PopMatri x();

}

draw_body_ and_wheel _and_bol ts()

{
draw car _body();

gl PushMatri x();
gl Transl at ef (40, 0, 30); /*nmove to first wheel position*/

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (35 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_8977_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

draw_wheel _and_bol ts();
gl PopMatri x();
gl PushMatri x();
gl Transl at ef (40, 0O, - 30) ; /[*move to 2nd wheel position*/
draw wheel and bolts();
gl PopMatri x();
/*draw | ast two wheels simlarly*/

}

This code assumes the wheel and bolt axes are coincident with the z-axis, that the bolts are evenly spaced
every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the front wheels are 40
unitsin front of and 30 units to the right and left of the car's origin.

A stack is more efficient than an individual matrix, especially if the stack isimplemented in hardware.
When you push a matrix, you don't need to copy the current data back to the main process, and the
hardware may be able to copy more than one element of the matrix at atime. Sometimes you might want
to keep an identity matrix at the bottom of the stack so that you don't need to call glL oadl dentity()
repeatedly.

The Modelview Matrix Stack

Asyou've seen earlier in "Viewing and Modeling Transformations,” the modelview matrix contains the

cumulative product of multiplying viewing and modeling transformation matrices. Each viewing or
modeling transformation creates a new matrix that multiplies the current modelview matrix; the result,
which becomes the new current matrix, represents the composite transformation. The modelview matrix
stack contains at least thirty-two 4 x 4 matrices; initially, the topmost matrix is the identity matrix. Some
implementations of OpenGL may support more than thirty-two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, GLint * params).

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the viewing
volume. Generally, you don't want to compose projection matrices, so you issue glL oadl dentity() before
performing a projection transformation. Also for this reason, the projection matrix stack need be only
two levels deep; some OpenGL implementations may allow more than two 4 x 4 matrices. To find the
stack depth, call glGetlntegerv(GL_MAX PROJECTION_STACK_DEPTH, GLint * params).

One use for a second matrix in the stack would be an application that needs to display a help window
with text init, in addition to its normal window showing a three-dimensional scene. Since text is most
easily positioned with an orthographic projection, you could change temporarily to an orthographic
projection, display the help, and then return to your previous projection:

gl Mat ri xMbde(GL_PRQIECTI ON) ;

gl PushMatri x(); /| *save the current projection*/
gl Loadl dentity();
glOrtho(...); /*set up for displaying hel p*/

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (36 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_7359_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
di spl ay_the hel p();
gl PopMatri x();
Note that you'd probably have to also change the modelview matrix appropriately.
Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbitrary

projective transformations. For example, the OpenGL and its Utility Library have no built-in mechanism
for two-point perspective. If you were trying to emul ate the drawings in drafting texts, you might need
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far), you
can define up to six additional clipping planesto further restrict the viewing volume, as shown in Figure

3-22. Thisis useful for removing extraneous objects in a scene - for example, if you want to display a
cutaway view of an object.

Each plane is specified by the coefficients of its equation: Ax+By+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping volume
becomes the intersection of the viewing volume and all half-spaces defined by the additional clipping
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

—'-'_'_'_

= ——
—— - e —
e
— ——— —
e '
e — l."_'-\. .
_—— D "-. 1\'\
| R -

o
— — "-a.
D

T
", e
T \l T
——
fy T
™,]
" -
", L

Figure 3-22 : Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenum plane, const GLdouble * equation);
Defines a clipping plane. The equation argument points to the four coefficients of the plane
eguation, Ax+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that satisfy (AB C
D)M-1 (xeye zewe)T >= 0 liein the half-space defined by the plane, where M isthe current
modelview matrix at the time glClipPlane() is called. All points not in this half-space are clipped

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (37 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9071_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9071_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

away. The plane argument is GL_CLIP_PLANEI, wherei is an integer specifying which of the
available clipping planesto define. i isa number between 0 and one less than the maximum
number of additional clipping planes.

Y ou need to enable each additional clipping plane you define:
gl Enabl e(G._CLI P_PLANEI) ;

Y ou can disable a plane with
gl D sabl e(G._CLI P_PLANEI) ;

All implementations of OpenGL must support at least six additional clipping planes, although some
implementations may allow more. Y ou can use glGetlntegerv() with GL_MAX_ CLIP_PLANESto find
how many clipping planes are supported.

Note: Clipping performed as aresult of glClipPlang() is donein eye coordinates, not in clip coordinates.
This differenceis noticeable if the projection matrix is singular (that is, areal projection matrix that
flattens three-dimensional coordinates to two-dimensional ones). Clipping performed in eye coordinates
continues to take place in three dimensions even when the projection matrix is singular.

A Clipping Plane Code Example

Example 3-5 renders a wireframe sphere with two clipping planes that slice away three-quarters of the
original sphere, as shown in Figure 3-23.

Figure 3-23 : Clipped Wireframe Sphere

Example 3-5 : Wireframe Sphere with Two Clipping Planes: clip.c
#i ncl ude <G/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>

void init(void)

{
gl CearColor (0.0, 0.0, 0.0, 0.0);

gl ShadeModel (GL_FLAT);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (38 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9195_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9185_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

voi d di spl ay(voi d)

{
GLdoubl e eqn[4] = {0.0, 1.0, 0.0, O0.0};
GLdoubl e egn2[4] = {1.0, 0.0, 0.0, 0.0};
gl G ear (G_COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);
gl Pushivatri x();
gl Translatef (0.0, 0.0, -5.0);

[* clip lower half -- y <0 */

gl dipPlane (G._CLI P_PLANEO, egn);
gl Enabl e (G._CLI P_PLANEO) ;
/* clip left half -- x <0 */
gl dipPlane (G._CLI P_PLANEl, egn2);
gl Enabl e (G._CLI P_PLANE1);

gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut WreSphere(1.0, 20, 16);

gl PopMatri x();

gl Flush ();

voi d reshape (int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

gl Matri xMbde (G._PRQIECTI ON);

gl Loadl dentity ();

gl uPer spective(60.0, (G.float) w (G float) h, 1.0, 20.0);
gl Matri xMbde (G._MODELVI EW ;

}

int main(int argc, char** argv)
{
glutlnit(&rgc, argv),;
glutlnitD splayMde (GLUT_SINGLE | G.UT_RGB);
gl utlni t WndowSi ze (500, 500);
gl utl ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[O0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (39 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Try This
« Try changing the coefficients that describe the clipping planes in Example 3-5.

« Try caling amodeling transformation, such as glRotate* (), to affect glClipPlane(). Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular result. The two
examples discussed are a solar system, in which objects need to rotate on their axes aswell asin orbit
around each other, and arobot arm, which has severa joints that effectively transform coordinate
systems as they move relative to each other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, both using the
same sphere-drawing routine. To write this program, you need to use glRotate* () for the revolution of
the planet around the sun and for the rotation of the planet around its own axis. Y ou also need
glTrandate* () to move the planet out to its orbit, away from the origin of the solar system. Remember
that you can specify the desired size of the two spheres by supplying the appropriate arguments for the
glutWireSphere() routine.

To draw the solar system, you first want to set up a projection and a viewing transformation. For this
example, gluPer spective() and gluL ook At() are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed coordinate
system, which is where the sphere routine placesit. Thus, drawing the sun doesn't require translation;
you can use glRotate* () to make the sun rotate about an arbitrary axis. To draw a planet rotating around
the sun, as shown in Figure 3-24, requires several modeling transformations. The planet needs to rotate

about its own axis once a day. And once a year, the planet completes one revolution around the sun.

e h"'mx ._\m (Cay)
- LN -
/ i planet I‘
g T——————— ! e

v / \)~
sun | Translate ‘\m__--ff A

-

'—'—'-'—-

_ L

. F}/’ Revalva (Year)

Figure 3-24 : Planet and Sun

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (40 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9195_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9263_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

To determine the order of modeling transformations, visualize what happens to the local coordinate
system. Aninitial glRotate* () rotates the local coordinate system that initially coincides with the grand
coordinate system. Next, gl Translate* () moves the local coordinate system to a position on the planet's
orbit; the distance moved should equal the radius of the orbit. Thus, the initial glRotate* () actually
determines where along the orbit the planet is (or what time of year it is).

A second glRotate* () rotates the local coordinate system around the local axes, thus determining the
time of day for the planet. Once you've issued all these transformation commands, the planet can be
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is shown in
Example 3-6.

gl PushMatri x();

gl ut WreSphere(1.0, 20, 16); /* draw sun */

gl Rotatef ((G.float) year, 0.0, 1.0, 0.0);

gl Transl atef (2.0, 0.0, 0.0);

gl Rotatef ((CG.float) day, 0.0, 1.0, 0.0);

gl ut WreSphere(0.2, 10, 8); /* draw smal | er pl anet */
gl PopMatri x();

Example 3-6 : Planetary System: planet.c
#i ncl ude <G/ gl . h>

#i ncl ude <G&./ gl u. h>

#i ncl ude <G/ gl ut. h>

static int year = 0, day = 0;

void init(void)

{
gl dearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

}

voi d di spl ay(voi d)

{

gl dear (G_CO.OR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);

gl PushMatri x();

gl ut WreSphere(1.0, 20, 16); /* draw sun */

gl Rotatef ((G.float) year, 0.0, 1.0, 0.0);

gl Transl atef (2.0, 0.0, 0.0);

gl Rotatef ((G.float) day, 0.0, 1.0, 0.0);

gl ut WreSphere(0.2, 10, 8); /* draw smal | er pl anet */
gl PopMatri x();

gl ut SwapBuffers();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (41 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9297_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

}

voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMbde (G._PRQIECTI ON);
gl Loadl dentity ();
gl uPerspective(60.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMbde(GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

}

voi d keyboard (unsigned char key, int x, int y)
{
swtch (key) {

case d':
day = (day + 10) % 360;
gl ut Post Redi spl ay() ;
br eak;

case D
day = (day - 10) % 360;
gl ut Post Redi spl ay() ;
br eak;

case y':
year = (year + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case Y':
year = (year - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

defaul t:
br eak;

}

i nt main(int argc, char** argv)
{
glutlnit(&argc, argv);
gl utlnitD spl ayMde (GLUT_DOUBLE | GLUT_RGB);
gl ut I ni t WndowSi ze (500, 500);
gl utl ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (42 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;
gl ut Mai nLoop();

return O;

}
Try This
« Try adding amoon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() and glPopM atrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you're going to draw several moons around a planet,

you need to save the coordinate system prior to positioning each moon and restore the coordinate
system after each moon is drawn.

o Try tilting the planet's axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segments. The
arm should be connected with pivot points at the shoulder, elbow, or other joints. Figure 3-25 shows a

single joint of such an arm.

Figure 3-25 : Robot Arm

Y ou can use a scaled cube as a segment of the robot arm, but first you must call the appropriate modeling
transformations to orient each segment. Since the origin of the local coordinate systemisinitialy at the
center of the cube, you need to move the local coordinate system to one edge of the cube. Otherwise, the
cube rotates about its center rather than the pivot point.

After you call glTrandlate* () to establish the pivot point and glRotate* () to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it isdrawn. The
glPushMatrix() and glPopM atrix() restrict the effect of glScale* (). Here's what your code might ook
like for this first segment of the arm (the entire program is shown in Example 3-7):

gl Transl atef (-1.0, 0.0, 0.0);

gl Rotatef ((G.float) shoulder, 0.0, 0.0, 1.0);
gl Translatef (1.0, 0.0, 0.0);

gl PushMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl utWreCube (1.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (43 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9330_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9378_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl PopMatri x();

To build a second segment, you need to move the local coordinate system to the next pivot point. Since
the coordinate system has previously been rotated, the x-axisis already oriented along the length of the
rotated arm. Therefore, transating along the x-axis moves the local coordinate system to the next pivot
point. Once it's at that pivot point, you can use the same code to draw the second segment as you used for
the first one. This can be continued for an indefinite number of segments (shoulder, elbow, wrist,
fingers).

gl Transl atef (1.0, 0.0, 0.0);

gl Rotatef ((CG.float) el bow, 0.0, 0.0, 1.0);

gl Translatef (1.0, 0.0, 0.0);

gl PushMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl ut WreCube (1.0);

gl PopMatri x();

Example 3-7 : Robot Arm: robot.c

#i ncl ude <G./gl. h>

#i ncl ude <G/ gl u. h>

#i ncl ude <G/ gl ut. h>

static int shoulder = 0, elbow = O;

void init(void)

{
gl dearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

}

voi d di spl ay(voi d)

{

gl dear (G_CO.OR BUFFER BIT);

gl PushMatri x();

gl Transl atef (-1.0, 0.0, 0.0);

gl Rotatef ((G.float) shoulder, 0.0, 0.0, 1.0);
gl Translatef (1.0, 0.0, 0.0);

gl PushMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl utWreCube (1.0);

gl PopMatri x();

gl Translatef (1.0, 0.0, 0.0);

gl Rotatef ((G.float) el bow, 0.0, 0.0, 1.0);
gl Translatef (1.0, 0.0, 0.0);

gl PushMatri x();

gl Scalef (2.0, 0.4, 1.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (44 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl utWreCube (1.0);
gl PopMatri x();

gl PopMatri x();
gl ut SwapBuf f ers();

}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON) ;
gl Loadl dentity ();
gl uPer spective(65.0, (Gfloat) w (G float) h, 1.0, 20.0);
gl Mat ri xMbde(G._MODELVI EW ;
gl Loadl dentity();
gl Transl atef (0.0, 0.0, -5.0);
}
voi d keyboard (unsigned char key, int x, int y)
{
swtch (key) {
case s': /* s key rotates at shoul der */
shoul der = (shoul der + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;
case S':
shoul der = (shoul der - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;
case e': [/* e key rotates at el bow */
el bow = (el bow + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;
case E':
el bow = (el bow - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;
def aul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutlnit(&rgc, argv);
gl utlnitDi spl ayMde (G.UT_DOUBLE | GLUT_RGB);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (45 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl utlni t WndowSi ze (500, 500);

gl ut I ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[O0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboard) ;

gl ut Mai nLoop();

return O;

}
Try This
« Modify Example 3-7 to add additional segments onto the robot arm.

« Modify Example 3-7 to add additional segments at the same position. For example, give the robot
arm several "fingers' at the wrist, as shown in Figure 3-26. Hint: Use glPushMatrix() and

glPopMatrix() to save and restore the position and orientation of the coordinate system at the
wrist. If you're going to draw fingers at the wrist, you need to save the current matrix prior to
positioning each finger and restore the current matrix after each finger is drawn.

Figure 3-26 : Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a viewport
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A common
situation is when an application user utilizes the mouse to choose a location in three dimensions. The
mouse returns only atwo-dimensional value, which is the screen location of the cursor. Therefore, the
application will have to reverse the transformation process to determine from where in three-dimensional
space this screen location originated.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (46 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9378_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9378_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9413_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The Utility Library routine gluUnPr oj ect() performs this reversal of the transformations. Given the
three-dimensiona window coordinates for alocation and all the transformations that affected them,
gluUnPr oject() returns the world coordinates from where it originated.

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4], GLdouble * objx, GLdouble * objy, GLdouble
*0bj2);
Mayp the specified window coor dinates (winx, winy, winz) into object coordinates, using
transfor mations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or
eliminate depth values that fall outside of glDepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen
location could have originated from anywhere on an entire line in three-dimensional space. To
disambiguate the result, gluUnPr oject() requires that a window depth coordinate (winz) be provided and
that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at
0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at
1.0 will request the point at the far clipping plane.

Example 3-8 demonstrates gluUnPr oj ect() by reading the mouse position and determining the

three-dimensional points at the near and far clipping planes from which it was transformed. The
computed world coordinates are printed to standard output, but the rendered window itself isjust black.

Example 3-8 : Reversing the Geometric Processing Pipeline: unproject.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <G/ gl ut. h>

#i ncl ude <stdlib. h>

#1 ncl ude <stdi o. h>

voi d di spl ay(voi d)

{
gl G ear (G._COLOR BUFFER BIT);
gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uPerspective (45.0, (G.float) w (G.float) h, 1.0, 100.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity();
}

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (47 of 49) [4/28/2000 9:45:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=6635?target=%25N%14_9526_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

voi d nouse(int button, int state, int x, int y)
{
Gint viewport[4];
GLdoubl e mvmatri x[16], projmatrix[16];
Gint realy; /* QOpen@A y coordinate position */
GLdoubl e wx, wy, wz; [/* returned world x, y, z coords */

swtch (button) {
case GLUT_LEFT_BUTTON:
I f (state == GLUT_DOWN) ({
gl Getl ntegerv (G._VI EWPORT, viewport);
gl Get Doubl ev (G._MODELVI EW MATRI X, nvnmatri x) ;
gl Get Doubl ev (G._PRQIECTI ON_MATRI X, projmatriXx);
/* note viewport[3] is height of window in pixels */
realy = viewport[3] - (Gint) y - 1;
printf ("Coordinates at cursor are (%d, %d)\n",
X, realy);
gl uUnProj ect ((G.double) x, (G.double) realy, 0.0,
nmvmatri x, projmatrix, viewport, &w, &wy, &wz);
printf ("World coords at z=0.0 are (%, %, %)\n",
WX, Wy, Wz);
gl uUnProj ect ((G.double) x, (G.double) realy, 1.0,
nvmatri x, projmatrix, viewport, &w, &wy, &wz);
printf ("World coords at z=1.0 are (%, %, %)\n",
WX, Wy, Wz);
}
br eak;
case GLUT_RI GHT_BUTTON:
I f (state == GLUT_DOWN)

exit(0);
br eak;
defaul t:
br eak;
}
}
I nt main(int argc, char** argv)
{

glutlnit(&rgc, argv);

glutlnitD splayMde (GQUT_SING.E | GLUT_RGB);
gl ut I ni t WndowSi ze (500, 500);

gl utl ni t WndowPosition (100, 100);

gl ut Creat eW ndow (argv[0]);

gl ut D spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (48 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O;

}

gluProj ect() is another Utility Library routine, which isrelated to gluUnPr oject().gluProj ect() mimics
the actions of the transformation pipeline. Given three-dimensional world coordinates and all the
transformations that affect them, gluPr oject() returns the transformed window coordinates.

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16], const
GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble
*wWingz);
Mayp the specified object coordinates (objx, objy, objz) into window coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting window coordinates are returned in winx, winy, and winz.
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/6635;cs=fullhtml;pt=1963 (49 of 49) [4/28/2000 9:45:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 4
Color

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Decide between using RGBA or color-index mode for your application

« Specify desired colors for drawing objects

« Use smooth shading to draw a single polygon with more than one color

The goal of almost al OpenGL applicationsisto draw color picturesin awindow on the screen. The
window is arectangular array of pixels, each of which contains and displaysits own color. Thus, ina
sense, the point of all the calculations performed by an OpenGL implementation - calculations that take
into account OpenGL commands, state information, and values of parameters - isto determine the final
color of every pixel that'sto be drawn in the window. This chapter explains the commands for specifying
colors and how OpenGL interprets them in the following major sections:

« "Color Perception” discusses how the eye perceives color.

« "Computer Color" describes the relationship between pixels on a computer monitor and their
colors; it also defines the two display modes, RGBA and color index.

« "RGBA versus Color-Index Mode" explains how the two display modes use graphics hardware
and how to decide which mode to use.

» "Specifying a Color and a Shading Model" describes the OpenGL commands you use to specify
the desired color or shading model.

Color Perception

Physically, light is composed of photons - tiny particles of light, each traveling along its own path, and
each vibrating at its own frequency (or wavelength, or energy - any one of frequency, wavelength, or
energy determines the others). A photon is completely characterized by its position, direction, and
frequency/wavelength/energy. Photons with wavel engths ranging from about 390 nanometers (nm)
(violet) and 720 nm (red) cover the colors of the visible spectrum, forming the colors of arainbow
(violet, indigo, blue, green, yellow, orange, red). However, your eyes perceive lots of colorsthat aren't in

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (1 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9688_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9772_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9985_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
the rainbow - white, black, brown, and pink, for example. How does this happen?

What your eye actually seesis amixture of photons of different frequencies. Real light sources are
characterized by the distribution of photon frequencies they emit. Ideal white light consists of an equal
amount of light of all frequencies. Laser light is usually very pure, and all photons have ailmost identical
frequencies (and direction and phase, as well). Light from a sodium-vapor lamp has more light in the
yellow frequency. Light from most stars in space has a distribution that depends heavily on their
temperatures (black-body radiation). The frequency distribution of light from most sources in your
Immediate environment is more complicated.

The human eye perceives color when certain cellsin the retina (called cone cells, or just cones) become
excited after being struck by photons. The three different kinds of cone cells respond best to three
different wavelengths of light: one type of cone cell responds best to red light, one type to green, and the
other to blue. (A person who is color-blind is usually missing one or more types of cone cells.) When a
given mixture of photons enters the eye, the cone cellsin the retinaregister different degrees of
excitation depending on their types, and if a different mixture of photons comes in that happens to excite
the three types of cone cells to the same degrees, its color isindistinguishable from that of the first
mixture.

Since each color is recorded by the eye as the levels of excitation of the cone cells by the incoming
photons, the eye can perceive colors that aren't in the spectrum produced by a prism or rainbow. For
example, if you send a mixture of red and blue photons so that both the red and blue cones in the retina
are excited, your eye seesit as magenta, which isn't in the spectrum. Other combinations give browns,
turquoises, and mauves, none of which appear in the color spectrum.

A computer-graphics monitor emulates visible colors by lighting pixels with a combination of red, green,
and blue light in proportions that excite the red-, green-, and blue-sensitive conesin the retinain such a
way that it matches the excitation levels generated by the photon mix it's trying to emulate. If humans
had more types of cone cells, some that were yellow-sensitive for example, color monitors would
probably have ayellow gun aswell, and we'd use RGBY (red, green, blue, yellow) quadruples to specify
colors. And if everyone were color-blind in the same way, this chapter would be simpler.

To display a particular color, the monitor sends the right amounts of red, green, and blue light to
appropriately stimulate the different types of cone cellsin your eye. A color monitor can send different
proportions of red, green, and blue to each of the pixels, and the eye sees a million or so pinpoints of
light, each with its own color.

This section considers only how the eye perceives combinations of photons that enter it. The situation for
light bouncing off materials and entering the eye is even more complex - white light bouncing off ared
ball will appear red, or yellow light shining through blue glass appears almost black, for example. (See
"Real-World and OpenGL Lighting" in Chapter 5 for a discussion of these effects.)

Computer Color

On acolor computer screen, the hardware causes each pixel on the screen to emit different amounts of
red, green, and blue light. These are called the R, G, and B values. They're often packed together

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (2 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_10567_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

(sometimes with afourth value, called alpha, or A), and the packed valueis called the RGB (or RGBA)
value. (See "Blending" in Chapter 6 for an explanation of the alpha values.) The color information at
each pixel can be stored either in RGBA mode, in which the R, G, B, and possibly A values are kept for
each pixel, or in color-index mode, in which a single number (called the color index) is stored for each
pixel. Each color index indicates an entry in atable that defines a particular set of R, G, and B values.
Such atableis called a color map.

In color-index mode, you might want to alter the values in the color map. Since color maps are controlled
by the window system, there are no OpenGL commands to do this. All the examplesin this book
initialize the color-display mode at the time the window is opened by using routines from the GLUT
library. (See Appendix D for details.)

Thereisagreat deal of variation among the different graphics hardware platformsin both the size of the
pixel array and the number of colorsthat can be displayed at each pixel. On any graphics system, each
pixel has the same amount of memory for storing its color, and all the memory for all the pixelsiscalled
the color buffer. The size of a buffer is usually measured in bits, so an 8-bit buffer could store 8 bits of
data (256 possible different colors) for each pixel. The size of the possible buffers varies from machine to
machine. (See Chapter 10 for more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For example, R = 0.0, G=0.0,
and B = 1.0 represents the brightest possible blue. If R, G, and B are al 0.0, the pixel isblack; if all are
1.0, the pixel isdrawn in the brightest white that can be displayed on the screen. Blending green and blue
creates shades of cyan. Blue and red combine for magenta. Red and green create yellow. To help you
create the colors you want from the R, G, and B components, look at the color cube shown in Plate 12.
The axes of this cube represent intensities of red, blue, and green. A black-and-white version of the cube
isshown in Figure 4-1.

Grean

|

Cyan & White

Yellow

» Red

N
T e

Blue Black

Figure4-1: The Color Cube in Black and White

The commands to specify a color for an object (in this case, a point) can be as simple as this:

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (3 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_36443_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9730_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Color3f (1.0, 0.0, 0.0); /* the current R@GB color is red: */
/* full red, no green, no blue. */
gl Begin (G._PA NTS);
gl Vertex3fv (point_array);
gl End ();

In certain modes (for example, if lighting or texturing cal culations are performed), the assigned color
might go through other operations before arriving in the framebuffer as a value representing a color for a
pixel. In fact, the color of apixel is determined by a lengthy sequence of operations.

Early in a program's execution, the color-display mode is set to either RGBA mode or color-index mode.
Once the color-display mode isinitialized, it can't be changed. As the program executes, a color (either a
color index or an RGBA value) is determined on a per-vertex basis for each geometric primitive. This
color is either a color you've explicitly specified for avertex or, if lighting is enabled, is determined from
the interaction of the transformation matrices with the surface normals and other material properties. In
other words, ared ball with a blue light shining on it looks different from the same ball with no light on
it. (See Chapter 5 for details.) After the relevant lighting cal culations are performed, the chosen shading

model is applied. As explained in " Specifying a Color and a Shading Model," you can choose flat or
smooth shading, each of which has different effects on the eventual color of a pixel.

Next, the primitives are rasterized, or converted to a two-dimensional image. Rasterizing involves
determining which squares of an integer grid in window coordinates are occupied by the primitive and
then assigning color and other values to each such square. A grid square along with its associated values
of color, z (depth), and texture coordinates is called a fragment. Pixels are elements of the framebuffer; a
fragment comes from a primitive and is combined with its corresponding pixel to yield a new pixel. Once
afragment is constructed, texturing, fog, and antialiasing are applied - if they're enabled - to the
fragments. After that, any specified alpha blending, dithering, and bitwise logical operations are carried
out using the fragment and the pixel already stored in the framebuffer. Finally, the fragment's color value
(either color index or RGBA) is written into the pixel and displayed in the window using the window's
color-display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color datais stored at each pixel. This amount
is determined by the number of bitplanes in the framebuffer. A bitplane contains 1 bit of data for each
pixel. If there are 8color bitplanes, there are 8 color bits per pixel, and hence 28 = 256 different values or
colorsthat can be stored at the pixel.

Bitplanes are often divided evenly into storage for R, G, and B components (that is, a 24-bitplane system
devotes 8 bits each to red, green, and blue), but thisisn't alwaystrue. To find out the number of bitplanes
available on your system for red, green, blue, alpha, or color-index values, use glGetl ntegerv() with
GL_RED BITS, GL_GREEN BITS, GL_BLUE BITS, GL_ALPHA BITS, and GL_INDEX_BITS.

Note: Color intensities on most computer screens aren't perceived as linear by the human eye. Consider
colors consisting of just ared component, with green and blue set to zero. Asthe intensity varies from
0.0 (off) to 1.0 (full on), the number of electrons striking the pixelsincreases, but the question is, does

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (4 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9985_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

0.5 look like halfway between 0.0 and 1.0? To test this, write a program that draws aternate pixelsin a
checkerboard pattern to intensities 0.0 and 1.0, and compare it with aregion drawn solidly in color 0.5.
From a reasonable distance from the screen, the two regions should appear to have the same intensity. If
they ook noticeably different, you need to use whatever correction mechanism is provided on your
particular system. For example, many systems have atable to adjust intensities so that 0.5 appears to be
halfway between 0.0 and 1.0. The mapping generally used is an exponential one, with the exponent
referred to as gamma (hence the term gamma correction). Using the same gamma for the red, green, and
blue components gives pretty good results, but three different gamma values might give slightly better
results. (For more details on this topic, see Foley, van Dam, et al. Computer Graphics. Principles and
Practice. Reading, MA: Addison-Wesley Developers Press, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for each of the R, G, B, and A
components (not necessarily the same number for each component) as shown in Figure 4-2. The R, G,
and B values are typically stored as integers rather than floating-point numbers, and they're scaled to the
number of available bits for storage and retrieval. For example, if a system has 8 bits available for the R
component, integers between 0 and 255 can be stored; thus, 0, 1, 2, ..., 255 in the bitplanes would
correspond to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Regardless of the number of
bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies the maximum intensity.

e T~
Red .
- prm————— e
ﬁ (Mo
_l_J . EH""\-\..__\. H : T] ""\-\.Hll
i . |
____t. . | I | . "‘w'\-\.____h! I }
Green — | Tl
e I l"#
e T TR e
RO e

Figure4-2 : RGB Vauesfrom the Bitplanes

Note: The alphavalue (the A in RGBA) has no direct effect on the color displayed on the screen. It can
be used for many things, including blending and transparency, and it can have an effect on the values of
R, G, and B that are written. (See "Blending" in Chapter 6 for more information about alpha values.)

The number of distinct colors that can be displayed at asingle pixel depends on the number of bitplanes
and the capacity of the hardware to interpret those bitplanes. The number of distinct colors can't exceed
2n, where n isthe number of bitplanes. Thus, a machine with 24 bitplanes for RGB can display up to

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (5 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9814_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_12865_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
16.77 million distinct colors.

Dithering

Advanced

Some graphics hardware uses dithering to increase the number of apparent colors. Dithering isthe
technique of using combinations of some colors to create the effect of other colors. To illustrate how
dithering works, suppose your system has only 1 bit each for R, G, and B and thus can display only eight
colors: black, white, red, blue, green, yellow, cyan, and magenta. To display a pink region, the hardware
can fill the region in a checkerboard manner, alternating red and white pixels. If your eyeisfar enough
away from the screen that it can't distinguish individual pixels, the region appears pink - the average of
red and white. Redder pinks can be achieved by filling a higher proportion of the pixels with red, whiter
pinks would use more white pixels, and so on.

With this technique, there are no pink pixels. The only way to achieve the effect of "pinkness’ isto cover
aregion consisting of multiple pixels - you can't dither asingle pixel. If you specify an RGB value for an
unavailable color and fill a polygon, the hardware fills the pixelsin the interior of the polygon with a
mixture of nearby colors whose average appears to your eye to be the color you want. (Remember,
though, that if you're reading pixel information out of the framebuffer, you get the actual red and white
pixel values, since there aren't any pink ones. See Chapter 8 for more information about reading pixel

values.)

Figure 4-3 illustrates some simple dithering of black and white pixels to make shades of gray. From left
to right, the 4 x 4 patterns at the top represent dithering patterns for 50 percent, 19 percent, and 69
percent gray. Under each pattern, you can see repeated reduced copies of each pattern, but these black
and white squares are still bigger than most pixels. If you look at them from across the room, you can see
that they blur together and appear as three levels of gray.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (6 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9863_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

e PR
A H m EFEaEEEEENR
| | | |
EEEEEEENER
| | | |
EEEEEEEERN
| | | |
EEEEEEENER
| | | |

Figure 4-3: Dithering Black and White to Create Gray

With about 8 bits each of R, G, and B, you can get afairly high-quality image without dithering. Just
because your machine has 24 color bitplanes, however, doesn't mean that dithering won't be desirable.
For example, if you are running in double-buffer mode, the bitplanes might be divided into two sets of
twelve, so there are really only 4 bits each per R, G, and B component. Without dithering,
4-bit-per-component color can give less than satisfactory results in many situations.

Y ou enable or disable dithering by passing GL_DITHER to glEnable() or giDisable(). Note that
dithering, unlike many other features, is enabled by default.

Color-Index Display Mode

With color-index mode, OpenGL uses a color map (or lookup table), which is similar to using a palette to
mix paintsto prepare for a paint-by-number scene. A painter's palette provides spaces to mix paints
together; ssimilarly, a computer's color map provides indices where the primary red, green, and blue
values can be mixed, as shown in Figure 4-4.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (7 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9895_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Fed Green Blue

2
E

[J
[
aEE T BAEE N b 0O PO

Figure4-4: A Color Map

A painter filling in a paint-by-number scene chooses a color from the color palette and fills the
corresponding numbered regions with that color. A computer stores the color index in the bitplanes for
each pixel. Then those bitplane values reference the color map, and the screen is painted with the
corresponding red, green, and blue values from the color map, as shown in Figure 4-5.

Figure 4-5: Using a Color Map to Paint a Picture

In color-index mode, the number of simultaneously available colorsis limited by the size of the color
map and the number of bitplanes available. The size of the color map is determined by the amount of
hardware dedicated to it. The size of the color map is always a power of 2, and typical sizes range from
256 (28) to 4096 (212), where the exponent is the number of bitplanes being used. If there are 2n indices
in the color map and m available bitplanes, the number of usable entriesis the smaller of 2n and 2m.

With RGBA mode, each pixel's color isindependent of other pixels. However, in color-index mode, each

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (8 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_9909_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

pixel with the same index stored in its bitplanes shares the same color-map location. If the contents of an
entry in the color map change, then all pixels of that color index change their color.

Choosing between RGBA and Color-Index Mode

Y ou should base your decision to use RGBA or color-index mode on what hardware is available and on
what your application needs. For most systems, more colors can be simultaneously represented with
RGBA mode than with color-index mode. Also, for several effects, such as shading, lighting, texture
mapping, and fog, RGBA provides more flexibility than color-index mode.

Y ou might prefer to use color-index mode in the following cases:

« If you're porting an existing application that makes significant use of color-index mode, it might be
easier to not change to RGBA mode.

« If you have asmall number of bitplanes available, RGBA mode may produce noticeably coarse
shades of colors. For example, if you have only 8 bitplanes, in RGBA mode, you may have only 3
bitsfor red, 3 bits for green, and 2 bitsfor blue. Y ou'd only have 8 (23) shades of red and green,
and only 4 shades of blue. The gradients between color shades are likely to be very obvious.

In this situation, if you have limited shading requirements, you can use the color lookup table to
load more shades of colors. For example, if you need only shades of blue, you can use color-index
mode and store up to 256 (28) shades of blue in the color-lookup table, which is much better than
the 4 shades you would have in RGBA mode. Of course, this example would use up your entire
color-lookup table, so you would have no shades of red, green, or other combined colors.

« Color-index mode can be useful for various tricks, such as color-map animation and drawing in
layers. (See Chapter 14 for more information.)

In general, use RGBA mode wherever possible. It works with texture mapping and works better with
lighting, shading, fog, antialiasing, and blending.

Changing between Display Modes

In the best of al possible worlds, you might want to avoid making a choice between RGBA and
color-index display mode. For example, you may want to use color-index mode for a color-map
animation effect and then, when needed, immediately change the scene to RGBA mode for texture

mapping.

Or similarly, you may desire to switch between single and double buffering. For example, you may have
very few bitplanes; let's say 8 bitplanes. In single-buffer mode, you'll have 256 (28) colors, but if you are
using double-buffer mode to eliminate flickering from your animated program, you may only have 16
(24) colors. Perhaps you want to draw a moving object without flicker and are willing to sacrifice colors
for using double-buffer mode (maybe the object is moving so fast that the viewer won't notice the
details). But when the object comesto rest, you will want to draw it in single-buffer mode so that you can
use more colors.

Unfortunately, most window systems won't allow an easy switch. For example, with the X Window

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (9 of 14) [4/28/2000 9:45:19 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_28088_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

System, the color-display mode is an attribute of the X Visual. An X Visual must be specified before the
window is created. Once it is specified, it cannot be changed for the life of the window. After you create
awindow with a double-buffered, RGBA display mode, you're stuck with it.

A tricky solution to this problem is to create more than one window, each with a different display mode.
Then you must control the visibility of the windows (for example, mapping or unmapping an X Window,
or managing or unmanaging a Motif or Athena widget) and draw the object into the appropriate, visible
window.

Specifying a Color and a Shading Model

OpenGL maintains a current color (in RGBA mode) and a current color index (in color-index mode).
Unless you're using a more complicated coloring model such as lighting or texture mapping, each object
Is drawn using the current color (or color index). Look at the following pseudocode sequence:

set _col or (RED);
draw itemA);
draw_itenm(B);

set _col or (GREEN) ;
set _col or (BLUE);
draw_iten(O);

Items A and B aredrawn inred, and item C isdrawn in blue. The fourth line, which sets the current color
to green, has no effect (except to waste a bit of time). With no lighting or texturing, when the current
color is set, al items drawn afterward are drawn in that color until the current color is changed to
something else.

Specifying a Color in RGBA Mode

In RGBA mode, use the glColor*() command to select a current color.

void glColor3{b si f d ub usui} (TYPEr, TYPEg, TYPED);

void glColor4{b si f d ub usui} (TYPEr, TYPEg, TYPED, TYPEa);
void glColor3{b si f d ub usui}v (const TYPE*v);

void glColor4{b si f d ub usui}v (const TYPE*v);

Setsthe current red, green, blue, and alpha values. This command can have up to three suffixes,
which differentiate variations of the parameters accepted. The first suffix is either 3 or 4, to
indicate whether you supply an alpha value in addition to the red, green, and blue values. If you
don't supply an alpha value, it's automatically set to 1.0. The second suffix indicates the data type
for parameters. byte, short, integer, float, double, unsigned byte, unsigned short, or unsigned
integer. The third suffix is an optional v, which indicates that the argument is a pointer to an array
of values of the given data type.

For the versions of glColor*() that accept floating-point data types, the values should typically range
between 0.0 and 1.0, the minimum and maximum values that can be stored in the framebuffer.
Unsigned-integer color components, when specified, are linearly mapped to floating-point values such
that the largest representable value maps to 1.0 (full intensity), and zero mapsto 0.0 (zero intensity).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (10 of 14) [4/28/2000 9:45:19 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Signed-integer color components, when specified, are linearly mapped to floating-point values such that
the most positive representable value maps to 1.0, and the most negative representable value mapsto -1.0
(see Table 4-1).

Neither floating-point nor signed-integer values are clamped to the range [0,1] before updating the
current color or current lighting material parameters. After lighting calculations, resulting color values
outside the range [0,1] are clamped to the range [0,1] before they are interpolated or written into a color
buffer. Even if lighting is disabled, the color components are clamped before rasterization.

Table 4-1: Converting Color Vaues to Floating-Point Numbers

Suffix Data Type Minimum Value Min Maximum Value M ax
Value Value
Mapsto Mapsto

b 1-byte integer -128 -1.0 127 1.0

S 2-byte integer -32,768 -1.0 32,767 1.0

i 4-byte integer -2,147,483,648 -1.0 2,147,483,647 1.0

ub unsigned 1-byte | O 0.0 255 1.0
integer

us unsigned 2-byte | O 0.0 65,535 1.0
integer

ui unsigned 4-byte | O 0.0 4,294,967,295 1.0
integer

Specifying a Color in Color-Index Mode

In color-index mode, use the gll ndex* () command to select a single-valued color index as the current
color index.

void gll ndex{sifd ub}(TYPE c);

void gl ndex{sifd ub}v(const TYPE *c);
Sets the current color index to c. The first suffix for this command indicates the data type for
parameters: short, integer, float, double, or unsigned byte. The second, optional suffix isv, which
indicates that the argument is an array of values of the given data type (the array contains only
one value).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (11 of 14) [4/28/2000 9:45:20 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_10226_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

In "Clearing the Window" in Chapter 2, you saw the specification of glClear Color (). For color-index
mode, there is a corresponding glClear | ndex().
void glClear| ndex(GLfloat cindex);

Setsthe current clearing color in color-index mode. In a color-index mode window, a call to
glClear(GL_COLOR BUFFER BIT) will use cindex to clear the buffer. The default clearing
index is 0.0.

Note: OpenGL does not have any routines to load values into the col or-lookup table. Window systems
typically already have such operations. GLUT has the routine glutSetColor () to call the window-system
specific commands.

Advanced

The current index is stored as a floating-point value. Integer values are converted directly to
floating-point values, with no special mapping. Index values outside the representabl e range of the
color-index buffer aren't clamped. However, before an index is dithered (if enabled) and written to the
framebuffer, it's converted to fixed-point format. Any bits in the integer portion of the resulting
fixed-point value that don't correspond to bitsin the framebuffer are masked oui.

Specifying a Shading Model

A line or afilled polygon primitive can be drawn with asingle color (flat shading) or with many different
colors (smooth shading, also called Gouraud shading). Y ou specify the desired shading technique with
glShadeM odel().

void glShadeModel (GLenum mode);

Sets the shading model. The mode parameter can be either GL_SMOOTH (the default) or
GL_FLAT.

With flat shading, the color of one particular vertex of an independent primitive is duplicated across al
the primitive's vertices to render that primitive. With smooth shading, the color at each vertex is treated
individually. For aline primitive, the colors along the line segment are interpolated between the vertex
colors. For a polygon primitive, the colors for the interior of the polygon are interpolated between the
vertex colors. Example 4-1 draws a smooth-shaded triangle, as shown in "Plate 11" in Appendix .

Example 4-1 : Drawing a Smooth-Shaded Triangle: smooth.c

#i ncl ude <@./gl. h>
#i ncl ude <G/ gl ut. h>

void init(void)

{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._SMOOTH);

}

void triangle(void)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (12 of 14) [4/28/2000 9:45:20 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%14_2086_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_10349_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_38524_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Begin (GL_TRI ANGLES);

gl Color3f (1.0, 0.0, 0.0);
gl Vertex2f (5.0, 5.0);

gl Col or3f (0.0, 1.0, 0.0);
gl Vertex2f (25.0, 5.0);

gl Col or3f (0.0, 0.0, 1.0);
gl Vertex2f (5.0, 25.0);

gl End() ;

voi d di spl ay(voi d)

gl dear (G_CO.OR BUFFER BIT);
triangle ();
gl Flush ();

voi d reshape (int w, int h)

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON);
gl Loadl dentity ();
if (w <= h)

gl uGtho2D (0.0, 30.0, 0.0, 30.0*(G.float) h/(Gfloat) w;
el se

gluOGrtho2D (0.0, 30.0*(G.float) w (G.float) h, 0.0, 30.0);
gl Mat ri xMode(G._MODELVI EW ;

}

int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitDi splayMde (GLUT_SINGLE | G.UT_RGB);
gl ut I ni t WndowSi ze (500, 500);
gl ut!l ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[O0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop();
return O;

}

With smooth shading, neighboring pixels have dlightly different color values. In RGBA mode, adjacent
pixels with dlightly different values look similar, so the color changes across a polygon appear gradual .
In color-index mode, adjacent pixels may reference different locations in the color-index table, which

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (13 of 14) [4/28/2000 9:45:20 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

may not have similar colorsat al. Adjacent color-index entries may contain wildly different colors, so a
smooth-shaded polygon in color-index mode can look psychedelic.

To avoid this problem, you have to create a color ramp of smoothly changing colors among a contiguous
set of indices in the color map. Remember that loading colors into a color map is performed through your
window system rather than OpenGL. If you use GLUT, you can use glutSetColor () to load asingle
index in the color map with specified red, green, and blue values. The first argument for glutSetColor ()
isthe index, and the others are the red, green, and blue values. To load thirty-two contiguous color
indices (from color index 16 to 47) with dlightly differing shades of yellow, you might call
for (i =0; I < 32; i++) {

gl ut Set Col or (16+i, 1.0*(i/32.0), 1.0*(i/32.0), 0.0);
}

Now, if you render smooth-shaded polygons that use only the colors from index 16 to 47, those polygons
have gradually differing shades of yellow.

With flat shading, the color of a single vertex defines the color of an entire primitive. For aline segment,
the color of the line isthe current color when the second (ending) vertex is specified. For a polygon, the
color used isthe one that's in effect when a particular vertex is specified, as shown in Table 4-2. The
table counts vertices and polygons starting from 1. OpenGL follows these rules consistently, but the best
way to avoid uncertainty about how a flat-shaded primitive will be drawn is to specify only one color for
the primitive.

Table4-2: How OpenGL Selects a Color for the ith Flat-Shaded Polygon

Type of Polygon Vertex Used to Select the Color for theith Polygon

single polygon 1
triangle strip i+2
triangle fan i+2

independent triangle | 3i

quad strip 2i+2

independent quad 4

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw.../@Generic__BookTextView/9601;cs=fullhtml;pt=6635 (14 of 14) [4/28/2000 9:45:20 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=9601?target=%25N%15_10426_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 5
Lighting

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Understand how real-world lighting conditions are approximated by OpenGL

« Render illuminated objects by defining the desired light sources and lighting model
« Definethe material properties of the objects being illuminated

« Manipulate the matrix stack to control the position of light sources

Asyou saw in Chapter 4, OpenGL computes the color of each pixel in afinal, displayed scene that's held

in the framebuffer. Part of this computation depends on what lighting is used in the scene and on how
objects in the scene reflect or absorb that light. As an example of this, recall that the ocean has a different
color on a bright, sunny day than it does on agray, cloudy day. The presence of sunlight or clouds
determines whether you see the ocean as bright turquoise or murky gray-green. In fact, most objects don't
even look three-dimensional until they'relit. Figure 5-1 shows two versions of the exact same scene (a

single sphere), one with lighting and one without.

Figure5-1: A Lit and an Unlit Sphere

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (1 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10463_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Asyou can see, an unlit sphere looks no different from atwo-dimensional disk. This demonstrates how
critical the interaction between objects and light isin creating a three-dimensional scene.

With OpenGL, you can manipulate the lighting and objects in a scene to create many different kinds of
effects. This chapter begins with a primer on hidden-surface removal. Then it explains how to control the
lighting in a scene, discusses the OpenGL conceptual model of lighting, and describes in detail how to
set the numerous illumination parameters to achieve certain effects. Toward the end of the chapter, the
mathematical computations that determine how lighting affects color are presented.

This chapter contains the following major sections:

« "A Hidden-Surface Removal Survival Kit" describes the basics of removing hidden surfaces from
view.

"Real-World and OpenGL Lighting" explainsin general terms how light behavesin the world and
how OpenGL models this behavior.

« "A Simple Example: Rendering a Lit Sphere" introduces the OpenGL lighting facility by
presenting a short program that renders alit sphere.

« "Creating Light Sources' explains how to define and position light sources.

» "Selecting aLighting Model" discusses the elements of alighting model and how to specify them.

« "Defining Material Properties’ explains how to describe the properties of objects so that they
interact with light in adesired way.

« "The Mathematics of Lighting" presents the mathematical calculations used by OpenGL to
determine the effect of lightsin a scene.

o "Lighting in Color-Index Mode" discusses the differences between using RGBA mode and
color-index mode for lighting.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three-dimensional objects, in earnest. With shaded
polygons, it becomes very important to draw the objects that are closer to our viewing position and to
eliminate objects obscured by others nearer to the eye.

When you draw a scene composed of three-dimensional objects, some of them might obscure all or parts
of others. Changing your viewpoint can change the obscuring relationship. For example, if you view the
scene from the opposite direction, any object that was previoudly in front of another is now behind it. To

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (2 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10567_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10648_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10791_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11474_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11673_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12566_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

draw arealistic scene, these obscuring relationships must be maintained. Suppose your code works like
this:
while (1) {
get _view ng_point_from nouse_position();
gl A ear (G._COLOR BUFFER BIT);
draw 3d_object A();
draw _3d_object B();
}

For some mouse positions, object A might obscure object B. For others, the reverse may hold. If nothing
special is done, the preceding code always draws object B second (and thus on top of object A) no matter
what viewing position is selected. In aworst case scenario, if objects A and B intersect one another so
that part of object A obscures object B and part of B obscures A, changing the drawing order does not
provide a solution.

The elimination of parts of solid objects that are obscured by othersis called hidden-surface removal.
(Hidden-line removal, which does the same job for objects represented as wireframe skeletons, is a bit
trickier and isn't discussed here. See "Hidden-Line Removal" in Chapter 14 for details.) The easiest way
to achieve hidden-surface removal is to use the depth buffer (sometimes called a z-buffer). (Also see

Chapter 10.)

A depth buffer works by associating a depth, or distance, from the view plane (usually the near clipping
plane), with each pixel on the window. Initially, the depth values for all pixels are set to the largest
possible distance (usually the far clipping plane) using the glClear () command with
GL_DEPTH_BUFFER _BIT. Then the objectsin the scene are drawn in any order.

Graphical calculations in hardware or software convert each surface that's drawn to a set of pixels on the
window where the surface will appear if it isn't obscured by something else. In addition, the distance
from the view plane is computed. With depth buffering enabled, before each pixel is drawn a comparison
is done with the depth value already stored at the pixel. If the new pixel is closer than (in front of) what's
there, the new pixel's color and depth values replace those that are currently written into the pixel. If the
new pixel's depth is greater than what's currently there, the new pixel is obscured, and the color and
depth information for the incoming pixel is discarded.

To use depth buffering, you need to enable depth buffering. This has to be done only once. Before
drawing, each time you draw the scene, you need to clear the depth buffer and then draw the objectsin
the scene in any order.

To convert the preceding code example so that it performs hidden-surface removal, modify it to the
following:

glutlnitD splayMde (GQUT _DEPTH |);
gl Enabl e(G._DEPTH_TEST) ;

while (1) {
gl dear(G_COOR BUFFER BIT | G._DEPTH BUFFER BI T);
get _view ng_point_from nouse position();
draw _3d_object A();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (3 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_29206_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_21147_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
draw 3d _object B();

The argument to glClear () clears both the depth and color buffers.

Depth-buffer testing can affect the performance of your application. Since information is discarded rather
than used for drawing, hidden-surface removal can increase your performance slightly. However, the
implementation of your depth buffer probably has the greatest effect on performance. A "software”" depth
buffer (implemented with processor memory) may be much slower than one implemented with a
specialized hardware depth buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye's perception of the color depends on the distribution of
photon energies that arrive and trigger your cone cells. (See "Color Perception” in Chapter 4.) Those
photons come from a light source or combination of sources, some of which are absorbed and some of
which are reflected by the surface. In addition, different surfaces may have very different properties -
some are shiny and preferentially reflect light in certain directions, while others scatter incoming light
equally in all directions. Most surfaces are somewhere in between.

OpenGL approximates light and lighting as if light can be broken into red, green, and blue components.
Thus, the color of light sources is characterized by the amount of red, green, and blue light they emit, and
the material of surfacesis characterized by the percentage of the incoming red, green, and blue
components that is reflected in various directions. The OpenGL lighting equations are just an
approximation but one that works fairly well and can be computed relatively quickly. If you desire a
more accurate (or just different) lighting model, you have to do your own calculations in software. Such
software can be enormously complex, as afew hours of reading any optics textbook should convince
you.

In the OpenGL lighting model, the light in a scene comes from several light sources that can be
individually turned on and off. Some light comes from a particular direction or position, and some light
Is generally scattered about the scene. For example, when you turn on alight bulb in aroom, most of the
light comes from the bulb, but some light comes after bouncing off one, two, three, or morewalls. This
bounced light (called ambient) is assumed to be so scattered that there is no way to tell itsorigina
direction, but it disappearsif a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular source, asif it
had been scattered so many times that its original source isimpossible to determine.

In the OpenGL model, the light sources have an effect only when there are surfaces that absorb and
reflect light. Each surface is assumed to be composed of a material with various properties. A materia
might emit its own light (like headlights on an automobile), it might scatter some incoming light in all
directions, and it might reflect some portion of the incoming light in a preferential direction like amirror
or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into four independent components:
emissive, ambient, diffuse, and specular. All four components are computed independently and then

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (4 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_9652_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

added together.

Ambient, Diffuse, and Specular Light

Ambient illumination is light that's been scattered so much by the environment that its direction is
impossible to determine - it seems to come from all directions. Backlighting in aroom has alarge
ambient component, since most of the light that reaches your eye has first bounced off many surfaces. A
spotlight outdoors has a tiny ambient component; most of the light travels in the same direction, and
since you're outdoors, very little of the light reaches your eye after bouncing off other objects. When
ambient light strikes a surface, it's scattered equally in all directions.

The diffuse component is the light that comes from one direction, so it's brighter if it comes squarely
down on a surface than if it barely glances off the surface. Once it hits a surface, however, it's scattered
equally in all directions, so it appears equally bright, no matter where the eyeislocated. Any light
coming from a particular position or direction probably has a diffuse component.

Finally, specular light comes from a particular direction, and it tends to bounce off the surfacein a
preferred direction. A well-collimated laser beam bouncing off a high-quality mirror produces almost
100 percent specular reflection. Shiny metal or plastic has a high specular component, and chalk or
carpet has amost none. Y ou can think of specularity as shininess.

Although alight source delivers a single distribution of frequencies, the ambient, diffuse, and specular
components might be different. For example, if you have awhite light in aroom with red walls, the
scattered light tends to be red, although the light directly striking objects is white. OpenGL allows you to
set the red, green, and blue values for each component of light independently.

Material Colors

The OpenGL lighting model makes the approximation that a material’'s color depends on the percentages
of the incoming red, green, and blue light it reflects. For example, a perfectly red ball reflects all the
incoming red light and absorbs all the green and blue light that strikesiit. If you view such aball in white
light (composed of equal amounts of red, green, and blue light), all the red is reflected, and you see ared
ball. If the ball isviewed in pure red light, it also appears to be red. If, however, thered ball isviewed in
pure green light, it appears black (all the green is absorbed, and there's no incoming red, so no light is
reflected).

Like lights, materials have different ambient, diffuse, and specular colors, which determine the ambient,
diffuse, and specular reflectances of the material. A material's ambient reflectance is combined with the
ambient component of each incoming light source, the diffuse reflectance with the light's diffuse
component, and similarly for the specular reflectance and component. Ambient and diffuse reflectances
define the color of the material and are typically similar if not identical. Specular reflectance is usually
white or gray, so that specular highlights end up being the color of the light source's specular intensity. If
you think of awhite light shining on a shiny red plastic sphere, most of the sphere appears red, but the
shiny highlight is white.

In addition to ambient, diffuse, and specular colors, materials have an emissive color, which simulates
light originating from an object. In the OpenGL lighting model, the emissive color of a surface adds

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (5 of 35) [4/28/2000 9:45:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

intensity to the object, but is unaffected by any light sources. Also, the emissive color does not introduce
any additional light into the overall scene.

RGB Values for Lights and Materials

The color components specified for lights mean something different than for materials. For alight, the
numbers correspond to a percentage of full intensity for each color. If the R, G, and B valuesfor alight's
color are adll 1.0, thelight isthe brightest possible white. If the values are 0.5, the color is still white, but
only at half intensity, so it appears gray. If R=G=1 and B=0 (full red and green with no blue), the light
appears yellow.

For materials, the numbers correspond to the reflected proportions of those colors. So if R=1, G=0.5, and
B=0 for amaterial, that material reflects all the incoming red light, half the incoming green, and none of
the incoming blue light. In other words, if an OpenGL light has components (LR, LG, LB), and a
material has corresponding components (MR, MG, MB), then, ignoring all other reflectivity effects, the
light that arrives at the eyeis given by (LR*MR, LG*MG, LB*MB).

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to the eye, OpenGL adds the
components, giving (R1+R2, G1+G2, B1+B2). If any of the sums are greater than 1 (corresponding to a
color brighter than the equipment can display), the component is clamped to 1.

A Simple Example: Rendering a Lit Sphere

These are the steps required to add lighting to your scene.

1. Define normal vectors for each vertex of all the objects. These normals determine the orientation
of the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and select alighting model, which defines the level of global ambient light and the effective
location of the viewpoint (for the purposes of lighting calculations).

4. Define material properties for the objectsin the scene.

Example 5-1 accomplishes these tasks. It displays a sphere illuminated by a single light source, as shown
earlier in Figure 5-1.

Example 5-1 : Drawing aLit Sphere: light.c

#i ncl ude <G./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>

voi d init(void)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (6 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10463_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

G.fl oat mat _specular[] ={ 1.0, 1.0, 1.0, 1.0 },;
G.fl oat mat _shininess[] = { 50.0 };

G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);

gl ShadeModel (G._SMOOTH) ;

gl Material fv(G._FRONT, G. SPECULAR, mat specul ar);
gl Materi al fv(G_FRONT, G._SHI NI NESS, mat _shi ni ness);
gl Lightfv(G._LIGHTO, G._POSITION, |ight _position);

gl Enabl e(GL_LI GHTI NG) ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(GL_DEPTH_TEST) ;

}
voi d di spl ay(voi d)
{
gl ear (G_COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere (1.0, 20, 16);
gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
glOtho (-1.5, 1.5, -1.5*(Gfloat)h/(G.float)w,
1.5*(G.float)h/(Gfloat)w, -10.0, 10.0);
el se
glOrtho (-1.5*(CG.float)w (Gfl oat)h,
1.5*(G.float)w (Gfloat)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
I nt main(int argc, char** argv)
{

glutlnit(&rgc, argv);

glutlnitD splayMde (GQUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl ut I ni t WndowSi ze (500, 500);

gl utl ni t WndowPosition (100, 100);

gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (7 of 35) [4/28/2000 9:45:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

}

The lighting-related calls are in the init() command; they're discussed briefly in the following paragraphs
and in more detail later in the chapter. One thing to note about Example 5-1 isthat it uses RGBA color
mode, not color-index mode. The OpenGL lighting calculation is different for the two modes, and in fact
the lighting capabilities are more limited in color-index mode. Thus, RGBA isthe preferred mode when
doing lighting, and all the examplesin this chapter useit. (See "Lighting in Color-Index Mode" for more
information about lighting in color-index mode.)

Define Normal Vectors for Each Vertex of Every Object

An object's normals determine its orientation relative to the light sources. For each vertex, OpenGL uses
the assigned normal to determine how much light that particular vertex receives from each light source.
In this example, the normals for the sphere are defined as part of the glutSolidSpher &) routine. (See
"Normal Vectors' in Chapter 2 for more details on how to define normals.)

Create, Position, and Enable One or More Light Sources

Example 5-1 uses only one, white light source; its location is specified by the glLightfv() call. This

example uses the default color for light zero (GL_LIGHTO), which iswhite; if you want a differently
colored light, use glLight*() to indicate this. You can include at least eight different light sourcesin your
scene of various colors; the default color of these other lightsis black. (The particular implementation of
OpenGL you're using might allow more than eight.) Y ou can also locate the lights wherever you desire -
you can position them near the scene, as a desk lamp would be, or an infinite distance away, like the sun.
In addition, you can control whether alight produces a narrow, focused beam or awider beam.
Remember that each light source adds significantly to the cal culations needed to render the scene, so
performance is affected by the number of lightsin the scene. (See "Creating Light Sources' for more

information about how to create lights with the desired characteristics.)

After you've defined the characteristics of the lights you want, you have to turn them on with the
glEnable() command. Y ou aso need to call glEnable() with GL_LIGHTING as a parameter to prepare
OpenGL to perform lighting calculations. (See "Enabling Lighting" for more information.)

Select a Lighting Model

Asyou might expect, the glLightM odel* () command describes the parameters of alighting model. In
Example 5-1, the only element of the lighting model that's defined explicitly is the global ambient light.
The lighting model also defines whether the viewer of the scene should be considered to be an infinite
distance away or local to the scene, and whether lighting cal culations should be performed differently for
the front and back surfaces of objectsin the scene. Example 5-1 uses the default settings for these two
aspects of the model - an infinite viewer and one-sided lighting. Using alocal viewer adds significantly
to the complexity of the calculations that must be performed, because OpenGL must cal culate the angle
between the viewpoint and each object. With an infinite viewer, however, the angle isignored, and the

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (8 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12566_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_4319_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10791_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

results are dightly less redlistic. Further, since in this example, the back surface of the sphereis never
seen (it's the inside of the sphere), one-sided lighting is sufficient. (See "Selecting a Lighting Model" for
amore detailed description of the elements of an OpenGL lighting model.)

Define Material Properties for the Objects in the Scene

An object's material properties determine how it reflects light and therefore what material it ssemsto be
made of. Because the interaction between an object's material surface and incident light is complex,
specifying material properties so that an object has a certain desired appearance is an art. Y ou can specify
amaterial's ambient, diffuse, and specular colors and how shiny it is. In this example, only these last two
material properties - the specular material color and shininess - are explicitly specified (with the
glMaterialfv() calls). (See "Defining Material Properties’ for a description and examples of all the

material-property parameters.)

Some Important Notes

Asyou write your own lighting program, remember that you can use the default values for some lighting
parameters; others need to be changed. Also, don't forget to enable whatever lights you define and to
enable lighting calculations. Finally, remember that you might be able to use display lists to maximize
efficiency as you change lighting conditions. (See "Display-List Design Philosophy" in Chapter 7.)

Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The following sections
explain how to control these properties and what the resulting light looks like. The command used to
specify all properties of lightsis glLight*(); it takes three arguments: to identify the light whose property
Is being specified, the property, and the desired value for that property.
void glLight{if}(GLenum light, GLenum pname, TYPEparam);
void glLight{if}v(GLenum light, GLenum pname, TYPE * param);
Creates the light specified by light, which can be GL_LIGHTO, GL_LIGHT]Y, ..., or GL_LIGHT?7.
The characteristic of the light being set is defined by pname, which specifies a named parameter
(see Table 5-1). param indicates the values to which the pname characteristic is set; it's a pointer
to a group of values if the vector version is used, or the value itself if the nonvector version is used.
The nonvector version can be used to set only single-valued light characteristics.

Table5-1: Default Values for pname Parameter of glLight* ()

Parameter Name Default Value Meaning
GL_AMBIENT (0.0,0.0,0.0,1.0) | ambient RGBA intensity of light
GL_DIFFUSE (2.0,1.0,1.0,1.0) | diffuse RGBA intensity of light

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...@Generic__BookTextView/10431;cs=fullhtml;pt=9601 (9 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11474_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11673_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10972_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_SPECULAR (1.0,1.0,1.0,1.0) | specular RGBA intensity of light
GL_POSITION (0.0,0.0,1.0,0.0) | (x,Y,z, w) position of light
GL_SPOT_DIRECTION (0.0,0.0,-1.0 (X, Y, z) direction of spotlight
GL_SPOT_EXPONENT 0.0 spotlight exponent
GL_SPOT_CUTOFF 180.0 spotlight cutoff angle
GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor
GL_LINEAR_ATTENUATION 0.0 linear attenuation factor
GL_QUADRATIC _ATTENUATION | 0.0 guadratic attenuation factor

Note: The default valueslisted for GL_DIFFUSE and GL_SPECULAR in Table 5-1 apply only to

GL_LIGHTO. For other lights, the default valueis (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE and
GL_SPECULAR.

Example 5-2 shows how to use gL ight*():
Example 5-2 : Defining Colors and Position for a Light Source

G.float light _anmbient[] = { 0.0, 0.0, 0.0, 1.0 };
G.float light diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };

gl Lightfv(G__LI GHTO, G._AMBI ENT, |ight_anbi ent);
gl Lightfv(G _LI GHTO, G._DI FFUSE, |ight _diffuse);
gl Lightfv(G_LI GHTO, G._SPECULAR, |ight_specul ar);
gl Lightfv(G _LIGHTO, G._POSITION, |ight_position);

Asyou can see, arrays are defined for the parameter values, and glL ightfv() is called repeatedly to set the
various parameters. In this example, the first three calls to glL ightfv() are superfluous, since they're
being used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR
parameters.

Note: Remember to turn on each light with glEnable(). (See "Enabling Lighting" for more information
about how to do this.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (10 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10972_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10996_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11652_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

All the parameters for glLight* () and their possible values are explained in the following sections. These
parameters interact with those that define the overall lighting model for a particular scene and an object's
material properties. (See"Selecting a Lighting Model" and "Defining Material Properties’ for more
information about these two topics. "The Mathematics of Lighting” explains how all these parameters
interact mathematically.)

Color

OpenGL allows you to associate three different color-related parameters - GL_ AMBIENT,

GL_DIFFUSE, and GL_SPECULAR - with any particular light. The GL_AMBIENT parameter refersto
the RGBA intensity of the ambient light that a particular light source adds to the scene. Asyou can seein
Table 5-1, by default there is no ambient light since GL_AMBIENT is (0.0, 0.0, 0.0, 1.0). This value was

used in Example 5-1. If this program had specified blue ambient light as

G.float light _anbient[] ={ 0.0, 0.0, 1.0, 1.0},
gl Lightfv(G _LI GHTO, G._AMBI ENT, |ight _anbient);

the result would have been as shown in the left side of "Plate 13" in Appendix |.

The GL_DIFFUSE parameter probably most closely correlates with what you naturally think of as "the
color of alight." It definesthe RGBA color of the diffuse light that a particular light source addsto a
scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO, which produces a bright, white
light as shown in the left side of "Plate 13" in Appendix |. The default value for any other light

(GL_LIGHTY, ..., GL_LIGHT?) is(0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object. Typically, a
real-world object such as a glass bottle has a specular highlight that's the color of the light shining on it
(which is often white). Therefore, if you want to create arealistic effect, set the GL_SPECULAR
parameter to the same value as the GL_DIFFUSE parameter. By default, GL_SPECULAR is (1.0, 1.0,
1.0, 1.0) for GL_LIGHTO and (0.0, 0.0, 0.0, 0.0) for any other light.

Note: The alpha component of these colorsis not used until blending is enabled. (See Chapter 6.) Until
then, the alpha value can be safely ignored.

Position and Attenuation

As previously mentioned, you can choose whether to have alight source that's treated as though it's
located infinitely far away from the scene or one that's nearer to the scene. Thefirst type isreferred to as
adirectional light source; the effect of an infinite location is that the rays of light can be considered
parallel by the time they reach an object. An example of areal-world directional light sourceisthe sun.
The second typeis called a positional light source, since its exact position within the scene determines
the effect it has on a scene and, specifically, the direction from which the light rays come. A desk lamp is
an example of apositional light source. Y ou can see the difference between directional and positional
lightsin "Plate 12" in Appendix |. The light used in Example 5-1 isadirectional one:

G.float light _position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl Lightfv(G _LIGHTO, G._POSITION, |ight_position);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (11 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11474_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11673_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10972_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38542_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38542_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12802_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38533_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

As shown, you supply avector of four values (x, y, z, w) for the GL_POSITION parameter. If the last
value, w, is zero, the corresponding light source is a directional one, and the (X, y, z) values describe its
direction. This direction is transformed by the modelview matrix. By default, GL_POSITION is (0, 0, 1,
0), which defines adirectional light that points along the negative z-axis. (Note that nothing prevents you
from creating a directional light with the direction of (O, O, 0), but such alight won't help you much.)

If the w value is nonzero, the light is positional, and the (x, y, z) values specify the location of thelight in
homogeneous object coordinates. (See Appendix F.) Thislocation is transformed by the modelview
matrix and stored in eye coordinates. (See "Controlling a Light's Position and Direction” for more
information about how to control the transformation of the light'slocation.) Also, by default, a positional
light radiates in all directions, but you can restrict it to producing a cone of illumination by defining the
light as a spotlight. (See " Spotlights' for an explanation of how to define alight as a spotlight.)

Note: Remember that the colors across the face of a smooth-shaded polygon are determined by the colors
calculated for the vertices. Because of this, you probably want to avoid using large polygons with local
lights. If you locate the light near the middle of the polygon, the vertices might be too far away to receive
much light, and the whole polygon will ook darker than you intended. To avoid this problem, break up
the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases. Since a
directional light isinfinitely far away, it doesn't make sense to attenuate its intensity over distance, so
attenuation is disabled for a directional light. However, you might want to attenuate the light from a
positional light. OpenGL attenuates a light source by multiplying the contribution of that source by an
attenuation factor:

1

attenuation factor = >
k. + igd + k,d

where

d = distance between the light's position and the vertex
kc = GL_CONSTANT_ATTENUATION

kI =GL_LINEAR ATTENUATION
kq=GL_QUADRATIC_ATTENUATION

By default, kc is 1.0 and both kl and kq are zero, but you can give these parameters different val ues:

gl Li ght f (GL_LI GHTO, GL_CONSTANT ATTENUATI ON, 2.0);
gl Li ght f (GL_LI GHTO, GL_LI NEAR ATTENUATI ON, 1.0);
gl Li ght f (GL_LI GHTO, GL_QUADRATI C_ATTENUATI ON, 0. 5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the emission and global
ambient values aren't attenuated. Also note that since attenuation requires an additional division (and
possibly more math) for each calculated color, using attenuated lights may slow down application
performance.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (12 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_37453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11271_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11183_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Spotlights

As previously mentioned, you can have a positional light source act as a spotlight - that is, by restricting
the shape of the light it emitsto a cone. To create a spotlight, you need to determine the spread of the
cone of light you desire. (Remember that since spotlights are positional lights, you also have to locate
them where you want them. Again, note that nothing prevents you from creating a directional spotlight,
but it won't give you the result you want.) To specify the angle between the axis of the cone and aray
along the edge of the cone, usethe GL_SPOT CUTOFF parameter. The angle of the cone at the apex is
then twice this value, as shown in Figure 5-2.

5L SPOT_CUTOFF

Figure5-2: GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight feature is disabled
because the GL_SPOT CUTOFF parameter is 180.0. This value means that light is emitted in all
directions (the angle at the cone's apex is 360 degrees, so it isn't acone at all). The value for
GL_SPOT_CUTOFF isrestricted to being within the range [0.0,90.0] (unlessit has the special value
180.0). The following line sets the cutoff parameter to 45 degrees.

gl Lightf(G__LI GHTO, G._SPOT_CUTCFF, 45.0);

Y ou also need to specify a spotlight's direction, which determines the axis of the cone of light:

G.fl oat spot _direction[] ={ -1.0, -1.0, 0.0 };
gl Lightfv(G _LIGHTO, G._SPOT_DI RECTI ON, spot _direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0), so if you don't
explicitly set the value of GL_SPOT_DIRECTION, the light points down the negative z-axis. Also, keep
in mind that a spotlight's direction is transformed by the modelview matrix just as though it were a
normal vector, and the result is stored in eye coordinates. (See "Controlling a Light's Position and

Direction" for more information about such transformations.)

In addition to the spotlight's cutoff angle and direction, there are two ways you can control the intensity
distribution of the light within the cone. First, you can set the attenuation factor described earlier, which

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (13 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11196_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11271_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11271_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

iIsmultiplied by the light'sintensity. You can also set the GL_SPOT_EXPONENT parameter, which by
default is zero, to control how concentrated the light is. The light'sintensity is highest in the center of the
cone. It's attenuated toward the edges of the cone by the cosine of the angle between the direction of the
light and the direction from the light to the vertex being lit, raised to the power of the spot exponent.
Thus, higher spot exponents result in a more focused light source. (See "The Mathematics of Lighting"

for more details on the equations used to calculate light intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly more, depending on your
OpenGL implementation). Since OpenGL needs to perform cal culations to determine how much light
each vertex receives from each light source, increasing the number of lights adversely affects
performance. The constants used to refer to the eight lightsare GL_LIGHTO, GL_LIGHT1,
GL_LIGHT?2, GL_LIGHT3, and so on. In the preceding discussions, parametersrelated to GL_LIGHTO
were set. If you want an additional light, you need to specify its parameters; also, remember that the
default values are different for these other lights than they are for GL_LIGHTO, as explained in Table

5-1. Example 5-3 defines a white attenuated spotlight.

Example 5-3 : Second Light Source

G.float lightl anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
G.float lightl diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float lightl specular[] ={ 1.0, 1.0, 1.0, 1.0 },;
G.float lightl position[] ={ -2.0, 2.0, 1.0, 1.0 };
G.fl oat spot direction[] ={ -1.0, -1.0, 0.0 };

gl Lightfv(G._LIGHT1, G._AMBIENT, lightl anbient);
gl Lightfv(G _LIGHT1l, G._DIFFUSE, |ightl diffuse);
gl Lightfv(G _LIGHT1, G._SPECULAR, |ightl specul ar);
gl Lightfv(G._LIGHT1, G._POSITION, |ightl position);
gl Lightf(G._LI GHT1, GL_CONSTANT_ ATTENUATI ON, 1.5);
gl Lightf(G._LI GHT1, G._LI NEAR ATTENUATI ON, O0.5);

gl Lightf(G._LI GHT1, G._QUADRATI C_ATTENUATI ON, 0. 2);

gl Lightf(G__LIGHT1, G._SPOT_CUTCFF, 45.0);
gl Lightfv(G._LIGHT1, G._SPOT_DI RECTI ON, spot _direction);
gl Lightf (G._LI GHT1, G._SPOT_EXPONENT, 2.0);

gl Enabl e(GL_LI GHT1) ;

If these lines were added to Example 5-1, the sphere would be lit with two lights, one directional and one
spotlight.

Try This
Modify Example 5-1 in the following manner:
« Changethefirst light to be a positional colored light rather than a directional white one.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (14 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10972_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10972_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11241_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

« Add an additional colored spotlight. Hint: Use some of the code shown in the preceding section.

« Measure how these two changes affect performance.

Controlling a Light's Position and Direction

OpenGL treats the position and direction of alight source just as it treats the position of a geometric
primitive. In other words, alight source is subject to the same matrix transformations as a primitive.
More specifically, when glLight*() is called to specify the position or the direction of alight source, the
position or direction is transformed by the current modelview matrix and stored in eye coordinates. This
means you can manipulate alight source's position or direction by changing the contents of the
modelview matrix. (The projection matrix has no effect on alight's position or direction.) This section
explains how to achieve the following three different effects by changing the point in the program at
which the light position is set, relative to modeling or viewing transformations:

« A light position that remains fixed
« A light that moves around a stationary object

« A light that moves along with the viewpoint
Keeping the Light Stationary

In the simplest example, asin Example 5-1, the light position remains fixed. To achieve this effect, you
need to set the light position after whatever viewing and/or modeling transformation you use. In Example
5-4, the relevant code from the init() and reshape() routines might look like this.

Example 5-4 : Stationary Light Source

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
glOtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
el se
glOtho (-1.5*wh, 1.5*w/h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMbde (G._MODELVI EW
gl Loadl dentity();

[* later ininit() */
G.float light position[] ={ 1.0, 1.0, 1.0, 1.0 };
gl Lightfv(G_LIGHTO, G._POSI TI ON, position);

Asyou can see, the viewport and projection matrices are established first. Then, the identity matrix is
loaded as the modelview matrix, after which the light position is set. Since the identity matrix is used, the
originally specified light position (1.0, 1.0, 1.0) isn't changed by being multiplied by the modelview

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (15 of 35) [4/28/2000 9:45:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11311_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11311_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

matrix. Then, since neither the light position nor the modelview matrix is modified after this point, the
direction of the light remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or transglate the light position so that the light movesrelativeto a
stationary object. One way to do thisisto set the light position after the modeling transformation, which
Isitself changed specifically to modify the light position. Y ou can begin with the same series of callsin
init() early in the program. Then you need to perform the desired modeling transformation (on the
modelview stack) and reset the light position, probably in display(). Example 5-5 shows what display()

might be.

Example 5-5 : Independently Moving Light Source
static G.doubl e spi n;

voi d di spl ay(voi d)

{
G.float light_position[] = { 0.0, 0.0, 1.5, 1.0 };
gl dear(G_COOR BUFFER BI T | G._DEPTH BUFFER BIT);
gl PushMatri x();
gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
gl PushMatri x();
gl Rot ated(spin, 1.0, 0.0, 0.0);
gl Lightfv(G._LIGHTO, G._POSITION, |ight _position);
gl PopMatri x();
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMatri x();
gl Fl ush();
}

spinisaglobal variable and is probably controlled by an input device. display() causes the scene to be
redrawn with the light rotated spin degrees around a stationary torus. Note the two pairs of
glPushMatrix() and glPopM atrix() calls, which are used to isolate the viewing and modeling
transformations, all of which occur on the modelview stack. Since in Example 5-5 the viewpoint remains
constant, the current matrix is pushed down the stack and then the desired viewing transformation is
loaded with gluL ook At(). The matrix stack is pushed again before the modeling transformation
glRotated() is specified. Then the light position is set in the new, rotated coordinate system so that the
light itself appears to be rotated from its previous position. (Remember that the light position is stored in
eye coordinates, which are obtained after transformation by the modelview matrix.) After the rotated
matrix is popped off the stack, the torusis drawn.

Example 5-6 is a program that rotates a light source around an object. When the left mouse button is

pressed, the light position rotates an additional 30 degrees. A small, unlit, wireframe cube is drawn to
represent the position of the light in the scene.

Example 5-6 : Moving a Light with Modeling Transformations. movelight.c

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (16 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11338_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11338_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11378_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude "glut. h"

static int spin = 0;

void init(void)
{
gldearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._SMOOTH) ;
gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(G._DEPTH TEST) ;

Here is where the light position is reset after the nodeling
transformation (gl Rotated) is called. This places the
light at a new position in world coordi nates. The cube
represents the position of the |ight.

/

voi d di spl ay(voi d)

{

* ok ok * *

G.float position[] ={ 0.0, 0.0, 1.5, 1.0 },;

gl ear (G_COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl PushMatrix ();
gl Translatef (0.0, 0.0, -5.0);

gl PushMatrix ();
gl Rotated ((G.double) spin, 1.0, 0.0, 0.0);
glLightfv (G_LIGHTO, G _POSITION, position);

gl Translated (0.0, 0.0, 1.5);
gl Disable (G _LI GHTI NG ;

gl Col or3f (0.0, 1.0, 1.0);

gl ut WreCube (0.1);

gl Enabl e (G._LI GHTI NG ;

gl PopMatrix ();

gl ut Sol i dTorus (0.275, 0.85, 8, 15),;
gl PopMatrix ();
gl Fl ush ();

}

voi d reshape (int w, int h)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (17 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

gl Mat ri xMbde (G._PRQIECTI ON) ;

gl Loadl dentity();

gl uPerspective(40.0, (Gfloat) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMbde(G._MODELVI EW ;

gl Loadl dentity();

}

voi d nouse(int button, int state, int x, int vy)
{
swtch (button) {
case GUT_LEFT BUTTON:
I f (state == GLUT_DOW) {
spin = (spin + 30) % 360;
gl ut Post Redi spl ay() ;
}
br eak;
defaul t:
br eak;

}
i nt main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl utlni t WndowSi ze (500, 500);
gl ut I ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut D spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O;

}

Moving the Light Source Together with Your Viewpoint

To create alight that moves along with the viewpoint, you need to set the light position before the

viewing transformation. Then the viewing transformation affects both the light and the viewpoint in the
same way. Remember that the light position is stored in eye coordinates, and thisis one of the few times
when eye coordinates are critical. In Example 5-7, the light position is defined in init(), which stores the
light position at (0, O, 0) in eye coordinates. In other words, the light is shining from the lens of the
camera.

Example 5-7 : Light Source That Moves with the Viewpoint

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (18 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11399_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

G.float light position() ={ 0.0, 0.0, 0.0, 1.0 };

gl Viewport (0, O, (Gint) w, (Gint) h);

gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gl uPerspective(40.0, (G.float) w (G float) h, 1.0, 100.0);
gl Mat ri xMode(G._MODELVI EW ;

gl Loadl dentity();

gl Lightfv(G._LIGHTO, G._POSITION, |ight _position);

If the viewpoint is now moved, the light will move along with it, maintaining (O, O, 0) distance, relative
to the eye. In the continuation of Example 5-7, which follows next, the global variables (ex, ey, ez) and

(upx, upy, upz) control the position of the viewpoint and up vector. The display() routine that's called
from the event loop to redraw the scene might be this:

static G.doubl e ex, ey, ez, upx, upy, upz;

voi d di spl ay(voi d)

{
gl d ear (G_COLOR BUFFER MASK | G._DEPTH BUFFER NMASK) ;
gl PushMatri x();
gl uLookAt (ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMatri x();
gl Fl ush();
}

When the lit torus is redrawn, both the light position and the viewpoint are moved to the same location.
As the values passed to gluL ook At() change and the eye moves, the object will never appear dark,
because it is always being illuminated from the eye position. Even though you haven't respecified the
light position, the light moves because the eye coordinate system has changed.

This method of moving the light can be very useful for smulating the illumination from a miner's hat.
Another example would be carrying a candle or lantern. The light position specified by the call to
gliLightfv(GL_LIGHTi, GL_POSITION, position) would be the x, y, and z distance from the eye
position to the illumination source. Then as the eye position moves, the light will remain the same
relative distance away.

Try This
Modify Example 5-6 in the following manner:

« Makethe light trandate past the object instead of rotating around it. Hint: Use gl Trandlated()
rather than the first giIRotated() in display(), and choose an appropriate value to use instead of

spin.

« Change the attenuation so that the light decreases in intensity as it's moved away from the object.
Hint: Add callsto glLight*() to set the desired attenuation parameters.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (19 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11399_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11378_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Selecting a Lighting Model

The OpenGL notion of alighting model has three components:
« Thegloba ambient light intensity

« Whether the viewpoint position islocal to the scene or whether it should be considered to be an
Infinite distance away

« Whether lighting cal culations should be performed differently for both the front and back faces of
objects

This section explains how to specify alighting model. It also discusses how to enable lighting - that is,
how to tell OpenGL that you want lighting cal culations performed.

The command used to specify al properties of the lighting model is glLightM odel* (). glLightM odel* ()

has two arguments: the lighting model property and the desired value for that property.

void glLightModel{if}(GLenum pname, TYPEparam);

void glLightModel{if}v(GLenum pname, TYPE * param);
Sets properties of the lighting model. The characteristic of the lighting model being set is defined
by pname, which specifies a named parameter (see Table 5-2). param indicates the values to
which the pname characteristic is set; it's a pointer to a group of valuesif the vector versionis

used, or the value itself if the nonvector version is used. The nonvector version can be used to set
only single-valued lighting model characteristics, not for GL_LIGHT MODEL AMBIENT.

Table 5-2 : Default Values for pname Parameter of glLightModel* ()

Parameter Name Default Value Meaning
GL_LIGHT_MODEL_AMBIENT (0.2,0.2,0.2,1.0) ambient RGBA intensity of the
entire scene

GL_LIGHT _MODEL_LOCAL_VIEWER | 0.0or GL_FALSE | how specular reflection angles
are computed

GL_LIGHT _MODEL_TWO_SIDE 0.0or GL_FALSE | choose between one-sided or
two-sided lighting

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (20 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11589_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Global Ambient Light

Asdiscussed earlier, each light source can contribute ambient light to a scene. In addition, there can be
other ambient light that's not from any particular source. To specify the RGBA intensity of such global
ambient light, usethe GL_LIGHT_MODEL_AMBIENT parameter as follows:

G.fl oat | nodel anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
gl Li ght Model fv(G._LI GHT_MODEL_AMBI ENT, | nodel _anbi ent);

In this example, the values used for Imodel _ambient are the default values for

GL_LIGHT MODEL_AMBIENT. Since these numbersyield a small amount of white ambient light,
even if you don't add a specific light source to your scene, you can still see the objects in the scene.
"Plate 14" in Appendix | showsthe effect of different amounts of global ambient light.

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights produced by specular reflectance.
More specifically, the intensity of the highlight at a particular vertex depends on the normal at that
vertex, the direction from the vertex to the light source, and the direction from the vertex to the
viewpoint. Keegp in mind that the viewpoint isn't actually being moved by calls to lighting commands
(you need to change the projection transformation, as described in "Projection Transformations' in
Chapter 3); instead, different assumptions are made for the lighting calculations as if the viewpoint were
moved.

With an infinite viewpoint, the direction between it and any vertex in the scene remains constant. A local
viewpoint tends to yield more realistic results, but since the direction has to be calculated for each vertex,
overall performance is decreased with alocal viewpoint. By default, an infinite viewpoint is assumed.
Here's how to changeto alocal viewpoint:

gl Li ght Model i (GL_LI GHT_MODEL_LOCAL_VI EVER, GL_TRUE) ;

This call placesthe viewpoint at (0, O, 0) in eye coordinates. To switch back to an infinite viewpoint,
passin GL_FAL SE asthe argument.

Two-sided Lighting

Lighting calculations are performed for al polygons, whether they're front-facing or back-facing. Since
you usually set up lighting conditions with the front-facing polygons in mind, however, the back-facing
onestypically aren't correctly illuminated. In Example 5-1 where the object is a sphere, only the front
faces are ever seen, since they're the ones on the outside of the sphere. So, in this case, it doesn't matter
what the back-facing polygons look like. If the sphere is going to be cut away so that itsinside surface
will be visible, however, you might want to have the inside surface be fully lit according to the lighting
conditions you've defined; you might also want to supply a different material description for the back
faces. When you turn on two-sided lighting with

gl Li ght Model i (G__LI GAT_MODEL_TWO SI DE, G._TRUE) ;

OpenGL reverses the surface normals for back-facing polygons; typically, this means that the surface
normals of visible back- and front-facing polygons face the viewer, rather than pointing away. Asa

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (21 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38551_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_8192_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_8192_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

result, all polygons are illuminated correctly. However, these additional operations usually make
two-sided lighting perform more slowly than the default one-sided lighting.

To turn two-sided lighting off, passin GL_FAL SE as the argument in the preceding call. (See "Defining
Material Properties’ for information about how to supply material properties for both faces.) Y ou can

also control which faces OpenGL considers to be front-facing with the command glFrontFace(). (See
"Reversing and Culling Polygon Faces' in Chapter 2 for more information.)

Enabling Lighting

With OpenGL, you need to explicitly enable (or disable) lighting. If lighting isn't enabled, the current
color is simply mapped onto the current vertex, and no calculations concerning normals, light sources,
the lighting model, and material properties are performed. Here's how to enable lighting:

gl Enabl e(GL_LI GHTI NG ;
To disable lighting, call giDisable() with GL_LIGHTING as the argument.

Y ou also need to explicitly enable each light source that you define, after you've specified the parameters
for that source. Example 5-1 uses only one light, GL_LIGHTO:

gl Enabl e(GL_LI GHTO) ;

Defining Material Properties

Y ou've seen how to create light sources with certain characteristics and how to define the desired lighting
model. This section describes how to define the material properties of the objects in the scene: the
ambient, diffuse, and specular colors, the shininess, and the color of any emitted light. (See"The
Mathematics of Lighting" for the equations used in the lighting and material-property calculations.) Most
of the material properties are conceptually similar to ones you've already used to create light sources. The
mechanism for setting them is similar, except that the command used is called giMaterial* ().

void glMaterial{if}(GLenum face, GLenum pname, TYPEparam);
void glMaterial{if}v(GLenum face, GLenum pname, TYPE * param);

Soecifies a current material property for use in lighting calculations. face can be GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the material should
be applied to. The particular material property being set isidentified by pname and the desired
values for that property are given by param, which is either a pointer to a group of values (if the
vector version is used) or the actual value (if the nonvector version is used). The nonvector version
works only for setting GL_SHININESS. The possible values for pname are shown in Table 5-3.
Note that GL_AMBIENT _AND_DIFFUSE allows you to set both the ambient and diffuse material
colors simultaneously to the same RGBA value.

Table 5-3: Default Values for pname Parameter of glMaterial* ()

Parameter Name Default Value Meaning

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (22 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11673_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11673_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_3988_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11817_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_AMBIENT (0.2,0.2,0.2,1.0) | ambient color of material
GL_DIFFUSE (0.8,0.8,0.8,1.0) | diffusecolor of material
GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of material
GL_SPECULAR (0.0,0.0,0.0,1.0) | specular color of material
GL_SHININESS 0.0 specular exponent
GL_EMISSION (0.0,0.0,0.0,1.0) | emissive color of material
GL_COLOR_INDEXES (0,1,2) an;bl ent, diffuse, and specular color
indices

Asdiscussed in "Selecting a Lighting Model," you can choose to have lighting cal culations performed

differently for the front- and back-facing polygons of objects. If the back faces might indeed be seen, you
can supply different material properties for the front and the back surfaces by using the face parameter of
glMaterial*(). See"Plate 14" in Appendix | for an example of an object drawn with different inside and

outside material properties.

To give you an idea of the possible effects you can achieve by manipulating material properties, see
"Plate 16" in Appendix |. This figure shows the same object drawn with severa different sets of material
properties. The same light source and lighting model are used for the entire figure. The sections that
follow discuss the specific properties used to draw each of these spheres.

Note that most of the material properties set with giMaterial*() are (R, G, B, A) colors. Regardless of
what alphavalues are supplied for other parameters, the alpha value at any particular vertex isthe
diffuse-material alphavalue (that is, the alpha value given to GL_DIFFUSE with the giM aterial* ()
command, as described in the next section). (See "Blending" in Chapter 6 for a complete discussion of
alphavalues.) Also, none of the RGBA materia properties apply in color-index mode. (See "Lighting in
Color-Index Mode" for more information about what parameters are relevant in color-index mode.)

Diffuse and Ambient Reflection
The GL_DIFFUSE and GL_AMBIENT parameters set with giM aterial* () affect the color of the diffuse

and ambient light reflected by an object. Diffuse reflectance plays the most important role in determining
what you perceive the color of an object to be. It's affected by the color of the incident diffuse light and

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (23 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11474_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38551_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12566_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12566_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

the angle of the incident light relative to the normal direction. (It's most intense where the incident light
falls perpendicular to the surface.) The position of the viewpoint doesn't affect diffuse reflectance at all.

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is brightest where
an object is directly illuminated, ambient reflectance is most noticeable where an object receives no
direct illumination. An object's total ambient reflectance is affected by the global ambient light and
ambient light from individual light sources. Like diffuse reflectance, ambient reflectance isn't affected by
the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same color. For this reason,
OpenGL provides you with a convenient way of assigning the same value to both simultaneously with
glMaterial*():
G.float mat _anmb diff[] = { 0.1, 0.5, 0.8, 1.0 };
gl Mat eri al f v(GL_FRONT_AND BACK, G._AMBI ENT_AND DI FFUSE,

mat _anb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the current ambient
and diffuse reflectance for both the front- and back-facing polygons.

In"Plate 16" in Appendix |, the first row of spheres has no ambient reflectance (0.0, 0.0, 0.0, 0.0), and
the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0).

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse reflection, the amount
of specular reflection seen by aviewer does depend on the location of the viewpoint - it's brightest along
the direct angle of reflection. To see this, imagine looking at a metallic ball outdoorsin the sunlight. As
you move your head, the highlight created by the sunlight moves with you to some extent. However, if
you move your head too much, you lose the highlight entirely.

OpenGL alows you to set the effect that the material has on reflected light (with GL_SPECULAR) and
control the size and brightness of the highlight (with GL_SHININESS). Y ou can assign a number in the
range of [0.0, 128.0] to GL_SHININESS - the higher the value, the smaller and brighter (more focused)
the highlight. (See "The Mathematics of Lighting" for the details of how specular highlights are

calculated.)

In"Plate 16" in Appendix |, the spheresin the first column have no specular reflection. In the second
column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

G.fl oat mat _specular[] ={ 1.0, 1.0, 1.0, 1.0 };

G.float | ow shininess[] ={ 5.0 };

gl Material fv(G._FRONT, G. SPECULAR, mat specul ar);

gl Materi al fv(G_FRONT, G._SHI NI NESS, | ow_shi ni ness);

In the third column, the GL_SHININESS parameter isincreased to 100.0.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (24 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12101_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Emission

By specifying an RGBA color for GL_EMISSION, you can make an object appear to be giving off light
of that color. Since most real-world objects (except lights) don't emit light, you'll probably use this
feature mostly to simulate lamps and other light sourcesin ascene. In "Plate 16" in Appendix I, the

spheres in the fourth column have areddish, grey value for GL_EMISSION:

G.float mat_em ssion[] = {0.3, 0.2, 0.2, 0.0};
gl Material fv(G._FRONT, G._EM SSI ON, mat em ssi on);

Notice that the spheres appear to be dightly glowing; however, they're not actually acting as light
sources. You would need to create alight source and position it at the same location as the sphere to
create that effect.

Changing Material Properties

Example 5-1 uses the same material propertiesfor all vertices of the only object in the scene (the sphere).

In other situations, you might want to assign different material properties for different vertices on the
same object. More likely, you have more than one object in the scene, and each object has different
material properties. For example, the code that produced "Plate 16" in Appendix | hasto draw twelve

different objects (all spheres), each with different material properties. Example 5-8 shows a portion of
the code in display().

Example 5-8 : Different Material Properties: material.c
G.float no mat[] ={ 0.0, 0.0, 0.0, 1.0 },;
G.float mat _anmbient[] ={ 0.7, 0.7, 0.7, 1.0 };
G.fl oat mat _anbient _color[] ={ 0.8, 0.8, 0.2, 1.0 };
G.float mat _diffuse[] ={ 0.1, 0.5, 0.8, 1.0 };
G.fl oat mat _specular[] ={ 1.0, 1.0, 1.0, 1.0 },;
G.fl oat no_shininess[] ={ 0.0 },;
G.float | ow shininess[] ={ 5.0 };
G.fl oat high_shininess[] = { 100.0 };
Gfloat mat_em ssion[] = {0.3, 0.2, 0.2, 0.0};

gl d ear(GA_COLOR BUFFER BI T |

/* draw sphere in first

GL_DEPTH BUFFER BI T);

row, first columm

* diffuse reflection only;
*/

gl PushMatri x();

gl Transl atef (-3.75, 3.0, 0.0);

gl Materi al fv(G._FRONT, G._AMBI ENT, no_mat);

gl Materi al fv(G._FRONT, G._DI FFUSE, mat _diffuse);

gl Materi al fv(G._FRONT, G. SPECULAR, no _mat);

gl Materi al fv(G_FRONT, G._SHI NI NESS, no_shi ni ness);

gl Material fv(G._FRONT, G._EM SSI ON, no_mat) ;

no anbi ent or specul ar

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (25 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_10680_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11947_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

/* draw sphere in first row, second colum
* diffuse and specul ar reflection; |ow shininess; no anbi ent
*/
gl PushMatri x();
gl Transl atef (-1.25, 3.0, 0.0);
gl Materi al fv(G._FRONT, G._AMBI ENT, no_mat);
gl Material fv(G._FRONT, G._ DI FFUSE, mat diffuse);
gl Materi al fv(G._FRONT, G. SPECULAR, mat specul ar);
gl Materi al fv(G._FRONT, G._SHI NI NESS, | ow _shi ni ness);
gl Material fv(G._FRONT, G._EM SSI ON, no_mat);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMatri x();

/* draw sphere in first row, third col um
* diffuse and specul ar reflection; high shininess; no anbient
*/
gl PushMatri x();
gl Transl atef (1.25, 3.0, 0.0);
gl Materi al fv(G._FRONT, G._AMBI ENT, no_mat);
gl Materi al fv(G._FRONT, G._DI FFUSE, mat _diffuse);
gl Materi al fv(G._FRONT, G._SPECULAR, mat _specul ar);
gl Materi al fv(G._FRONT, G._SHI NI NESS, hi gh_shi ni ness);
gl Material fv(G._FRONT, G._EM SSI ON, no_mat);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMatri x();

/* draw sphere in first row, fourth col um
* diffuse reflection; em ssion; no anbient or specular refl.
*/
gl PushMatri x();
gl Transl atef (3.75, 3.0, 0.0);
gl Materi al fv(G._FRONT, G._AMBI ENT, no_mat);
gl Material fv(G._FRONT, G._DI FFUSE, mat _diffuse);
gl Materi al f v(G._FRONT, G._SPECULAR, no_nat);
gl Materi al fv(G_FRONT, G._SHI NI NESS, no_shi ni ness);
gl Material fv(G._FRONT, G._EM SSI ON, mat _em ssi on);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMatri x();

Asyou can see, glM aterialfv() is called repeatedly to set the desired material property for each sphere.
Note that it only needsto be called to change a property that needs to be respecified. The second, third,
and fourth spheres use the same ambient and diffuse properties as the first sphere, so these properties do
not need to be respecified. Since giM aterial* () has a performance cost associated with its use, Example

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (26 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11947_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
5-8 could be rewritten to minimize material-property changes.

Another technique for minimizing performance costs associated with changing material propertiesisto
use glColor M aterial().

void glColorMaterial (GLenum face, GLenum mode);

Causes the material property (or properties) specified by mode of the specified material face (or
faces) specified by face to track the value of the current color at all times. A change to the current
color (using glColor*()) immediately updates the specified material properties. The face
parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default). The mode
parameter can be GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE (the default),
GL_SPECULAR, or GL_EMISSON. At any given time, only one mode is active.
glColorMaterial() has no effect on color-index lighting.

Note that glColor Material() specifies two independent values: the first specifies which face or faces are
updated, and the second specifies which material property or properties of those faces are updated.
OpenGL does not maintain separate mode variables for each face.

After calling glColorMaterial(), you need to call glEnable() with GL_COLOR_MATERIAL asthe
parameter. Then, you can change the current color using glColor*() (or other material properties, using
glMaterial*()) as needed as you draw:

gl Enabl e(G._COLOR_MATERI AL) ;

gl Col or Mat eri al (G._FRONT, G._DI FFUSE) ;

/* now gl Col or* changes diffuse reflection */
gl Col or3f (0.2, 0.5, 0.8);

/* draw sone objects here */

gl Col or Mat eri al (G._FRONT, G._ SPECULAR);

/* gl Col or* no | onger changes diffuse reflection */
/* now gl Col or* changes specul ar reflection */
gl Color3f (0.9, 0.0, 0.2);

/* draw ot her objects here */

gl Di sabl e(G._COLOR_MATERI AL) ;

Y ou should use glColor M aterial() whenever you need to change a single material parameter for most
vertices in your scene. If you need to change more than one material parameter, as was the case for "Plate
16" in Appendix |, use giMaterial* (). When you don't need the capabilities of glColor M aterial()
anymore, be sure to disable it so that you don't get undesired material properties and don't incur the
performance cost associated with it. The performance value in using glColor M aterial() varies,
depending on your OpenGL implementation. Some implementations may be able to optimize the vertex
routines so that they can quickly update material properties based on the current color.

Example 5-9 shows an interactive program that uses glColor M aterial() to change material parameters.
Pressing each of the three mouse buttons changes the color of the diffuse reflection.

Example 5-9 : Using glColorMaterial(): colormat.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (27 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11947_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38569_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12059_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

#i ncl ude "glut. h"
G.fl oat diffuseMaterial[4] ={ 0.5, 0.5, 0.5, 1.0 };

voi d init(voi d)

{
G.fl oat mat _specular[] ={ 1.0, 1.0, 1.0, 1.0 },;
G.float light_position[] = { 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._SMOOTH) ;
gl Enabl e(G._DEPTH_TEST) ;
gl Material fv(G._FRONT, G DI FFUSE, diffuseMaterial);
gl Materi al fv(G._FRONT, G._SPECULAR, mat _specul ar);
gl Material f (G._FRONT, G._SHI NI NESS, 25.0);
gl Lightfv(G_LIGHTO, G._POSITION, |ight _position);
gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;
gl Col or Mat eri al (G._FRONT, G._DI FFUSE) ;
gl Enabl e(G._COLOR_MATERI AL) ;
}
voi d di spl ay(voi d)
{
gl dear(E_CO.OR BUFFER BIT | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere(1.0, 20, 16);
gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMode (G._PRQIECTI ON);
gl Loadl dentity();
I f (w <= h)
glOtho (-1.5, 1.5, -1.5*(Gfloat)h/(Gfloat)w,
1.5*(G.float)h/ (G float)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.float)w (G.float)h,
1.5*(G.float)w (Gfloat)h, -1.5, 1.5, -10.0, 10.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d nmouse(int button, int state, int x, int y)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (28 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

{
swtch (button) {

case GUT_LEFT BUTTON:
I f (state == GLUT_DOW) { /* change red */
di ffuseMaterial [0] += 0.1;
i f (diffuseMaterial[0] > 1.0)
di ffuseMaterial [0] = 0.0;
gl Col or4fv(di ffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case G.UT_M DDLE BUTTON:
I f (state == GLUT_DOW) { /* change green */
di ffusematerial [1] += 0.1;
i f (diffuseMaterial[1l] > 1.0)
di ffuseMaterial[1] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case GQUT_RI GHT _BUTTON:
I f (state == GLUT_DOW) { /* change blue */
di ffuseMaterial[2] += 0.1;
if (diffuseMaterial[2] > 1.0)
di ffuseMaterial[2] = 0.0;
gl Col or4fv(di ffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
defaul t:
br eak;

}

i nt main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD splayMde (GQUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl ut I ni t WndowSi ze (500, 500);
gl utl ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (29 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
return O;

}
Try This

Modify Example 5-8 in the following manner:

« Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

« Change the diffuse, ambient, and specular reflection parameters, the shininess exponent, and the
emission color. Hint: Use the giM aterial* () command, but avoid making excessive calls.

« Usetwo-sided materials and add a user-defined clipping plane so that you can see the inside and
outside of arow or column of spheres. (See "Additional Clipping Planes' in Chapter 3, if you need
to recall user-defined clipping planes.) Hint: Turn on two-sided lighting with
GL_LIGHT _MODEL_TWO_SIDE, set the desired material properties, and add a clipping plane.

« Removeadl the giMaterialfv() calls, and use the more efficient glColor Material() callsto achieve
the same lighting.

The Mathematics of Lighting

Advanced

This section presents the equations used by OpenGL to perform lighting calculations to determine colors
when in RGBA mode. (See "The Mathematics of Color-Index Mode Lighting" for corresponding
calculations for color-index mode.) Y ou don't need to read this section if you're willing to experiment to
obtain the lighting conditions you want. Even after reading this section, you'll probably have to
experiment, but you'll have a better idea of how the values of parameters affect a vertex's color.
Remember that if lighting is not enabled, the color of avertex is simply the current color; if it is enabled,
the lighting computations described here are carried out in eye coordinates.

In the following equations, mathematical operations are performed separately on the R, G, and B
components. Thus, for example, when three terms are shown as added together, the R values, the G
values, and the B values for each term are separately added to form the final RGB color (R1+R2+RS3,
G1+G2+G3, B1+B2+B3). When three terms are multiplied, the calculation is (R1R2R3, G1G2G3,
B1B2B3). (Remember that the final A or apha component at a vertex is equal to the material's diffuse
alphavalue at that vertex.)

The color produced by lighting a vertex is computed as follows:
vertex color =

the material emission at that vertex +

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (30 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11947_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%14_9045_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_12683_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
the global ambient light scaled by the material's ambient property at that vertex +

the ambient, diffuse, and specular contributions from all the light sources, properly attenuated

After lighting calculations are performed, the color values are clamped (in RGBA mode) to the range
[0,1].

Note that OpenGL lighting cal culations don't take into account the possibility of one object blocking
light from another; as aresult shadows aren't automatically created. (See "Shadows' in Chapter 14 for a
technique to create shadows.) Also keep in mind that with OpenGL, illuminated objects don't radiate
light onto other objects.

Material Emission

The material emission term isthe ssimplest. It'sthe RGB value assigned to the GL_EMISSION
parameter.

Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as defined by the
GL_LIGHT _MODEL_AMBIENT parameter) by the material's ambient property (GL_AMBIENT value
as assigned with giMaterial*()):

ambientlight model * ambientmaterial

Each of the R, G, and B values for these two parameters are multiplied separately to compute the final
RGB value for thisterm: (R1R2, G1G2, B1B2).

Contributions from Light Sources

Each light source may contribute to a vertex's color, and these contributions are added together. The
equation for computing each light source's contribution is as follows:

contribution = attenuation factor * spotlight effect *

(ambient term + diffuse term + specular term)
Attenuation Factor

The attenuation factor was described in "Position and Attenuation”:

1
ky + R +

attenuation factor =

where

d = distance between the light's position and the vertex

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (31 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_29063_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_11072_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

kc = GL_CONSTANT_ATTENUATION
kil = GL_LINEAR_ATTENUATION
kg=GL_QUADRATIC_ATTENUATION

If the light is a directional one, the attenuation factor is 1.
Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on whether the light is actually a
spotlight and whether the vertex liesinside or outside the cone of illumination produced by the spotlight:

. 1if thelight isn't aspotlight (GL_SPOT_CUTOFF is 180.0).

« Oif thelight isaspotlight, but the vertex lies outside the cone of illumination produced by the
spotlight.

e (max{v-d,0})GL_SPOT_EXPONENT where:
Vv = (vX, vy, vz) isthe unit vector that points from the spotlight (GL_POSITION) to the vertex.

d = (dx, dy, dz) isthe spotlight's direction (GL_SPOT_DIRECTION), assuming the light isa
spotlight and the vertex liesinside the cone of illumination produced by the spotlight.

The dot product of the two vectorsv and d varies as the cosine of the angle between them; hence,
objects directly in line get maximum illumination, and objects off the axis have their illumination
drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates (max {v
-d, 0}) where v and d are as defined in the preceding discussion. If this value is |ess than the cosine of
the spotlight's cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside the cone; otherwise, it's
Inside the cone.

Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambientlight *ambientmaterial
Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diffuse color of
the light, and the diffuse material property:

(max {L - n, 0}) * diffuselight * diffusematerial
where:

L =(Lx, Ly, Lz) istheunit vector that points from the vertex to the light position (GL_POSITION).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (32 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
n = (nx, ny, nz) isthe unit normal vector at the vertex.

Specular Term

The specular term also depends on whether light falls directly on the vertex. If L - n isless than or equal
to zero, there is no specular component at the vertex. (If it's less than zero, the light is on the wrong side
of the surface.) If there's a specular component, it depends on the following:

« Theunit normal vector at the vertex (nx, ny, nz).

« Thesum of the two unit vectors that point between (1) the vertex and the light position (or light
direction) and (2) the vertex and the viewpoint (assuming that
GL_LIGHT _MODEL_LOCAL_VIEWER istrue; if it's not true, the vector (0O, O, 1) is used asthe
second vector in the sum). This vector sum is normalized (by dividing each component by the
magnitude of the vector) to yield s= (sx, sy, sz).

« The specular exponent (GL_SHININESS).
« The specular color of the light (GL_SPECULARIight).

« The specular property of the material (GL_SPECULARmaterial).
Using these definitions, here's how OpenGL calculates the specular term:
(max {s - n, O})shininess* specularlight * specularmaterial

However, if L - n =0, the specular termis 0.

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the entire
lighting calculation in RGBA mode:

vertex color = emissionmateria +

ambientlight model * ambientmaterial +

-1
i 1 * (spotlight effect), *
k. +kd + ﬁ:g.::!2 ;

i=0
[ambientlight *ambientmaterial +
(max{ L -n,0})* diffuselight * diffusematerial +

(max { s-n, 0})shininess* specularlight * specularmaterial] i

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (33 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have no effect or have a specia
interpretation. Since it's much harder to achieve certain effects in color-index mode, you should use
RGBA whenever possible. In fact, the only light-source, lighting-model, or material parametersin an
RGBA form that are used in color-index mode are the light-source parameters GL_DIFFUSE and
GL_SPECULAR and the material parameter GL_SHININESS. GL_DIFFUSE and GL_SPECULAR (dl
and g, respectively) are used to compute color-index diffuse and specular light intensities (dci and sci) as
follows:

dci = 0.30 R(dl) + 0.59 G(dl) + 0.11 B(dl)
sci = 0.30 R(d) + 0.59 G(d) + 0.11 B(d)

where R(x), G(x), and B(x) refer to the red, green, and blue components, respectively, of color x. The
weighting values 0.30, 0.59, and 0.11 reflect the "perceptual” weights that red, green, and blue have for
your eye - your eye is most sensitive to green and least sensitive to blue.

To specify materia colorsin color-index mode, use giMaterial* () with the special parameter
GL_COLOR_INDEXES, asfollows:

G.float mat _col ormap[] = { 16.0, 47.0, 79.0 };
gl Materi al fv(G._FRONT, G._COLOR_| NDEXES, mat _col or map);

The three numbers supplied for GL_COLOR_INDEXES specify the color indices for the ambient,
diffuse, and specular material colors, respectively. In other words, OpenGL regards the color associated
with the first index (16.0 in this example) as the pure ambient color, with the second index (47.0) as the
pure diffuse color, and with the third index (79.0) as the pure specular color. (By default, the ambient
color index is 0.0, and the diffuse and specular color indices are both 1.0. Note that glColor M aterial()
has no effect on color-index lighting.)

Asit draws a scene, OpenGL uses colors associated with indices in between these numbers to shade
objects in the scene. Therefore, you must build a color ramp between the indicated indices (in this
example, between indices 16 and 47, and then between 47 and 79). Often, the color ramp is built
smoothly, but you might want to use other formulations to achieve different effects. Here's an example of
a smooth color ramp that starts with a black ambient color and goes through a magenta diffuse color to a
white specular color:
for (i =0; 1 < 32; i++) {
glutSetColor (16 + i, 1.0 * (i/32.0), 0.0, 1.0 * (i/32.0));
glutSetColor (48 + i, 1.0, 1.0 * (i/32.0), 1.0);
}

The GLUT library command glutSetColor () takes four arguments. It associates the color index indicated
by the first argument to the RGB triplet specified by the last three arguments. When i = 0, the color index
16 is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp builds smoothly up to the diffuse
material color at index 47 (wheni = 31), which is assigned the pure magenta RGB value (1.0, 0.0, 1.0).
The second loop builds the ramp between the magenta diffuse color and the white (1.0, 1.0, 1.0) specular
color (index 79). "Plate 15" in Appendix | shows the result of using this color ramp with asingle lit

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (34 of 35) [4/28/2000 9:45:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=10431?target=%25N%15_38560_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

sphere.

The Mathematics of Color-Index Mode Lighting

Advanced

As you might expect, since the allowable parameters are different for color-index mode than for RGBA
mode, the calculations are different as well. Since there's no material emission and no ambient light, the
only terms of interest from the RGBA equations are the diffuse and specular contributions from the light
sources and the shininess. Even these need to be modified, however, as explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the diffuse term, instead of
diffuselight * diffusematerial, substitute dci as defined in the previous section for color-index mode.
Similarly, in the specular term, instead of specularlight * specularmaterial, use sci as defined in the
previous section. (Calculate the attenuation, spotlight effect, and all other components of these terms as
before.) Call these modified diffuse and specular terms d and s, respectively. Now let s =min{ s, 1},
and then compute

¢ =am + d(1-s)(dm-am) + s(sm-am)

where am, dm, and sm are the ambient, diffuse, and specular material indexes specified using
GL_COLOR_INDEXES. Thefinal color index is

c=min{c,sm}

After lighting calculations are performed, the color-index values are converted to fixed-point (with an
unspecified number of bits to the right of the binary point). Then the integer portion is masked (bitwise
ANDed) with 2n-1, where n is the number of bitsin acolor in the color-index buffer.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dyna...Generic__BookTextView/10431;cs=fullhtml;pt=9601 (35 of 35) [4/28/2000 9:45:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 6
Blending, Antialiasing, Fog, and Polygon
Offset

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Blend colorsto achieve such effects as making objects appear trans ucent

« Smooth jagged edges of lines and polygons with antialiasing
« Create scenes with realistic atmospheric effects
« Draw geometry at or near the same depth, but avoid unaesthetic artifacts from intersecting

geometry

The preceding chapters have given you the basic information you need to create a computer-graphics
scene; you've learned how to do the following:

« Draw geometric shapes
« Transform those geometric shapes so that they can be viewed from whatever perspective you wish
« Specify how the geometric shapes in your scene should be colored and shaded

« Add lights and indicate how they should affect the shapesin your scene

Now you're ready to get alittle fancier. This chapter discusses four techniques that can add extra detail
and polish to your scene. None of these techniquesis hard to use - in fact, it's probably harder to explain
them than to use them. Each of these techniques is described in its own major section:
« "Blending" tells you how to specify a blending function that combines color values from a source
and adestination. The final effect isthat parts of your scene appear transl ucent.

« "Antialiasing" explainsthisrelatively subtle technique that alters colors so that the edges of points,
lines, and polygons appear smooth rather than angular and jagged.

« "Fog" describes how to create theillusion of depth by computing the color values of an object
based on its distance from the viewpoint. Thus, objects that are far away appear to fade into the

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (1 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13642_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

background, just asthey doinredl life.

 If you'vetried to draw awireframe outline atop a shaded object and used the same vertices, you've
probably noticed some ugly visual artifacts. "Polygon Offset" shows you how to tweak (offset)

depth values to make an outlined, shaded object look beautiful.

Blending

Y ou've aready seen aphavalues (alphaisthe A in RGBA), but they've been ignored until now. Alpha
values are specified with glColor* (), when using glClear Color () to specify aclearing color and when
specifying certain lighting parameters such as a material property or light-source intensity. Asyou
learned in Chapter 4, the pixels on a monitor screen emit red, green, and blue light, which is controlled
by the red, green, and blue color values. So how does an alpha value affect what gets drawn in a window
on the screen?

When blending is enabled, the alpha value is often used to combine the color value of the fragment being
processed with that of the pixel already stored in the framebuffer. Blending occurs after your scene has
been rasterized and converted to fragments, but just before the final pixels are drawn in the framebuffer.
Alphavalues can aso be used in the alphatest to accept or reject afragment based on its alphavalue.
(See Chapter 10 for more information about this process.)

Without blending, each new fragment overwrites any existing color values in the framebuffer, as though
the fragment were opague. With blending, you can control how (and how much of) the existing color
value should be combined with the new fragment's value. Thus you can use alpha blending to create a
translucent fragment that lets some of the previously stored color value "show through." Color blending
lies at the heart of techniques such as transparency, digital compositing, and painting.

Note: Alphavalues aren't specified in color-index mode, so blending operations aren't performed in
color-index mode.

The most natural way to think of blending operationsis to think of the RGB components of afragment as
representing its color and the alpha component as representing opacity. Transparent or translucent
surfaces have lower opacity than opague ones and, therefore, lower alpha values. For example, if you're
viewing an object through green glass, the color you seeis partly green from the glass and partly the
color of the object. The percentage varies depending on the transmission properties of the glass: If the
glass transmits 80 percent of the light that strikes it (that is, has an opacity of 20 percent), the color you
see isacombination of 20 percent glass color and 80 percent of the color of the object behind it. Y ou can
easily imagine situations with multiple translucent surfaces. If you look at an automobile, for instance, its
interior has one piece of glass between it and your viewpoint; some objects behind the automobile are
visible through two pieces of glass.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (2 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13879_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_21147_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The Source and Destination Factors

During blending, color values of the incoming fragment (the source) are combined with the color values
of the corresponding currently stored pixel (the destination) in atwo-stage process. First you specify how
to compute source and destination factors. These factors are RGBA quadruplets that are multiplied by
each component of the R, G, B, and A values in the source and destination, respectively. Then the
corresponding components in the two sets of RGBA guadruplets are added. To show this mathematically,
let the source and destination blending factors be (Sr, Sg, Sb, Sa) and (Dr, Dg, Db, Da), respectively, and
the RGBA values of the source and destination be indicated with a subscript of sor d. Then the final,
blended RGBA values are given by

(RsSr+RdDr, GsSg+GdDg, BsSh+BdDb, AsSa+AdDa)
Each component of this quadruplet is eventually clamped to [0,1].

Now consider how the source and destination blending factors are generated. Y ou use glBlendFunc() to
supply two constants. one that specifies how the source factor should be computed and one that indicates
how the destination factor should be computed. To have blending take effect, you also need to enableit:

gl Enabl e(G._BLEND) ;

Use glDisable() with GL_BLEND to disable blending. Also note that using the constants GL_ ONE
(source) and GL_ZERO (destination) gives the same results as when blending is disabled; these values
are the default.

void glBlendFunc(GLenum sfactor, GLenum dfactor);

Controls how color valuesin the fragment being processed (the source) are combined with those
already stored in the framebuffer (the destination). The argument sfactor indicates how to compute
a source blending factor; dfactor indicates how to compute a destination blending factor. The
possible values for these arguments are explained in Table 6-1. The blend factors are assumed to
lieintherange[0,1]; after the color valuesin the source and destination are combined, they're
clamped to therange [0,1].

Note: In Table 6-1, the RGBA values of the source and destination are indicated with the subscripts s

and d, respectively. Subtraction of quadruplets means subtracting them componentwise. The Relevant
Factor column indicates whether the corresponding constant can be used to specify the source or
destination blend factor.

Table6-1 : Source and Destination Blending Factors

Constant Relevant Factor Computed Blend Factor
GL_ZERO source or destination | (0, 0, 0, 0)
GL_ONE source or destination | (1,1, 1, 1)
GL_DST_COLOR source (Rd, Gd, Bd, Ad)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (3 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13250_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13250_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_SRC COLOR destination (Rs, Gs, Bs, As)
GL_ONE_MINUS DST _COLOR | source (1,1, 1, 1)-(Rd, Gd, Bd, Ad)
GL_ONE_MINUS SRC COLOR | destination (14, 1,1,1)-(Rs, Gs, Bs, As)

GL_SRC_ALPHA

source or destination

(As, As, As, Asg)

GL_ONE_MINUS SRC_ALPHA

source or destination

(1,1, 1, 1)-(As, As, As, As)

GL_DST_ALPHA

source or destination

(Ad, Ad, Ad, Ad)

GL_ONE_MINUS DST_ALPHA

source or destination

(1,1, 1, 1)-(Ad, Ad, Ad, Ad)

GL_SRC_ALPHA_SATURATE

source

(f, f, f, 1): f=min(As, 1-Ad)

Sample Uses of Blending

Not all combinations of source and destination factors make sense. Most applications use a small number
of combinations. The following paragraphs describe typical uses for particular combinations of source
and destination factors. Some of these examples use only the incoming alpha value, so they work even
when alpha values aren't stored in the framebuffer. Also note that often there's more than one way to

achieve some of these effects.

« Oneway to draw a picture composed half of one image and half of another, equally blended, isto

set the source factor to GL_ONE and the destination factor to GL_ZERO, and draw the first
image. Then set the source factor to GL_SRC_ALPHA and destination factor to

GL_ONE_MINUS SRC_ALPHA, and draw the second image with alpha equal to 0.5. This pair
of factors probably represents the most commonly used blending operation. If the pictureis
supposed to be blended with 0.75 of the first image and 0.25 of the second, draw the first image as
before, and draw the second with an alpha of 0.25.

To blend three different images equally, set the destination factor to GL_ONE and the source
factor to GL_SRC_ALPHA. Draw each of the images with an alpha equal to 0.3333333. With this
technique, each image is only one-third of its original brightness, which is noticeable where the
images don't overlap.

Suppose you're writing a paint program, and you want to have a brush that gradually adds color so
that each brush stroke blends in alittle more color with whatever is currently in the image (say 10

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (4 of 34) [4/28/2000 9:45:52 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

percent color with 90 percent image on each pass). To do this, draw the image of the brush with
alpha of 10 percent and use GL_SRC_ALPHA (source) and GL_ONE _MINUS SRC ALPHA
(destination). Note that you can vary the alphas across the brush to make the brush add more of its
color in the middle and less on the edges, for an antialiased brush shape. (See "Antialiasing.")

Similarly, erasers can be implemented by setting the eraser color to the background color.

« The blending functions that use the source or destination colors- GL_DST_COLOR or
GL_ONE_MINUS DST_COLOR for the source factor and GL_SRC COLOR or
GL_ONE_MINUS SRC COLOR for the destination factor - effectively allow you to modulate
each color component individually. This operation is equivalent to applying asimple filter - for
example, multiplying the red component by 80 percent, the green component by 40 percent, and
the blue component by 72 percent would simul ate viewing the scene through a photographic filter
that blocks 20 percent of red light, 60 percent of green, and 28 percent of blue.

» Suppose you want to draw a picture composed of three translucent surfaces, some obscuring
others, and all over a solid background. Assume the farthest surface transmits 80 percent of the
color behind it, the next transmits 40 percent, and the closest transmits 90 percent. To compose
this picture, draw the background first with the default source and destination factors, and then
change the blending factorsto GL_SRC_ALPHA (source) and GL_ONE_MINUS SRC ALPHA
(destination). Next, draw the farthest surface with an alpha of 0.2, then the middle surface with an
aphaof 0.6, and finally the closest surface with an alpha of 0.1.

« If your system has alpha planes, you can render objects one at atime (including their alpha
values), read them back, and then perform interesting matting or compositing operations with the
fully rendered objects. (See "Compositing 3D Rendered Images' by Tom Duff, SIGGRAPH 1985
Proceedings, p. 41-44, for examples of this technique.) Note that objects used for picture
composition can come from any source - they can be rendered using OpenGL commands, rendered
using techniques such as ray-tracing or radiosity that are implemented in another graphics library,
or obtained by scanning in existing images.

« You can create the effect of a nonrectangular raster image by assigning different alpha valuesto
individual fragmentsin the image. In most cases, you would assign an alpha of 0 to each
“invisible" fragment and an alpha of 1.0 to each opague fragment. For example, you can draw a
polygon in the shape of atree and apply atexture map of foliage; the viewer can see through parts
of the rectangular texture that aren't part of the tree if you've assigned them aphavalues of 0. This
method, sometimes called billboarding, is much faster than creating the tree out of
three-dimensional polygons. An example of this techniqueis shown in Figure 6-1: Thetreeisa
single rectangular polygon that can be rotated about the center of the trunk, as shown by the
outlines, so that it's always facing the viewer. (See " Texture Functions' in Chapter 9 for more

information about blending textures.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (5 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13310_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_19551_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 6-1 : Creating a Nonrectangular Raster Image

« Blending isalso used for antialiasing, which is a rendering technique to reduce the jagged
appearance of primitives drawn on araster screen. (See"Antialiasing” for more information.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (6 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13383_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

A Blending Example

Example 6-1 draws two overlapping colored triangles, each with an alpha of 0.75. Blending is enabled

and the source and destination blending factors are set to GL_SRC_ALPHA and
GL_ONE_MINUS SRC ALPHA, respectively.

When the program starts up, ayellow triangle is drawn on the left and then a cyan triangle is drawn on
the right so that in the center of the window, where the triangles overlap, cyan is blended with the
original yellow. Y ou can change which triangle is drawn first by typing "t' in the window.

Example 6-1 : Blending Example: alpha.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <G/ gl ut. h>

#i ncl ude <stdlib. h>

static int leftFirst = G._TRUE;

/* Initialize al pha blending function. */
static void init(void)

{
gl Enabl e (G._BLEND) ;
gl Bl endFunc (G._SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;
gl ShadeModel (G._FLAT);
gldearColor (0.0, 0.0, 0.0, 0.0);
}
static void drawLeft Tri angl e(voi d)
{

/* draw yellow triangle on LHS of screen */
gl Begin (G_TRI ANGLES);
gl Col or4f (1.0, 1.0, 0.0, 0.75);
gl Vertex3f (0.1, 0.9, 0.0);
gl Vertex3f (0.1, 0.1, 0.0);
gl Vertex3f (0.7, 0.5, 0.0);
gl End() ;

static void drawRi ght Tri angl e(voi d)
{
/* draw cyan triangle on RHS of screen */
gl Begin (G_TRI ANGLES);
gl Col or4f (0.0, 1.0, 1.0, 0.75);
gl Vertex3f (0.9, 0.9, 0.0);
gl Vertex3f (0.3, 0.5, 0.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (7 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13338_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Vertex3f (0.9, 0.1, 0.0);

gl End() ;
}
voi d di spl ay(voi d)
{
gl A ear (A._COLOR BUFFER BI T);
I f (leftFirst) {
drawLeft Tri angl e() ;
drawRi ght Tri angl e() ;
}
el se {
drawRi ght Tri angl e() ;
drawLeft Tri angl e() ;
}
gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde(G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
gluGrtho2D (0.0, 1.0, 0.0, 1.0*(G.float)h/(Gfloat)w);
el se
gluOrtho2D (0.0, 1.0*(G.float)w (G float)h, 0.0, 1.0);
}
voi d keyboard(unsi gned char key, int x, int vy)
{
swtch (key) {
case 't':
case " T':
leftFirst = !leftFirst;
gl ut Post Redi spl ay() ;
br eak;
case 27: [* Escape key */
exit(0);
br eak;
def aul t:
br eak;
}
}

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (8 of 34) [4/28/2000 9:45:52 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

i nt main(int argc, char** argv)

{
glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGE | G.UT_RGB);
gl ut I ni t WndowSi ze (200, 200);
gl ut Creat eW ndow (argv[O0]);
init();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop();
return O;

}

The order in which the triangles are drawn affects the color of the overlapping region. When the left
triangle is drawn first, cyan fragments (the source) are blended with yellow fragments, which are aready
in the framebuffer (the destination). When the right triangle is drawn first, yellow is blended with cyan.
Because the alphavalues are all 0.75, the actual blending factors become 0.75 for the source and 1.0 -
0.75 = 0.25 for the destination. In other words, the source fragments are somewhat translucent, but they
have more effect on the final color than the destination fragments.

Three-Dimensional Blending with the Depth Buffer

Asyou saw in the previous example, the order in which polygons are drawn greatly affects the blended
result. When drawing three-dimensional translucent objects, you can get different appearances depending
on whether you draw the polygons from back to front or from front to back. Y ou also need to consider
the effect of the depth buffer when determining the correct order. (See"A Hidden-Surface Removal
Survival Kit" in Chapter 5 for an introduction to the depth buffer. Also see "Depth Test" in Chapter 10
for more information.) The depth buffer keeps track of the distance between the viewpoint and the
portion of the object occupying a given pixel in awindow on the screen; when another candidate color
arrives for that pixel, it'sdrawn only if its object is closer to the viewpoint, in which case its depth value
is stored in the depth buffer. With this method, obscured (or hidden) portions of surfaces aren't
necessarily drawn and therefore aren't used for blending.

If you want to render both opague and translucent objects in the same scene, then you want to use the
depth buffer to perform hidden-surface removal for any objects that lie behind the opague objects. If an
opague object hides either a translucent object or another opaque object, you want the depth buffer to
eliminate the more distant object. If the translucent object is closer, however, you want to blend it with
the opague object. Y ou can generally figure out the correct order to draw the polygons if everything in
the scene is stationary, but the problem can quickly become too hard if either the viewpoint or the object
IS moving.

The solution is to enable depth buffering but make the depth buffer read-only while drawing the
translucent objects. First you draw all the opague objects, with the depth buffer in normal operation.
Then you preserve these depth values by making the depth buffer read-only. When the translucent
objects are drawn, their depth values are still compared to the values established by the opaque objects,

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (9 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_22337_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

so they aren't drawn if they're behind the opaque ones. If they're closer to the viewpoint, however, they
don't eliminate the opague objects, since the depth-buffer values can't change. Instead, they're blended
with the opague objects. To control whether the depth buffer iswritable, use glDepthM ask(); if you pass
GL_FAL SE asthe argument, the buffer becomes read-only, whereas GL_TRUE restores the normal,
writable operation.

Example 6-2 demonstrates how to use this method to draw opagque and translucent three-dimensional
objects. In the program, typing "a triggers an animation sequence in which a translucent cube moves
through an opague sphere. Pressing the 'r' key resets the objectsin the scene to their initial positions. To
get the best results when transparent objects overlap, draw the objects from back to front.

Example 6-2 : Three-Dimensional Blending: alpha3D.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>

#define MAXZ 8.0

#define MNZ -8.0

#define ZINC 0. 4

static float solidZ = MAXZ;

static float transparentZ = M NZ;
static GLuint sphereList, cubelist;

static void init(void)

{
G.fl oat mat _specular[] ={ 1.0, 1.0, 1.0, 0.15 },;
G.float mat _shininess[] = { 100.0 };
G.float position[] ={ 0.5, 0.5, 1.0, 0.0 };

gl Materi al fv(G._FRONT, G. SPECULAR, mat specul ar);
gl Materi al fv(G._FRONT, G._SHI NI NESS, nat _shi ni ness);
gl Lightfv(G_LIGHTO, G._POCSI TI ON, position);

gl Enabl e(GL_LI GHTI NG) ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(GL_DEPTH_TEST) ;

sphereLi st = gl GenLists(1);

gl NewLi st (sphereList, G._COWI LE);
gl ut Sol i dSphere (0.4, 16, 16);

gl EndLi st () ;

cubeLi st = gl GenLists(1);
gl NewLi st (cubeLi st, G._COWI LE);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (10 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13375_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Sol i dCube (0. 6);
gl EndLi st () ;

}

voi d di spl ay(voi d)

{
Gfloat mat _solid[] ={ 0.75
G.float mat _zero[] = { 0.0
G.fl oat mat _transparent|] 0 8
Gfloat mat_em ssion[] = { 0.0, 0.3, 0.3,

, 0.75, 0.0, 1.0 };
0.0, 0.0, 1
{ 0.

gl O ear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BI T):

gl PushMatrix ();
gl Transl atef (-0.15, -0.15, solid?);
gl Material fv(G._FRONT, G._EM SSI ON, nmat _zero);
gl Materi al fv(G_FRONT, G_DI FFUSE, mat_solid);
gl Cal | Li st (spherelList);

gl PopMatrix ();

gl PushMatrix ();
gl Transl atef (0.15, 0.15, transparent?2);
gl Rotatef (15.0, 1.0, 1.0, 0.0);
gl Rotatef (30.0, 0.0, 1.0, 0.0);
gl Material fv(G._FRONT, G._EM SSI ON, mat em ssi on);
gl Materi al fv(G._FRONT, G_DI FFUSE, mat _transparent);
gl Enabl e (G._BLEND) ;
gl Dept hMask (G._FALSE) ;
gl Bl endFunc (G._SRC ALPHA, G._ONE);
gl Cal I Li st (cubeList);
gl Dept hMask (G._TRUE);
gl D sabl e (G._BLEND);
gl PopMatri x ();

gl ut SwapBuf fers();

voi d reshape(int w, int h)

gl Viewport (0, 0, (Gint) w, (Gint) h);
gl Mat ri xMbde(G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
glOrtho (-1.5, 1.5, -1.5*(Gfloat)h/ (G float)w,
1.5*(G.float)h/(Gfloat)w, -10.0, 10.0);
el se

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (11 of 34) [4/28/2000 9:45:52 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

glOtho (-1.5*(G.float)w (G.float)h,
1.5*(CG.float)w (G.float)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}

voi d ani mat e(voi d)
{
iIf (solidZ <= MNZ || transparentZ >= MAXZ)
gl ut I dl eFunc(NULL) ;
el se {
solidZ -= ZI NC,
transparent Z += ZI NC,
gl ut Post Redi spl ay() ;

}

voi d keyboard(unsi gned char key, int x, int y)

{
swtch (key) {
case a':
case A':
sol i dZ = MAXZ;
transparentZ = M Nz,
gl ut 1 dl eFunc(ani mat e) ;
br eak;
case r':
case R :
solidZ = MAXZ;
transparentZ = M Nz,
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);

}

i nt main(int argc, char** argv)
{
glutlnit(&argc, argv);
glutlnitD splayMde (GQUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl ut I ni t WndowSi ze(500, 500);
gl ut Creat eW ndow ar gv[0]);
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboard) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (12 of 34) [4/28/2000 9:45:52 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Di spl ayFunc(di spl ay) ;
gl ut Mai nLoop() ;
return O;

Antialiasing

Y ou might have noticed in some of your OpenGL pictures that lines, especially nearly horizontal or
nearly vertical ones, appear jagged. These jaggies appear because the ideal line is approximated by a
series of pixelsthat must lie on the pixel grid. The jaggednessis called aliasing, and this section
describes antialiasing techniques to reduce it. Figure 6-2 shows two intersecting lines, both aliased and

antialiased. The pictures have been magnified to show the effect.

Allased Antialiased

Figure6-2: Aliased and Antialiased Lines

Figure 6-3 shows how adiagonal line 1 pixel wide covers more of some pixel squares than others. In
fact, when performing antialiasing, OpenGL cal cul ates a coverage value for each fragment based on the
fraction of the pixel square on the screen that it would cover. The figure shows these coverage values for
theline. In RGBA mode, OpenGL multiplies the fragment's alpha value by its coverage. Y ou can then
use the resulting alpha value to blend the fragment with the corresponding pixel already in the
framebuffer. In color-index mode, OpenGL sets the least significant 4 bits of the color index based on the
fragment's coverage (0000 for no coverage and 1111 for complete coverage). It's up to you to load your
color map and apply it appropriately to take advantage of this coverage information.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (13 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13398_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13416_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

040510
040510
878459
434259
A07ESY
141435
759952
7a9952
141435
0739
434259
878469
405110
40510

FTErrAC—TOHmMmMmOoome

Figure 6-3 : Determining Coverage Values

The details of calculating coverage values are complex, difficult to specify in general, and in fact may
vary slightly depending on your particular implementation of OpenGL. Y ou can use the glHint()
command to exercise some control over the trade-off between image quality and speed, but not all
Implementations will take the hint.

void glHint(GLenum target, GLenum hint);

Controls certain aspects of OpenGL behavior. The target parameter indicates which behavior isto
be controlled; its possible values are shown in Table 6-2. The hint parameter can be

GL_FASTEST to indicate that the most efficient option should be chosen, GL_NICEST to indicate
the highest-quality option, or GL_DONT_CARE to indicate no preference. The interpretation of
hints is implementati on-dependent; an implementation can ignore them entirely. (For more
information about the relevant topics, see "Antialiasing” for the details on sampling and "Fog" for

details on fog.)

The GL_PERSPECTIVE_CORRECTION_HINT target parameter refersto how color values and
texture coordinates are interpolated across a primitive: either linearly in screen space (a
relatively ssimple calculation) or in a perspective-correct manner (which requires more
computation). Often, systems perform linear color interpolation because the results, while not
technically correct, are visually acceptable; however, in most cases textures require

per spective-correct interpolation to be visually acceptable. Thus, an implementation can choose to
use this parameter to control the method used for interpolation. (See Chapter 3 for a discussion of

per spective projection, Chapter 4 for a discussion of color, and Chapter 9 for a discussion of
texture mapping.)

Table6-2: Vauesfor Use with glHint()

Parameter M eaning

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (14 of 34) [4/28/2000 9:45:52 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13502_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13383_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13642_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_9603_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_17385_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_POINT_SMOQOTH_HINT, GL_LINE_SMOOTH_HINT, Specify the desired
GL_POLYGON_SMOOTH_HINT sampling quality of points,
lines, or polygons during
antialiasing operations

GL_FOG_HINT Specifies whether fog
calculations are done per
pixel (GL_NICEST) or per
vertex (GL_FASTEST)

GL_PERSPECTIVE CORRECTION_HINT Specifies the desired
quality of color and
texture-coordinate
Interpolation

Antialiasing Points or Lines

To antialias points or lines, you need to turn on antialiasing with glEnable(), passing in
GL_POINT_SMOOTH or GL_LINE_SMOQOTH, as appropriate. Y ou might also want to provide a
quality hint with glHint(). (Remember that you can set the size of a point or the width of aline. Y ou can
also stipplealine. See"Line Details' in Chapter 2.) Next follow the procedures described in one of the

following sections, depending on whether you're in RGBA or color-index mode.

Antialiasing in RGBA Mode

In RGBA mode, you need to enable blending. The blending factors you most likely want to use are
GL_SRC_ALPHA (source) and GL_ONE_MINUS SRC ALPHA (destination). Alternatively, you can
use GL_ONE for the destination factor to make lines a little brighter where they intersect. Now you're
ready to draw whatever points or lines you want antialiased. The antialiased effect is most noticeable if
you use afairly high alphavalue. Remember that since you're performing blending, you might need to
consider the rendering order as described in "Three-Dimensional Blending with the Depth Buffer."
However, in most cases, the ordering can be ignored without significant adverse effects. Example 6-3
initializes the necessary modes for antialiasing and then draws two intersecting diagonal lines. When you
run this program, pressthe 'r' key to rotate the lines so that you can see the effect of antialiasing on lines
of different slopes. Note that the depth buffer isn't enabled in this example.

Example 6-3 : Antialiased lines: aargb.c

#i ncl ude <G/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (15 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_3754_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13348_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13540_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
#i ncl ude <stdi o. h>

static float rotAngle = O.;

/* Initialize antialiasing for RGA node, including al pha
* Dblending, hint, and line wwdth. Print out inplenentation
* specific info on line wwdth granularity and w dth.
*/

void init(void)

{
G.fl oat val ues[2];
gl Get Fl oatv (G._LI NE W DTH _GRANULARI TY, val ues);
printf ("G._LINE WDTH GRANULARITY value is 93.1f\n",
val ues[0]);
gl Get Fl oatv (G._LI NE_ W DTH RANGE, val ues);
printf ("G._LINE WDTH RANCE val ues are %3. 1f 9%3. 1f\n",
val ues[0], values[1]);
gl Enabl e (G._LI NE_SMOOTH) ;
gl Enabl e (G._BLEND) ;
gl Bl endFunc (G._SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;
gl Hnt (G_LINE SMOOTH HI NT, G._DONT_CARE);
glLineWdth (1.5);
gl earColor(0.0, 0.0, 0.0, 0.0);
}
/* Draw 2 diagonal lines to forman X */
voi d di spl ay(voi d)
{

gl d ear (A._COLOR BUFFER BIT);

gl Col or3f (0.0, 1.0, 0.0);
gl PushMatri x();
gl Rotatef(-rotAngle, 0.0, 0.0, 0.1);
gl Begin (G._LINES);
gl Vertex2f (-0.5, 0.5);
gl Vertex2f (0.5, -0.5);
gl End ();
gl PopMatri x();

gl Color3f (0.0, 0.0, 1.0);
gl PushMatri x();
gl Rotatef(rotAngle, 0.0, 0.0, 0.1);
gl Begin (G._LINES);
gl Vertex2f (0.5, 0.5);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (16 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Vertex2f (-0.5, -0.5);
gl End ();
gl PopMatri x();

gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, O, (Gint) w, (Gint) h);
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
gluGrtho2D (-1.0, 1.0,
-1.0*(G.float)h/ (G float)w, 1.0*(G.float)h/ (G float)w;
el se
gluOrtho2D (-1.0*(G.float)w (G.fl oat) h,
1.0*(G.float)w (Gfloat)h, -1.0, 1.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity();
}
voi d keyboard(unsi gned char key, int x, int y)
{
swtch (key) {
case r':
case R:
rot Angl e += 20.;
i f (rotAngle >= 360.) rotAngle = 0.;
gl ut Post Redi spl ay() ;
br eak;
case 27: [* Escape Key */
exit(0);
br eak;
defaul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutlnit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGE | G.UT_RGB);
gl utlni t WndowSi ze (200, 200);

gl ut Creat eW ndow (argv[0]);

init();

gl ut ReshapeFunc (reshape);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (17 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (displ ay);
gl ut Mai nLoop();

return O;

}

Antialiasing in Color-Index Mode

The tricky part about antialiasing in color-index mode is loading and using the color map. Since the last 4
bits of the color index indicate the coverage value, you need to load sixteen contiguous indices with a
color ramp from the background color to the object's color. (The ramp has to start with an index value
that's a multiple of 16.) Then you clear the color buffer to the first of the sixteen colorsin the ramp and
draw your points or lines using colors in the ramp. Example 6-4 demonstrates how to construct the color
ramp to draw antialiased linesin color-index mode. In this example, two color ramps are created: one
contains shades of green and the other shades of blue.

Example 6-4 : Antialiasing in Color-Index Mode: aaindex.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>

#def i ne RAMPSI ZE 16
#def i ne RAMP1START 32
#defi ne RAMP2START 48

static float rotAngle = O.;

/* Initialize antialiasing for col or-index node,
* including |oading a green color ranp starting
* at RAMPLSTART, and a blue color ranp starting
* at RAMP2START. The ranps nust be a nultiple of 16.
*/
void init(void)
Lo
int i;

for (i =0; I < RAWMPSI ZE;, i ++) {
G.fl oat shade;
shade = (G.float) i/(CG.float) RAMPSI ZE;
gl ut Set Col or (RAMP1START+(& int)i, 0., shade, 0.);
gl ut Set Col or (RAMP2START+(G.int)i, 0., 0., shade);
}
gl Enabl e (G._LI NE_SMOOTH) ;
gl Hnt (G_LINE SMOOTH HI NT, G._DONT_CARE);
gl LineWdth (1.5);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (18 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13559_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl d earlndex ((G.float) RAMPLSTART);
}
/* Draw 2 diagonal lines to forman X */
voi d di spl ay(voi d)
{
gl A ear (A._COLOR BUFFER BI T);

gl I ndexi (RAMP1START) ;
gl PushMatri x();
gl Rotatef(-rotAngle, 0.0, 0.0, 0.1);
gl Begin (G._LINES);
gl Vertex2f (-0.5, 0.5);
gl Vertex2f (0.5, -0.5);
gl End ();
gl PopMatri x();

gl I ndexi (RAMP2START) ;
gl PushMatri x();
gl Rotatef(rotAngle, 0.0, 0.0, 0.1);
gl Begin (G._LINES);
gl Vertex2f (0.5, 0.5);
gl Vertex2f (-0.5, -0.5);
gl End ();
gl PopMatri x();

gl Fl ush();

voi d reshape(int w, int h)

gl Vi ewport (0, O, (CGsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
i f (w <= h)
gluOrtho2D (-1.0, 1.0,
-1.0*(CGfloat)h/ (G float)w, 1.0*(CG.float)h/(Gfloat)w);
el se
gluOGrtho2D (-1.0*(G.float)w (G.fl oat) h,
1.0*(CG.float)w (Gfloat)h, -1.0, 1.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d keyboard(unsi gned char key, int x, int y)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (19 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

swtch (key) {

case r':

case R :
rot Angl e += 20.;
I f (rotAngle >= 360.) rotAngle = 0.;
gl ut Post Redi spl ay() ;
br eak;

case 27: [* Escape Key */
exit(0);
br eak;

def aul t:
br eak;

}

i nt main(int argc, char** argv)

{
glutlnit(&rgc, argv);
glutlnitDi splayMdde (GLUT_SINGLE | G.UT_I NDEX) ;
gl ut | ni t WndowSi ze (200, 200);
gl ut Creat eW ndow (argv[O0]);
init();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop();
return O;

}

Since the color ramp goes from the background color to the object's color, the antialiased lines |ook
correct only in the areas where they are drawn on top of the background. When the blue lineis drawn, it
erases part of the green line at the point where the lines intersect. To fix this, you would need to redraw
the areawhere the lines intersect using a ramp that goes from green (the color of thelinein the
framebuffer) to blue (the color of the line being drawn). However, this requires additional calculations
and it isusually not worth the effort since the intersection areais small. Note that thisis not a problem in
RGBA mode, since the colors of object being drawn are blended with the color already in the
framebuffer.

Y ou may also want to enable the depth test when drawing antialiased points and lines in color-index
mode. In this example, the depth test is disabled since both of the lineslie in the same z-plane. However,
iIf you want to draw athree-dimensional scene, you should enable the depth buffer so that the resulting
pixel colors correspond to the "nearest” objects.

The trick described in "Three-Dimensional Blending with the Depth Buffer” can aso be used to mix
antialiased points and lines with aliased, depth-buffered polygons. To do this, draw the polygons first,
then make the depth buffer read-only and draw the points and lines. The points and lines intersect nicely
with each other but will be obscured by nearer polygons.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (20 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13348_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Try This

Take a previous program, such as the robot arm or solar system examples described in "Exampl es of
Composing Several Transformations' in Chapter 3, and draw wireframe objects with antialiasing. Try it
in either RGBA or color-index mode. Also try different line widths or point sizesto see their effects.

Antialiasing Polygons

Antialiasing the edges of filled polygonsis similar to antialiasing points and lines. When different
polygons have overlapping edges, you need to blend the color values appropriately. Y ou can either use
the method described in this section, or you can use the accumulation buffer to perform antialiasing for
your entire scene. Using the accumulation buffer, which is described in Chapter 10, is easier from your
point of view, but it's much more computation-intensive and therefore slower. However, asyou'll see, the
method described here is rather cumbersome.

Note: If you draw your polygons as points at the vertices or as outlines - that is, by passing GL_POINT
or GL_LINE to glPolygonM ode() - point or line antialiasing is applied, if enabled as described earlier.
The rest of this section addresses polygon antialiasing when you're using GL_FILL as the polygon mode.

In theory, you can antialias polygons in either RGBA or color-index mode. However, object intersections
affect polygon antialiasing more than they affect point or line antialiasing, so rendering order and
blending accuracy become more critical. In fact, they're so critical that if you're antialiasing more than
one polygon, you need to order the polygons from front to back and then use glBlendFunc() with
GL_SRC ALPHA_SATURATE for the source factor and GL_ONE for the destination factor. Thus,
antialiasing polygonsin color-index mode normally isn't practical.

To antialias polygons in RGBA mode, you use the al pha value to represent coverage values of polygon
edges. Y ou need to enable polygon antialiasing by passing GL_POLY GON_SMOQOTH to glEnable().
This causes pixels on the edges of the polygon to be assigned fractional apha values based on their
coverage, as though they were lines being antialiased. Also, if you desire, you can supply avalue for
GL_POLYGON_SMOQOTH_HINT.

Now you need to blend overlapping edges appropriately. First, turn off the depth buffer so that you have
control over how overlapping pixels are drawn. Then set the blending factorsto

GL_SRC ALPHA_ SATURATE (source) and GL_ONE (destination). With this specialized blending
function, the final color is the sum of the destination color and the scaled source color; the scale factor is
the smaller of either the incoming source alpha value or one minus the destination alphavalue. This
means that for a pixel with alarge alpha value, successive incoming pixels have little effect on the fina
color because one minus the destination alphais almost zero. With this method, a pixel on the edge of a
polygon might be blended eventually with the colors from another polygon that's drawn later. Finally,
you need to sort all the polygons in your scene so that they're ordered from front to back before drawing
them.

Example 6-5 shows how to antialias filled polygons; clicking the left mouse button toggles the

antialiasing on and off. Note that backward-facing polygons are culled and that the alpha valuesin the
color buffer are cleared to zero before any drawing. Pressing the "t key toggles the antialiasing on and
off.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (21 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_9222_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_9222_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13634_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Note: Your color buffer must store alpha values for this technique to work correctly. Make sure you
request GLUT_ALPHA and receive alegitimate window.

Example 6-5 : Antialiasing Filled Polygons: aapoly.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <G/ gl ut. h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

GLbool ean pol ySnoot h = G._TRUE;
static void init(void)

{
gl Cul | Face (G._BACK);
gl Enabl e (G._CULL_FACE);
gl Bl endFunc (G._SRC ALPHA SATURATE, G._ONE);
glCearColor (0.0, 0.0, 0.0, 0.0);
}

#defi ne NFACE 6

#defi ne NVERT 8

voi d drawCube(GLdoubl e x0, G.doubl e
GLdoubl e y1, G.doubl e

x1, G.doubl e yO,
z0, G.doubl e z1)

{
static G.float v[8][3];
static G.float c[8][4] = {
{0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0%,
{0.0, 1.0, 0.0, 1.0}, {1.0, 1.0, 0.0, 1.0%,
{0.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0%,
{0.0, 1.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}
b
/* indices of front, top, left, bottom right, back faces */
static GLubyte indices[NFACE][4] = {
{4, 5, 6, 7}, {2, 3, 7, 6}, {0, 4, 7, 3},
{o, 1, 5, 4}, {1, 5 6, 2}, {0, 3, 2, 1}
b
v[O][O] = v[3][0] = v[4][0] = v[7][0] = xO;
v[1][O0] = v[2][0] = v[5][0] = v[6][0] = x1;
viO][1] = v[1][1] = v[4][1] = v[5][1] = yO;
vi2][1] = v[3][1] = v[6][1] = v[7][1] =yl
viO][2] = v[1][2] = v[2][2] = v[3][2] = zO;
vi4][2] = v[5][2] = v[6][2] = v[7][2] = z1,

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (22 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

#ifdef GL_VERSION 1 1
gl Enabl ed i ent St ate (G._VERTEX_ARRAY) ;
gl Enabl e ient State (G._COLOR_ARRAY);
gl VertexPoi nter (3, G_FLOAT, 0, v);
gl Col or Poi nter (4, G._FLOAT, 0, c);
gl DrawEl enment s(GL_QUADS, NFACE*4, G._UNSI GNED BYTE, i ndices);
gl Di sabl e ientState (G._VERTEX ARRAY);
gl DisableCientState (G._COLOR_ARRAY);
#el se
printf ("If thisis G Version 1.0, ");
printf ("vertex arrays are not supported.\n");
exit(l);
#endi f
}
/* Note: polygons nust be drawn fromfront to back
* for proper blending.
*/
voi d di spl ay(voi d)
{
I f (pol ySnoot h) {
gl d ear (G._COLOR BUFFER BIT);
gl Enabl e (G._BLEND) ;
gl Enabl e (G._POLYGON_SMOOTH) ;
gl D sabl e (G._DEPTH TEST) ;
}
el se {
gl ear (G_COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl Di sabl e (G._BLEND);
gl Di sabl e (G._POLYGON SMOOTH) ;
gl Enabl e (G._DEPTH TEST);
}

gl PushMatrix ();
gl Transl atef (0.0, 0.0, -8.0
gl Rotatef (30.0, 1.0, 0.0, 0.0);
gl Rotatef (60.0, 0.0, 1.0, 0.0);
drawCube(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5);
gl PopMatrix ();

),
0
0

gl Flush ();
}
voi d reshape(int w, int h)
{

gl Viewport (0, 0O, (CGLsizei) w, (CGLsizei) h);
gl Matri xMbde(GL_PRQIECTI ON) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (23 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Loadl dentity();

gl uPerspective(30.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMbde(G._MODELVI EW ;

gl Loadl dentity();

}
voi d keyboard(unsi gned char key, int x, int y)
{
switch (key) {
case t':
case T':
pol ySnoot h = ! pol ySnoot h;
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0); [/* Escape key */
br eak;
def aul t:
br eak;
}
}
i nt main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB
| GLUT_ALPHA | GLUT_DEPTH);
gl ut I ni t WndowSi ze(200, 200);
gl ut Creat eW ndow ar gv[0]);
init ();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop() ;
return O;
}

Fog

Computer images sometimes seem unrealistically sharp and well defined. Antialiasing makes an object
appear more realistic by smoothing its edges. Additionally, you can make an entire image appear more
natural by adding fog, which makes objects fade into the distance. Fog is a general term that describes
similar forms of atmospheric effects; it can be used to simulate haze, mist, smoke, or pollution. (See
Plate 9.) Fog is essential in visual-simulation applications, where limited visibility needsto be
approximated. It's often incorporated into flight-simulator displays.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (24 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

When fog is enabled, objects that are farther from the viewpoint begin to fade into the fog color. Y ou can
control the density of the fog, which determines the rate at which objects fade as the distance increases,
aswell asthefog's color. Fog is available in both RGBA and color-index modes, although the
calculations are slightly different in the two modes. Since fog is applied after matrix transformations,
lighting, and texturing are performed, it affects transformed, lit, and textured objects. Note that with large
simulation programs, fog can improve performance, since you can choose not to draw objects that would
be too fogged to be visible.

All types of geometric primitives can be fogged, including points and lines. Using the fog effect on
points and lines is also called depth-cuing (as shown in Plate 2) and is popular in molecular modeling and
other applications.

Using Fog

Using fog is easy. Y ou enable it by passing GL_FOG to glEnable(), and you choose the color and the
equation that controls the density with glFog* (). If you want, you can supply avalue for GL_FOG_HINT
with glHint(), as described on Table 6-2. Example 6-6 draws five red spheres, each at a different distance
from the viewpoint. Pressing the "f' key selects among the three different fog equations, which are
described in the next section.

Example 6-6 : Five Fogged Spheresin RGBA Mode: fog.c

#i ncl ude <G/ gl . h>
#i ncl ude <G@&./ gl u. h>
#i ncl ude <mat h. h>

#i ncl ude <G/ gl ut. h>
#1 ncl ude <stdlib. h>
#1 ncl ude <stdi o. h>

static G.int fogMode;

static void init(void)

{
G.float position[] ={ 0.5, 0.5 3.0, 0.0 },;

gl Enabl e(G._DEPTH_TEST) ;

gl Li ghtfv(G_LI GHTO, G._POSI TI ON, position);
gl Enabl e(GL_LI GHTI NG) ;
gl Enabl e(GL_LI GHTO) ;
{
G.float mat[3] = {0.1745, 0.01175, 0.01175};
gl Materialfv (G_FRONT, G._AMBI ENT, mat);
mat[0] = 0.61424; mat[1] = 0.04136; mat[2] = 0.04136;
gl Materialfv (G_FRONT, G._DI FFUSE, mat);
mat [0] = 0.727811; mat[1l] = 0.626959; mat[2] = 0. 626959;
gl Material fv (G_FRONT, G._SPECULAR, mat);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (25 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13502_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13688_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Materialf (GL_FRONT, G. _SHI NI NESS, 0.6*128.0);

}

gl Enabl e(GL_FOG) ;

{
G.fl oat fogColor[4] = {0.5, 0.5, 0.5, 1.0};
foghbde = GL_EXP;
gl Fogi (G._FOG MODE, fogMode);
gl Fogfv (GL_FOG COLOR, fogCol or);
gl Fogf (G._FOG DENSITY, 0.35);
gl H nt (G_FOG H NT, G._DONT_CARE);
gl Fogf (G._FOG START, 1.0);
gl Fogf (G._FOG END, 5.0);

}

glCearColor(0.5, 0.5, 0.5, 1.0); [/* fog color */
}

static void render Sphere (G.float x, G.float y, Gfloat z)
{

gl PushMatri x();

gl Transl atef (x, y, 2z);

gl ut Sol i dSphere(0.4, 16, 16);

gl PopMatri x();
}

/* display() draws 5 spheres at different z positions.
*/
voi d di spl ay(voi d)

{
gl dear(E_CO.OR BUFFER BIT | G._DEPTH BUFFER BIT);
render Sphere (-2., -0.5, -1.0);
render Sphere (-1., -0.5, -2.0);
render Sphere (0., -0.5, -3.0);
render Sphere (1., -0.5, -4.0);
render Sphere (2., -0.5, -5.0);
gl Fl ush();

}

voi d reshape(int w, int h)

{

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
glOtho (-2.5, 2.5, -2.5*(G.float)h/(Gfloat)w,

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (26 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

2.5*(G.float)h/ (G float)w, -10.0, 10.0);
el se
glOrtho (-2.5*(CG.float)w (G fl oat)h,
2.5*(Gfloat)w (Gfloat)h, -2.5 2.5, -10.0, 10.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity ();

}
voi d keyboard(unsi gned char key, int x, int y)
{
swtch (key) {
case f':
case F':
i f (fogbde == G._EXP) {
fogvbde = G._EXPZ2;
printf ("Fog node is G._EXP2\n");
}
else if (fogvbde == G._EXP2) {
fogvbde = G._LI NEAR,
printf ("Fog node is G._LI NEAR n");
}
else if (fogvbde == G__LI NEAR) {
fogvbde = GL_EXP;
printf ("Fog node is G._EXP\n");
}
gl Fogi (G._FOG MODE, foghode);
gl ut Post Redi spl ay() ;
br eak;
case 27.
exit(0);
br eak;
def aul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutlnit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB | G.UT_DEPTH);
gl utl ni t WndowSi ze(500, 500);

gl ut Cr eat eW ndow(ar gv[0]) ;

init();

gl ut ReshapeFunc (reshape);

gl ut Keyboar dFunc (keyboard);

gl ut Di spl ayFunc (di spl ay);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (27 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Mai nLoop() ;
return O;

}
Fog Equations

Fog blends afog color with an incoming fragment's color using afog blending factor. Thisfactor, f, is
computed with one of these three equations and then clamped to the range [0,1].

f= eSS (GLEXFE)
5= effensiy. 3P (GL_EXP2)
f= 2.2 (Gl LINEAR)

endgd - Fhard

In these three equations, z is the eye-coordinate distance between the viewpoint and the fragment center.
The values for density, start, and end are all specified with glFog* (). The f factor is used differently,
depending on whether you'rein RGBA mode or color-index mode, as explained in the next subsections.

void glFog{if}(GLenum pname, TYPE param);

void glFog{if}v(GLenum pname, TYPE * params);
Sets the parameters and function for calculating fog. If pnameis GL_FOG_MODE, then paramis
either GL_EXP (the default), GL_EXP2, or GL_LINEAR to select one of the three fog factors. If
pnameisGL FOG DENSTY, GL_FOG_START, or GL_FOG _END, then paramis (or pointsto,
with the vector version of the command) a value for density, start, or end in the equations. (The
default valuesare 1, 0, and 1, respectively.) In RGBA mode, pname can be GL_FOG_COLOR, in
which case params points to four values that specify the fog's RGBA color values. The
corresponding value for pname in color-index mode is GL_FOG_INDEX, for which paramisa
single value specifying the fog's color index.

Figure 6-4 plots the fog-density equations for various values of the parameters.

— GL_EXP2, density=0.5

GL_EXP2, density=0.25
0 / -

GL_LINEAR

GL_EXP, densiy=025
percent

of original
color

GL_EXP, density=0.5

LT
amw
.........
llllllllll
v

111111111111111111111

0 distance from viewpoint 1

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (28 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13792_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 6-4 : Fog-Density Equations

Fog in RGBA Mode

In RGBA mode, the fog factor f isused as follows to calculate the final fogged color:
C=fCi+(1-f)Cf

where Ci represents the incoming fragment's RGBA values and Cf the fog-color values assigned with
GL_FOG_COLOR.

Fog in Color-Index Mode

In color-index mode, the final fogged color index is computed as follows:
I=li+(1-f)If

where li isthe incoming fragment's color index and If is the fog's color index as specified with
GL_FOG_INDEX.

To usefog in color-index mode, you have to load appropriate values in a color ramp. Thefirst color in
the ramp is the color of the object without fog, and the last color in the ramp is the color of the
completely fogged object. Y ou probably want to use glClear | ndex() to initialize the background color
index so that it corresponds to the last color in the ramp; this way, totally fogged objects blend into the
background. Similarly, before objects are drawn, you should call gl ndex* () and pass in the index of the
first color in the ramp (the unfogged color). Finally, to apply fog to different colored objects in the scene,
you need to create severa color ramps and call gli ndex* () before each object is drawn to set the current
color index to the start of each color ramp. Example 6-7 illustrates how to initialize appropriate

conditions and then apply fog in color-index mode.

Example 6-7 : Fog in Color-Index Mode: fogindex.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#1 ncl ude <nat h. h>
#i ncl ude <@./glut. h>
#1 ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

/* Initialize color mp and fog. Set screen clear color
* to end of color ranp.

*/

#defi ne NUMCOLORS 32

#def i ne RAMPSTART 16

static void init(void)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (29 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13871_START_RESTART_N%25#X

}

OpenGL Programming Guide (Addison-Wesley Publishing Company)

int i;
gl Enabl e(G._DEPTH_TEST) ;

for (i = 0; 1 < NUMCOLCRS; i++) {
G.f | oat shade;
shade = (G.float) (NUMCOLORS-i)/ (G float) NUMCOLORS;
gl ut Set Col or (RAMPSTART + i, shade, shade, shade);

}
gl Enabl e(GL_FOG) ;

gl Fogi (G._FOG MODE, G._LI NEAR);

gl Fogi (G._FOG | NDEX, NUMCOLORS) ;

gl Fogf (G._FOG START, 1.0);

gl Fogf (G._FOG END, 6.0);

glH nt (G_FOG H NT, G._NI CEST);

gl A earl ndex((G.float) (NUMCOLORS+RAMPSTART-1));

static void render Sphere (G.float x, G.float y, Gfloat z)

{

}

/*

gl PushMatri x();

gl Transl atef (x, y, z);

gl ut WreSphere(0.4, 16, 16);
gl PopMatri x();

di splay() draws 5 spheres at different z positions.

voi d di spl ay(voi d)

{

}

gl dear(E_CO.OR BUFFER BIT | G._DEPTH BUFFER BIT);
gl I ndexi (RAMPSTART) ;

render Sphere (-2., -0.5, -1.0);
render Sphere (-1., -0.5, -2.0);
render Sphere (0., -0.5, -3.0);
render Sphere (1., -0.5, -4.0);
render Sphere (2., -0.5, -5.0);

gl Fl ush();

voi d reshape(int w, int h)

{

gl Viewport (0, 0, w, h);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (30 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Matri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
i f (w <= h)
glOtho (-2.5, 2.5, -2.5*(Gfloat)h/(Gfloat)w,
2.5*(CG.float)h/ (G float)w, -10.0, 10.0);
el se
glOtho (-2.5*(G.float)w (G.float)h,
2.5*(CG.float)w (Gfloat)h, -2.5, 2.5, -10.0, 10.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity ();

}
voi d keyboard(unsi gned char key, int x, int y)
{
swtch (key) {
case 27:
exit(0);
}
}
int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGLE | GLUT_I NDEX | GLUT_DEPTH);
gl utl ni t WndowSi ze(500, 500);
gl ut Cr eat eW ndow(ar gv[0]) ;
init();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut Di spl ayFunc (di spl ay);
gl ut Mai nLoop() ;
return O;
}

Polygon Offset

If you want to highlight the edges of a solid object, you might try to draw the object with polygon mode
GL_FILL and then draw it again, but in a different color with polygon mode GL_LINE. However,
because lines and filled polygons are not rasterized in exactly the same way, the depth values generated
for pixels on aline are usually not the same as the depth values for a polygon edge, even between the
same two vertices. The highlighting lines may fade in and out of the coincident polygons, which is
sometimes called "stitching" and is visually unpleasant.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (31 of 34) [4/28/2000 9:45:53 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The visual unpleasantness can be eliminated by using polygon offset, which adds an appropriate offset to
force coincident z values apart to cleanly separate a polygon edge from its highlighting line. (The stencil
buffer, described in "Stencil Test" in Chapter 10, can also be used to eliminate stitching. However,
polygon offset is amost always faster than stenciling.) Polygon offset is also useful for applying decals
to surfaces, rendering images with hidden-line removal. In addition to lines and filled polygons, this
technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type of polygon rasterization mode:
GL_FILL, GL_LINE, or GL_POINT. Y ou enable the polygon offset by passing the appropriate
parameter to glEnable(), either GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT. You must also cal glPolygonM ode&() to set the current polygon
rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);

When enabled, the depth value of each fragment is added to a calculated offset value. The offset is
added before the depth test is performed and before the depth value is written into the depth
buffer. The offset value o is calculated by:

0= m* factor + r * units

where mis the maximum depth slope of the polygon and r is the smallest value guaranteed to
produce a resolvabl e difference in window coordinate depth values. The valuer isan
implementation-specific constant.

To achieve anice rendering of the highlighted solid object without visual artifacts, you can either add a
positive offset to the solid object (push it away from you) or a negative offset to the wireframe (pull it
towards you). The big question is. "How much offset is enough?' Unfortunately, the offset required
depends upon various factors, including the depth slope of each polygon and the width of the linesin the
wireframe.

OpenGL calculates the depth slope (see Figure 6-5) of a polygon for you, but it's important that you
understand what the depth slope is, so that you choose a reasonable value for factor. The depth Slopeis
the change in z (depth) values divided by the change in either x or y coordinates, as you traverse a
polygon. The depth values are in window coordinates, clamped to the range [0, 1]. To estimate the
maximum depth slope of a polygon (min the offset equation), use this formula:

wene 2

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (32 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_22092_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_13978_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

polygon with depth slope =0

*<-\

polygon with dapth slope = 0 \'\

Figure 6-5: Polygons and Their Depth Slopes

For polygons that are parallel to the near and far clipping planes, the depth slope is zero. For the
polygons in your scene with a depth slope near zero, only a small, constant offset is needed. To create a
small, constant offset, you can pass factor=0.0 and units=1.0 to glPolygonOffset().

For polygons that are at a great angle to the clipping planes, the depth slope can be significantly greater
than zero, and alarger offset may be needed. Small, non-zero values for factor, such as0.75 or 1.0, are
probably enough to generate distinct depth values and eliminate the unpleasant visual artifacts.

Example 6-8 shows a portion of code, where adisplay list (which presumably draws a solid object) is
first rendered with lighting, the default GL_FILL polygon mode, and polygon offset with factor of 1.0
and units of 1.0. These values ensure that the offset is enough for all polygonsin your scene, regardless
of depth slope. (These values may actually be alittle more offset than the minimum needed, but too
much offset is less noticeabl e than too little.) Then, to highlight the edges of the first object, the object is
rendered as an unlit wireframe with the offset disabled.

Example 6-8 : Polygon Offset to Eliminate Visual Artifacts. polyoff.c

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(GL_LI GHTO) ;

gl Enabl e(GL_POLYGON _OFFSET_FI LL);
gl Pol ygonOf fset (1.0, 1.0);

gl Cal I List (list);

gl D sabl e(G._POLYGON_OFFSET_FI LL);

gl Di sabl e(G__LI GHTI NG) ;

gl Di sabl e(G._LI GHTO) ;

gl Color3f (1.0, 1.0, 1.0);

gl Pol ygonMode(GL_FRONT_AND BACK, G._LINE);
gl Call List (list);

gl Pol ygonMode(GL_FRONT_AND BACK, G. _FILL);

In afew situations, the simplest values for factor and units (1.0 and 1.0) aren't the answers. For instance,
iIf the width of the lines that are highlighting the edges are greater than one, then increasing the value of
factor may be necessary. Also, since depth values are unevenly transformed into window coordinates

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (33 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%15_14014_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

when using perspective projection (see "The Transformed Depth Coordinate” in Chapter 3), less offset is

needed for polygons that are closer to the near clipping plane, and more offset is needed for polygons
that are further away. Once again, experimenting with the value of factor may be warranted.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/12800;cs=fullhtml;pt=10431 (34 of 34) [4/28/2000 9:45:53 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=12800?target=%25N%14_8676_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 7
Display Lists

Chapter Objectives

After reading this chapter, you'll be able to do the following:

« Understand how display lists can be used along with commands in immediate mode to organize
your data and improve performance

« Maximize performance by knowing how and when to use display lists

A display list isagroup of OpenGL commands that have been stored for later execution. When a display
list isinvoked, the commandsin it are executed in the order in which they were issued. Most OpenGL
commands can be either stored in adisplay list or issued in immediate mode, which causes them to be
executed immediately. Y ou can freely mix immediate-mode programming and display lists within a
single program. The programming examples you've seen so far have used immediate mode. This chapter
discusses what display lists are and how best to use them. It has the following major sections:

o "Why Use Display Lists?' explains when to use display lists.

« "An Exampleof Using aDisplay List" gives abrief example, showing the basic commands for
using display lists.

« "Display-List Design Philosophy" explains why certain design choices were made (such as making
display lists uneditable) and what performance optimizations you might expect to see when using
display lists.

» "Creating and Executing a Display List" discussesin detail the commands for creating, executing,
and deleting display lists.

« "Executing Multiple Display Lists' shows how to execute several display listsin succession, using
asmall character set as an example.

« "Managing State Variables with Display Lists" illustrates how to use display liststo save and
restore OpenGL commands that set state variables.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (1 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14093_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14111_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14292_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14708_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14869_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Why Use Display Lists?

Display lists may improve performance since you can use them to store OpenGL commands for later
execution. It is often agood idea to cache commandsin adisplay list if you plan to redraw the same
geometry multiple times, or if you have a set of state changes that need to be applied multiple times.
Using display lists, you can define the geometry and/or state changes once and execute them multiple
times.

To see how you can use display lists to store geometry just once, consider drawing atricycle. The two
wheels on the back are the same size but are offset from each other. The front wheel islarger than the
back wheels and also in a different location. An efficient way to render the wheels on the tricycle would
be to store the geometry for one wheel in adisplay list then execute the list three times. Y ou would need
to set the modelview matrix appropriately each time before executing the list to calculate the correct size
and location for the wheels.

When running OpenGL programs remotely to another machine on the network, it is especialy important
to cache commandsin adisplay list. In this case, the server is a different machine than the host. (See
"What Is OpenGL ?' in Chapter 1 for adiscussion of the OpenGL client-server model.) Since display lists
are part of the server state and therefore reside on the server machine, you can reduce the cost of
repeatedly transmitting that data over a network if you store repeatedly used commandsin adisplay list.

When running locally, you can often improve performance by storing frequently used commandsin a
display list. Some graphics hardware may store display lists in dedicated memory or may store the datain
an optimized form that is more compatible with the graphics hardware or software. (See "Display-List

Design Philosophy" for a detailed discussion of these optimizations.)

An Example of Using a Display List

A display list is aconvenient and efficient way to name and organize a set of OpenGL commands. For
example, suppose you want to draw atorus and view it from different angles. The most efficient way to
do thiswould be to store the torusin adisplay list. Then whenever you want to change the view, you
would change the modelview matrix and execute the display list to draw the torus. Example 7-1

illustrates this.

Example 7-1 : Creating a Display List: torus.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <stdi o. h>

#i ncl ude <mat h. h>

#i ncl ude <G/ gl ut. h>

#i ncl ude <stdlib. h>

GLui nt t heTor us;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (2 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%13_690_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14209_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14123_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

/* Draw a torus */
static void torus(int nunc, int nunt)

{
int i, j, k;
double s, t, x, vy, z, twopi;
twopi = 2 * (double)M PI;
for (i =0; 1 < nunt; i++) {
gl Begi n(G._QUAD STRI P) ;
for (j =0; j <= nunt; j++) {
for (k =1; k >= 0; k--) {
s = (i + k) %nunc + 0.5;
t =j % nunt;
X = (1+. 1*cos(s*twopi/nunt))*cos(t*twopi/nunt);
y = (1+. 1*cos(s*twopi/nunt)) *si n(t*twopi / nunt) ;
z =.1* sin(s * twopi / nunt);
gl Vertex3f(x, vy, z);
}
}
gl End() ;
}
}

/|* Create display list with Torus and initialize state*/
static void init(void)

{
theTorus = gl GenLists (1);
gl NewLi st (t heTorus, G._COWPI LE);
torus(8, 25);
gl EndLi st () ;
gl ShadeMbdel (G._FLAT);
gl CdearColor(0.0, 0.0, 0.0, 0.0);
}
voi d di spl ay(voi d)
{
gl d ear (G._COLOR BUFFER BIT);
gl Col or3f (1.0, 1.0, 1.0);
gl Cal | Li st (theTorus);
gl Fl ush();
}
voi d reshape(int w, int h)
{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (3 of 21) [4/28/2000 9:46:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

gl Mat ri xMbde(G._PRQIECTI ON) ;

gl Loadl dentity();

gl uPer spective(30, (G float) w (Gfloat) h, 1.0, 100.0);
gl Mat ri xMbde(G._MODELVI EW ;

gl Loadl dentity();

gl uLookAt (0, 0, 10, O, O, O, O, 1, 0);

/* Rotate about x-axis when "x" typed; rotate about y-axis
when "y" typed; "iI" returns torus to original view */
voi d keyboard(unsi gned char key, int x, int y)

swtch (key) {
case X':
case X :
gl Rotatef(30.,1.0,0.0,0.0);
gl ut Post Redi spl ay() ;
br eak;
case 'y':
case Y':
gl Rotatef (30.,0.0,1.0,0.0);
gl ut Post Redi spl ay() ;
br eak;
case i':
case |':
gl Loadl dentity();
gl uLookAt (0, 0, 10, O, O, O, O, 1, 0);
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
br eak;

}

i nt main(int argc, char **argv)
{
gl ut I ni t WndowSi ze(200, 200);
glutlnit(&rgc, argv);
glutlnitD splayMde(GLUT_SI NGLE | G.UT_RGB);
gl ut Cr eat eW ndow(ar gv[0]) ;
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (4 of 21) [4/28/2000 9:46:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl ut Mai nLoop() ;
return O;

}

Let's start by looking at init(). It creates adisplay list for the torus and initializes the viewing matrices
and other rendering state. Note that the routine for drawing atorus (torus()) is bracketed by gINewL ist()
and glEndL ist(), which defines adisplay list. The argument listName for gINewL ist() is an integer
index, generated by glGenL ists(), that uniquely identifies this display list.

The user can rotate the torus about the x- or y-axis by pressing the "x' or "y' key when the window has
focus. Whenever this happens, the callback function keyboard() is called, which concatenates a
30-degree rotation matrix (about the x- or y-axis) with the current modelview matrix. Then
glutPostRedisplay() is called, which will cause glutM ainL oop() to call display() and render the torus
after other events have been processed. When the "i' key is pressed, keyboar d() restores the initial
modelview matrix and returns the torus to its original location.

The display() function is very simple: It clears the window and then calls glCallL ist() to execute the
commands in the display list. If we hadn't used display lists, display() would have to reissue the
commands to draw the torus each time it was called.

A display list contains only OpenGL commands. In Example 7-1, only the glBegin(), glVertex(), and
glEnd() calls are stored in the display list. The parameters for the calls are evaluated, and their values are
copied into the display list when it is created. All the trigonometry to create the torus is done only once,
which should increase rendering performance. However, the valuesin the display list can't be changed
later. And once a command has been stored in alist it is not possible to remove it. Neither can you add
any new commands to the list after it has been defined. Y ou can delete the entire display list and create a
new one, but you can't edit it.

Note: Display lists also work well with GLU commands, since those operations are ultimately broken
down into low-level OpenGL commands, which can easily be stored in display lists. Use of display lists
with GLU is particularly important for optimizing performance of GLU tessellators and NURBS.

Display-List Design Philosophy

To optimize performance, an OpenGL display list is a cache of commands rather than a dynamic
database. In other words, once adisplay list is created, it can't be modified. If adisplay list were
modifiable, performance could be reduced by the overhead required to search through the display list and
perform memory management. As portions of a modifiable display list were changed, memory allocation
and deallocation might lead to memory fragmentation. Any modifications that the OpenGL
implementation made to the display-list commands in order to make them more efficient to render would
need to be redone. Also, the display list may be difficult to access, cached somewhere over a network or
asystem bus.

The way in which the commandsin adisplay list are optimized may vary from implementation to
implementation. For example, acommand as simple as glRotate* () might show a significant
improvement if it'sin adisplay list, since the calculations to produce the rotation matrix aren't trivial

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (5 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14123_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

(they can involve square roots and trigonometric functions). In the display list, however, only the final
rotation matrix needs to be stored, so a display-list rotation command can be executed as fast as the
hardware can execute giIM ultM atrix* (). A sophisticated OpenGL implementation might even
concatenate adjacent transformation commands into a single matrix multiplication.

Although you're not guaranteed that your OpenGL implementation optimizes display lists for any
particular uses, the execution of display listsisn't slower than executing the commands contained within
them individually. There is some overhead, however, involved in jumping to adisplay list. If aparticular
list is small, this overhead could exceed any execution advantage. The most likely possibilities for
optimization are listed next, with references to the chapters where the topics are discussed.

« Matrix operations (Chapter 3). Most matrix operations require OpenGL to compute inverses. Both
the computed matrix and itsinverse might be stored by a particular OpenGL implementation in a
display list.

« Raster bitmaps and images (Chapter 8). The format in which you specify raster dataisn't likely to
be one that's ideal for the hardware. When a display list is compiled, OpenGL might transform the
datainto the representation preferred by the hardware. This can have a significant effect on the
speed of raster character drawing, since character strings usually consist of a series of small
bitmaps.

« Lights, material properties, and lighting models (Chapter 5). When you draw a scene with complex
lighting conditions, you might change the materials for each item in the scene. Setting the
materials can be slow, since it might involve significant calculations. If you put the material
definitions in display lists, these calculations don't have to be done each time you switch materials,
since only the results of the calculations need to be stored; as aresult, rendering lit scenes might be
faster. (See "Encapsulating Mode Changes' for more details on using display lists to change such

values as lighting conditions.)

« Textures (Chapter 9). You might be able to maximize efficiency when defining textures by

compiling them into adisplay list, since the display list may allow the texture image to be cached
in dedicated texture memory. Then the texture image would not have to be recopied each time it
was needed. Also, the hardware texture format might differ from the OpenGL format, and the
conversion can be done at display-list compile time rather than during display.

In OpenGL version 1.0, the display list is the primary method to manage textures. However, if the
OpenGL implementation that you are using is version 1.1 or greater, then you should store the
texture in atexture object instead. (Some version 1.0 implementations have a vendor-specific
extension to support texture objects. If your implementation supports texture objects, you are
encouraged to use them.)

« Polygon stipple patterns (Chapter 2).

Some of the commands to specify the properties listed here are context-sensitive, so you need to take this
Into account to ensure optimum performance. For example, when GL_COLOR_MATERIAL is enabled,
some of the material properties will track the current color. (See Chapter 5.) Any glMaterial*() calls that

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (6 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%14_6637_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_10433_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14954_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_17385_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%14_1965_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_10433_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
set the same material properties are ignored.

It may improve performance to store state settings with geometry. For example, suppose you want to
apply atransformation to some geometric objects and then draw the result. Y our code may look like this:

gl NewLi st (1, G._COWPI LE);
draw _sone_geonetri c_objects();
gl EndLi st ();

gl LoadMvatri x(M;
gl Cal I List(1);

However, if the geometric objects are to be transformed in the same way each time, it is better to store
the matrix in the display list. For example, if you were to write your code as follows, some
implementations may be able to improve performance by transforming the objects when they are defined
instead of each time they are drawn:

gl NewLi st (1, G._COWPI LE);

gl LoadMvatri x(M;

draw _sone_geonetri c_objects();
gl EndLi st () ;

gl Cal I List(1);

A more likely situation occurs when rendering images. As you will seein Chapter 8, you can modify
pixel transfer state variables and control the way images and bitmaps are rasterized. If the commands that
set these state variables precede the definition of the image or bitmap in the display list, the
implementation may be able to perform some of the operations ahead of time and cache the resullt.

Remember that display lists have some disadvantages. Very small lists may not perform well since there
Is some overhead when executing a list. Another disadvantage is the immutability of the contents of a
display list. To optimize performance, an OpenGL display list can't be changed and its contents can't be
read. If the application needs to maintain data separately from the display list (for example, for continued
data processing), then alot of additional memory may be required.

Creating and Executing a Display List

Asyou've already seen, gINewL ist() and glEndList() are used to begin and end the definition of a
display list, which is then invoked by supplying its identifying index with glCallList(). In Example 7-2, a
display list is created in the init() routine. This display list contains OpenGL commands to draw ared
triangle. Then in the display() routine, the display list is executed ten times. In addition, aline is drawn

in immediate mode. Note that the display list allocates memory to store the commands and the values of
any necessary variables.

Example 7-2 : Using aDisplay List: list.c
#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (7 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14981_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14323_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>

GLui nt | i st Nane;

static void init (void)

{
| i st Name = gl GenLists (1);
gl NewLi st (listNanme, G._COWI LE);
gl Color3f (1.0, 0.0, 0.0); [/* current color red */
gl Begin (GL_TRI ANGLES) ;
gl Vertex2f (0.0, 0.0);
gl Vertex2f (1.0, 0.0);
gl Vertex2f (0.0, 1.0);
gl End ();
gl Translatef (1.5, 0.0, 0.0); /* nove position */
gl EndLi st ();
gl ShadeModel (G._FLAT);
}
static void drawLi ne (void)
{
gl Begin (G._LINES);
gl Vertex2f (0.0, 0.5);
gl Vertex2f (15.0, 0.5);
gl End ();
}
voi d di spl ay(voi d)
{
Guint i;
gl dear (G._COLOR BUFFER BIT);
gl Color3f (0.0, 1.0, 0.0); [/* current color green */
for (i =0; 1 < 10; i ++4) /* draw 10 triangl es */
gl Cal I Li st (listNane);
drawLine (); /* is this line green? NO */
/* where is the |ine drawmm? */
gl Flush ();
}
voi d reshape(int w, int h)
{

gl Viewport (0, 0, w, h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (8 of 21) [4/28/2000 9:46:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
if (w <= h)
gluOrtho2D (0.0, 2.0, -0.5 * (G.float) h/(G.float) w,
1.5 * (G.float) h/(G.float) w:;
el se
gl uOrtho2D (0.0, 2.0*(G.float) w (G.float) h, -0.5, 1.5);
gl Matri xMbde(GL_MODELVI EW ;
gl Loadl dentity();

}
voi d keyboard(unsi gned char key, int x, int y)
{
swtch (key) {
case 27:
exit(0);
}
}
int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGLE | G.UT_RGB);
gl utl ni t WndowSi ze(650, 50);
gl ut Creat eW ndow argv[0]);
init ();
gl ut ReshapeFunc (reshape);
gl ut Keyboar dFunc (keyboard);
gl ut D spl ayFunc (displ ay);
gl ut Mai nLoop() ;
return O;
}

The glTrandatef() routinein the display list aters the position of the next object to be drawn. Without it,
calling the display list twice would just draw the triangle on top of itself. The drawL ing() routine, which
Is called in immediate mode, is also affected by the ten gl Transatef() calls that precedeit. So if you call
transformation commands within adisplay list, don't forget to take into account the effect those
commands will have later in your program.

Only one display list can be created at atime. In other words, you must eventually follow gINewL ist()
with glEndL ist() to end the creation of adisplay list before starting another one. As you might expect,
calling glEndL ist() without having started a display list generates the error
GL_INVALID_OPERATION. (See "Error Handling" in Chapter 14 for more information about

processing errors.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (9 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_28211_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Naming and Creating a Display List

Each display list isidentified by an integer index. When creating a display list, you want to be careful
that you don't accidentally choose an index that's already in use, thereby overwriting an existing display
list. To avoid accidental deletions, use glGenLists() to generate one or more unused indices.
GLuint glGenLists(GLsizei range);
Allocates range number of contiguous, previously unallocated display-list indices. The integer
returned is the index that marks the beginning of a contiguous block of empty display-list indices.
Thereturned indices are all marked as empty and used, so subsequent callsto glGenLists() don't

return these indices until they're deleted. Zero isreturned if the requested number of indicesisn't
available, or if rangeis zero.

In the following example, asingle index isrequested, and if it provesto be available, it's used to create a
new display list:
| i stlndex = gl GenLi sts(1);
if (listlndex !'=0) {
gl NewLi st (1istlndex, G._COVPI LE);

gl EndLi st () ;
}

Note: Zeroisnot avalid display-list index.
void gINewL.ist (GLuint list, GLenum mode);

Soecifies the start of a display list. OpenGL routines that are called subsequently (until
glEndList() is called to end the display list) are stored in a display list, except for a few restricted
OpenGL routines that can't be stored. (Those restricted routines are executed immediately, during
the creation of the display list.) list is a nonzero positive integer that uniquely identifies the display
list. The possible values for mode are GL_COMPILE and GL_COMPILE_AND_ EXECUTE. Use
GL_COMPILE if you don't want the OpenGL commands executed as they're placed in the display
list; to cause the commands to be executed immediately as well as placed in the display list for
later use, specify GL_COMPILE_AND_EXECUTE.

void glEndList (void);
Marks the end of a display list.

When adisplay list is created it is stored with the current OpenGL context. Thus, when the context is
destroyed, the display list is aso destroyed. Some windowing systems allow multiple contexts to share
display lists. In this case, the display list is destroyed when the last context in the share group is
destroyed.

What's Stored in a Display List

When you're building a display list, only the values for expressions are stored in thelist. If valuesin an
array are subsequently changed, the display-list values don't change. In the following code fragment, the
display list contains a command to set the current RGBA color to black (0.0, 0.0, 0.0). The subsequent
change of the value of the color_vector array to red (1.0, 0.0, 0.0) has no effect on the display list

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (10 of 21) [4/28/2000 9:46:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
because the display list contains the values that were in effect when it was created.

G.fl oat color_vector[3] = {0.0, 0.0, O0.0};
gl NewLi st (1, G._COWPI LE);
gl Col or 3f v(col or _vector);
gl EndLi st () ;
col or _vector[0] = 1.0;

Not all OpenGL commands can be stored and executed from within adisplay list. For example,
commands that set client state and commands that retrieve state values aren't stored in adisplay list.
(Many of these commands are easily identifiable because they return values in parameters passed by
reference or return avalue directly.) If these commands are called when making a display list, they're
executed immediately.

Here are the OpenGL commands that aren't stored in adisplay list (also, note that gINewL ist() generates
an error if it's called while you're creating a display list). Some of these commands haven't been
described yet; you can look in the index to see where they're discussed.

gl ColorPointer() glFlush() glNormal Pointer()
glDeletelists() glGenLists() glPixel Store()
glDisableClientState() glGet*() glReadPixels()
glEdgeFlagPointer() gllndexPointer() glRenderMode()

glEnableClientState() glinterleavedArrays() glSelectBuffer()
gl FeedbackBuffer() gllsEnabled() gl TexCoordPointer()

glFinish() glisList() glV ertexPointer()

To understand more clearly why these commands can't be stored in adisplay list, remember that when
you're using OpenGL across a network, the client may be on one machine and the server on another.
After adisplay list is created, it resides with the server, so the server can't rely on the client for any
information related to the display list. If querying commands, such as glGet* () or glls*(), were allowed
inadisplay list, the calling program would be surprised at random times by data returned over the
network. Without parsing the display list asit was sent, the calling program wouldn't know where to put
the data. Thus, any command that returns a value can't be stored in adisplay list. In addition, commands
that change client state, such as glPixelStor g(), glSelectBuffer (), and the commands to define vertex
arrays, can't be stored in adisplay list.

The operation of some OpenGL commands depends upon client state. For example, the vertex array
specification routines (such as glVertexPointer ()glColor Pointer (), and gl nterleavedArrays()) set
client state pointers and cannot be stored in adisplay list. glArrayElement(), giDrawArrays(), and

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (11 of 21) [4/28/2000 9:46:03 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

glDrawElements() send data to the server state to construct primitives from elements in the enabled
arrays, so these operations can be stored in adisplay list. (See "Vertex Arrays' in Chapter 2.) The vertex
array data stored in thisdisplay list is obtained by dereferencing data from the pointers, not by storing the
pointers themselves. Therefore, subsequent changes to the data in the vertex arrays will not affect the
definition of the primitive in the display list.

In addition, any commands that use the pixel storage modes use the modes that are in effect when they
are placed in the display list. (See "Controlling Pixel-Storage Modes' in Chapter 8.) Other routines that
rely upon client state - such as glFlush() and glFinish() - can't be stored in adisplay list because they
depend upon the client state that isin effect when they are executed.

Executing a Display List

After you've created adisplay list, you can execute it by calling glCallL ist(). Naturaly, you can execute
the same display list many times, and you can mix calls to execute display lists with calls to perform
immediate-mode graphics, as you've already seen.

void glCallList (GLuint list);

This routine executes the display list specified by list. The commands in the display list are
executed in the order they were saved, just as if they were issued without using a display list. If list
hasn't been defined, nothing happens.

You can call glCallList() from anywhere within a program, as long as an OpenGL context that can
access the display list is active (that is, the context that was active when the display list was created or a
context in the same share group). A display list can be created in one routine and executed in adifferent
one, sinceitsindex uniquely identifiesit. Also, thereis no facility to save the contents of adisplay list
into adatafile, nor afacility to create adisplay list from afile. In this sense, adisplay list is designed for
temporary use.

Hierarchical Display Lists

Y ou can create a hierarchical display list, which isadisplay list that executes another display list by
calling glCallList() between aglNewL ist() and gIEndList() pair. A hierarchical display list is useful for
an object made of components, especially if some of those components are used more than once. For
example, thisisadisplay list that renders a bicycle by calling other display lists to render parts of the
bicycle:
gl NewLi st (| i stlndex, G._COWPI LE) ;

gl Cal | Li st (handl ebars) ;

gl Cal | Li st (frane);

gl Transl atef (1.0, 0.0, 0.0);

gl Cal | Li st (wheel);

gl Transl atef (3.0,0.0,0.0);

gl Cal I Li st (wheel);
gl EndLi st () ;

To avoid infinite recursion, there's alimit on the nesting level of display lists; the limit is at least 64, but
it might be higher, depending on the implementation. To determine the nesting limit for your

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (12 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%14_4468_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_16289_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Implementation of OpenGL, call
gl Getl ntegerv(G@_MAX LI ST _NESTING G.int *data);

OpenGL alowsyou to create adisplay list that calls another list that hasn't been created yet. Nothing
happens when the first list calls the second, undefined one.

Y ou can use a hierarchical display list to approximate an editable display list by wrapping alist around
several lower-level lists. For example, to put a polygon in adisplay list while alowing yourself to be able
to easily edit its vertices, you could use the code in Example 7-3.

Example 7-3 : Hierarchical Display List
gl NewLi st (1, G._COWPI LE) ;
gl Vertex3f(vl);
gl EndLi st () ;
gl NewLi st (2, G._COWPI LE) ;
gl Vertex3f(v2);
gl EndLi st () ;
gl NewLi st (3, G._COWPI LE) ;
gl Vertex3f(v3);
gl EndLi st () ;

gl NewLi st (4, G._COWPI LE) ;
gl Begi n(G._PCLYQGON) ;
gl Cal I List(1);
gl Cal I Li st(2);
gl Cal I Li st (3);
gl End() ;
gl EndLi st () ;

To render the polygon, call display list number 4. To edit avertex, you need only recreate the single
display list corresponding to that vertex. Since an index number uniquely identifies adisplay list,

creating one with the same index as an existing one automatically deletes the old one. Keep in mind that
this technigque doesn't necessarily provide optimal memory usage or peak performance, but it's acceptable
and useful in some cases.

Managing Display List Indices

So far, we've recommended the use of glGenL ists() to obtain unused display-list indices. If you insist
upon avoiding glGenLists(), then be sure to use gll sList() to determine whether a specific index isin
use.

GLboolean gll sList(GLuint list);
Returns GL_TRUE if list isalready used for a display list and GL_FALSE otherwise.
Y ou can explicitly delete a specific display list or a contiguous range of lists with glDeletel ists(). Using
glDeletel ists() makes those indices available again.
void glDeleteLists(GLuint list, GLsizel range);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (13 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14640_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Deletes range display lists, starting at the index specified by list. An attempt to delete a list that
has never been created isignored.

Executing Multiple Display Lists

OpenGL provides an efficient mechanism to execute severa display listsin succession. This mechanism
requires that you put the display-list indicesin an array and call glCallLists(). An obvious use for such a
mechanism occurs when display-list indices correspond to meaningful values. For example, if you're
creating afont, each display-list index might correspond to the ASCII value of acharacter in that font. To
have several such fonts, you would need to establish a different initial display-list index for each font.

Y ou can specify thisinitial index by using glListBase() before calling glCallLists().

void glListBase(GLuint base);
Soecifies the offset that's added to the display-list indicesin glCallLists() to obtain the final

display-list indices. The default display-list baseis 0. The list base has no effect on glCallList(),
which executes only one display list or on giINewL.ist().
void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

Executes n display lists. The indices of the lists to be executed are computed by adding the offset
indicated by the current display-list base (specified with glListBase()) to the signed integer values
in the array pointed to by lists.
The type parameter indicates the data type of the valuesin lists. It can be set to GL_BYTE,
GL_UNSGNED_BYTE, GL_SHORT, GL_UNSGNED_SHORT, GL_INT, GL_UNSGNED _INT,
or GL_FLOAT, indicating that lists should be treated as an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or floats, respectively. Type can also be
GL_2 BYTES GL_3 BYTES, or GL_4 BYTES in which case sequences of 2, 3, or 4 bytesare
read from lists and then shifted and added together, byte by byte, to calculate the display-list
offset. The following algorithmis used (where byte] 0] is the start of a byte sequence).

/* b =2, 3, or 4, bytes are nunbered 0, 1, 2, 3 in array */

of fset = 0O;

for (i =0; 1 <Db; i++) {
of fset = offset << 8§;
of fset += byte[i];

}

I ndex = offset + |istbase;

For multiple-byte data, the highest-order data comesfirst as bytes are taken fromthe array in
order.

As an example of the use of multiple display lists, look at the program fragmentsin Example 7-4 taken
from the full program in Example 7-5. This program draws characters with a stroked font (a set of letters

made from line segments). The routine initStrokedFont() sets up the display-list indices for each letter
so that they correspond with their ASCII values.

Example 7-4 . Defining Multiple Display Lists
voi d initStrokedFont (voi d)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (14 of 21) [4/28/2000 9:46:03 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14822_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14861_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

{
GLui nt base;
base = gl GenLi sts(128);
gl Li st Base(base);
gl NewLi st (base+' A, G._COWPI LE);
drawLetter (Adata); gl EndLi st ();
gl NewLi st (base+' E, G._COWPI LE);
drawLetter (Edata); gl EndList();
gl NewLi st (base+' P, G._COWI LE);
drawLetter(Pdata); gl EndList();
gl NewLi st (base+' R, G._COWPI LE);
drawLetter (Rdata); gl EndList();
gl NewLi st (base+' S', G._COWI LE);
drawLetter(Sdata); gl EndList();
gl NewLi st (base+' ', G._COWI LE); /| * space character */
gl Transl atef (8.0, 0.0, 0.0);
gl EndLi st () ;
}

The glGenLists() command allocates 128 contiguous display-list indices. The first of the contiguous
indices becomes the display-list base. A display list is made for each letter; each display-list index isthe
sum of the base and the ASCII value of that |etter. In this example, only afew letters and the space
character are created.

After the display lists have been created, glCallLists() can be called to execute the display lists. For
example, you can pass a character string to the subroutine printStrokedString():

void printStrokedString(G.byte *s)
{

Gint len = strlen(s);
gl Cal | Li sts(l en, GL_BYTE, s);
}

The ASCII value for each letter in the string is used as the offset into the display-list indices. The current
list base is added to the ASCII value of each letter to determine the final display-list index to be
executed. The output produced by Example 7-5 is shown in Figure 7-1.

H SPHRE SERHPE HFPPEHRS HS

HPES PREFPHRE RHRE FPEFPPERS

Figure 7-1: Stroked Font That Definesthe Characters A, E, P, R, S

Example 7-5 : Multiple Display Lists to Define a Stroked Font: stroke.c

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (15 of 21) [4/28/2000 9:46:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14861_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14851_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#define PT 1
#def i ne STROKE 2
#defi ne END 3

t ypedef struct charpoint {
GLf | oat X, VY;
I nt type;

} OGP

CP Adata[] = {
{ o, o, pPT}, {O, 9, PT}, {1, 10, PT}, {4, 10, PT},
{5, 9, PT}, {5, 0, STROKE}, {0, 5, PT}, {5, 5, END}
b

CP Edata[] = {
{5, o, pPT}, {0, O, PT}, {O, 10, PT}, {5, 10, STRCKE},
{0, 5, PT}, {4, 5, END}

}s

CP Pdata[] = {
{o, o, PT}, {O, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5, END}

}

CP Rdata[] = {
{o, o, PT}, {O, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
{4, 5, PT}, {0, 5, STROKE}, {3, 5, PT}, {5, 0, END}

¥

CP Sdata[] = {
{o, 1, PT}, {1, O, PT}, {4, O, PT}, {5, 1, PT}, {5, 4, PT},
{4, 5, pT}, {1, 5, PT}, {0, 6, PT}, {0, 9, PT}, {1, 10, PT},
{4, 10, PT}, {5, 9, END}

}s

/* drawLetter() interprets the instructions fromthe array

* for that letter and renders the letter with |ine segnents.
*/

static void drawLetter(CP *1)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (16 of 21) [4/28/2000 9:46:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

{
gl Begi n(G._LI NE_STRI P) ;
while (1) {
swtch (I->type) {
case PT:
gl Vertex2fv(&l ->x);
br eak;
case STRCKE:
gl Vertex2fv(&l ->x);
gl End() ;
gl Begi n(G._LI NE_STRI P) ;
br eak;
case END:
gl Vertex2fv(& ->x);
gl End() ;
gl Transl atef (8.0, 0.0, 0.0);
return;
| ++;
}
}
/* Create a display list for each of 6 characters */
static void init (void)
{
GLui nt base;
gl ShadeMbdel (G._FLAT);
base = gl GenLists (128);
gl Li st Base(base);
gl NewLi st (base+" A, G._COWI LE); drawLetter(Adata);
gl EndLi st () ;
gl NewLi st (base+' E', G._COWI LE); drawLetter (Edata);
gl EndLi st () ;
gl NewLi st (base+' P, G._COWPILE); drawLetter(Pdata);
gl EndLi st () ;
gl NewLi st (base+' R, G._COWI LE); drawLetter(Rdata);
gl EndLi st () ;
gl NewLi st (base+'S', G._COWI LE); drawLetter(Sdata);
gl EndLi st () ;
gl NewLi st (base+' °, G._COWPI LE);
gl Transl atef (8.0, 0.0, 0.0); gl EndList();
}

char *testl = "A SPARE SERAPE APPEARS AS";

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (17 of 21) [4/28/2000 9:46:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

char *test2 = "APES PREPARE RARE PEPPERS";

static void printStrokedString(char *s)

{
GLsizei len = strlen(s);
gl Cal I Lists(len, G._BYTE, (GLbyte *)s);
}
voi d di spl ay(voi d)
{
gl A ear (G._COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);
gl PushMatri x();
gl Scalef (2.0, 2.0, 2.0);
gl Transl atef (10.0, 30.0, 0.0);
printStrokedString(testl);
gl PopMatri x();
gl PushMatri x();
gl Scalef (2.0, 2.0, 2.0);
gl Transl atef (10.0, 13.0, 0.0);
printStrokedString(test?2);
gl PopMatri x();
gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMbde (G._PRQIECTI ON) ;
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}
voi d keyboard(unsi gned char key, int x, int y)
{
swtch (key) {
case =
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
}
}
Int main(int argc, char** argv)
{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (18 of 21) [4/28/2000 9:46:04 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

glutlnit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB);
gl utl ni t WndowSi ze (440, 120);

gl ut Creat eW ndow (argv[0]);

init ();

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboard) ;

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop();

return O;

Managing State Variables with Display Lists

A display list can contain calls that change the value of OpenGL state variables. These values change as
the display list is executed, just asif the commands were called in immediate mode and the changes
persist after execution of the display list is completed. As previously seenin Example 7-2 and in

Example 7-6, which follows, the changes to the current color and current matrix made during the
execution of the display list remain in effect after it has been called.

Example 7-6 : Persistence of State Changes after Execution of a Display List

gl NewLi st (|1 stlndex, G._COWPI LE) ;
gl Col or3f (1.0, 0.0, 0.0);
gl Begi n(G._PCOLYQGON) ;
gl Vertex2f(0.0,0.0);
gl Vertex2f(1.0,0.0);
gl Vertex2f(0.0,1.0);
gl End() ;
gl Transl atef (1.5, 0.0, 0.0);
gl EndLi st () ;

So if you now call the following sequence, the line drawn after the display list is drawn with red as the
current color and translated by an additional (1.5, 0.0, 0.0):

gl Cal I Li st(listlndex);
gl Begi n(G__LI NES) ;
gl Vertex2f(2.0,-1.0);
gl Vertex2f(1.0,0.0);
gl End() ;

Sometimes you want state changes to persist, but other times you want to save the values of state
variables before executing adisplay list and then restore these values after the list has executed.
Remember that you cannot use glGet* () in adisplay list, so you must use another way to query and store
the values of state variables.

Y ou can use glPushAttrib() to save agroup of state variables and glPopAttrib() to restore the values

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (19 of 21) [4/28/2000 9:46:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14323_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14884_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
when you're ready for them. To save and restore the current matrix, use glPushMatrix() and
glPopMatrix() as described in "Manipulating the Matrix Stacks" in Chapter 3. These push and pop
routines can be legally cached in adisplay list. To restore the state variables in Example 7-6, you might
use the code shown in Example 7-7.

Example 7-7 . Restoring State Variables within a Display List

gl NewLi st (I i stlndex, G_COWPI LE) ;
gl PushMatri x();
gl PushAttri b(G._CURRENT BIT);
gl Col or3f (1.0, 0.0, 0.0);
gl Begi n(G._PCLYQGON) ;
gl Vertex2f(0.0,0.0);
gl Vertex2f(1.0,0.0);
gl Vertex2f(0.0,1.0);
gl End() ;
gl Transl atef (1.5, 0.0, 0.0);
gl PopAttrib();
gl PopMatri x();
gl EndLi st () ;

If you use the display list from Example 7-7, which restores values, the code in Example 7-8 draws a
green, untrandlated line. With the display list in Example 7-6, which doesn't save and restore values, the
lineisdrawn red, and its position is trand ated ten times (1.5, 0.0, 0.0).

Example 7-8 : The Display List May or May Not Affect drawLine()
voi d di spl ay(voi d)

{
Gint i;
gl A ear (G._COLOR BUFFER BIT);
gl Col or3f (0.0, 1.0, 0.0); [/* set current color to green */
for (i =0; I < 10; i++)

glCallList(listlndex); [/* display list called 10 tines */

drawLi ne() ; /* how and where does this |ine appear? */
gl Fl ush();

}

Encapsulating Mode Changes

Y ou can use display lists to organize and store groups of commands to change various modes or set
various parameters. When you want to switch from one group of settings to another, using display lists
might be more efficient than making the calls directly, since the settings might be cached in aformat that
matches the requirements of your graphics system.

Display lists may be more efficient than immediate mode for switching among various lighting,
lighting-model, and material-parameter settings. Y ou might also use display lists for stipple patterns, fog

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (20 of 21) [4/28/2000 9:46:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%14_8878_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14884_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14928_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14928_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14948_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14884_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

parameters, and clipping-plane equations. In general, you'll find that executing display listsis at least as
fast as making the relevant calls directly, but remember that some overhead isinvolved in jumping to a

display list.

Example 7-9 shows how to use display lists to switch among three different line stipples. First, you call

glGenLists() to allocate adisplay list for each stipple pattern and create a display list for each pattern.
Then, you use glCallList() to switch from one stipple pattern to another.

Example 7-9 : Display Listsfor Mode Changes

GLui nt of fset:
of fset = gl GenLists(3);

gl NewLi st (offset, G._COWPI LE);
gl Di sabl e (GL_LI NE_STI PPLE) ;
gl EndLi st ();

gl NewLi st (offset+1l, G._COWPILE);
gl Enabl e (G._LI NE_STI PPLE) ;
gl LineStipple (1, OxOFOF);

gl EndLi st ();

gl NewLi st (offset+2, G._COWPILE);
gl Enabl e (G._LI NE_STI PPLE) ;
gl LineStipple (1, 0x1111);

gl EndLi st ();

#def i ne drawOneLi ne(x1,yl, x2,y2) gl Begin(G_LINES); \
gl Vertex2f ((x1),(yl)); gl Vertex2f ((x2),(y2)); gl End();

gl Cal I Li st (offset);
dr awOneLi ne (50.0, 125.0, 350.0, 125.0);

gl Cal | Li st (offset+1);
dr awOnelLi ne (50.0, 100.0, 350.0, 100.0);

gl Cal | Li st (of fset+2);
drawOneLi ne (50.0, 75.0, 350.0, 75.0);

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14035;cs=fullhtml;pt=12800 (21 of 21) [4/28/2000 9:46:04 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14035?target=%25N%15_14975_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and Images

Chapter Objectives

After reading this chapter, you'll be able to do the following:
 Position and draw bitmapped data

Read pixel data (bitmaps and images) from the framebuffer into processor memory and from memory into the
framebuffer

Copy pixel datafrom one color buffer to another, or to another location in the same buffer

Magnify or reduce an image asit's written to the framebuffer

« Control pixel-data formatting and perform other transformations as the data is moved to and from the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geometric data - points, lines, and polygons. Two
other important classes of data that can be rendered by OpenGL are

« Bitmaps, typically used for charactersin fonts

« Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference between them is that a bitmap
consists of asingle bit of information about each pixel, and image data typically includes several pieces of data per pixel
(the compl ete red, green, blue, and alpha color components, for example). Also, bitmaps are like masksin that they're used
to overlay another image, but image data simply overwrites or is blended with whatever dataisin the framebuffer.

This chapter describes how to draw pixel data (bitmaps and images) from processor memory to the framebuffer and how to
read pixel datafrom the framebuffer into processor memory. It aso describes how to copy pixel datafrom one position to
another, either from one buffer to another or within asingle buffer. This chapter contains the following major sections:
« "Bitmaps and Fonts" describes the commands for positioning and drawing bitmapped data. Such data may describe a
font.

« "lImages' presents the basic information about drawing, reading and copying pixel data.

« "Imaging Pipeline" describes the operations that are performed on images and bitmaps when they are read from the
framebuffer and when they are written to the framebuffer.

« "Reading and Drawing Pixel Rectangles' coversall the details of how pixel datais stored in memory and how to
transform it as it's moved into or out of memory.

« "Tipsfor Improving Pixel Drawing Rates" lists tips for getting better performance when drawing pixel rectangles.

In most cases, the necessary pixel operations are ssmple, so the first three sections might be all you need to read for your
application. However, pixel manipulation can be complex - there are many ways to store pixel datain memory, and you can

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (1 of 27) [4/28/2000 9:46:17 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15058_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15573_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17229_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17341_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

apply any of several transformations to pixels as they're moved to and from the framebuffer. These details are the subject of
the fourth section of this chapter. Most likely, you'll want to read this section only when you actually need to make use of
the information. The last section provides useful tips to get the best performance when rendering bitmaps and images.

Bitmaps and Fonts

A bitmap is arectangular array of Os and 1sthat serves as a drawing mask for a corresponding rectangular portion of the
window. Suppose you're drawing a bitmap and that the current raster color isred. Wherever theresa 1 in the bitmap, the
corresponding pixel is replaced by ared pixel (or combined with ared pixel, depending on which per-fragment operations
arein effect. (See "Testing and Operating on Fragments' in Chapter 10.) If there's a0 in the bitmap, the contents of the
pixel are unaffected. The most common use of bitmapsis for drawing characters on the screen.

OpenGL provides only the lowest level of support for drawing strings of characters and manipulating fonts. The commands
glRaster Pos* () and gIBitmap() position and draw a single bitmap on the screen. In addition, through the display-list
mechanism, you can use a sequence of character codes to index into a corresponding series of bitmaps representing those
characters. (See Chapter 7 for more information about display lists.) You'll have to write your own routines to provide any

other support you need for manipulating bitmaps, fonts, and strings of characters.

Consider Example 8-1, which draws the character F three times on the screen. Figure 8-1 shows the F as a bitmap and its
corresponding bitmap data.

O f£f, Oxa0
OxfEf, Oxe0
0200, 0x00
Oacl, Q200
Do, Q200
OxEf, Q200
OxEf, Q00
Do, 0200
Do, Q200
D200, 0200
D200, Ox00
0200, 0x00

Figure 8-1: Bitmapped F and Its Data

Example 8-1 : Drawing a Bitmapped Character: drawf.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <@/ gl ut. h>
#i ncl ude <stdlib. h>

GLubyte rasters[24] = {
Oxc0, 0x00, OxcO, 0x00, OxcO, 0x00, OxcO, 0x00, 0Oxc0, 0xO00,
Ooxff, Ox00, Oxff, 0Ox00, OxcO, 0Ox00, OxcO, O0x00, OxcO, 0xO00,
Oxff, OxcO, Oxff, OxcO};

void init(void)

{
gl Pi xel Storei (G._UNPACK_ALI GNVENT, 1);
gl earColor (0.0, 0.0, 0.0, 0.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (2 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21863_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15099_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15089_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

}

voi d di spl ay(voi d)

{
gl d ear (G_COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);
gl Rast er Pos2i (20, 20);
gl Bitmap (10, 12, 0.0, 0.0,
gl Bitmap (10, 12, 0.0, 0.0,
gl Bitmap (10, 12, 0.0, 0.0
gl Fl ush();

.0, rasters);
.0, rasters);
0, rasters);

e e
Lanl o
coo
[oNeNe]

voi d reshape(int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode(G._PRQIECTI ON) ;

gl Loadl dentity();

glOtho (0, w, 0, h, -1.0, 1.0);

gl Matri xMode(G._MODELVI EW ;

voi d keyboard(unsi gned char key, int x, int y)

swtch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitDi splayMde(GUT_SINGLE | GLUT_RGB);
gl ut I ni t WndowSi ze(100, 100);
gl ut I ni t WndowPosi ti on(100, 100);
gl ut Creat eW ndow argv[0]) ;
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboard) ;
gl ut D spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O,

}

In Figure 8-1, note that the visible part of the F character is at most 10 bits wide. Bitmap data is always stored in chunks
that are multiples of 8 bits, but the width of the actual bitmap doesn't have to be a multiple of 8. The bits making up a
bitmap are drawn starting from the lower-left corner: First, the bottom row is drawn, then the next row aboveit, and so on.
Asyou can tell from the code, the bitmap is stored in memory in this order - the array of rasters begins with Oxc0, 0x00,
0xc0, 0x00 for the bottom two rows of the F and continues to Oxff, 0xc0, Oxff, OxcO for the top two rows.

The commands of interest in this example are glRaster Pos2i() and glBitmap(); they're discussed in detail in the next
section. For now, ignore the call to glPixel Storei(); it describes how the bitmap datais stored in computer memory. (See
"Controlling Pixel-Storage Modes' for more information.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (3 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15089_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16289_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The Current Raster Position

The current raster position is the origin where the next bitmap (or image) is to be drawn. In the F example, the raster
position was set by calling glRaster Pos* () with coordinates (20, 20), which is where the lower-left corner of the F was
drawn:

gl Rast er Pos2i (20, 20);

void glRaster Pos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);
void glRaster Pos{ 234}{ s fd}v(TYPE * coords);

Setsthe current raster position. The x, y, z, and w arguments specify the coordinates of the raster position. If the
vector form of the function is used, the coords array contains the coordinates of the raster position. If

glRasterPos2* () is used, zisimplicitly set to zero and wisimplicitly set to one; similarly, with glRasterPos3* (), wis
Set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the same way as coordinates supplied
with aglVertex* () command (that is, with the modelview and perspective matrices). After transformation, they either
define avalid spot in the viewport, or they're clipped out because the coordinates were outside the viewing volume. If the
transformed point is clipped out, the current raster position isinvalid.

Note: If you want to specify the raster position in screen coordinates, you'll want to make sure you've specified the
modelview and projection matrices for simple 2D rendering, with something like this sequence of commands, where width
and height are also the size (in pixels) of the viewport:

gl Mat ri xMode(G._PRQIECTI ON) ;

gl Loadl dentity();

gluOtho2D 0.0, (G float) wdth, 0.0, (Gfloat) height);
gl Mat ri xMode(G._MODELVI EW ;

gl Loadl dentity();

To obtain the current raster position, you can use the query command glGetFloatv() with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should be a pointer to an array that can
hold the (x, y, z, w) values as floating-point numbers. Call glGetBooleanv() with
GL_CURRENT_RASTER_POSITION_VALID asthefirst argument to determine whether the current raster position is
valid.

Drawing the Bitmap

Once you've set the desired raster position, you can use the glBitmap() command to draw the data.

void glBitmap(GLsizel width, GLsizei height, GLfloat xbo,
GLfloat ybo, GLfloat xbi,
GLfloat ybi, const GLubyte * bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The origin of the bitmap is placed at
the current raster position. If the current raster position isinvalid, nothing is drawn, and the raster position remains
invalid. The width and height arguments indicate the width and height, in pixels, of the bitmap. The width need not be
a multiple of 8, although the data is stored in unsigned characters of 8 bits each. (In the F example, it wouldn't

matter if there were garbage bits in the data beyond the tenth bit; since glBitmap() was called with a width of 10,
only 10 bits of the row are rendered.) Use xbo and ybo to define the origin of the bitmap (positive values move the
origin up and to theright of the raster position; negative values move it down and to the left); xbi and ybi indicate the
x and y increments that are added to the raster position after the bitmap israsterized (see Figure 8-2).

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (4 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15313_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

=12 (g Mot =1 9]
(1 by = (11, 0)

Figure 8-2 : Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to extend below the origin (typically
used for characters with descenders, such as g, j, and y), or to extend beyond the |eft of the origin (used for various swash
characters, which have extended flourishes, or for charactersin fonts that |ean to the | eft).

After the bitmap is drawn, the current raster position is advanced by xbi and ybi in the x- and y-directions, respectively. (If
you just want to advance the current raster position without drawing anything, call glBitmap() with the bitmap parameter
set to NULL and with the width and height set to zero.) For standard Latin fonts, ybi istypicaly 0.0 and xbi is positive
(since successive characters are drawn from left to right). For Hebrew, where characters go from right to left, the xbi values
would typically be negative. Fonts that draw successive characters vertically in columns would use zero for xbi and nonzero
valuesfor ybi. In Figure 8-2, each time the F is drawn, the current raster position advances by 11 pixels, alowing a 1-pixel
space between successive characters.

Since xbo, ybo, xbi, and ybi are floating-point values, characters need not be an integral number of pixels apart. Actual
characters are drawn on exact pixel boundaries, but the current raster position is kept in floating point so that each character
isdrawn as close as possible to where it belongs. For example, if the code in the F example was modified so that xbi is11.5
instead of 12, and if more characters were drawn, the space between letters would aternate between 1 and 2 pixels, giving
the best approximation to the requested 1.5-pixel space.

Note: Y ou can't rotate bitmap fonts because the bitmap is always drawn aligned to the x and y framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with using glColor*() and gl ndex*() to set the current color or index to draw geometric primitives. The
same commands are used to set different state variables, GL_ CURRENT_RASTER_COLOR and
GL_CURRENT_RASTER_INDEX, for rendering bitmaps. The raster color state variables are set when glRaster Pos*() is
called, which can lead to atrap. In the following sequence of code, what is the color of the bitmap?

gl Color3f(1.0, 1.0, 1.0); /* white */

gl Rast er Pos3f v(position);

gl Color3f(1.0, 0.0, 0.0); [/* red */

glBitmap(....);

The bitmap iswhite! The GL_CURRENT_RASTER_COLOR is set to white when glRaster Pos3fv() is called. The second
call to glColor 3f() changes the value of GL_CURRENT _COLOR for future geometric rendering, but the color used to
render the bitmap is unchanged.

To obtain the current raster color or index, you can use the query commands glGetFloatv() or glGetlntegerv() with
GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDEX asthe first argument.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (5 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15313_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Fonts and Display Lists

Display lists are discussed in general termsin Chapter 7. However, afew of the display-list management commands have
special relevance for drawing strings of characters. Asyou read this section, keep in mind that the ideas presented here
apply equally well to characters that are drawn using bitmap data and those drawn using geometric primitives (points, lines,
and polygons). (See "Executing Multiple Display Lists' in Chapter 7 for an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying number (usually the ASCII code)
and a drawing method. For a standard ASCI| character set, the capital letter A is number 65, B is 66, and so on. The string
"DAB" would be represented by the three indices 68, 65, 66. In the simplest approach, display-list number 65 draws an A,
number 66 draws a B, and so on. Then to draw the string 68, 65, 66, just execute the corresponding display lists.

Y ou can use the command glCallLists() in just this way:
void gl CallLists(G.sizei n, G.enumtype, const G.void *lists);

The first argument, n, indicates the number of charactersto be drawn, typeisusually GL_BYTE, and listsis an array of
character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this simplest approach isn't convenient.
Instead, you'd like to use 65 as A no matter what font is currently active. Y ou could force font 1 to encode A, B, and C as
1065, 1066, 1067, and font 2 as 2065, 2066, 2067, but then any numbers larger than 256 would no longer fit in an 8-bit
byte. A better solution isto add an offset to every entry in the string and to choose the display list. In thiscase, font 1 has A,
B, and C represented by 1065, 1066, and 1067, and in font 2, they might be 2065, 2066, and 2067. Then to draw characters
infont 1, set the offset to 1000 and draw display lists 65, 66, and 67. To draw that same string in font 2, set the offset to
2000 and draw the same lists.

To set the offset, use the command glL istBase(). For the preceding examples, it should be called with 1000 or 2000 as the
(only) argument. Now what you need is a contiguous list of unused display-list numbers, which you can obtain from
glGenLists():

GLui nt gl GenLi sts(G.si zei range);

This function returns a block of range display-list identifiers. The returned lists are all marked as "used" even though they're
empty, so that subsequent callsto glGenLists() never return the same lists (unless you've explicitly deleted them
previously). Therefore, if you use 4 as the argument and if glGenL ists() returns 81, you can use display-list identifiers 81,

82, 83, and 84 for your characters. If glGenLists() can't find ablock of unused identifiers of the requested length, it returns
0. (Note that the command glDeletel ists() makesit easy to delete all the lists associated with afont in a single operation.)

Most American and European fonts have a small number of characters (fewer than 256), so it's easy to represent each
character with a different code that can be stored in a single byte. Asian fonts, among others, may require much larger
character sets, so a byte-per-character encoding isimpossible. OpenGL allows strings to be composed of 1-, 2-, 3-, or 4-byte
characters through the type parameter in glCallLists(). This parameter can have any of the following values:

GL_BYTE GL_UNSIGNED BYTE

GL_SHORT GL_UNSIGNED_SHORT

GL_INT GL_UNSIGNED _INT

GL_FLOAT GL_2 BYTES

GL_3 BYTESGL_4 BYTES

(See "Executing Multiple Display Lists" in Chapter 7 for more information about these values.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (6 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_14037_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_14708_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_14708_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Defining and Using a Complete Font

The glBitmap() command and the display-list mechanism described in the previous section make it easy to define araster
font. In Example 8-2, the upper-case characters of an ASCII font are defined. In this example, each character has the same
width, but thisis not always the case. Once the characters are defined, the program prints the message "THE QUICK
BROWN FOX JUMPS OVER A LAZY DOG".

The code in Example 8-2 is similar to the F example, except that each character's bitmap is stored in its own display list.
The display list identifier, when combined with the offset returned by glGenLists(), is equal to the ASCII code for the
character.

Example 8-2 : Drawing a Complete Font: font.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <@/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

GLubyt e space[] =
{0x00, 0x00, 0x00, 0x00, 0x00, 0Ox00, 0Ox00, 0Ox00, 0x00, 0x00, 0Ox00, 0x00, 0xO00};
GLubyte letters[][13] = {
{0x00, O0x00, Oxc3, 0xc3, 0xc3, 0xc3, Oxff, Oxc3, O0xc3, 0xc3, 0x66, O0x3c, 0x18},
{0x00, Ox00, Oxfe, Oxc7, 0Oxc3, 0xc3, Oxc7, Oxfe, Oxc7, 0xc3, 0xc3, Oxc7, Oxfe},
{0x00, 0Ox00, Ox7e, Oxe7, 0xc0O, 0OxcO, 0OxcO, O0xcO, OxcO, OxcO, OxcO, Oxe7, Ox7e},
{0x00, 0x00, Oxfc, Oxce, Oxc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0Oxc7, Oxce, Oxfc},
{0x00, 0x00, Oxff, OxcO, 0OxcO, OxcO, OxcO, Oxfc, OxcO, 0OxcO, OxcO, OxcO, Oxff},
{0x00, 0x00, OxcO, O0xcO, 0xcO, 0OxcO, OxcO, 0xcO, Oxfc, 0OxcO, OxcO, OxcO, Oxff},
{0x00, 0x00, Ox7e, Oxe7, 0Oxc3, O0xc3, Oxcf, O0xcO, OxcO, 0xcO, OxcO, Oxe7, Ox7e},
{0x00, Ox00, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxff, Oxc3, 0Oxc3, O0xc3, 0xc3, 0xc3},
{0x00, Ox00, Ox7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, Ox7e},
{0x00, O0x00, Ox7c, Oxee, 0Oxc6, 0x06, 0x06, O0x06, 0x06, 0x06, 0x06, 0Ox06, O0xO06},
{0x00, O0x00, Oxc3, 0Oxc6, Oxcc, 0xd8, Oxf0O, Oxe0O, OxfO, 0xd8, Oxcc, Oxc6, O0xc3},
{0x00, O0x00, Oxff, OxcO, 0OxcO, 0OxcO, 0OxcO, 0OxcO, OxcO, OxcO, OxcO, O0xcO, 0xcO0},
{0x00, 0x00, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxdb, Oxff, Oxff, Oxe7, 0Oxc3},
{0x00, 0x00, Oxc7, Oxc7, Oxcf, Oxcf, Oxdf, Oxdb, Oxfb, Oxf3, Oxf3, Oxe3, O0xe3},
{0x00, 0x00, Ox7e, Oxe7, 0Oxc3, O0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxe7, 0Ox7e},
{0x00, 0x00, OxcO, OxcO, 0xcO, 0OxcO, 0OxcO, Oxfe, Oxc7, Oxc3, 0Oxc3, Oxc7, Oxfe},
{0x00, Ox00, Ox3f, Ox6e, Oxdf, Oxdb, 0Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, 0x66, 0x3c},
{0x00, O0x00, Oxc3, 0Oxc6, Oxcc, 0xd8, Oxf0O, Oxfe, Oxc7, 0xc3, 0xc3, 0Oxc7, Oxfe},
{0x00, O0x00, Ox7e, Oxe7, 0x03, 0x03, 0x07, Ox7e, O0xe0, 0xcO, 0OxcO, Oxe7, Ox7e},
{0x00, O0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, Oxff},
{0x00, 0Ox00, Ox7e, Oxe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, Ox00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, O0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
{0x00, 0Ox00, Oxc3, Oxe7, Oxff, Oxff, Oxdb, Oxdb, Oxc3, 0Oxc3, 0Oxc3, 0xc3, 0xc3},
{0x00, 0x00, Oxc3, 0x66, 0x66, Ox3c, 0Ox3c, 0x18, O0x3c, 0x3c, 0x66, 0x66, 0xc3},
{O0x00, O0x00, 0Ox18, 0x18, 0x18, 0x18, 0x18, 0x18, O0x3c, 0x3c, 0x66, 0x66, 0xc3},
{0x00, 0Ox00, Oxff, OxcO, OxcO, 0x60, 0x30, Ox7e, 0xOc, 0x06, 0x03, 0x03, Oxff}

i

GLuint fontOf fset;

voi d makeRast er Font (voi d)
{ Guint i, j;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (7 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15564_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15564_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
gl Pi xel St orei (G._UNPACK_ALI GNVENT, 1);

font O fset = gl GenLists (128);
for (i =0,) = A i <26; i++j++) {
gl NewLi st (fontOfset + j, G._COWPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters[i]);

gl EndLi st ();
}
gl NewLi st (fontOffset + ° °, G._COVPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);
gl EndLi st ();
}
void init(void)
{
gl ShadeModel (G._FLAT);
makeRast er Font () ;
}
void printString(char *s)
{
gl PushAttrib (G_LIST BIT);
gl Li st Base(font O f set);
gl Cal I Lists(strlen(s), G._UNSI GNED BYTE, (G.ubyte *) s);
gl PopAttrib ();
}

/* Everything above this line could be in a library
* that defines a font. To make it work, you've got
* to call nmakeRasterFont() before you start naking
* calls to printString().

*/

voi d di splay(void)

{

G.float white[3] ={ 1.0, 1.0, 1.0 };

gl C ear (GL_COLOR_BUFFER BI T);
gl Col or 3f v(white);

gl Rast er Pos2i (20, 60);

printString("THE QU CK BROMN FOX JUWPS") ;
gl Rast er Pos2i (20, 40);

printString("OVER A LAZY DOG');

gl Fl ush ();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (G.sizei) w, (Gsizei) h);
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
glOtho (0.0, w, 0.0, h, -1.0, 1.0);
gl Matri xMode(G._MODELVI EW ;
}

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (8 of 27) [4/28/2000 9:46:18 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

voi d keyboard(unsi gned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlnitDi splayMde(GLUT_SINGLE | GLUT_RGB);
gl utl ni t WndowSi ze(300, 100);
gl ut I ni t WndowPosition (100, 100);
gl ut Creat eW ndow(argv[0]) ;
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop();
return O;

Images

Animageissimilar to abitmap, but instead of containing only asingle bit for each pixel in arectangular region of the
screen, an image can contain much more information. For example, an image can contain acomplete (R, G, B, A) color
stored at each pixel. Images can come from several sources, such as

« A photograph that's digitized with a scanner

« Animage that wasfirst generated on the screen by a graphics program using the graphics hardware and then read
back, pixel by pixel
« A software program that generated the image in memory pixel by pixel

The images you normally think of as pictures come from the color buffers. However, you can read or write rectangular
regions of pixel datafrom or to the depth buffer or the stencil buffer. (See Chapter 10 for an explanation of these other

buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, in which case they're essentially
pasted onto polygons that are rendered on the screen in the normal way. (See Chapter 9 for more information about this
technique.)

Reading, Writing, and Copying Pixel Data

OpenGL provides three basic commands that manipulate image data:
» glReadPixels() - Reads arectangular array of pixels from the framebuffer and stores the data in processor memory.

« glDrawPixes() - Writes arectangular array of pixels from data kept in processor memory into the framebuffer at the
current raster position specified by glRaster Pos* ().

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (9 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17385_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

« glCopyPixels() - Copies arectangular array of pixelsfrom one part of the framebuffer to another. This command
behaves similarly to acall to gIReadPixels() followed by acall to glDrawPixels(), but the datais never written into
processor memory.

For the aforementioned commands, the order of pixel data processing operationsis shown in Figure 8-3:

Per-Vertex
glRasterPos* Dperailons &

Primiive | ¢

Asgsambly

Ragierizalion Frame
#(log, lexture) —I-DFrngrmlm ntﬂ ™| Buffer
Processor | glDrawPixels n

Mamary 1 |

giReadFlixels -+

gliCopyPixels

Figure 8-3: Simplistic Diagram of Pixel Data Flow

The basic ideas in Figure 8-3 are correct. The coordinates of glRaster Pos* (), which specify the current raster position used
by glDrawPixels() and glCopyPixels(), are transformed by the geometric processing pipeline. Both glDrawPixels() and
glCopyPixels() are affected by rasterization and per-fragment operations. (But when drawing or copying a pixel rectangle,
there's almost never areason to have fog or texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many waysto store pixel information in
computer memory, and various data conversions that can be performed during the reading, writing, and copying operations.
These possihilities translate to many different modes of operation. If all your program doesis copy images on the screen or
read them into memory temporarily so that they can be copied out later, you can ignore most of these modes. However, if
you want your program to modify the datawhile it'sin memory - for example, if you have an image stored in one format
but the window requires a different format - or if you want to save image datato afile for future restoration in another
session or on another kind of machine with significantly different graphical capabilities, you have to understand the various
modes.

The rest of this section describes the basic commands in detail. The following sections discuss the details of the series of
imaging operations that comprise the Imaging Pipeline: pixel-storage modes, pixel-transfer operations, and pixel-mapping
operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizel height,

GLenum format, GLenum type, GLvoid * pixels);
Reads pixel data from the framebuffer rectangle whose lower-left corner is at (X, y) and whose dimensions are width
and height and storesit in the array pointed to by pixels. format indicates the kind of pixel data elementsthat are
read (anindex valueor an R, G, B, or A component value, as listed in Table 8-1), and type indicates the data type of
each element (see Table 8-2).

If you are using glReadPixels() to obtain RGBA or color-index information, you may need to clarify which buffer you are
trying to access. For example, if you have a double-buffered window, you need to specify whether you are reading data
from the front buffer or back buffer. To control the current read source buffer, call giReadBuffer (). (See "Selecting Color

Buffers for Writing and Reading” in Chapter 10.)

Table 8-1: Pixel Formats for giReadPixels() or glDrawPixels()

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (10 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15647_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15647_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15840_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21537_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21537_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

format Constant Pixel Format
GL_COLOR_INDEX A single color index
GL_RGB A red color component, followed by a green color component, followed by ablue

color component

GL_RGBA A red color component, followed by a green color component, followed by a blue
color component, followed by an alpha color component

GL_RED A single red color component
GL_GREEN A single green color component
GL_BLUE A single blue color component
GL_ALPHA A single alpha color component
GL_LUMINANCE A single luminance component

GL_LUMINANCE_ALPHA | A luminance component followed by an alpha color component

GL_STENCIL_INDEX A single stencil index

GL_DEPTH_COMPONENT | A single depth component

Table 8-2 : Data Types for glReadPixels() or glDrawPixels()

type Constant Data Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-hit integer

GL_BITMAP single bitsin unsigned 8-bit integers using the same format as glBitmap()

GL_UNSIGNED_SHORT | unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (11 of 27) [4/28/2000 9:46:18 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_INT signed 32-bit integer

GL_FLOAT single-precision floating point

Remember that, depending on the format, anywhere from one to four elements are read (or written). For example, if the
format is GL_RGBA and you're reading into 32-bit integers (that is, if typeisequal to GL_UNSIGNED _INT or GL_INT),
then every pixel read requires 16 bytes of storage (four components x four bytes/component).

Each element of the image is stored in memory as indicated by Table 8-2. If the element represents a continuous value, such
asared, green, blue, or luminance component, each value is scaled to fit into the available number of bits. For example,
assume the red component isinitially specified as a floating-point value between 0.0 and 1.0. If it needs to be packed into an
unsigned byte, only 8 bits of precision are kept, even if more bits are allocated to the red component in the framebuffer.
GL_UNSIGNED_SHORT and GL_UNSIGNED _INT give 16 and 32 bits of precision, respectively. The normal (signed)
versionsof GL_BYTE, GL_SHORT, and GL_INT have 7, 15, and 31 bits of precision, since the negative values are
typically not used.

If the element is an index (a color index or a stencil index, for example), and thetypeisnot GL_FLOAT, thevalueis
simply masked against the available bitsin the type. The signed versions- GL_BYTE, GL_SHORT, and GL_INT - have
masks with one fewer bit. For example, if acolor index isto be stored in asigned 8-bit integer, it's first masked against
Ox7f. If thetypeis GL_FLOAT, theindex is ssmply converted into a single-precision floating-point number (for example,
theindex 17 is converted to the float 17.0).

Writing Pixel Data from Processor Memory to Frame Buffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,

GLenum type, const GLvoid * pixels);
Draws a rectangle of pixel data with dimensions width and height. The pixel rectangle is drawn with its lower-left
corner at the current raster position. format and type have the same meaning as with glReadPixels(). (For legal
values for format and type, see Table 8-1 and Table 8-2.) The array pointed to by pixels contains the pixel data to be
drawn. If the current raster position isinvalid, nothing is drawn, and the raster position remainsinvalid.

Example 8-3 isa portion of a program, which uses glDrawPixels() to draw an pixel rectangle in the lower-left corner of a
window. makeCheckl mage() creates a 64-by-64 RGB array of a black-and-white checkerboard image. glRaster Pos2i(0,0)
positions the lower-left corner of the image. For now, ignore glPixelStorei().

Example 8-3 : Use of glDrawPixels(): image.c
#defi ne checkl nageWdth 64

#defi ne checkl mageHei ght 64
GLubyt e checkl mage[checkl mageHei ght] [checkl mageW dt h] [3] ;

voi d makeCheckl mage(voi d)
int i, j, c;
for (i = 0; i < checklnageHeight; i++) {

for (j = 0; j < checklmgeWdth; j++) {
c = ((((i &0x8)==0)"((j &0x8))==0)) *255;

checklmage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j]1[2] = (G.ubyte) c;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (12 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15840_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16025_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

}
}
}
void init(void)
{
gl Cl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMobdel (G._FLAT) ;
makeCheckl mage() ;
gl Pi xel St orei (G._UNPACK_ALI GNVENT, 1);
}
voi d di splay(void)
{

gl d ear (G._CO.OR BUFFER BIT);

gl Rast er Pos2i (0, 0);

gl Dr awPi xel s(checkl mageW dt h, checkl nageHei ght, G._RGB,
GL_UNSI GNED_BYTE, checkl mage);

gl Fl ush();

When using glDrawPixels() to write RGBA or color-index information, you may need to control the current drawing
buffers with glDrawBuffer (), which, along with glReadBuffer (), is aso described in "Selecting Color Buffers for Writing
and Reading" in Chapter 10.

Copying Pixel Data within the Frame Buffer

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,

GLenum buffer);
Copies pixel data from the framebuffer rectangle whose lower-left corner is at (x, y) and whose dimensions are width
and height. The data is copied to a new position whose lower-left corner is given by the current raster position. buffer
iseither GL_COLOR, GL_STENCIL, or GL_DEPTH, specifying the framebuffer that is used. glCopyPixels() behaves
similarly to a glReadPixels() followed by a glDrawPixels(), with the following translation for the buffer to format
parameter:

o If bufferisGL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or GL_STENCIL_INDEX is used,
respectively.

o If GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on whether the systemisin
RGBA or color-index mode.

Note that there's no need for aformat or data parameter for glCopyPixels(), since the datais never copied into processor
memory. The read source buffer and the destination buffer of glCopyPixels() are specified by glReadBuffer () and
glDrawBuffer () respectively. Both glDrawPixels() and glCopyPixels() are used in Example 8-4.

For al three functions, the exact conversions of the data going to or from the framebuffer depend on the modes in effect at
the time. See the next section for details.

Imaging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-transfer operations, which include
how to set up an arbitrary mapping to convert pixel data. Y ou can also magnify or reduce a pixel rectangle beforeit's drawn
by calling glPixelZoom(). The order of these operationsis shown in Figure 8-4.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (13 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21537_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21537_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17221_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16161_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

unpack
| Pixel [wf Plxel-Tranefar Rastarlzatlon Par-
P;::;HM Storage Operations — {including [—* Fragment ::#;:
Y :Fﬂﬁk Modes [*{fand Plxel Map) Plxel Zoom) CQperations
'y + f &
Taxture
Mamory

Figure 8-4 : Imaging Pipeline

When glDrawPixels() is called, the datais first unpacked from processor memory according to the pixel-storage modes that
are in effect and then the pixel-transfer operations are applied. The resulting pixels are then rasterized. During rasterization,

the pixel rectangle may be zoomed up or down, depending on the current state. Finally, the fragment operations are applied

and the pixels are written into the framebuffer. (See "Testing and Operating on Fragments" in Chapter 10 for a discussion of
the fragment operations.)

When glReadPixels() is called, datais read from the framebuffer, the pixel-transfer operations are performed, and then the
resulting data is packed into processor memory.

glCopyPixels() applies al the pixel-transfer operations during what would be the giReadPixels() activity. The resulting
datais written as it would be by glDrawPixels(), but the transformations aren't applied a second time. Figure 8-5 shows
how glCopyPixels() moves pixel data, starting from the frame buffer.

Pixel-Transfer Rasterization Per- Frame
Operationa (ineluding [—» Fragment == Bulfer
{and Plxel Map) Pixal Zanm) Operatlona {start)

Figure 8-5: glCopyPixels() Pixel Path

From "Drawing the Bitmap" and Figure 8-6, you see that rendering bitmaps is simpler than rendering images. Neither the
pixel-transfer operations nor the pixel-zoom operation are applied.

unpack Pixa Per-
PH| :r:r = Storage ™ FRagterization ™ Fragment ;ﬁmﬁ:
Modes Operations

Figure 8-6 : gIBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as they are read from or written to
texture memory. Figure 8-7 shows the effect on gl TexImage* (), gl TexSubl mage* (), and glGetTexl mage().

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (14 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21863_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16199_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_15219_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16216_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16239_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

i Pixel-Transl

- Plxal xe or

len:::::r . Storage Opaeratlena
Modes {and Pixel Map}

pack * *

Testurs

Mamary

Figure 8-7: glTexImage*(), gl TexSublmage* (), and glGetTexImage() Pixel Paths

Asseen in Figure 8-8, when pixel datais copied from the framebuffer into texture memory (glCopyT exI mage* () or
glCopyTexSublmage*()), only pixel-transfer operations are applied. (See Chapter 9 for more information on textures.)

Pixel-Transier Frama
Operstions Buffer
{and Pixel Mag) {start)
[} +
Texture
Mamary

Figure 8-8: glCopyTexImage* () and glCopy TexSublmage* () Pixel Paths

Pixel Packing and Unpacking

Packing and unpacking refer to the way that pixel dataiswritten to and read from processor memory.

An image stored in memory has between one and four chunks of data, called elements. The data might consist of just the
color index or the luminance (luminance is the weighted sum of the red, green, and blue values), or it might consist of the
red, green, blue, and alpha components for each pixel. The possible arrangements of pixel data, or formats, determine the
number of elements stored for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as the red, green, blue, and alpha
components, or the depth component) are floating-point values, typically ranging between 0.0 and 1.0. Floating-point
components are usually stored in the framebuffer with lower resolution than afull floating-point number would require (for
example, color components may be stored in 8 bits). The exact number of bits used to represent the components depends on
the particular hardware being used. Thus, it's often wasteful to store each component as a full 32-bit floating-point number,
especially since images can easily contain amillion pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit integers or floating-point
numbers. OpenGL explicitly defines the conversion of each component in each format to each of the possible data types.
Keep in mind that you may lose dataif you try to store a high-resolution component in atype represented by a small
number of bits.

Controlling Pixel-Storage Modes

Image datais typically stored in processor memory in rectangular two- or three-dimensional arrays. Often, you want to
display or store a subimage that corresponds to a subrectangle of the array. In addition, you might need to take into account
that different machines have different byte-ordering conventions. Finally, some machines have hardware that is far more
efficient at moving data to and from the framebuffer if the datais aligned on 2-byte, 4-byte, or 8-byte boundariesin

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (15 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16261_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17385_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

processor memory. For such machines, you probably want to control the byte alignment. All the issuesraised in this
paragraph are controlled as pixel-storage modes, which are discussed in the next subsection. Y ou specify these modes by
using glPixel Stor e (), which you've aready seen used in a couple of example programs.

All the possible pixel-storage modes are controlled with the glPixel Store* () command. Typically, several successive calls

are made with this command to set several parameter values.

void glPixel Stor&{if} (GLenum pname, TYPEparam);
Sets the pixel-storage modes, which affect the operation of giDrawPixels(), glReadPixels(), glBitmap(),
glPolygonStipple(), gl Texl magelD(), gl Texl mage2D(), gl TexSubl magelD(), gl TexSubl mage2D(), and
glGetTexl mage(). The possible parameter names for pname are shown in Table 8-3, along with their data type,
initial value, and valid range of values. The GL_UNPACK?* parameters control how data is unpacked from memory
by glDrawPixels(), glBitmap(), glPolygonStipple(), gl Texl magelD(), gl Texl mage2D(), gl TexSubl magelD(), and
gl TexSublmage2D(). The GL_PACK* parameters control how data is packed into memory by glReadPixels() and
glGetTexI mage().

Table 8-3: glPixelStore() Parameters

Parameter Name Type Initial Valid Range
Value
GL_UNPACK_SWAP BYTES, GLboolean | FALSE TRUE/FALSE

GL_PACK_SWAP BYTES

GL_UNPACK_LSB_FIRST, GL_PACK_LSB_FIRST GLboolean | FALSE TRUE/FALSE

GL_UNPACK_ROW_LENGTH, GLint 0 any nonnegative integer
GL_PACK_ROW_LENGTH

GL_UNPACK_SKIP_ROWS, GL_PACK_SKIP_ROWS GLint 0 any nonnegative integer

GL_UNPACK_SKIP _PIXELS, GLint 0 any nonnegative integer
GL_PACK_SKIP_PIXELS

GL_UNPACK_ALIGNMENT, GLint 4 1,2,4,8
GL_PACK_ALIGNMENT

Since the corresponding parameters for packing and unpacking have the same meanings, they're discussed together in the
rest of this section and referred to without the GL_PACK or GL_UNPACK prefix. For example, *SWAP_BY TES refersto
GL_PACK_SWAP BYTESand GL_UNPACK_SWAP BYTES.

If the* SWAP_BY TES parameter is FAL SE (the default), the ordering of the bytes in memory is whatever is native for the
OpenGL client; otherwise, the bytes are reversed. The byte reversal applies to any size element, but really only hasa
meaningful effect for multibyte elements.

Note: Aslong as your OpenGL application doesn't share images with other machines, you can ignore the issue of byte
ordering. If your application must render an OpenGL image that was created on a different machine and the "endianness” of
the two machines differs, byte ordering can be swapped using * SWAP_BY TES. However, * SWAP_BY TES does not allow
you to reorder elements (for example, to swap red and green).

The*LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for which a single bit of datais

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (16 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16481_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

saved or restored for each pixel. If *LSB_FIRST is FAL SE (the default), the bits are taken from the bytes starting with the
most significant bit; otherwise, they're taken in the opposite order. For example, if *LSB_FIRST is FALSE, and the bytein
question is 0x31, the bits, in order, are {0, 0,1, 1, 0, 0, O, 1}. If *LSB_FIRST is TRUE, theorder is{1, 0,0, 0, 1, 1, O, O}.

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image data stored in memory. If the
rectangle in memory is larger than the subrectangle that's being drawn or read, you need to specify the actual length
(measured in pixels) of the larger rectangle with *ROW_LENGTH. If *ROW_LENGTH is zero (which it is by default), the
row length is understood to be the same as the width that's specified with glReadPixels(), glDrawPixels(), or
glCopyPixels(). You also need to specify the number of rows and pixels to skip before starting to copy the data for the
subrectangle. These numbers are set using the parameters * SKIP_ROWS and * SKIP_PIXELS, as shown in Figure 8-9. By

default, both parameters are 0, so you start at the lower-left corner.

| *ROW_LENGTH
sublmage
*SKIP_PIXELS
e
'}
*SKIP_RDWS image
¥

Figure 8-9: *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine's hardware is optimized for moving pixel datato and from memory, if the datais saved in
memory with a particular byte alignment. For example, in a machine with 32-bit words, hardware can often retrieve data
much faster if it'sinitially aligned on a 32-bit boundary, which typically has an address that is amultiple of 4. Likewise,
64-bit architectures might work better when the datais aligned to 8-byte boundaries. On some machines, however, byte
alignment makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte boundary. Images are most
efficiently saved by forcing the datafor each row of the image to begin on a 4-byte boundary. If theimage is 5 pixels wide
and each pixel consists of 1 byte each of red, green, and blue information, arow requires 5 x 3 = 15 bytes of data.
Maximum display efficiency can be achieved if the first row, and each successive row, begins on a 4-byte boundary, so
there is 1 byte of waste in the memory storage for each row. If your datais stored like this, set the * ALIGNMENT
parameter appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byteis used. If it's 2, abyteis skipped if necessary at the end of each row so
that the first byte of the next row has an address that's a multiple of 2. In the case of bitmaps (or 1-bit images) where a
single bit is saved for each pixel, the same byte alignment works, although you have to count individual bits. For example,
if you're saving asingle bit per pixel, the row length is 75, and the alignment is 4, then each row requires 75/8, or 9 3/8
bytes. Since 12 isthe smallest multiple of 4 that is bigger than 9 3/8, 12 bytes of memory are used for each row. If the
alignment is 1, then 10 bytes are used for each row, as 9 3/8 is rounded up to the next byte. (There is a simple use of
glPixelStorei() in Example 8-4.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (17 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16515_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17221_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Pixel-Transfer Operations

Asimage datais transferred from memory into the framebuffer, or from the framebuffer into memory, OpenGL can
perform several operations on it. For example, the ranges of components can be altered - normally, the red component is
between 0.0 and 1.0, but you might prefer to keep it in some other range; or perhaps the data you're using from a different
graphics system stores the red component in a different range. Y ou can even create maps to perform arbitrary conversion of
color indices or color components during pixel transfer. Conversions such as these performed during the transfer of pixelsto
and from the framebuffer are called pixel-transfer operations. They're controlled with the gIPixel Transfer* () and

glPixelM ap* () commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they don't behave identically, and afew
of the modes have special cases for specia buffers. All the mode details are covered in this section and the sections that
follow, including all the special cases.

Some of the pixel-transfer function characteristics are set with glPixel Transfer * (). The other characteristics are specified
with glPixelM ap* (), which is described in the next section.

void glPixel Transfer{if}(GLenum pname, TYPEparam);

Sets pixel-transfer modes that affect the operation of glDrawPixels(), giReadPixels(), glCopyPixels(),

gl TexlmagelD(), gl Texl mage2D(), glCopyTexl magelD(), glCopyTexl mage2D(), gl TexSubl magelD(),

gl TexSubl mage2D(), gl CopyTexSubl magelD(), glCopyTexSubl mage2D(), and glGetTexl mage(). The parameter
pname must be one of those listed in the first column of Table 8-4, and its value, param, must be in the valid range

shown.
Table 8-4 : glPixel Transfer* () Parameters (continued)

Parameter Name Type Initial Value Valid Range
GL_MAP_COLOR GLboolean | FALSE TRUE/FALSE
GL_MAP_STENCIL GLboolean | FALSE TRUE/FALSE
GL_INDEX_SHIFT GLint 0 (- ∞ , ∞)
GL_INDEX_OFFSET | GLint 0 (- ∞ , ∞)
GL_RED_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_GREEN_SCALE GL float 1.0 (- ∞ , ∞)
GL_BLUE_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_ALPHA_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_DEPTH_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_RED BIAS GL float 0 (- ∞ , ∞)
GL_GREEN_BIAS GLfloat 0 (- ∞ , ∞)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (18 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16875_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_BLUE_BIAS GLfloat 0 (- ∞ , ∞)
GL_ALPHA_BIAS GLfloat 0 (- ∞ , ∞)
GL_DEPTH_BIAS GLfloat 0 (- ∞ , ∞)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabled. See the next subsection to
learn how the mapping is done and how to change the contents of the maps. All the other parameters directly affect the pixel
component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For example, you may wish to scale
red, green, and blue components that were read from the framebuffer before converting them to aluminance format in
processor memory. Luminance is computed as the sum of the red, green, and blue components, so if you use the default
vauefor GL_RED SCALE, GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the
final intensity or luminance value. If you want to convert RGB to luminance, according to the NTSC standard, you set
GL_RED_SCALEt0.30, GL_GREEN_SCALEt0.59, and GL_BLUE_SCALEto.11.

Indices (color and stencil) can aso be transformed. In the case of indices a shift and offset are applied. Thisis useful if you
need to control which portion of the color table is used during rendering.

Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of atable lookup before they are
placed in screen memory. The command for controlling this mapping is glPixelM ap* ().
void glPixelMap{ui us f}v(GLenum map, GLint mapsize,
const TYPE *values);
Loads the pixel map indicated by map with mapsize entries, whose values are pointed to by values. Table 8-5 lists the

map names and values; the default sizesare all 1 and the default values are all 0. Each map's size must be a power of
2.

Table 8-5 : glPixelMap* () Parameter Names and Values

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (19 of 27) [4/28/2000 9:46:18 PM]

Map Name Address Value
GL_PIXEL_MAP I TO | color index color index
GL_PIXEL_ MAP_ S TO S stencil index | stencil index
GL PIXEL MAP I TO R color index R
GL_PIXEL_ MAP I TO G color index G
GL_PIXEL_MAP_1 TO B color index B
GL_PIXEL_ MAP_ 1 TO A color index A
GL_PIXEL MAPRTOR | R R

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17045_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

I I |
GL_PIXEL MAP. G TO G | G G
GL_PIXEL MAP B TOB | B B
GL_PIXEL MAP A TOA | A A

The maximum size of the maps is machine-dependent. Y ou can find the sizes of the pixel maps supported on your machine
with glGetlntegerv(). Use the query argument GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the
pixel map tables, and use GL_PIXEL_MAP_* TO * SIZE to obtain the current size of the specified map. The six maps
whose address is a color index or stencil index must always be sized to an integral power of 2. The four RGBA maps can be
any size from 1 through GL_MAX_PIXEL_MAP_TABLE.

To understand how atable works, consider a simple example. Suppose that you want to create a 256-entry table that maps
color indicesto color indicesusing GL_PIXEL_MAP_| TO _I. You create atable with an entry for each of the values
between 0 and 255 and initialize the table with glPixelM ap* (). Assume you're using the table for thresholding and want to
map indices below 101 (indices 0 to 100) to 0, and all indices 101 and above to 255. In this case, your table consists of 101
Os and 155 255s. The pixel map is enabled using the routine gIPixel Transfer*() to set the parameter GL_MAP_COLOR to
TRUE. Once the pixel map isloaded and enabled, incoming color indices below 101 come out as 0, and incoming pixels
between 101 and 255 are mapped to 255. If the incoming pixel islarger than 255, it's first masked by 255, throwing out all
the bits above the eighth, and the resulting masked value is looked up in the table. If the incoming index is a floating-point
value (say 88.14585), it's rounded to the nearest integer value (giving 88), and that number islooked up in the table (giving
0).

Using pixel maps, you can also map stencil indices or convert color indices to RGB. (See "Reading and Drawing Pixel
Rectangles’ for information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmaps are rasterized. Normally, each
pixel in an image is written to asingle pixel on the screen. However, you can arbitrarily magnify, reduce, or even flip
(reflect) an image by using glPixelZoom().

void glPixelZoom(GLfloat zoomx, GLfloat zoomy);

Sets the magnification or reduction factors for pixel-write operations (glDrawPixels() or glCopyPixels()), in the x-
and y-dimensions. By default, zoomx and zoomy are 1.0. If they're both 2.0, each image pixel is drawn to 4 screen
pixels. Note that fractional magnification or reduction factors are allowed, as are negative factors. Negative zoom
factors reflect the resulting image about the current raster position.

During rasterization, each image pixel is treated as a zoomx x zoomy rectangle, and fragments are generated for all the
pixels whose centers lie within the rectangle. More specifically, let (xrp, yrp) be the current raster position. If a particular
group of elements (index or components) is the nth in arow and belongs to the mth column, consider the region in window
coordinates bounded by the rectangle with corners at

(xrp + zoomx * n, yrp + zoomy * m) and (xrp + zoomx(n+1), yrp + zoomy(n+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) are produced in correspondence
with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the bottom row of pixelsto the top
(and from left to right). If you have a"top to bottom" image, such as a frame of video, you may want to use
glPixelZoom(1.0, -1.0) to make the image right side up for OpenGL. Be sure that you reposition the current raster position

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (20 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17229_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17229_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
appropriately, if needed.

Example 8-4 shows the use of glPixelZoom(). A checkerboard imageisinitialy drawn in the lower-left corner of the
window. Pressing a mouse button and moving the mouse uses glCopyPixels() to copy the lower-left corner of the window
to the current cursor location. (If you copy the image onto itself, it looks wacky!) The copied image is zoomed, but initially
it is zoomed by the default value of 1.0, so you won't notice. The "z' and "Z' keys increase and decrease the zoom factors by
0.5. Any window damage causes the contents of the window to be redrawn. Pressing the 'r' key resets the image and the
zoom factors.

Example 8-4 : Drawing, Copying, and Zooming Pixel Data: image.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <@/ gl ut. h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#defi ne checkl mageWdth 64
#defi ne checkl mageHei ght 64
GLubyt e checkl mage[checkl mageHei ght] [checkl mageW dt h] [3] ;

static G.doubl e zoonFactor = 1.0;
static GLint height;

voi d makeCheckl mage(voi d)

e
int i, j, c;
for (i = 0; i < checklmgeHeight; i++) {
for (j = 0; j < checklmgeWdth; j++) {
c = ((((i&0x8)==0)"((j &x8))==0)) *255;
checkl mage[i][j]1[0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j]1[2] = (G.ubyte) c;
}
}
}
void init(void)
{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT) ;
makeCheckl mage() ;
gl Pi xel St orei (G._UNPACK_ALI GNVENT, 1);
}

voi d di splay(void)

gl d ear (G._CO.OR BUFFER BIT);

gl Rast er Pos2i (0, 0);

gl Dr awPi xel s(checkl mageW dt h, checkl nageHei ght, G._RGB,
GL_UNSI GNED_BYTE, checkl mage);

gl Fl ush();

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (21 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17221_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
voi d reshape(int w, int h)

{
gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
hei ght = (G.int) h;
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gluOrtho2(0.0, (G.double) w, 0.0, (G.double) h);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
void nmotion(int x, int vy)
{
static G.int screeny;
screeny = height - (Gint) y;
gl Rast er Pos2i (x, screeny);
gl Pi xel Zoom (zoonfact or, zoonfactor);
gl CopyPi xel s (0, 0, checklmgeW dth, checkl mageHei ght,
G_COLOR);
gl Pi xel Zoom (1.0, 1.0);
gl Fl ush ();
}
voi d keyboard(unsi gned char key, int x, int y)
{
switch (key) {
case r':
case R :
zoonfFactor = 1.0;
gl ut Post Redi spl ay();
printf ("zoonfFactor reset to 1.0\n");
br eak;
case z':
zoonfactor += 0.5;
i f (zoonfFactor >= 3.0)
zoonfactor = 3.0;
printf ("zoonFactor is now %. 1f\n", zoonfactor);
br eak;
case Z':
zoonfFactor -= 0.5;
I f (zoonfFactor <= 0.5)
zoonfactor = 0. 5;
printf ("zoonFactor is now %. 1f\n", zoonfactor);
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}

int main(int argc, char** argv)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (22 of 27) [4/28/2000 9:46:18 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

{
glutinit(&rgc, argv);
glutlnitDi splayMode(GLUT_SI NGLE | GLUT_RGB);
gl utl ni t WndowsSi ze(250, 250);
gl ut I ni t WndowPosi ti on(100, 100);
gl ut Creat eW ndow(argv[0]) ;
init();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Moti onFunc(noti on);
gl ut Mai nLoop();
return O;

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions performed when going from
framebuffer to memory (reading) are similar but not identical to the conversions performed when going in the opposite
direction (drawing), as explained in the following sections. Y ou may wish to skip this section the first time through,
especially if you do not plan to use the pixel-transfer operations right away.

The Pixel Rectangle Drawing Process

Figure 8-10 and the following list describe the operation of drawing pixelsinto the framebuffer.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (23 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17243_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

byte short int float
Dala Stream
{Index or componsnt)

unpack
v RGBAL, £
convari
o [0, 1]
-
b J
convert .
L-=RHEBA Fixal-
- Storage
Madaz
Pixal-
¥ L Transfar
soale shift Modes
o) hias L ofiset
k] ¥
RGEA=RGBA index*=~RGBA index™index
lookup lockup lnokup
¥ l
clamp mask 1o
o [0, 1] [0.0, 2n-1]
RGBA Index
£ {stencil, color indeax}
Pixel Data Out

Figure 8-10 : Drawing Pixels with glDrawPixels()

1. If the pixelsaren't indices (that is, the format isn't GL_COLOR_INDEX or GL_STENCIL_INDEX), thefirst stepis
to convert the components to floating-point format if necessary. (See Table 4-1 for the details of the conversion.)

2. If theformat isGL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance element is converted into R, G,
and B, by using the luminance value for each of the R, G, and B components. In GL_LUMINANCE_ALPHA format,
the alpha value becomesthe A value. If GL_LUMINANCE is specified, the A valueis set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the appropriate bias is added. For
example, the R component is multiplied by the value corresponding to GL_RED_SCALE and added to the value
corresponding to GL_RED_BIAS.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (24 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_10226_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
4. 1f GL_MAP_COLOR istrue, each of the R, G, B, and A componentsis clamped to the range [0.0,1.0], multiplied by

an integer one less than the table size, truncated, and looked up in the table. (See "Tips for Improving Pixel Drawing
Rates' for more details.)

. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren't already, and converted to fixed-point
with as many bits to the left of the binary point as there are in the corresponding framebuffer component.

. If you're working with index values (stencil or color indices), then the values are first converted to fixed-point (if they
were initialy floating-point numbers) with some unspecified bits to the right of the binary point. Indices that were
initialy fixed-point remain so, and any bitsto the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of GL_INDEX_SHIFT bits; the valueis
shifted left if GL_INDEX_SHIFT > 0 and right otherwise. Finally, GL_INDEX_OFFSET is added to the index.

. The next step with indices depends on whether you're using RGBA mode or color-index mode. In RGBA mode, a
color index is converted to RGBA using the color components specified by GL_PIXEL_MAP_| TO_R,
GL_PIXEL_MAP_ | TO G,GL_PIXEL_MAP_| TO B,and GL_PIXEL _MAP_I_TO_A. (See"Pixel Mapping" for
details.) Otherwise, if GL_MAP_COLOR isGL_TRUE, acolor index islooked up through the table
GL_PIXEL_MAP_ I TO I. (If GL_MAP_COLOR isGL_FALSE, the index is unchanged.) If the image is made up
of stencil indices rather than color indices, and if GL_MAP_STENCIL isGL_TRUE, theindex islooked up in the
table corresponding to GL_PIXEL_MAP_S TO_S. If GL_MAP_STENCIL is FALSE, the stencil index is
unchanged.

. Finally, if the indices haven't been converted to RGBA, the indices are then masked to the number of bits of either the
color-index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process are a'so done during the pixel rectangle reading

process. The pixel reading processis shown in Figure 8-11 and described in the following list.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (25 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17341_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17341_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_16890_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17296_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Pixels from Framebuffer

RGEA Index
z {stencil, color indax}
¥
map
to [0, 1]
-
¥
scale shift
bias offsat
5 G |
¥ ¥ ¥
RGEBA-=RGBA Index *=RGBA index -*indax
Inokup . lookup [ookup
- R}
! |
¥ f
clamp mask to Pixal-
to [0, 1] [0.0, 2m-1] Transier
= = Modes
¥ A tg’ixel-
convert rage
oL Maodes
3 RGBA
£
L " Indax
. pack -
e
byte short int float
Data Stream
(index or componant)
1o mamory

Figure 8-11 : Reading Pixels with glReadPixels()

1. If the pixelsto beread aren't indices (that is, the format isn't GL_COLOR_INDEX or GL_STENCIL_INDEX), the
components are mapped to [0.0,1.0] - that is, in exactly the opposite way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is GL_TRUE, they're mapped and
again clamped to [0.0,1.0]. If luminance is desired instead of RGB, the R, G, and B components are added (L =R +
G+ B).

3. If the pixels are indices (color or stencil), they're shifted, offset, and, if GL_MAP_COLOR is GL_TRUE, also
mapped.

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel indices are masked to the
number of bits of the storage type (1, 8, 16, or 32) and packed into memory as previously described.

5. If the storage format is one of the component kind (such as luminance or RGB), the pixels are always mapped by the

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (26 of 27) [4/28/2000 9:46:18 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

index-to-RGBA maps. Then, they're treated as though they had been RGBA pixelsin the first place (including
potential conversion to luminance).

6. Finaly, for both index and component data, the results are packed into memory according to the GL_PACK* modes
set with glPixelStore* ().

The scaling, bias, shift, and offset values are the same as those used when drawing pixels, so if you're both reading and
drawing pixels, be sure to reset these components to the appropriate values before doing aread or adraw. Similarly, the
various maps must be properly reset if you intend to use maps for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing operations. For example,
luminance is not usually equally dependent on the R, G, and B components as it may be assumed from both Figure 8-10 and
Figure 8-11. If you wanted your luminance to be calculated such that the R component contributed 30 percent, the G 59

percent, and the B 11 percent, you can set GL_RED_SCALE t0 .30, GL_RED BIASt0 0.0, and so on. The computed L is
then .30R + .59G + .11B.

Tips for Improving Pixel Drawing Rates

Asyou can see, OpenGL has arich set of features for reading, drawing and manipulating pixel data. Although these features
are often very useful, they can aso decrease performance. Here are some tips for improving pixel draw rates.

« For best performance, set all pixel-transfer parameters to their default values, and set pixel zoom to (1.0,1.0).

A series of fragment operationsis applied to pixels as they are drawn into the framebuffer. (See "Testing and
Operating on Fragments' in Chapter 10.) For optimum performance disable all fragment operations.

« While performing pixel operations, disable other costly states, such as texturing and lighting.

« If you use an image format and type that matches the framebuffer, you can reduce the amount of work that the
OpenGL implementation has to do. For example, if you are writing images to an RGB framebuffer with 8 bits per
component, call glDrawPixels() with format set to RGB and type set to UNSIGNED _BYTE.

« For some implementations, unsigned image formats are faster to use than signed image formats.

« Itisusually faster to draw alarge pixel rectangle than to draw several small ones, since the cost of transferring the
pixel data can be amortized over many pixels.

« |If possible, reduce the amount of data that needs to be copied by using small data types (for example, use
GL_UNSIGNED_BYTE) and fewer components (for example, use format GL_LUMINANCE_ALPHA).

« Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, and shift other than the defaults,
may decrease performance.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/14979;cs=fullhtml;pt=14035 (27 of 27) [4/28/2000 9:46:18 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17243_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_17296_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21863_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=14979?target=%25N%15_21863_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 9
Texture Mapping

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Understand what texture mapping can add to your scene

« Specify atexture image
« Control how atexture image isfiltered asit's applied to afragment

« Create and manage texture images in texture objects and, if available, control a high-performance working set of
those texture objects

« Specify how the color values in the image combine with those of the fragment to which it's being applied
« Supply texture coordinates to indicate how the texture image should be aligned to the objects in your scene

« Use automatic texture coordinate generation to produce effects like contour maps and environment maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shaded between the colors at its
vertices - that is, they've been drawn without texture mapping. If you want to draw alarge brick wall without texture
mapping, for example, each brick must be drawn as a separate polygon. Without texturing, alarge flat wall - whichis
really a single rectangle - might require thousands of individual bricks, and even then the bricks may appear too smooth
and regular to be redlistic.

Texture mapping alows you to glue an image of a brick wall (obtained, perhaps, by scanning in a photograph of areal
wall) to a polygon and to draw the entire wall as a single polygon. Texture mapping ensures that all the right things
happen as the polygon is transformed and rendered. For example, when the wall is viewed in perspective, the bricks may
appear smaller as the wall gets farther from the viewpoint. Other uses for texture mapping include depicting vegetation
on large polygons representing the ground in flight simulation; wallpaper patterns; and textures that make polygons ook
like natural substances such as marble, wood, or cloth. The possibilities are endless. Although it's most natural to think
of applying textures to polygons, textures can be applied to all primitives - points, lines, polygons, bitmaps, and images.
Plates 6, 8, 18-21, 24-27, and 29-31 all demonstrate the use of textures.

Because there are so many possibilities, texture mapping isafairly large, complex subject, and you must make several
programming choices when using it. For instance, you can map textures to surfaces made of a set of polygons or to
curved surfaces, and you can repeat atexture in one or both directions to cover the surface. A texture can even be
one-dimensional. In addition, you can automatically map a texture onto an object in such away that the texture indicates
contours or other properties of the item being viewed. Shiny objects can be textured so that they appear to be in the
center of aroom or other environment, reflecting the surroundings off their surfaces. Finally, a texture can be applied to
asurface in different ways. It can be painted on directly (like a decal placed on a surface), used to modul ate the color the
surface would have been painted otherwise, or used to blend a texture color with the surface color. If thisisyour first
exposure to texture mapping, you might find that the discussion in this chapter moves fairly quickly. As an additional
reference, you might look at the chapter on texture mapping in Fundamentals of Three-Dimensional Computer Graphics

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (1 of 38) [4/28/2000 9:46:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
by Alan Watt (Reading, MA: Addison-Wesley Publishing Company, 1990).

Textures are ssimply rectangular arrays of data - for example, color data, luminance data, or color and alphadata. The
individual valuesin atexture array are often called texels. What makes texture mapping tricky is that a rectangular
texture can be mapped to nonrectangular regions, and this must be done in a reasonable way.

Figure 9-1 illustrates the texture-mapping process. The left side of the figure represents the entire texture, and the black
outline represents a quadrilateral shape whose corners are mapped to those spots on the texture. When the quadrilateral
is displayed on the screen, it might be distorted by applying various transformations - rotations, transations, scaling, and
projections. The right side of the figure shows how the texture-mapped quadrilateral might appear on your screen after
these transformations. (Note that this quadrilateral is concave and might not be rendered correctly by OpenGL without
prior tessellation. See Chapter 11 for more information about tessellating polygons.)

Figure 9-1 : Texture-Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, it's stretched in the x
direction and compressed in the y direction; there's a bit of rotation and shearing going on as well. Depending on the
texture size, the quadrilateral's distortion, and the size of the screen image, some of the texels might be mapped to more
than one fragment, and some fragments might be covered by multiple texels. Since the texture is made up of discrete
texels (in this case, 256 x 256 of them), filtering operations must be performed to map texels to fragments. For example,
if many texels correspond to a fragment, they're averaged down to fit; if texel boundaries fall across fragment
boundaries, a weighted average of the applicable texelsis performed. Because of these calculations, texturing is
computationally expensive, which is why many specialized graphics systems include hardware support for texture

mapping.

An application may establish texture objects, with each texture object representing a single texture (and possible
associated mipmaps). Some implementations of OpenGL can support a special working set of texture objects that have
better performance than texture objects outside the working set. These high-performance texture objects are said to be

resident and may have special hardware and/or software acceleration available. Y ou may use OpenGL to create and
delete texture objects and to determine which textures constitute your working set.

This chapter covers the OpenGL's texture-mapping facility in the following major sections.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (2 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17453_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_23087_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

"An Overview and an Example" gives abrief, broad ook at the steps required to perform texture mapping. It aso
presents arelatively simple example of texture mapping.

"Specifying the Texture" explains how to specify one- or two-dimensional textures. It also discusses how to use a

texture's borders, how to supply a series of related textures of different sizes, and how to control the filtering
methods used to determine how an applied texture is mapped to screen coordinates.

"Filtering" details how textures are either magnified or minified as they are applied to the pixels of polygons.
Minification using special mipmap texturesis also explained.

"Texture Objects' describes how to put texture images into objects so that you can control several textures at one
time. With texture objects, you may be able to create aworking set of high-performance textures, which are said
to be resident. Y ou may also prioritize texture objects to increase or decrease the likelihood that a texture object is
resident.

"Texture Functions' discusses the methods used for painting a texture onto a surface. Y ou can choose to have the

texture color values replace those that would be used if texturing wasn't in effect, or you can have the final color
be a combination of the two.

"Assigning Texture Coordinates’ describes how to compute and assign appropriate texture coordinates to the

vertices of an object. It also explains how to control the behavior of coordinates that lie outside the default range -
that is, how to repeat or clamp textures across a surface.

"Automatic Texture-Coordinate Generation” shows how to have OpenGL automatically generate texture
coordinates so that you can achieve such effects as contour and environment maps.

"Advanced Features' explains how to manipul ate the texture matrix stack and how to use the q texture coordinate.

Version 1.1 of OpenGL introduces several new texture-mapping operations:

o Thirty-eight additional internal texture image formats
o Texture proxy, to query whether there are enough resources to accommodate a given texture image

0 Texture subimage, to replace all or part of an existing texture image rather than completely deleting and
creating atexture to achieve the same effect

0 Specifying texture data from framebuffer memory (as well as from processor memory)

0 Texture objects, including resident textures and prioritizing

If you try to use one of these texture-mapping operations and can't find it, check the version number of your
implementation of OpenGL to seeif it actually supportsit. (See "Which Version Am | Using?" in Chapter 14.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (3 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17553_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17743_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19054_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19551_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20056_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20506_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_21058_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_28355_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also presents arelatively ssmple
texture-mapping program. Of course, you know that texture mapping can be a very involved process.

Steps in Texture Mapping

To use texture mapping, you perform these steps.
1. Create atexture object and specify atexture for that object.

2. Indicate how the texture isto be applied to each pixel.
3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in color-index mode are
undefined.

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two-dimensional, like most images, but it can also be one-dimensional. The data
describing a texture may consist of one, two, three, or four elements per texel, representing anything from a modulation
constant to an (R, G, B, A) quadruple.

In Example 9-1, which is very simple, asingle texture object is created to maintain a single two-dimensional texture.
This example does not find out how much memory is available. Since only one texture is created, there is no attempt to
prioritize or otherwise manage aworking set of texture objects. Other advanced techniques, such as texture borders or
mipmaps, are not used in this simple example.

Indicate How the Texture Is to Be Applied to Each Pixel

Y ou can choose any of four possible functions for computing the final RGBA value from the fragment color and the
texture-image data. One possibility is simply to use the texture color as the final color; thisis the decal mode, in which
the texture is painted on top of the fragment, just as a decal would be applied. (Example 9-1 uses decal mode.) The
replace mode, a variant of the decal mode, is a second method. Another method is to use the texture to modulate, or
scale, the fragment's color; this technique is useful for combining the effects of lighting with texturing. Finally, a
constant color can be blended with that of the fragment, based on the texture value.

Enable Texture Mapping

Y ou need to enable texturing before drawing your scene. Texturing is enabled or disabled using glEnable() or
glDisable() with the symbolic constant GL_TEXTURE_1D or GL_TEXTURE_2D for one- or two-dimensiona
texturing, respectively. (If both are enabled, GL_ TEXTURE_ 2D isthe one that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

Y ou need to indicate how the texture should be aligned relative to the fragments to which it's to be applied before it's
"glued on." That is, you need to specify both texture coordinates and geometric coordinates as you specify the objectsin
your scene. For atwo-dimensional texture map, for example, the texture coordinates range from 0.0 to 1.0 in both
directions, but the coordinates of the items being textured can be anything. For the brick-wall example, if the wall is
square and meant to represent one copy of the texture, the code would probably assign texture coordinates (0, 0), (1, 0),

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (4 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

(1, 1), and (0, 1) to the four corners of the wall. If the wall islarge, you might want to paint several copies of the texture
map on it. If you do so, the texture map must be designed so that the bricks on the |eft edge match up nicely with the
bricks on the right edge, and similarly for the bricks on the top and those on the bottom.

Y ou must also indicate how texture coordinates outside the range [0.0,1.0] should be treated. Do the textures repeat to
cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that interesting textures are large.
Typicaly, textures are read from an image file, since specifying a texture programmeatically could take hundreds of lines
of code. In Example 9-1, the texture - which consists of aternating white and black sgquares, like a checkerboard - is

generated by the program. The program applies this texture to two squares, which are then rendered in perspective, one
of them facing the viewer squarely and the other tilting back at 45 degrees, as shown in Figure 9-2. In object

coordinates, both squares are the same size.

i |

Figure 9-2 : Texture-Mapped Squares

Example 9-1 : Texture-Mapped Checkerboard: checker.c

#i ncl ude <@&./gl. h>
#i ncl ude <@/ gl u. h>
#i ncl ude <@/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

/* Create checkerboard texture */

#defi ne checkl mageW dth 64

#defi ne checkl mageHei ght 64

stati c GLubyte checkl mage[checkl mageHei ght][checkl mageW dt h] [4] ;

static Gui nt texName;
voi d makeCheckl mage(voi d)
{ int i, j, c;
for (i = 0; i < checklmageHei ght; i++) {
for (j =0; J < checklmageWdth; j++) {

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (5 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17642_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
c = ((((i&0x8)==0)"((j&0x8))==0))*255;

checklmage[i][j][0] = (GLubyte) c;
checklmage[i][j][1] = (GLubyte) c;
checklmage[i][j][2] = (GLubyte) c;

checklmage[i][]j]]3]

}

void init(void)

{
gl d ear Col or

gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl mage() ;

(GLubyte) 255;

(0.0, 0.0, 0.0, 0.0);

gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

gl GenTextures(1, &t exNane);
gl Bi ndText ur e(GL_TEXTURE_2D,

gl TexPar anet eri (G._TEXTURE_ 2D,
gl TexPar anet eri (GL._TEXTURE 2D,
gl TexPar anet eri (G._TEXTURE_ 2D,
GL_NEAREST) ;
gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;
gl Texl mge2D(G._TEXTURE 2D, O,
checkl mageHei ght
checkl mage) ;

voi d di spl ay(voi d)

gl dear(G_CO.OR BUFFER BI T |
gl Enabl e(G._TEXTURE _2D) ;

t exNane) ;

GL_TEXTURE WRAP_S, GL_REPEAT):
GL_TEXTURE_WRAP_T, GL_REPEAT);
GL_TEXTURE_MAG FI LTER,

GL_TEXTURE_M N_FI LTER,

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, G._UNSI GNED BYTE,

GL_DEPTH_BUFFER BI T) :

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

gl Bi ndText ure(GL_TEXTURE 2D,
gl Begi n(G._QUADS) ;

gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (1.
gl TexCoor d2f (1.

0);
0);
0);
0);

OO0 OO
@ e

gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (1.
gl TexCoor d2f (1.
gl End() ;

gl Fl ush();

gl Di sabl e(GL_TEXTURE_2D) ;

.0);
. 0);
. 0);
. 0);

cooo
OrFrLrOo

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (6 of 38) [4/28/2000 9:46:36 PM]

gl Vertex3f(-2.0,
gl Vertex3f (-2.0,
gl Vertex3f (0.0, 1.0, 0.0);
gl Vertex3f (0.0,

gl Vertex3f (1.0,
gl Vertex3f (1.0, 1.0, 0.0);
gl Vertex3f (2.41421, 1.0,
gl Vertex3f (2.41421

t exNane) ;

-1.0, 0.0);
1.0, 0.0);

-1.0, 0.0);
1.0, 0.0);

- 1. 41421) ;

1.0, -1.41421);

OpenGL Programming Guide (Addison-Wesley Publishing Company)

void reshape(int w, int h)
{
gl Viewport (0, O, (CLsizei) w, (GLsizei) h);
gl Mat ri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0, (G.float) w (G.float) h, 1.0, 30.0);
gl Matri xMode(G._MODELVI EW ;
gl Loadl dentity();
gl Translatef (0.0, 0.0, -3.6);

}

voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)
{
glutlnit(&argc, argv);
glutlnitD spl ayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utl nit WndowSi ze(250, 250);
gl ut I ni t WndowPosi ti on(100, 100);
gl ut Cr eat eW ndow(ar gv[0]) ;
init();
gl ut D spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboard) ;
gl ut Mai nLoop() ;
return O,

}

The checkerboard texture is generated in the routine makeCheckl mage(), and all the texture-mapping initialization
occurs in theroutine init(). glGenTextures() and glBindTextur e() name and create a texture object for a texture image.
(See "Texture Objects.") The single, full-resolution texture map is specified by gl T exl mage2D(), whose parameters

indicate the size of the image, type of the image, location of the image, and other properties of it. (See " Specifying the
Texture" for more information about gl T exl mage2D().)

The four callsto gl TexParameter* () specify how the texture is to be wrapped and how the colors are to be filtered if
there isn't an exact match between pixels in the texture and pixels on the screen. (See "Repeating and Clamping

Textures' and "Filtering.")

In display(), glEnable() turns on texturing. gl TexEnv* () sets the drawing mode to GL_DECAL so that the textured
polygons are drawn using the colors from the texture map (rather than taking into account what color the polygons
would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with vertex coordinates. The

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (7 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17743_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17743_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20297_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20297_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19054_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl TexCoord* () command behaves similarly to the giINor mal() command. gl TexCoor d* () sets the current texture
coordinates; any subsequent vertex command has those texture coordinates associated with it until giITexCoord*() is
caled again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile and run it on your machine -
for example, it might look like two triangles with different projections of the checkerboard image on them. If so, try
setting the parameter GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again. To
do this, use glHint().

Specifying the Texture

The command gl Texl mage2D() defines a two-dimensional texture. It takes several arguments, which are described
briefly here and in more detail in the subsections that follow. The related command for one-dimensional textures,
ol TexImagelD(), is described in "One-Dimensional Textures."

void gl TexI mage2D(GLenum target, GLint level, GLint internal Format,
GLsizel width, GLsizel height, GLint border,

GLenum format, GLenum type,

const GLvoid *pixels);

Defines a two-dimensional texture. The target parameter is set to either the constant GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D. You use the level parameter if you're supplying multiple resolutions of the texture
map; with only one resolution, level should be 0. (See "Multiple Levels of Detail” for more information about

using multiple resolutions.)

The next parameter, internal Format, indicates which of the R, G, B, and A components or luminance or intensity
values are selected for use in describing the texels of an image. The value of internalFormat is an integer from 1
to 4, or one of thirty-eight symbolic constants. The thirty-eight symbolic constants that are also legal values for
internalFormat are GL_ALPHA, GL_ALPHA4, GL_ALPHAS, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4 _ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16 _ALPHA16, GL_INTENSTY, GL_INTENSTY4, GL_INTENSTY8, GL_INTENSTY12,
GL_INTENSITY16, GL_RGB, GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS8, GL_RGB10 A2, GL_RGBA12,
and GL_RGBAL16. (See "Texture Functions' for a discussion of how these selected components are applied.)

If internal Format is one of the thirty-eight symbolic constants, then you are asking for specific components and
per haps the resolution of those components. For example, if internalFormat is GL_R3_G3 B2, you are asking
that texels be 3 bits of red, 3 bits of green, and 2 bits of blue, but OpenGL is not guaranteed to deliver this.
OpenGL is only obligated to choose an internal representation that closely approximates what is requested, but
an exact match is usually not required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB,
and GL_RGBA are lenient, because they do not ask for a specific resolution. (For compatibility with the OpenGL
release 1.0, the numeric values 1, 2, 3, and 4, for internalFormat, are equivalent to the symbolic constants
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)

The width and height parameter s give the dimensions of the texture image; border indicates the width of the
border, which is either zero (no border) or one. (See "Using a Texture's Borders'.) Both width and height must
have the form 2m+ 2b, where mis a nonnegative integer (which can have a different value for width than for
height) and b is the value of border. The maximum size of a texture map depends on the implementation of
OpenGL, but it must be at least 64 x 64 (or 66 x 66 with borders).

The format and type parameters describe the format and data type of the texture image data. They have the same
meaning as they do for glDrawPixels(). (See "Imaging Pipeline" in Chapter 8.) In fact, texture data isin the same
format as the data used by glDrawPixels(), so the settings of glPixel Store* () and glPixel Transfer* () are applied.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (8 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18509_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18832_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19551_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18810_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_16147_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

(In Example 9-1, the call
gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

is made because the data in the example isn't padded at the end of each texel row.) The format parameter can be
GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE,
or GL_LUMINANCE_ALPHA - that is, the same formats available for glDrawPixels() with the exceptions of
GL_STENCIL_INDEX and GL_DEPTH_COMPONENT.

Smilarly, the type parameter can be GL_BYTE, GL_UNSIGNED_ BYTE, GL_SHORT, GL_UNSGNED_SHORT,
GL_INT, GL_UNSGNED_INT, GL_FLOAT, or GL_BITMAP.

Finally, pixels contains the texture-image data. This data describes the texture image itself aswell asits border.

The internal format of atexture image may affect the performance of texture operations. For example, some
implementations perform texturing with GL_RGBA faster than GL_RGB, because the color components align the
processor memory better. Since this varies, you should check specific information about your implementation of
OpenGL.

The internal format of atexture image also may control how much memory a texture image consumes. For example, a
texture of internal format GL_RGBAS8 uses 32 bits per texel, while atexture of internal format GL_R3 G3 B2 only
uses 8 bits per texel. Of course, there is a corresponding trade-off between memory consumption and color resolution.

Note: Although texture-mapping results in color-index mode are undefined, you can still specify atexture with a
GL_COLOR_INDEX image. In that case, pixel-transfer operations are applied to convert the indices to RGBA values
by table lookup before they're used to form the texture image.

The number of texels for both the width and height of a texture image, not including the optional border, must be a
power of 2. If your original image does not have dimensions that fit that limitation, you can use the OpenGL Utility
Library routine gluScalel mage() to alter the size of your textures.

int gluScal el mage(GLenum format, GLint widthin, GLint heightin,
GLenum typein, const void *datain, GLint widthout,
GLint heightout, GLenum typeout, void * dataout);

Scales an image using the appropriate pixel-storage modes to unpack the data from datain. The format, typein,
and typeout parameters can refer to any of the formats or data types supported by glDrawPixels(). Theimageis
scaled using linear interpolation and box filtering (from the size indicated by widthin and heightin to widthout
and heightout), and the resulting image is written to dataout, using the pixel GL_PACK* storage modes. The
caller of gluScalel mage() must allocate sufficient space for the output buffer. A value of O isreturned on success,
and a GLU error codeisreturned on failure.

The framebuffer itself can also be used as a source for texture data. glCopy T exl mage2D() reads a rectangle of pixels
from the framebuffer and usesit for a new texture.

void glCopyTexl mage2D(GLenum target, GLint level,

GLint internal Format,

GLint x, GLint y, GLsizei width, GLsizei height,

GLint border);
Creates a two-dimensional texture, using framebuffer data to define the texels. The pixels are read from the
current GL_READ_ BUFFER and are processed exactly asif glCopyPixels() had been called but stopped before
final conversion. The settings of glPixel Transfer* () are applied.

The target parameter must be set to the constant GL_ TEXTURE_2D. The level, internalFormat, and border
parameters have the same effects that they have for gl TexI mage2D(). The texture array is taken from a
screen-aligned pixel rectangle with the lower-left corner at coordinates specified by the (X, y) parameters. The
width and height parameters specify the size of this pixel rectangle. Both width and height must have the form
2mt2b, where mis a nonnegative integer (which can have a different value for width than for height) and b isthe
value of border.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (9 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

The next sections give more detail about texturing, including the use of the target, border, and level parameters. The
target parameter can be used to accurately query the size of atexture (by creating a texture proxy with gl Texl mage* D())
and whether a texture possibly can be used within the texture resources of an OpenGL implementation. Redefining a
portion of atexture is described in "Replacing All or Part of a Texture Image." One-dimensional textures are discussed

in "One-Dimensional Textures." The texture border, which has its size controlled by the border parameter, is detailed in
"Using a Texture's Borders." The level parameter is used to specify textures of different resolutions and is incorporated
into the special technique of mipmapping, which isexplained in "Multiple Levels of Detail." Mipmapping requires
understanding how to filter textures as they're applied; filtering is the subject of "Filtering."

Texture Proxy

To an OpenGL programmer who uses textures, size isimportant. Texture resources are typically limited and vary among
OpenGL implementations. Thereis a special texture proxy target to evaluate whether sufficient resources are available.

glGetlIntegerv(GL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or height, without borders) of a
texture image, typically the size of the largest square texture supported. However, GL_ MAX_ TEXTURE_SIZE does not
consider the effect of the internal format of atexture. A texture image that stores texels using the GL_RGBA 16 internal
format may be using 64 bits per texel, so itsimage may have to be 16 times smaller than an image with the
GL_LUMINANCEA4 internal format. (Also, images requiring borders or mipmaps may further reduce the amount of
available memory.)

A specia place holder, or proxy, for atexture image alows the program to query more accurately whether OpenGL can
accommodate atexture of adesired internal format. To use the proxy to query OpenGL, call gl Texl mage2D() with a
target parameter of GL_PROXY_TEXTURE_2D and the given level, internal Format, width, height, border, format, and
type. (For one-dimensional textures, use corresponding 1D routines and symbolic constants.) For a proxy, you should
pass NULL as the pointer for the pixels array.

To find out whether there are enough resources available for your texture, after the texture proxy has been created, query
the texture state variables with glGet TexL evel Parameter * (). If there aren't enough resources to accommodate the
texture proxy, the texture state variables for width, height, border width, and component resolutions are set to 0.

void glGetTexL evel Parameter{if}v(GLenum target, GLint level,

GLenum pname, TYPE * params);
Returns in params texture parameter values for a specific level of detail, specified as level. target defines the
target texture and is one of GL_TEXTURE_1D, GL_TEXTURE_2D, GL_PROXY_TEXTURE_1D, or
GL_PROXY_TEXTURE_2D. Accepted values for pname are GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT,
GL_TEXTURE_BORDER, GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE _RED S ZE,
GL_TEXTURE_GREEN_SZE, GL_TEXTURE BLUE SZE, GL_TEXTURE _ALPHA SZE,
GL_TEXTURE_LUMINANCE_SIZE, or GL_ TEXTURE_INTENSITY SIZE.

GL_TEXTURE_COMPONENTS s also accepted for pname, but only for backward compatibility with OpenGL
Release 1.0 - GL_TEXTURE_INTERNAL_ FORMAT is the recommended symbolic constant for Release 1.1.

Example 9-2 demonstrates how to use the texture proxy to find out if there are enough resources to create a 64 x 64 texel
texture with RGBA components with 8 bits of resolution. If this succeeds, then glGetTexL evel Par ameteriv() stores the

internal format (in this case, GL_RGBAS8) into the variable format.
Example 9-2 : Querying Texture Resources with a Texture Proxy
GLint format;

gl Texl mage2D(GL_PROXY_TEXTURE 2D, 0, G._RGBAS,
64, 64, 0, GL_RGBA, G._UNSI GNED BYTE, NULL);
gl Get TexLevel Paranet eri v(G._PROXY_TEXTURE 2D, O,
GL_TEXTURE | NTERNAL_FORMAT, &format);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (10 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18268_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18509_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18810_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18832_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19054_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18253_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Note: Thereisone major limitation about texture proxies: The texture proxy tellsyou if there is space for your texture,
but only if all texture resources are available (in other words, if it's the only texture in town). If other textures are using
resources, then the texture proxy query may respond affirmatively, but there may not be enough space to make your

texture resident (that is, part of a possibly high-performance working set of textures). (See "Texture Objects’ for more

information about managing resident textures.)

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying an existing one. In OpenGL Release 1.1,
there are new routines to replace all or part of a texture image with new information. This can be helpful for certain
applications, such as using real-time, captured video images as texture images. For that application, it makes sense to
create a single texture and use gl TexSubl mage2D() to repeatedly replace the texture data with new video images. Also,
there are no size restrictions for gl TexSubl mage2D() that force the height or width to be a power of two. Thisis helpful
for processing video images, which generally do not have sizes that are powers of two.
void gl TexSubl mage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid * pixels);
Defines a two-dimensional texture image that replaces all or part of a contiguous subregion (in 2D, it'ssimply a
rectangle) of the current, existing two-dimensional texture image. The target parameter must be set to
GL_TEXTURE_2D.
The level, format, and type parameters are similar to the ones used for gl TexI mage2D(). level is the mipmap
level-of-detail number. It is not an error to specify a width or height of zero, but the subimage will have no effect.
format and type describe the format and data type of the texture image data. The subimage is also affected by
modes set by glPixel Store* () and glPixel Transfer* ().
pixels contains the texture data for the subimage. width and height are the dimensions of the subregion that is
replacing all or part of the current texture image. xoffset and yoffset specify the texel offset inthex andy
directions (with (0, 0) at the lower-left corner of the texture) and specify where to put the subimage within the
existing texture array. This region may not include any texels outside the range of the originally defined texture
array.

In Example 9-3, some of the code from Example 9-1 has been modified so that pressing the 's key drops a smaller
checkered subimage into the existing image. (The resulting texture is shown in Figure 9-3.) Pressing the 'r' key restores
the original image. Example 9-3 shows the two routines, makeCheckl mages() and keyboar d(), that have been
substantially changed. (See "Texture Objects' for more information about glBindTextur &().)

2 |

Figure 9-3 : Texture with Subimage Added

Example 9-3 : Replacing a Texture Subimage: texsub.c

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (11 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19147_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18413_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18403_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18413_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19147_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

/* Create checkerboard textures */

#defi ne checkl mageWdth 64

#defi ne checkl mageHei ght 64

#defi ne subl mageWdth 16

#defi ne subl mageHei ght 16

static GLubyte checkl mage[checkl mageHei ght][checkl mageW dt h] [4] ;
stati c GLubyte subl mage[subl mageHei ght] [subl nageW dt h] [4] ;

voi d makeCheckl mages(voi d)

{

int i, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j =0; j < checklmageWdth; j++) {
c = ((((i&x8)==0)"((j&0x8))==0))*255;
checkl mage[i][]j]][0] (GLubyte) c;
checklmage[i][j]][1] (GLubyte) c;
checklmage[i][]j]]2] (GLubyte) c;
checklmage[i][]j]]3] (GLubyte) 255;

}
}
for (i = 0; i < sublmgeHeight; i++) {
for (j =0; J < sublmageWdth; j++) {
c = ((((i&x4)==0)"((j&0x4))==0))*255;
subl mage[i][]j]]0] (GLubyte) c;
sublmage[i][j]]1] (GLubyte) O;
sublmage[i][j]]2] (GLubyte) O;
subl mage[i][]j]]3] (GLubyte) 255;

}

voi d keyboard (unsigned char key, int x, int y)

{
switch (key) {
case s':
case S':
gl Bi ndText ure(GL_TEXTURE 2D, texNane);
gl TexSubl mage2D(GL_TEXTURE 2D, 0, 12, 44,
subl mageW dt h, subl mageHei ght, G._RGBA
GL_UNSI GNED BYTE, subl mage);
gl ut Post Redi spl ay() ;
br eak;
case 'r'
case R:
gl Bi ndText ur e(GL_TEXTURE_2D, texNane);
gl Texl mage2D(GL_TEXTURE_2D, 0, GL_RGBA,
checkl mageW dt h, checkl mageHei ght, O,
GL_RGBA, G._UNSI GNED BYTE, checkl mage) ;
gl ut Post Redi spl ay() ;
br eak;
case 27:

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (12 of 38) [4/28/2000 9:46:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

exit(0);

br eak;
def aul t:

br eak;

}

Once again, the framebuffer itself can be used as a source for texture data; this time, a texture subimage.
glCopyTexSubl mage2D() reads a rectangle of pixels from the framebuffer and replaces a portion of an existing texture
array. (glCopyTexSubl mage2D() is kind of a cross between glCopyTexl mage2D() and gl TexSubl mage2D().)

void glCopyTexSubl mage2D(GLenum target, GLint level,

GLint xoffset, GLint yoffset, GLint x, GLint y,

GLsizel width, GLsizel height);
Uses image data from the framebuffer to replace all or part of a contiguous subregion of the current, existing
two-dimensional texture image. The pixels are read fromthe current GL_READ BUFFER and are processed
exactly as if glCopyPixels() had been called, stopping before final conversion. The settings of glPixel Store* () and
glPixel Transfer*() are applied.

The target parameter must be set to GL_ TEXTURE_2D. level is the mipmap level-of-detail number. xoffset and
yoffset specify the texel offset in the x and y directions (with (0, 0) at the lower-left corner of the texture) and
specify where to put the subimage within the existing texture array. The subimage texture array is taken froma
screen-aligned pixel rectangle with the lower-left corner at coordinates specified by the (X, y) parameters. The
width and height parameters specify the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient - for example, if you're drawing textured bands where all the variation

isin one direction. A one-dimensional texture behaves like atwo-dimensional one with height = 1, and without borders

along the top and bottom. All the two-dimensional texture and subtexture definition routines have corresponding

one-dimensional routines. To create a simple one-dimensional texture, use gl Texl magelD().

void gl Texl magelD(GLenum target, GLint level, GLint internal Format,

GLsizei width, GLint border, GLenum format,

GLenum type, const GLvoid * pixels);
Defines a one-dimensional texture. All the parameters have the same meanings as for gl Texl mage2D(), except
that the image is now a one-dimensional array of texels. As before, the value of width is 2m (or 2n+2, if there'sa
border), where mis a nonnegative integer. You can supply mipmaps, proxies (set target to
GL_PROXY_TEXTURE_1D), and the same filtering options are available as well.

For a sample program that uses a one-dimensional texture map, see Example 9-6.

To replace all or some of the texels of a one-dimensional texture, use gl TexSubl magelD().

void gl TexSubl magelD(GLenum target, GLint level, GLint xoffset,

GLsizei width, GLenum format,

GLenum type, const GLvoid * pixels);
Defines a one-dimensional texture array that replaces all or part of a contiguous subregion (in 1D, a row) of the
current, existing one-dimensional texture image. The target parameter must be set to GL_ TEXTURE_1D.
The level, format, and type parameters are similar to the ones used for gl TexIl magelD(). level is the mipmap
level-of-detail number. format and type describe the format and data type of the texture image data. The subimage
is also affected by modes set by glPixelStore* () or glPixel Transfer* ().

pixels contains the texture data for the subimage. width is the number of texels that replace part or all of the current
texture image. xoffset specifies the texel offset for where to put the subimage within the existing texture array.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (13 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20751_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

To use the framebuffer as the source of a new or replacement for an old one-dimensional texture, use either
glCopyTexlmagelD() or glCopyTexSubl magelD().

void glCopyTexl magelD(GLenum target, GLint level,
GLint internalFormat, GLint x, GLint y,
GLsizei width, GLint border);

Creates a one-dimensional texture, using framebuffer data to define the texels. The pixelsare read fromthe
current GL_READ_ BUFFER and are processed exactly asif glCopyPixels() had been called but stopped before
final conversion. The settings of glPixelStore* () and glPixel Transfer* () are applied.

The target parameter must be set to the constant GL_TEXTURE_1D. The level, internal Format, and border
parameters have the same effects that they have for glCopyTexI mage2D(). The texture array is taken froma row
of pixels with the lower-left corner at coordinates specified by the (x, y) parameters. The width parameter
specifies the number of pixelsin thisrow. The value of width is 2m (or 2m+ 2 if there's a border), wheremisa
nonnegative integer.

void glCopyTexSubl magelD(GLenum target, GLint level, GLint xoffset,

GLint x, GLint y, GLsizei width);
Uses image data from the framebuffer to replace all or part of a contiguous subregion of the current, existing
one-dimensional texture image. The pixels are read fromthe current GL_READ BUFFER and are processed
exactly as if glCopyPixels() had been called but stopped before final conversion. The settings of glPixel Store* ()
and glPixel Transfer* () are applied.

Thetarget parameter must be set to GL_ TEXTURE_1D. level is the mipmap |level-of-detail number. xoffset
specifies the texel offset and specifies where to put the subimage within the existing texture array. The subimage
texture array istaken from a row of pixels with the lower-left corner at coordinates specified by the (X, y)
parameters. The width parameter specifies the number of pixelsin this row.

Using a Texture's Borders

Advanced

If you need to apply alarger texture map than your implementation of OpenGL allows, you can, with alittle care,
effectively make larger textures by tiling with severa different textures. For example, if you need a texture twice as
large as the maximum allowed size mapped to a square, draw the square as four subsquares, and load a different texture
before drawing each piece.

Since only asingle texture map is available at one time, this approach might lead to problems at the edges of the
textures, especialy if some form of linear filtering is enabled. The texture value to be used for pixels at the edges must
be averaged with something beyond the edge, which, ideally, should come from the adjacent texture map. If you define a
border for each texture whose texel values are equal to the values of the texels on the edge of the adjacent texture map,
then the correct behavior results when linear filtering takes place.

To do this correctly, notice that each map can have eight neighbors - one adjacent to each edge, and one touching each
corner. The values of the texels in the corner of the border need to correspond with the texels in the texture maps that
touch the corners. If your texture is an edge or corner of the whole tiling, you need to decide what values would be
reasonable to put in the borders. The easiest reasonable thing to do isto copy the value of the adjacent texel in the
texture map. Remember that the border values need to be supplied at the same time as the texture-image data, so you
need to figure this out ahead of time.

A texture's border color isalso used if the texture is applied in such away that it only partially coversa primitive. (See
"Repeating and Clamping Textures' for more information about this situation.)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (14 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20297_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
Multiple Levels of Detail

Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances from the viewpoint. In adynamic
scene, as a textured object moves farther from the viewpoint, the texture map must decrease in size along with the size
of the projected image. To accomplish this, OpenGL has to filter the texture map down to an appropriate size for
mapping onto the object, without introducing visually disturbing artifacts. For example, to render a brick wall, you may
use alarge (say 128 x 128 texel) texture image when it is close to the viewer. But if the wall is moved farther away from
the viewer until it appears on the screen as a single pixel, then the filtered textures may appear to change abruptly at
certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing resolutions, called mipmaps, as
shown in Figure 9-4. The term mipmap was coined by Lance Williams, when he introduced the idea in his paper,
"Pyramidal Parametrics' (SIGGRAPH 1983 Proceedings). Mip stands for the Latin multim im parvo, meaning "many
thingsin asmall place." Mipmapping uses some clever methods to pack image data into memory.

Original Texture

Pre-Filtered Images

14

1186

YVigs. .

When using mipmapping, OpenGL automatically determines which texture map to use based on the size (in pixels) of
the object being mapped. With this approach, the level of detail in the texture map is appropriate for the image that's
drawn on the screen - as the image of the object gets smaller, the size of the texture map decreases. Mipmapping
requires some extra computation and texture storage area; however, when it's not used, textures that are mapped onto
smaller objects might shimmer and flash as the objects move.

Figure 9-4 : Mipmaps

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the largest sizeand a1l x 1 map.
For example, if your highest-resolution map is 64 x 16, you must also provide mapsof size32x 8,16 x 4,8 x 2,4 x 1,
2x 1, and 1 x 1. The smaller maps are typically filtered and averaged-down versions of the largest map in which each
texel in asmaller texture is an average of the corresponding four texelsin the larger texture. (Since OpenGL doesn't
require any particular method for calculating the smaller maps, the differently sized textures could be totally unrelated.
In practice, unrelated textures would make the transitions between mipmaps extremely noticeable.)

To specify these textures, call gl'Texlmage2D() once for each resolution of the texture map, with different values for the
level, width, height, and image parameters. Starting with zero, level identifies which texture in the seriesis specified;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (15 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18866_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

with the previous example, the largest texture of size 64 x 16 would be declared with level = 0, the 32 x 8 texture with
level = 1, and so on. In addition, for the mipmapped textures to take effect, you need to choose one of the appropriate
filtering methods described in the next section.

Example 9-4 illustrates the use of a series of six texture maps decreasing in size from 32 x 32 to 1 x 1. This program
draws arectangle that extends from the foreground far back in the distance, eventually disappearing at a point, as shown
in"Plate 20" in Appendix |. Note that the texture coordinates range from 0.0 to 8.0 so 64 copies of the texture map are
required to tile the rectangle, eight in each direction. To illustrate how one texture map succeeds another, each map has a
different color.

Example 9-4 : Mipmap Textures. mipmap.c
#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>

#i ncl ude <@/ gl ut. h>

#i ncl ude <stdlib. h>

GLubyte m pmapl mage32[32][32][4];
GLubyt e m pmapl nagel6[16][16][4] ;
Gubyte m pmapl mage8[8] [8] [4] ;
GLubyt e m pmapl nage4[4][4][4];
GLubyt e ni pmapl mage2[2][2] [4] ;
GLubyte m pmapl magel[1][1][4];

static GLui nt texNane;
voi d rmakel mages(voi d)
{

int i, j;

for (i =0; i <32; i++) {
for (j =0; j <32; j++) {

m pmapl mage32[i][j][0] = 255;
m pmapl mage32[i][j][1] = 255;
m prapl mege32[i][j][2] = O;
m pmapl mage32[i][j]1[3] = 255;
}
}
for (i =0; i < 16; i++) {
for (j =0; j <16; j++) {
m pmapl magel6[i][j][0] = 255;
m prapl megel6[i][j][1] = O;
m pmapl magel6[i][j][2] = 255;
m pmapl magel6[i][j][3] = 255;
}
}
for (i =0; 1 <8; i++) {
for (j =0; j <8 j++) {
m prapl mege8[i][j][0] = 255;
mi prapl meges[i][j][1] = O;
m prapl mage8[i][j][2] = O;
m pmepl mage8[i][j][3] = 255;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (16 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18940_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38606_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

}
for (i =0; 1 < 4; i++) {
for (j =0; j < 4; j++) {
m pmapl mage4[i][j]1[0] = O,
m pmapl maged[i][j][1] = 255;
m pmapl maged[i][j][2] = O,
m pmapl mage4[i][j]1[3] = 255;
}
}
for (i =0; i <2; i++) {
for (j =0; j <2, j++) {
mi pmapl mage2[i][j][0] = 0;
m pmapl mage2[i][j][1] = O;
m pmapl mage2[i][j][2] = 255;
m pmapl mage2[i][j][3] = 255;
) }
m pmapl nagel[0] [0] [0] = 255;
m pmapl magel[0] [0] [1] = 255;
m pmapl magel[0] [0] [2] = 255;
m pmapl magel[0] [0] [3] = 255;
}
void init(void)
{
gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeModel (GL_FLAT) ;
gl Translatef (0.0, 0.0, -3.6);

makel mages() ;
gl Pi xel Storei (GL_UNPACK_ALI GNMVENT, 1);

gl GenTextures(1, &t exNane);
gl Bi ndText ure(G._TEXTURE 2D, texNane);
gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE WRAP_S, G._REPEAT);
gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE _WRAP_T, G._REPEAT);
gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE MAG FI LTER,
GL_NEAREST) ;
gl TexParaneteri (GL_TEXTURE 2D, GL_TEXTURE M N FI LTER,
GL_NEAREST_M PMAP_NEAREST) ;
gl Texl mge2D(G._TEXTURE 2D, 0, G._RGBA, 32, 32, 0,
GL_RGBA, G._UNSI GNED BYTE, m pmapl mage32);
gl Texl mage2D(G._TEXTURE 2D, 1, G._RGBA, 16, 16, O,
GL_RGBA, GL_UNSI GNED BYTE, m pmapl magel6);
gl Texl mage2D(G._TEXTURE_2D, 2, GL_RGBA, 8, 8, O,
GL_RGBA, GL_UNSI GNED _BYTE, m prapl nages8) ;
gl Texl mage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, O,
GL_RGBA, GL_UNSI GNED _BYTE, m prapl nage4) ;
gl Texl mage2D(GL_TEXTURE_2D, 4, G._RGBA, 2, 2, O,

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (17 of 38) [4/28/2000 9:46:36 PM]

GL_RGBA, GL_UNSI GNED BYTE,

gl Texl mage2D(GL_TEXTURE_2D, 5, GL_RGBA,

GL_RGBA, GL_UNSI GNED BYTE,

m pmapl nage?2) ;
1, 1, O,
m pmapl magel) ;

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
gl Enabl e(G._TEXTURE _2D) ;

}
voi d di spl ay(voi d)
{
gl G ear(G_CO.OR BUFFER BI T | G._DEPTH BUFFER BI T);
gl Bi ndText ur e(GL_TEXTURE_2D, texNane);
gl Begi n(G._QUADS) ;
gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoord2f (0.0, 8.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoord2f (8.0, 8.0); gl Vertex3f(2000.0, 1.0, -6000.0);
gl TexCoord2f (8.0, 0.0); gl Vertex3f(2000.0, -1.0, -6000.0);
gl End() ;
gl Fl ush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0, (G.float)w (Gfloat)h, 1.0, 30000.0);
gl Mat ri xMode(G._MODELVI EW ;
gl Loadl dentity();
}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutlnit(&argc, argv);
glutlnitDi splayMde(GUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(500, 500);
gl utlni t WndowPosi tion(50, 50);
gl ut Cr eat eW ndow(ar gv[0]) ;
init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboard) ;

gl ut Mai nLoop() ;

return O

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (18 of 38) [4/28/2000 9:46:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

}

Example 9-4 illustrates mipmapping by making each mipmap a different color so that it's obvious when one map is
replaced by another. In areal situation, you define mipmaps so that the transition is as smooth as possible. Thus, the
maps of lower resolution are usually filtered versions of an original, high-resolution map. The construction of a series of
such mipmaps is a software process, and thusisn't part of OpenGL, which is simply arendering library. However, since
mipmap construction is such an important operation, however, the OpenGL Utility Library contains two routines that aid
in the manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level O, or highest-resolution map, the routines gluBuild1DMipmaps() and
gluBuild2DMipmaps() construct and define the pyramid of mipmaps down to aresolution of 1 x 1 (or 1, for
one-dimensional texture maps). If your original image has dimensions that are not exact powers of 2,
gluBuild*DMipmaps() helpfully scales the image to the nearest power of 2.

int gluBuild1DMipmaps(GLenum target, GLint components, GLint width,
GLenum format, GLenum type, void * data);

int gluBuild2DMipmaps(GLenum target, GLint components, GLint width,
GLint height, GLenum format, GLenum type,

void *data);

Constructs a series of mipmaps and calls gl TexI mage* D() to load the images. The parameters for target,
components, width, height, format, type, and data are exactly the same as those for gl TexI magelD() and

gl Texl mage2D(). A value of O isreturned if all the mipmaps are constructed successfully; otherwise, a GLU error
code isreturned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface and transformed into screen
coordinates, the individual texels of atexture rarely correspond to individual pixels of the final screen image. Depending
on the transformations used and the texture mapping applied, a single pixel on the screen can correspond to anything
from atiny portion of atexel (magnification) to alarge collection of texels (minification), as shown in Figure 9-5. In
either case, it's unclear exactly which texel values should be used and how they should be averaged or interpolated.
Consequently, OpenGL allows you to specify any of several filtering options to determine these calculations. The
options provide different trade-offs between speed and image quality. Also, you can specify independently the filtering
methods for magnification and minification.

) pnrﬂw 5]
iy _‘-——___H-J.
Zfl_' - phm]é"'“

[

texal

Texture Polygon Texture Polygon
Magnification Minification

Figure 9-5: Texture Magnification and Minification

In some cases, it isn't obvious whether magnification or minification is called for. If the mipmap needs to be stretched
(or shrunk) in both the x and y directions, then magnification (or minification) is needed. If the mipmap needs to be
stretched in one direction and shrunk in the other, OpenGL makes a choice between magnification and minification that
in most cases gives the best result possible. It's best to try to avoid these situations by using texture coordinates that map

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (19 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18940_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19064_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
without such distortion. (See "Computing Appropriate Texture Coordinates.")

The following lines are examples of how to use gl TexParameter * () to specify the magnification and minification
filtering methods:

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER
GL_NEAREST) ;

gl TexPar anet eri (GL_TEXTURE 2D, GL_TEXTURE_M N_FI LTER
GL_NEAREST) ;

The first argument to gl TexParameter*() iseither GL_TEXTURE 2D or GL_TEXTURE_1D, depending on whether
you're working with two- or one-dimensional textures. For the purposes of this discussion, the second argument is either
GL_TEXTURE_MAG FILTER or GL_TEXTURE_MIN_FILTER to indicate whether you're specifying the filtering
method for magnification or minification. The third argument specifies the filtering method; Table 9-1 lists the possible

values.

Table 9-1 : Filtering Methods for Magnification and Minification

Par ameter Values

GL_TEXTURE_MAG_FILTER | GL_NEAREST or GL_LINEAR

GL_TEXTURE MIN_FILTER | GL_NEAREST, GL_LINEAR, GL_NEAREST MIPMAP _NEAREST,
GL_NEAREST _MIPMAP_LINEAR, GL_LINEAR MIPMAP NEAREST, or
GL_LINEAR _MIPMAP_LINEAR

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is used for both magnification
and minification. This can result in aliasing artifacts (sometimes severe). If you choose GL_LINEAR, aweighted linear
average of the 2 x 2 array of texelsthat lie nearest to the center of the pixel is used, again for both magnification and
minification. When the texture coordinates are near the edge of the texture map, the nearest 2 x 2 array of texels might
include some that are outside the texture map. In these cases, the texel values used depend on whether GL_REPEAT or
GL_CLAMPIisin effect and whether you've assigned a border for the texture. (See "Using a Texture's Borders.")

GL_NEAREST requires less computation than GL_LINEAR and therefore might execute more quickly, but
GL_LINEAR provides smoother results.

With magnification, even if you've supplied mipmaps, the largest texture map (level = 0) is always used. With
minification, you can choose a filtering method that uses the most appropriate one or two mipmaps, as described in the
next paragraph. (If GL_NEAREST or GL_LINEAR is specified with minification, the largest texture map is used.)

Asshown in Table 9-1, four additional filtering choices are available when minifying with mipmaps. Within an
individual mipmap, you can choose the nearest texel value with GL_NEAREST _MIPMAP_NEAREST, or you can
interpolate linearly by specifying GL_LINEAR_MIPMAP_NEAREST. Using the nearest texelsis faster but yields less
desirable results. The particular mipmap chosen is afunction of the amount of minification required, and there's a cutoff
point from the use of one particular mipmap to the next. To avoid a sudden transition, use

GL_NEAREST _MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to linearly interpolate texel values from the
two nearest best choices of mipmaps. GL_ NEAREST _MIPMAP_LINEAR selects the nearest texel in each of the two
maps and then interpolates linearly between these two values. GL_LINEAR_MIPMAP_LINEAR useslinear
interpolation to compute the value in each of two maps and then interpolates linearly between these two values. Asyou
might expect, GL_LINEAR_MIPMAP_LINEAR generally produces the smoothest results, but it requires the most
computation and therefore might be the slowest.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (20 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20219_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19120_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18810_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19120_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object stores texture data and makes it
readily available. Y ou can now control many textures and go back to textures that have been previously loaded into your
texture resources. Using texture objectsis usually the fastest way to apply textures, resulting in big performance gains,
because it is almost always much faster to bind (reuse) an existing texture object than it isto reload a texture image
using gl Texlmage*D().

Also, some implementations support a limited working set of high-performance textures. Y ou can use texture objects to
load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.
1. Generate texture names.

2. Initialy bind (create) texture objects to texture data, including the image arrays and texture properties.

3. If your implementation supports aworking set of high-performance textures, seeif you have enough space for all
your texture objects. If there isn't enough space, you may wish to establish priorities for each texture object so that
more often used textures stay in the working set.

4. Bind and rebind texture objects, making their data currently available for rendering textured models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusing names, consistently use
glGenTextures() to provide unused texture names.

void glGenTextures(GLsizei n, GLuint * textureNames);

Returns n currently unused names for texture objectsin the array textureNames. The names returned in
textureNames do not have to be a contiguous set of integers.

The names in textureNames are marked as used, but they acquire texture state and dimensionality (1D or 2D)
only when they are first bound.

Zero isareserved texture name and is never returned as a texture name by glGenTextures().

gllsTexture() determinesif atexture nameis actually in use. If atexture name was returned by glGenTextures() but
has not yet been bound (calling gIBindT extur () with the name at least once), then gll sTexture() returns GL_FALSE.

GLboolean gll sTexture(GLuint textureName);

Returns GL_TRUE if textureName is the name of a texture that has been bound and has not been subsequently
deleted. Returns GL_FALSE if textureName is zero or textureName is a nonzero value that is not the name of an
existing texture.

Creating and Using Texture Objects

The same routine, gIBindTextur (), both creates and uses texture objects. When atexture nameisinitially bound (used
with glBindTexture&()), anew texture object is created with default values for the texture image and texture properties.
Subsequent callsto gl TexImage* (), gl TexSubl mage* (), glCopyTexl mage* (), glCopyTexSubl mage* (),
glTexParameter* (), and glPrioritizeT extures() store data in the texture object. The texture object may contain a
texture image and associated mipmap images (if any), including associated data such as width, height, border width,
internal format, resolution of components, and texture properties. Saved texture properties include minification and
magnification filters, wrapping modes, border color, and texture priority.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (21 of 38) [4/28/2000 9:46:36 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

When atexture object is subsequently bound once again, its data becomes the current texture state. (The state of the
previously bound textureis replaced.)

void glBindTexture(GLenum target, GLuint textureName);

glBindTexture() does three things. When using textureName of an unsigned integer other than zero for thefirst
time, a new texture object is created and assigned that name. When binding to a previously created texture object,
that texture object becomes active. When binding to a textureName value of zero, OpenGL stops using texture
objects and returns to the unnamed default texture.

When a texture object isinitially bound (that is, created), it assumes the dimensionality of target, which is either
GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon itsinitial binding, the state of texture object is
equivalent to the state of the default GL_ TEXTURE_1D or GL_TEXTURE_2D (depending upon its
dimensionality) at the initialization of OpenGL. In thisinitial state, texture properties such as minification and
magnification filters, wrapping modes, border color, and texture priority are set to their default values.

In Example 9-5, two texture objects are created in init(). In display(), each texture object is used to render a different
four-sided polygon.

Example 9-5 : Binding Texture Objects: texbind.c

#defi ne checkl mageW dth 64

#def i ne checkl mageHei ght 64

stati c GLubyte checkl mage[checkl mageHei ght][checkl mageW dt h] [4] ;
static GLubyte otherl mage[checkl mageHei ght] [checkl mageW dt h] [4] ;

static GLuint texNane[2];

voi d makeCheckl mages(voi d)

L
int i, j, c;
for (i = 0; i < checklmageHeight; i++) {
for (j = 0; J < checklmageWdth; j++) {
c = ((((i&0x8)==0)"((]j &0x8))==0)) *255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][j][1] = (GLubyte) c;
checklmage[i][j][2] = (GLubyte) c;
checklmage[i][j][3] = (GLubyte) 255;
c = ((((i&0x10)==0)"((j&0x10))==0))*255;
otherlmage[i][j][0] = (GLubyte) c;
otherlmage[i][j][1] = (GLubyte) O;
otherlmage[i][j][2] = (GLubyte) O;
otherlmage[i][j][3] = (GLubyte) 255;
}
}
}
void init(void)
{

gl CearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl mages() ;
gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (22 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19331_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl GenTextures(2, texNane);
gl Bi ndText ure(GL_TEXTURE 2D,
gl TexPar anet eri (GL_TEXTURE_ 2D,
gl TexPar anet eri (G._TEXTURE 2D,
gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;
gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;
gl Texl mage2D(G._TEXTURE 2D, O,
checkl mageHei ght
checkl mage) ;

gl Bi ndText ure(GL_TEXTURE 2D,

gl TexPar anet eri (G._TEXTURE_ 2D,

gl TexPar anet eri (GL_TEXTURE 2D,

gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;

gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;

t exNare[0]) ;

GL_TEXTURE WRAP_S, GL_CLAWP);
GL_TEXTURE_WRAP_T, GL_CLAMP);
GL_TEXTURE_MAG FI LTER,

GL_TEXTURE_M N_FI LTER,

GL_RGBA, checkl mageW dt h,
0, GL_RGBA, G._UNSI GNED BYTE,

t exName[1]) ;

GL_TEXTURE WRAP_S, GL_CLAWP);
GL_TEXTURE_WRAP_T, GL_CLAMP);
GL_TEXTURE_MAG FI LTER,

GL_TEXTURE_M N_FI LTER,

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

gl Texl mge2D(G._TEXTURE 2D, O,
checkl mageHei ght ,
ot her | mage) ;

gl Enabl e(G._TEXTURE _2D) ;

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, G._UNSI GNED BYTE,

}
voi d di spl ay(voi d)
{
gl G ear(A_CO.OR BUFFER BI T | G._DEPTH BUFFER BI T);
gl Bi ndText ure(GL_TEXTURE 2D, texNane[O0]);
gl Begi n(G._QUADS) ;
gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(0.0, 1.0, 0.0);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(0.0, -1.0, 0.0);
gl End() ;
gl Bi ndText ure(GL_TEXTURE 2D, texNane[1]);
gl Begi n(G._QUADS) ;
gl TexCoord2f (0.0, 0.0); gl Vertex3f(1.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(1.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(2.41421, 1.0, -1.41421);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(2.41421, -1.0, -1.41421);
gl End() ;
gl Fl ush();
}

Whenever atexture object is bound once again, you may edit the contents of the bound texture object. Any commands
you call that change the texture image or other properties change the contents of the currently bound texture object as
well asthe current texture state.

In Example 9-5, after completion of display(), you are still bound to the texture named by the contents of texName[1].
Be careful that you don't call a spurious texture routine that changes the data in that texture object.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (23 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19331_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

When using mipmaps, all related mipmaps of a single texture image must be put into a single texture object. In Example
9-4, levels 0-5 of a mipmapped texture image are put into a single texture object named texName.

Cleaning Up Texture Objects

Asyou bind and unbind texture objects, their data still sits around somewhere among your texture resources. If texture
resources are limited, deleting textures may be one way to free up resources.

void glDeleteTextures(GLsizei n, const GLuint * textureNames);

Deletes n texture objects, named by elements in the array textureNames. The freed texture names may now be
reused (for example, by glGenTextures()).

If a texture that is currently bound is deleted, the binding reverts to the default texture, asif glBindTexture() were
called with zero for the value of textureName. Attempts to del ete nonexistent texture names or the texture name of
zero are ignored without generating an error.

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance textures, which are said to be resident.
Typicaly, these implementations have specialized hardware to perform texture operations and a limited hardware cache
to store texture images. In this case, using texture objects is recommended, because you are able to load many textures
into the working set and then control them.

If all the textures required by the application exceed the size of the cache, some textures cannot be resident. If you want
tofind out if asingletextureis currently resident, bind its object, and then use glGet T exPar ameter *v() to find out the
value associated with the GL_ TEXTURE_RESIDENT state. If you want to know about the texture residence status of
many textures, use glAreT extur esResident().

GLboolean glAreTexturesResident(GLsizel n, const
GLuint* textureNames, GLboolean * residences);

Queries the texture residence status of the n texture objects, named in the array textureNames. residencesis an
array in which texture residence statusis returned for the corresponding texture objectsin the array
textureNames. If all the named textures in textureNames are resident, the glAreTexturesResident() function
returns GL_TRUE, and the contents of the array residences are undisturbed. If any texture in textureNames is not
resident, then glAreTexturesResident() returns GL_FALSE and the elements in residences, which correspond to
nonresident texture objects in textureNames, are also set to GL_FALSE.

Note that glAreT exturesResident() returns the current residence status. Texture resources are very dynamic, and
texture residence status may change at any time. Some implementations cache textures when they are first used. It may
be necessary to draw with the texture before checking residency.

If your OpenGL implementation does not establish aworking set of high-performance textures, then the texture objects
are always considered resident. In that case, glAreT extur esResident() always returns GL_TRUE and basically provides
no information.

Texture Residence Strategies

If you can create aworking set of textures and want to get the best texture performance possible, you really have to
know the specifics of your implementation and application. For example, with avisual simulation or video game, you
have to maintain performancein all situations. In that case, you should never access a nonresident texture. For these
applications, you want to load up all your textures upon initialization and make them all resident. If you don't have
enough texture memory available, you may need to reduce the size, resolution, and levels of mipmaps for your texture
images, or you may use gl TexSubl mage* () to repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable. If some textures are used

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (24 of 38) [4/28/2000 9:46:36 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18940_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_18940_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

more frequently than others, you may assign a higher priority to those texture objects to increase their likelihood of
being resident. Deleting texture objects also frees up space. Short of that, assigning alower priority to a texture object
may make it first in line for being moved out of the working set, as resources dwindle. glPrioritizeT extures() is used to
assign priorities to texture objects.

void glPrioritizeTextures(GLsizei n, const GLuint * textureNames,
const GLclampf *priorities);

Assigns the n texture objects, named in the array textureNames, the texture residence prioritiesin the
corresponding elements of the array priorities. The priority valuesin the array priorities are clamped to the
range [0.0, 1.0] before being assigned. Zero indicates the lowest priority; these textures are least likely to be
resident. One indicates the highest priority.

glPrioritizeTextures() does not require that any of the textures in textureNames be bound. However, the priority
might not have any effect on a texture object until it isinitially bound.

gl TexParameter* () also may be used to set asingle texture's priority, but only if the texture is currently bound. In fact,
use of gl TexParameter*() isthe only way to set the priority of a default texture.

If texture objects have equal priority, typical implementations of OpenGL apply aleast recently used (LRU) strategy to
decide which texture objects to move out of the working set. If you know that your OpenGL implementation has this
behavior, then having equal priorities for all texture objects creates a reasonable LRU system for reallocating texture
resources.

If your implementation of OpenGL doesn't use an LRU strategy for texture objects of equal priority (or if you don't
know how it decides), you can implement your own LRU strategy by carefully maintaining the texture object priorities.
When atextureis used (bound), you can maximize its priority, which reflects its recent use. Then, at regular (time)
intervals, you can degrade the priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you're deleting and creating lots of new textures.
Although it is even possible that you can load all the texture objects into a working set by binding them in one sequence,
binding them in a different sequence may leave some textures nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used directly as colorsto be painted on
the surface being rendered. Y ou can also use the values in the texture map to modulate the color that the surface would
be rendered without texturing, or to blend the color in the texture map with the original color of the surface. Y ou choose
one of four texturing functions by supplying the appropriate arguments to gl TexEnv* ().

void gl TexEnv{if}(GLenum target, GLenum pname, TYPEparam);
void gl TexEnv{if}v(GLenum target, GLenum pname, TYPE * param);

Sets the current texturing function. target must be GL_ TEXTURE_ENV. If pnameis
GL_TEXTURE_ENV_MODE, param can be GL_DECAL, GL_REPLACE, GL_MODULATE, or GL_BLEND, to
specify how texture values are to be combined with the color values of the fragment being processed. If pnameis
GL_TEXTURE_ENV_COLOR, paramis an array of four floating-point values representing R, G, B, and A
components. These values are used only if the GL_BLEND texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the textures are applied for each
component of the texture. The texturing function operates on selected components of the texture and the color values
that would be used with no texturing. (Note that the selection is performed after the pixel-transfer function has been
applied.) Recall that when you specify your texture map with glTexl mage* D(), the third argument is the internal format
to be selected for each texel.

Table 9-2 and Table 9-3 show how the texturing function and base internal format determine the texturing application
formula used for each component of the texture. There are six base internal formats (the letters in parentheses represent

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (25 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19814_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20021_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

their valuesin the tables): GL_ALPHA (A), GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A),
GL_INTENSITY (I), GL_RGB (C), and GL_RGBA (C and A). Other internal formats specify desired resolutions of the
texture components and can be matched to one of these six base internal formats.

Table 9-2 : Replace and Modulate Texture Function

Base I nternal For mat Replace Texture Function | Modulate Texture Function
GL_ALPHA C=Cf, C=Cf,
A = At A = AfAt
GL_LUMINANCE C=Llt, C = CfLt,
A = Af A = Af
GL_LUMINANCE_ALPHA | C=Lt, C = CfLt,
A = At A = AfAt
GL_INTENSITY C=lt, C = Ciflt,
A=lt A = Aflt
GL_RGB c=2¢Ct, C = CfCt,
A = Af A = Af
GL_RGBA Cc=2¢Ct, C = CfCt,
A = At A = AfAt

Table 9-3: Decal and Blend Texture Function

Base Internal Format Decal Texture Function Blend Texture Function
GL_ALPHA undefined C =Cf,
A = AfAt
GL_LUMINANCE undefined C = Cf(1-Lt) + CcLt,
A = Af
GL_LUMINANCE_ALPHA undefined C = Cf(1-Lt) + CcLt,
A = AfAt
GL_INTENSITY undefined C = Cf(1-1t) + Cclt,
A = Af(1-1t) + Aclt,
GL_RGB c=Ct, C = Cf(1-Ct) + CcCt,
A = Af A = Af

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (26 of 38) [4/28/2000 9:46:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_RGBA C = Cf(1-At) + CtA, C = Cf(1-Ct) + CcCt,
A = Af A = AfAt

Note: In Table 9-2 and Table 9-3, a subscript of t indicates atexture value, f indicates the incoming fragment value, ¢
indicates the values assigned with GL_ TEXTURE_ENV_COLOR, and no subscript indicates the final, computed value.
Also in the tables, multiplication of acolor triple by a scalar means multiplying each of the R, G, and B components by
the scalar; multiplying (or adding) two color triples means multiplying (or adding) each component of the second by the
corresponding component of the first.

The decal texture function makes sense only for the RGB and RGBA internal formats (remember that texture mapping
doesn't work in color-index mode). With the RGB internal format, the color that would have been painted in the absence
of any texture mapping (the fragment's color) is replaced by the texture color, and its aphais unchanged. With the
RGBA internal format, the fragment's color is blended with the texture color in aratio determined by the texture a pha,
and the fragment's alphais unchanged. Y ou use the decal texture function in situations where you want to apply an
opaque texture to an object - if you were drawing a soup can with an opague label, for example. The decal texture
function aso can be used to apply an alpha blended texture, such as an insignia onto an airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, they are exactly the same.
With all the internal formats, the component values are either replaced or |eft alone.

For modulation, the fragment's color is modulated by the contents of the texture map. If the base internal format is
GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the color values are multiplied by the same
value, so the texture map modul ates between the fragment's color (if the luminance or intensity is 1) to black (if it's 0).
For the GL_RGB and GL_RGBA internal formats, each of the incoming color components is multiplied by a
corresponding (possibly different) value in the texture. If there's an alpha value, it's multiplied by the fragment's alpha.
Modulation is a good texture function for use with lighting, since the lit polygon color can be used to attenuate the
texture color. Most of the texture-mapping examples in the color plates use modulation for this reason. White, specular
polygons are often used to render lit, textured objects, and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color specified by GL_ TEXTURE_ENV_COLOR. The
luminance, intensity, or color value is used somewhat like an alpha value to blend the fragment's color with the
GL_TEXTURE_ENV_COLOR. (See"Sample Uses of Blending" in Chapter 6 for the billboarding example, which uses

ablended texture.)

Assigning Texture Coordinates

Asyou draw your texture-mapped scene, you must provide both object coordinates and texture coordinates for each
vertex. After transformation, the object coordinates determine where on the screen that particular vertex isrendered. The
texture coordinates determine which texel in the texture map is assigned to that vertex. In exactly the same way that
colors are interpolated between two vertices of shaded polygons and lines, texture coordinates are al so interpol ated
between vertices. (Remember that textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They're usually referred to asthe s, t, r, and g
coordinates to distinguish them from object coordinates (X, y, z, and w) and from evaluator coordinates (u and v; see
Chapter 12). For one-dimensional textures, you use the s coordinate; for two-dimensional textures, you use sandt. In
Release 1.1, ther coordinate isignored. (Some implementations have 3D texture mapping as an extension, and that
extension uses ther coordinate.) The q coordinate, like w, istypically given the value 1 and can be used to create
homogeneous coordinates; it's described as an advanced feature in "The g Coordinate.” The command to specify texture

coordinates, glTexCoord*(), issimilar to glVertex*(), glColor* (), and gINormal*() - it comes in similar variations and

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (27 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19814_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20021_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_13257_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_21113_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

is used the same way between glBegin() and glEnd() pairs. Usualy, texture-coordinate values range from 0 to 1; values
can be assigned outside this range, however, with the results described in "Repeating and Clamping Textures."

void gl TexCoord{ 1234}{sifd} (TYPEcoords);
void gl TexCoord{1234}{sifd}v(TYPE * coords);

Sets the current texture coordinates (s, t, r,). Subsequent calls to glVertex* () result in those vertices being
assigned the current texture coordinates. With gl TexCoord1*(), the s coordinate is set to the specified value, t and
raresetto0, and gissetto 1. Using gl TexCoord2* () allows you to specify sand t; r and garesetto O and 1,
respectively. With gl TexCoord3*(), qis set to 1 and the other coordinates are set as specified. You can specify all
coordinates with gl TexCoord4* (). Use the appropriate suffix (s, i, f, or d) and the corresponding value for TYPE
(GLshort, GLint, GLfloat, or GLdouble) to specify the coordinates’ data type. You can supply the coordinates
individually, or you can use the vector version of the command to supply themin a single array. Texture
coordinates are multiplied by the 4 x 4 texture matrix before any texture mapping occurs. (See "The Texture

Matrix Stack.") Note that integer texture coordinates are interpreted directly rather than being mapped to the
range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of explicitly assigning them
yourself, you can choose to have texture coordinates cal culated automatically by OpenGL as afunction of the vertex
coordinates. (See "Automatic Texture-Coordinate Generation.")

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically mapped to the polygons that make up a
polygona model. In the simplest case, you're mapping a rectangular texture onto a model that's also rectangular - for
example, your texture is a scanned image of abrick wall, and your rectangle is to represent a brick wall of a building.
Suppose the brick wall is square and the texture is square, and you want to map the whole texture to the whole wall. The
texture coordinates of the texture square are (0, 0), (1, 0), (1, 1), and (O, 1) in counterclockwise order. When you're
drawing the wall, just give those four coordinate sets as the texture coordinates as you specify the wall's verticesin
counterclockwise order.

Now suppose that the wall is two-thirds as high as it iswide, and that the texture is again square. To avoid distorting the
texture, you need to map the wall to a portion of the texture map so that the aspect ratio of the textureis preserved.
Suppose that you decide to use the lower two-thirds of the texture map to texture the wall. In this case, use texture
coordinates of (0,0), (1,0), (1,2/3), and (0,2/3) for the texture coordinates as the wall vertices are traversed in a
counterclockwise order.

Asadlightly more complicated example, suppose you'd like to display atin can with alabel wrapped around it on the
screen. To obtain the texture, you purchase a can, remove the label, and scan it in. Suppose the label is 4 unitstall and 12
units around, which yields an aspect ratio of 3 to 1. Since textures must have aspect ratios of 2n to 1, you can either
simply not use the top third of the texture, or you can cut and paste the texture until it has the necessary aspect ratio.
Suppose you decide not to use the top third. Now suppose the tin can is a cylinder approximated by thirty polygons of
length 4 units (the height of the can) and width 12/30 (1/30 of the circumference of the can). Y ou can use the following
texture coordinates for each of the thirty approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)
2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)
3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only afew curved surfaces such as cones and cylinders can be mapped to a flat surface without geodesic distortion. Any
other shape requires some distortion. In general, the higher the curvature of the surface, the more distortion of the

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (28 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20297_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_21071_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_21071_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20506_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
texture isrequired.

If you don't care about texture distortion, it's often quite easy to find a reasonable mapping. For example, consider a
sphere whose surface coordinates are given by (cos &thgr; cos & phgr; , cos &thgr; sin &phgr; , sin &thgr;), where 0
≤ &thgr; ≤ 2 &pgr; , and 0 ≤ & phgr; ≤ &pgr; . The &thgr; - & phgr; rectangle can be mapped directly to a
rectangular texture map, but the closer you get to the poles, the more distorted the texture is. The entire top edge of the
texture map is mapped to the north pole, and the entire bottom edge to the south pole. For other surfaces, such as that of
atorus (doughnut) with alarge hole, the natural surface coordinates map to the texture coordinates in away that
produces only alittle distortion, so it might be suitable for many applications. Figure 9-6 shows two tori, one with a

small hole (and therefore alot of distortion near the center) and one with alarge hole (and only alittle distortion).

Figure 9-6 : Texture-Map Distortion

If you're texturing spline surfaces generated with evaluators (see Chapter 12), the u and v parameters for the surface can
sometimes be used as texture coordinates. In general, however, there's alarge artistic component to successfully
mapping textures to polygonal approximations of curved surfaces.

Repeating and Clamping Textures

Y ou can assign texture coordinates outside the range [0,1] and have them either clamp or repeat in the texture map. With
repeating textures, if you have alarge plane with texture coordinates running from 0.0 to 10.0 in both directions, for
example, you'll get 100 copies of the texture tiled together on the screen. During repeating, the integer part of texture
coordinates is ignored, and copies of the texture map tile the surface. For most applications where the texture isto be
repeated, the texels at the top of the texture should match those at the bottom, and similarly for the left and right edges.

The other possibility isto clamp the texture coordinates: Any values greater than 1.0 are set to 1.0, and any values less
than 0.0 are set to 0.0. Clamping is useful for applications where you want a single copy of the texture to appear on a
large surface. If the surface-texture coordinates range from 0.0 to 10.0 in both directions, one copy of the texture appears
in the lower corner of the surface. If you've chosen GL_LINEAR as the filtering method (see "Filtering™), an equally

weighted combination of the border color and the texture color is used, as follows.
« When repeating, the 2 x 2 array wraps to the opposite edge of the texture. Thus, texels on the right edge are

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (29 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20278_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_24912_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_19054_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
averaged with those on the left, and top and bottom texels are also averaged.

« If thereisaborder, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR isused. (If you've chosen GL_NEAREST as the filtering method, the border
color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected by the texture. To do this, use
alphavalues of O for the edges (or borders, if they are specified) of the texture. The decal texture function directly uses
the texture's alpha value in its calculations. If you are using one of the other texture functions, you may also need to
enable blending with good source and destination factors. (See "Blending” in Chapter 6.)

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.0, 1.0]. Start with Example
9-1, and modify the texture coordinates for the squares by mapping the texture coordinates from 0.0 to 3.0 as follows:

gl Begi n(G._QUADS) ;
gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

.0); gl Vertex3f(-2.0, -1.0, 0.0);
.0); gl Vertex3f(-2.0, 1.0, 0.0);
.0); glVertex3f (0.0, 1.0, 0.0);
.0); gl Vertex3f (0.0, -1.0, 0.0);

cooo
o wwo

gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

.0); glVertex3f(1.0, -1.0, 0.0);

.0); glVertex3f(1.0, 1.0, 0.0);

.0); gl Vertex3f(2.41421, 1.0, -1.41421);

.0); gl Vertex3f(2.41421, -1.0, -1.41421); gl End();

cooo
O wwo

With GL_REPEAT wrapping, the result is as shown in Figure 9-7.

Figure 9-7 : Repeating a Texture

In this case, the texture is repeated in both the s and t directions, since the following calls are made to
gl TexParameter*():

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE WRAP_T, GL_REPEAT);

If GL_CLAMP Iisused instead of GL_REPEAT for each direction, you see something similar to Figure 9-8.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (30 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_17652_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20336_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20362_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Figure 9-8 : Clamping a Texture

Y ou can aso clamp in one direction and repeat in the other, as shown in Figure 9-9.

Figure 9-9 : Repeating and Clamping a Texture

Y ou've now seen all the possible arguments for gl TexParameter* (), which is summarized here.

void gl TexParameter{if}(GLenum target, GLenum pname, TYPE param);

void gl TexParameter{if}v(GLenum target, GLenum pname,

TYPE *param);
Sets various parameters that control how a texture istreated as it's applied to a fragment or stored in a texture
object. The target parameter iseither GL_ TEXTURE_2D or GL_TEXTURE_1D to indicate a two- or
one-dimensional texture. The possible values for pname and param are shown in Table 9-4. You can use the
vector version of the command to supply an array of values for GL_TEXTURE_BORDER_COLOR, or you can
supply individual values for other parameters using the nonvector version. If these values are supplied as
integers, they're converted to floating-point according to Table 4-1; they're also clamped to the range [0,1] .

Table 9-4 : glTexParameter* () Parameters

Par ameter Values
GL_TEXTURE WRAP_S GL_CLAMP, GL_REPEAT
GL TEXTURE WRAP.T GL_CLAMP, GL_REPEAT

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (31 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20375_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20488_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_10226_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST MIPMAP LINEAR,
GL_LINEAR MIPMAP_NEAREST, GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR | any four valuesin[0.0, 1.0]

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Try This

Figure 9-8 and Figure 9-9 are drawn using GL_NEAREST for the minification and magnification filter. What happens if
you change the filter valuesto GL_LINEAR? Why?

Automatic Texture-Coordinate Generation

Y ou can use texture mapping to make contours on your models or to simulate the reflections from an arbitrary
environment on a shiny model. To achieve these effects, let OpenGL automatically generate the texture coordinates for
you, rather than explicitly assigning them with gl TexCoor d* (). To generate texture coordinates automatically, use the
command gl TexGen().

void gl TexGen{ifd}(GLenum coord, GLenum pname, TYPEparam);
void gl TexGen{ifd}v(GLenum coord, GLenum pname, TYPE * param);

Foecifies the functions for automatically generating texture coordinates. The first parameter, coord, must be
GL_S GL_T, GL_R, or GL_Q to indicate whether texture coordinate s, t, r, or q isto be generated. The pname
parameter is GL_ TEXTURE_GEN _MODE, GL_OBJECT PLANE, or GL_EYE PLANE. If it's
GL_TEXTURE_GEN_MODE, paramis an integer (or, in the vector version of the command, points to an integer)
that's either GL_OBJECT LINEAR, GL_EYE LINEAR, or GL_SPHERE MAP. These symbolic constants
determine which function is used to generate the texture coordinate. With either of the other possible values for
pname, paramis a pointer to an array of values (for the vector version) specifying parameters for the
texture-generation function.

The different methods of texture-coordinate generation have different uses. Specifying the reference plane in object
coordinates is best for when atexture image remains fixed to a moving object. Thus, GL_OBJECT_LINEAR would be
used for putting awood grain on atable top. Specifying the reference plane in eye coordinates (GL_EYE _LINEAR) is
best for producing dynamic contour lines on moving objects. GL_EYE_LINEAR may be used by specialistsin
geosciences, who are drilling for oil or gas. Asthe drill goes deeper into the ground, the drill may be rendered with
different colorsto represent the layers of rock at increasing depths. GL_SPHERE_MAP is predominantly used for
environment mapping. (See "Environment Mapping.")

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generation function is a linear
combination of the object coordinates of the vertex (xo,y0,zo,wo):

generated coordinate = p1x0 + p2y0 + p3z0 + p4w0

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (32 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20362_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20375_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20949_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Thepl, ..., p4 values are supplied as the param argument to gl TexGen*v(), with pname set to GL_OBJECT _PLANE.
With p1, ..., p4 correctly normalized, this function gives the distance from the vertex to a plane. For example, if p2 = p3
= p4 = 0 and pl = 1, the function gives the distance between the vertex and the plane x = 0. The distance is positive on
one side of the plane, negative on the other, and zero if the vertex lies on the plane.

Initially in Example 9-6, equally spaced contour lines are drawn on ateapot; the lines indicate the distance from the
plane x = 0. The coefficients for the plane x = 0 arein this array:

static G.fl oat xequal zero[] = {1.0, 0.0, 0.0, O0.0};

Since only one property is being shown (the distance from the plane), a one-dimensional texture map suffices. The
texture map is a constant green color, except that at equally spaced intervalsit includes ared mark. Since the teapot is
sitting on the x-y plane, the contours are all perpendicular to its base. "Plate 18" in Appendix | shows the picture drawn

by the program.

In the same exampl e, pressing the °s' key changes the parameters of the reference plane to
static G.float slanted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plane x +y + z = 0, dlicing across the teapot at an angle, as shown in "Plate 18" in
Appendix |. To restore the reference plane to itsinitial value, x = 0, press the “x' key.

Example 9-6 : Automatic Texture-Coordinate Generation: texgen.c

#i ncl ude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#define stripel mrageWdth 32
GLubyte stri pel mge[4*stri pel mageW dt h] ;

static GLui nt texNane;

voi d makeStri pel mage(voi d)

o
int j;
for (j =0; J < stripelnmageWdth; j++) {
stripelmage[4*j] = (G.ubyte) ((j<=4) ? 255 : 0);
stripel mage[4*j +1] = (G.ubyte) ((j>4) ? 255 : 0);
stripel mage[4*) +2] = (G.ubyte) O;
stripel mage[4*j +3] = (G.ubyte) 255;
}
}

/* planes for texture coordinate generation */
static G.fl oat xequal zero[] = {1.0, 0.0, 0.0, 0.0};
static G.float slanted[] = {1.0, 1.0, 1.0, 0.O0};
static G.fl oat *current Coeff;

static GLenum current Pl ane;

static GLint current GenMode;

void init(void)

{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (33 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20751_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38588_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38588_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38588_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl G earColor (0.0, 0.0, 0.0, 0.0);
gl Enabl e(G._DEPTH_TEST) ;
gl ShadeMbdel (G._SMOOTH) ;

makeSt ri pel mage() ;
gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

gl GenTextures(1, &t exNane);
gl Bi ndText ur e(GL_TEXTURE_1D, texNane);
gl TexParaneteri (GL_TEXTURE 1D, G. _TEXTURE WRAP_S, G._REPEAT);
gl TexParaneteri (GL_TEXTURE 1D, G._TEXTURE MAG FI LTER,
G._LI NEAR) ;
gl TexParaneteri (GL_TEXTURE 1D, GL_TEXTURE M N FI LTER,
G__LI NEAR) ;
gl Texl mgelD(G._TEXTURE 1D, 0, G._RGBA, stripel magewdth, O,
GL_RGBA, G._UNSI GNED BYTE, stri pel mage);

gl TexEnvf (GL_TEXTURE _ENV, G._ TEXTURE ENV_MODE, G._MODULATE);
current Coeff = xequal zer o;

current GenMbde = G._OBJECT_LI NEAR,

current Pl ane = G._OBJECT_PLANE;

gl TexGeni (G._S, G._TEXTURE _GEN _MODE, current GenMode);

gl TexGenfv(G&._S, current Pl ane, current Coeff);

gl Enabl e(GL_TEXTURE _GEN_S) ;

gl Enabl e(G._TEXTURE_1D) ;

gl Enabl e(G._CULL_FACE) ;

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(GL_LI GHTO) ;

gl Enabl e(G._AUTO NORMAL) ;

gl Enabl e(GL_NORNALI ZE) ;

gl Front Face(G._CW ;

gl Cul | Face(GL_BACK) ;

gl Materialf (G._FRONT, G._SHI NI NESS, 64.0);

}
voi d di spl ay(voi d)
{
gl G ear(A_CO.OR BUFFER BI T | G._DEPTH BUFFER BI T);
gl PushMvatrix ();
gl Rotatef (45.0, 0.0, 0.0, 1.0);
gl Bi ndTexture(G._TEXTURE 1D, texNane);
gl ut Sol i dTeapot (2. 0);
gl PopMatrix ();
gl Fl ush();
}
voi d reshape(int w, int h)
{

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (34 of 38) [4/28/2000 9:46:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Loadl dentity();
if (w<=h)
glOtho (-3.5, 3.5, -3.5*(Gfloat)h/(CG.float)w,
3.5*(CLfloat)h/(G.float)w, -3.5, 3.5);
el se
glOtho (-3.5*(G.float)w (G.float)h,
3.5*(C.float)w (G.float)h, -3.5, 3.5, -3.5, 3.5);
gl Matri xMode(G._MODELVI EW ;
gl Loadl dentity();

}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case e':
case E':
current GenMbde = G._EYE LI NEAR;
current Pl ane = GL_EYE_ PLANE;
gl TexGeni (G_S, G._TEXTURE_GEN_MODE, current GenMode);
gl TexGenfv(G&._S, currentPl ane, current Coeff);
gl ut Post Redi spl ay() ;
br eak;
case 0':
case O:
current GenMode = G._OBJECT LI NEAR;
current Pl ane = G._OBJECT_PLANE;
gl TexGeni (GL_S, G._TEXTURE GEN _MODE, current GenMode);
gl TexGenfv(G&._S, currentPl ane, current Coeff);
gl ut Post Redi spl ay() ;
br eak;
case 's':
case S':
current Coeff = sl anted;
gl TexGenfv(G&._S, currentPl ane, current Coeff);
gl ut Post Redi spl ay() ;
br eak;
case X':
case X :
current Coeff = xequal zer o;
gl TexGenfv(G&._S, currentPl ane, current Coeff);
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}
int main(int argc, char** argv)
{

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (35 of 38) [4/28/2000 9:46:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

glutlnit(&rgc, argv);

glutlnitD splayMbde (GLUT_SING.E | GLUT_RGB | G.UT_DEPTH);
gl utlnit WndowSi ze(256, 256);

gl ut I ni t WndowPosi ti on(100, 100);
gl ut Cr eat eW ndow (argv[O0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(r eshape);

gl ut Keyboar dFunc(keyboard) ;

gl ut Mai nLoop() ;

return O;

}

Y ou enable texture-coordinate generation for the s coordinate by passing GL_TEXTURE_GEN_Sto glEnable(). To
generate other coordinates, enable them with GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or
GL_TEXTURE_GEN_Q. Use glDisable() with the appropriate constant to disable coordinate generation. Also note the
use of GL_REPEAT to cause the contour lines to be repeated across the teapot.

The GL_OBJECT_LINEAR function calcul ates the texture coordinates in the model's coordinate system. Initially in
Example 9-6, the GL_OBJECT_LINEAR function is used, so the contour lines remain perpendicular to the base of the
teapot, no matter how the teapot is rotated or viewed. However, if you pressthe "€ key, the texture generation mode is
changed from GL_OBJECT_LINEARto GL_EYE_LINEAR, and the contour lines are calculated relative to the eye
coordinate system. (Pressing the "0' key restores GL_OBJECT _LINEAR as the texture generation mode.) If the
reference planeisx = 0, the result is ateapot with red stripes parallel to the y-z plane from the eye's point of view, as
shown in "Plate 18" in Appendix |. Mathematically, you are multiplying the vector (p1p2p3p4) by the inverse of the
modelview matrix to obtain the values used to calcul ate the distance to the plane. The texture coordinate is generated
with the following function:

generated coordinate = pl'xe + p2'ye + p3'ze + pd'we
where (pl' p2' p3' p4') = (p1p2p3p4)M-1

In this case, (xe, ye, ze, we) are the eye coordinates of the vertex, and pl, ..., p4 are supplied as the param argument to
gl TexGen*() with pname set to GL_EYE_PLANE. The primed values are calculated only at the time they're specified
so this operation isn't as computationally expensive asit looks.

In al these examples, a single texture coordinate is used to generate contours. The s and t texture coordinates can be
generated independently, however, to indicate the distances to two different planes. With a properly constructed
two-dimensional texture map, the resulting two sets of contours can be viewed simultaneously. For an added level of
complexity, you can calculate the s coordinate using GL_OBJECT_LINEAR and the t coordinate using
GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping isto render an object asif it were perfectly reflective, so that the colors on its surface
are those reflected to the eye from its surroundings. In other words, if you look at a perfectly polished, perfectly
reflective silver object in aroom, you see the walls, floor, and other objects in the room reflected off the object. (A
classic example of using environment mapping is the evil, morphing cyborg in the film Terminator 2.) The objects
whose reflections you see depend on the position of your eye and on the position and surface angles of the silver object.
To perform environment mapping, all you have to do is create an appropriate texture map and then have OpenGL
generate the texture coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the environment are far away
compared to the surfaces of the shiny object - that is, it'sasmall object in alarge room. With this assumption, to find the
color of apoint on the surface, take the ray from the eye to the surface, and reflect the ray off the surface. The direction

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (36 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_20751_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38588_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

of the reflected ray completely determines the color to be painted there. Encoding a color for each direction on aflat
texture map is equivalent to putting a polished perfect sphere in the middle of the environment and taking a picture of it
with a camerathat has alens with avery long focal length placed far away. Mathematically, the lens has an infinite focal
length and the cameraisinfinitely far away. The encoding therefore covers a circular region of the texture map, tangent
to the top, bottom, left, and right edges of the map. The texture values outside the circle make no difference, asthey are
never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain alarge silvered sphere, take a photograph of it
in some environment with a cameralocated an infinite distance away and with alensthat has an infinite focal length,
and scan in the photograph. To approximate this result, you can use a scanned-in photograph of an environment taken
with an extremely wide-angle (or fish-eye) lens. Plate 21 shows a photograph taken with such alens and the results
when that image is used as an environment map.

Once you've created a texture designed for environment mapping, you need to invoke OpenGL's environment-mapping
algorithm. This algorithm finds the point on the surface of the sphere with the same tangent surface as the point on the
object being rendered, and it paints the object's point with the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use this code in your program:

gl TexGeni (GL_S, GL_TEXTURE_GEN _MODE, GL_SPHERE_MAP);
gl TexGeni (GL_T, GL_TEXTURE _CGEN MODE, G._SPHERE NAP) ;
gl Enabl e(GL_TEXTURE_GEN_S) ;
gl Enabl e(GL_TEXTURE _GEN T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environment mapping. As shown, you
need to specify it for both the sand t directions. However, you don't have to specify any parameters for the
texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following mathematical steps.
1. uisthe unit vector pointing from the origin to the vertex (in eye coordinates).

2. n' isthe current normal vector, after transformation to eye coordinates.
3. r isthereflection vector, (rxryrz) T, which iscalculated by u - 2n'n'Tu.

4. Then an interim value, m, is calculated by

m=2Jrﬁ+r‘E+{rﬁ+1j2

1. Finaly, the sand t texture coordinates are calculated by
_ 1
s=r, S m+ =

P

and

t=r, M+

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (37 of 38) [4/28/2000 9:46:37 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how to use the q coordinate. Both techniques are
considered advanced, since you don't need them for many applications of texture mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture coordinates are multiplied by
a4 x 4 matrix before any texture mapping occurs. By default, the texture matrix is the identity, so the texture
coordinates you explicitly assign or those that are automatically generated remain unchanged. By modifying the texture
matrix while redrawing an object, however, you can make the texture side over the surface, rotate around it, stretch and
shrink, or any combination of the three. In fact, since the texture matrix is a completely general 4 x 4 matrix, effects
such as perspective can be achieved.

When the four texture coordinates (s, t, r,) are multiplied by the texture matrix, the resulting vector (S't'r' @) is
interpreted as homogeneous texture coordinates. In other words, the texture map isindexed by s/g and t'/q' . (Remember
that r'/q' isignored in standard OpenGL, but may be used by implementations that support a 3D texture extension.) The
texture matrix is actually the top matrix on a stack, which must have a stack depth of at least two matrices. All the
standard matrix-manipulation commands such as glPushMatrix(), glPopMatrix(), giMultMatrix(), and glRotate* ()
can be applied to the texture matrix. To modify the current texture matrix, you need to set the matrix mode to
GL_TEXTURE, asfollows:

gl Matri xMode(GL_TEXTURE); /* enter texture matrix node */
gl Rotated(...);

[* ... other matrix manipulations ... */

gl Matri xMode(GL_MODELVI EW ; /* back to nodel vi ew node */

The q Coordinate

The mathematics of the g coordinate in agenera four-dimensional texture coordinate is as described in the previous
section. Y ou can make use of g in cases where more than one projection or perspective transformation is needed. For
example, suppose you want to model a spotlight that has some nonuniform pattern - brighter in the center, perhaps, or
noncircular, because of flaps or lenses that modify the shape of the beam. Y ou can emulate shining such alight on aflat
surface by making a texture map that corresponds to the shape and intensity of alight, and then projecting it on the
surface in question using projection transformations. Projecting the cone of light onto surfaces in the scene requires a
perspective transformation (q ≠ 1), since the lights might shine on surfaces that aren't perpendicular to them. A
second perspective transformation occurs because the viewer sees the scene from a different (but perspective) point of
view. (See "Plate 27" in Appendix | for an example, and see "Fast Shadows and Lighting Effects Using Texture

Mapping" by Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli, SIGGRAPH 1992
Proceedings, (Computer Graphics, 26:2, July 1992, p. 249-252) for more details.)

Another example might ariseif the texture map to be applied comes from a photograph that itself was taken in
perspective. Aswith spotlights, the final view depends on the combination of two perspective transformations.

OpenGL Programming Guide (Addison-Wesley Publishing Company)

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/17383;cs=fullhtml;pt=14979 (38 of 38) [4/28/2000 9:46:37 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=17383?target=%25N%15_38670_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Chapter 10
The Framebuffer

Chapter Objectives

After reading this chapter, you'll be able to do the following:
« Understand what buffers make up the framebuffer and how they're used

« Clear selected buffers and enable them for writing

« Control the parameters of the scissoring, alpha, stencil, and depth-buffer tests that are applied to
pixels

« Perform dithering and logical operations

« Usethe accumulation buffer for such purposes as scene antialiasing

An important goal of amost every graphics program is to draw pictures on the screen. The screen is
composed of arectangular array of pixels, each capable of displaying atiny square of color at that point
in the image. After the rasterization stage (including texturing and fog), the data are not yet pixels, but
are fragments. Each fragment has coordinate data which corresponds to a pixel, as well as color and
depth values. Then each fragment undergoes a series of tests and operations, some of which have been
previously described (See "Blending” in Chapter 6) and others that are discussed in this chapter.

If the tests and operations are survived, the fragment values are ready to become pixels. To draw these
pixels, you need to know what color they are, which is the information that's stored in the color buffer.
Whenever datais stored uniformly for each pixel, such storage for all the pixelsis caled a buffer.
Different buffers might contain different amounts of data per pixel, but within a given buffer, each pixel
Is assigned the same amount of data. A buffer that stores a single bit of information about pixelsis called
abitplane.

Asshown in Figure 10-1, the lower-left pixel in an OpenGL window is pixel (0, 0), corresponding to the

window coordinates of the lower-left corner of the 1 x 1 region occupied by this pixel. In general, pixel
(x, y) fillsthe region bounded by x on the left, x+1 on the right, y on the bottom, and y+1 on the top.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (1 of 31) [4/28/2000 9:46:54 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_12865_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_21210_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

loweer left comer

3.0 = of the window
'g 20 T
5
§ pixal (2, 1)
= [T S
2 1.0
_E
=
= H
D-lu | i |
a.0 1.0 2.0 3.0

¥ window coordinate

Figure 10-1 : Region Occupied by a Pixel

As an example of a buffer, let'slook more closely at the color buffer, which holds the color information
that's to be displayed on the screen. Assume that the screen is 1280 pixels wide and 1024 pixels high and
that it's afull 24-bit color screen - in other words, there are 224 (or 16,777,216) different colors that can
be displayed. Since 24 bits trandates to 3 bytes (8 bits/byte), the color buffer in this example hasto store
at least 3 bytes of datafor each of the 1,310,720 (1280* 1024) pixels on the screen. A particular hardware
system might have more or fewer pixels on the physical screen aswell as more or less color data per
pixel. Any particular color buffer, however, has the same amount of data saved for each pixel on the
screen.

The color buffer isonly one of several buffers that hold information about a pixel. For example, in"A
Hidden-Surface Removal Survival Kit" in Chapter 5, you learned that the depth buffer holds depth
information for each pixel. The color buffer itself can consist of several subbuffers. The framebuffer on a
system comprises al of these buffers. With the exception of the color buffer(s), you don't view these
other buffers directly; instead, you use them to perform such tasks as hidden-surface elimination,
antialiasing of an entire scene, stenciling, drawing smooth motion, and other operations.

This chapter describes all the buffers that can exist in an OpenGL implementation and how they're used.
It also discusses the series of tests and pixel operations that are performed before any data is written to
the viewable color buffer. Finaly, it explains how to use the accumulation buffer, which is used to
accumulate images that are drawn into the color buffer. This chapter has the following major sections.

» "Buffersand Their Uses' describes the possible buffers, what they're for, and how to clear them
and enable them for writing.

« "Testing and Operating on Fragments' explains the scissoring, alpha, stencil, and depth-buffer
tests that occur after a pixel's position and color have been calculated but before this information is
drawn on the screen. Several operations - blending, dithering, and logical operations - can aso be

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (2 of 31) [4/28/2000 9:46:54 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_21257_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_21863_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)
performed before a fragment updates the screen.

« "The Accumulation Buffer" describes how to perform several advanced techniques using the

accumulation buffer. These techniques include antialiasing an entire scene, using motion blur, and
simulating photographic depth of field.

Buffers and Their Uses

An OpenGL system can manipulate the following buffers:

o Color buffers: front-left, front-right, back-left, back-right, and any number of auxiliary color
buffers

o Depth buffer
o Stencil buffer

o Accumulation buffer

Y our particular OpenGL implementation determines which buffers are available and how many bits per
pixel each holds. Additionally, you can have multiple visuals, or window types, that have different
buffers available. Table 10-1 lists the parameters to use with glGetl nteger v() to query your OpenGL

system about per-pixel buffer storage for a particular visual.

Note: If you're using the X Window System, you're guaranteed, at a minimum, to have a visual with one
color buffer for usein RGBA mode with associated stencil, depth, and accumulation buffers that have
color components of nonzero size. Also, if your X Window System implementation supports a
Pseudo-Color visual, you are also guaranteed to have one OpenGL visual that has a color buffer for use
in color-index mode with associated depth and stencil buffers. Y ou'll probably want to use
gIXGetConfig() to query your visuals; see Appendix C and the OpenGL Reference Manual for more
information about this routine.

Table 10-1 : Query Parameters for Per-Pixel Buffer Storage

Par ameter Meaning

GL_RED BITS, GL_GREEN_BITS, Number of bits per R, G, B, or A component in the color
GL_BLUE BITS,GL_ALPHA BITS | buffers

GL_INDEX_BITS Number of bits per index in the color buffers

GL_DEPTH_BITS Number of bits per pixel in the depth buffer

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (3 of 31) [4/28/2000 9:46:54 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22640_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_21351_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_34577_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_STENCIL_BITS Number of bits per pixel in the stencil buffer
GL_ACCUM_RED_BITS, Number of bits per R, G, B, or A component in the
GL_ACCUM_GREEN_BITS, accumulation buffer

GL_ACCUM_BLUE BITS,
GL_ACCUM_ALPHA_BITS

Color Buffers

The color buffers are the ones to which you usually draw. They contain either color-index or RGB color
data and may also contain alpha values. An OpenGL implementation that supports stereoscopic viewing
has left and right color buffers for the left and right stereo images. If stereo isn't supported, only the |eft
buffers are used. Similarly, double-buffered systems have front and back buffers, and a single-buffered
system has the front buffers only. Every OpenGL implementation must provide a front-left color buffer.

Optional, nondisplayable auxiliary color buffers may also be supported. OpenGL doesn't specify any
particular uses for these buffers, so you can define and use them however you please. For example, you
might use them for saving an image that you use repeatedly. Then rather than redrawing the image, you
can just copy it from an auxiliary buffer into the usual color buffers. (See the description of
glCopyPixels() in "Reading, Writing, and Copying Pixel Data" in Chapter 8 for more information about

how to do this))

You can use GL_STEREO or GL_DOUBLEBUFFER with glGetBooleanv() to find out if your system
supports stereo (that is, has left and right buffers) or double-buffering (has front and back buffers). To
find out how many, if any, auxiliary buffers are present, use glGetlntegerv() with GL_AUX BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. Asdescribed in "A Hidden-Surface Removal
Survival Kit" in Chapter 5, depth is usually measured in terms of distance to the eye, so pixelswith larger
depth-buffer values are overwritten by pixels with smaller values. Thisisjust a useful convention,
however, and the depth buffer's behavior can be modified as described in "Depth Test." The depth buffer
Is sometimes called the z buffer (the z comes from the fact that x and y values measure horizontal and
vertical displacement on the screen, and the z value measures distance perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer isto restrict drawing to certain portions of the screen, just as a cardboard
stencil can be used with a can of spray paint to make fairly precise painted images. For example, if you
want to draw an image as it would appear through an odd-shaped windshield, you can store an image of
the windshield's shape in the stencil buffer, and then draw the entire scene. The stencil buffer prevents
anything that wouldn't be visible through the windshield from being drawn. Thus, if your applicationisa

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (4 of 31) [4/28/2000 9:46:54 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_15601_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_10518_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22337_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

driving simulation, you can draw all the instruments and other items inside the automobile once, and as
the car moves, only the outside scene need be updated.

Accumulation Buffer

The accumulation buffer holds RGBA color data just like the color buffers do in RGBA mode. (The
results of using the accumulation buffer in color-index mode are undefined.) It'stypically used for
accumulating a series of images into afinal, composite image. With this method, you can perform
operations like scene antialiasing by supersampling an image and then averaging the samples to produce
the values that are finally painted into the pixels of the color buffers. Y ou don't draw directly into the
accumulation buffer; accumulation operations are always performed in rectangular blocks, which are
usually transfers of datato or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) istypically one of the most expensive
operations you can perform - on a 1280 x 1024 monitor, it requires touching well over amillion pixels.
For simple graphics applications, the clear operation can take more time than the rest of the drawing. If
you need to clear not only the color buffer but also the depth and stencil buffers, the clear operation can
be three times as expensive.

To address this problem, some machines have hardware that can clear more than one buffer at once. The
OpenGL clearing commands are structured to take advantage of architectures like this. First, you specify
the values to be written into each buffer to be cleared. Then you issue a single command to perform the
clear operation, passing in alist of al the buffersto be cleared. If the hardware is capable of
simultaneous clears, they all occur at once; otherwise, each buffer is cleared sequentially.

The following commands set the clearing values for each buffer.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,

GLclampf alpha);

void glClear| ndex(GLfloat index);

void glClear Depth(GLclampd depth);

void glClear Stencil (GLint s);

void glClear Accum(GLfloat red, GLfloat green, GLfloat blue,

GLfloat alpha);
Soecifies the current clearing values for the color buffer (in RGBA mode), the color buffer (in
color-index mode), the depth buffer, the stencil buffer, and the accumulation buffer. The GLclampf
and GLclampd types (clamped GLfloat and clamped GLdouble) are clamped to be between 0.0
and 1.0. The default depth-clearing value is 1.0; all the other default clearing values are 0. The
values set with the clear commands remain in effect until they're changed by another call to the
same command.

After you've selected your clearing values and you're ready to clear the buffers, use glClear ().
void glClear (GLDbitfield mask);

Clears the specified buffers. The value of mask is the bitwise logical OR of some combination of
GL_COLOR BUFFER BIT, GL_DEPTH_BUFFER BIT, GL_STENCIL_BUFFER BIT, and

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (5 of 31) [4/28/2000 9:46:54 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_ACCUM_BUFFER BIT to identify which buffers are to be cleared.

GL_COLOR BUFFER BIT clears either the RGBA color or the color-index buffer, depending on
the mode of the system at the time. When you clear the color or color-index buffer, all the color
buffers that are enabled for writing (see the next section) are cleared. The pixel ownership test,
scissor test, and dithering, if enabled, are applied to the clearing operation. Masking operations,
such as glColorMask() and gl ndexMask(), are also effective. The alpha test, stencil test, and
depth test do not affect the operation of glClear().

Selecting Color Buffers for Writing and Reading

The results of adrawing or reading operation can go into or come from any of the color buffers: front,
back, front-left, back-left, front-right, back-right, or any of the auxiliary buffers. Y ou can choose an
individual buffer to be the drawing or reading target. For drawing, you can also set the target to draw into
more than one buffer at the same time. Y ou use glDrawBuffer () to select the buffers to be written and
glReadBuffer () to select the buffer as the source for glReadPixels(), glCopyPixels(),
glCopyTexlmage* (), and glCopyTexSubl mage* ().

If you are using double-buffering, you usually want to draw only in the back buffer (and swap the buffers
when you're finished drawing). In some situations, you might want to treat a double-buffered window as
though it were single-buffered by calling glDrawBuffer () to enable you to draw to both front and back
buffers at the same time.

glDrawBuffer () is also used to select buffersto render stereo images (GL*LEFT and GL*RIGHT) and
to render into auxiliary buffers (GL_AUXi).
void glDrawBuffer(GLenum mode);

Sl ects the color buffers enabled for writing or clearing. Disables buffers enabled by previous
callsto glDrawBuffer(). More than one buffer may be enabled at one time. The value of mode can
be one of the following:

GL_FRONT GL_FRONT LEFT GL_AUXi
GL BACK GL_FRONT RIGHT GL_FRONT AND BACK
GL_LEFT GL_BACK_LEFT GL_NONE

GL_RIGHT GL_BACK_RIGHT

Arguments that omit LEFT or RIGHT refer to both the left and right buffers; similarly, arguments
that omit FRONT or BACK refer to both. Thei in GL_AUXi isa digit identifying a particular
auxiliary buffer.

By default, mode is GL_FRONT for single-buffered contexts and GL_BACK for double-buffered
contexts.

Note: Y ou can enable drawing to nonexistent buffers as long as you enable drawing to at least one buffer

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (6 of 31) [4/28/2000 9:46:54 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
that does exist. If none of the specified buffers exist, an error results.
void glReadBuffer(GLenum mode);

S ects the color buffer enabled as the source for reading pixels for subsequent calls to
glReadPixels(), glCopyPixels(), glCopyTexI mage* (), and glCopyTexSubl mage* (). Disables
buffers enabled by previous calls to glReadBuffer(). The value of mode can be one of the
following:

GL_FRONT GL_FRONT LEFT GL_AUXi

GL_BACK GL_FRONT RIGHT

GL LEFT GL_BACK_LEFT

GL_RIGHT GL_BACK_RIGHT

By default, mode is GL_FRONT for single-buffered contexts and GL_BACK for double-buffered
contexts.

Note: You must enable reading from a buffer that does exist or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, a masking operation is
applied to the data, as specified with one of the following commands. A bitwise logical AND is
performed with each mask and the corresponding data to be written.

void gl ndexMask(GLuint mask);

void glColorMask(GLboolean red, GLboolean green, GLboolean blue,
GLboolean alpha);

void glDepthMask(GLboolean flag);

void glStencilMask(GLuint mask);

Sets the masks used to control writing into the indicated buffers. The mask set by gll ndexMask()
applies only in color-index mode. If a 1 appearsin mask, the corresponding bit in the color-index
buffer iswritten; where a 0 appears, the bit isn't written. Smilarly, glColorMask() affects drawing
in RGBA mode only. Thered, green, blue, and alpha values control whether the corresponding
component iswritten. (GL_TRUE meansit iswritten.) If flag is GL_TRUE for glDepthMask(), the
depth buffer is enabled for writing; otherwise, it's disabled. The mask for glStencilMask() is used
for stencil data in the same way as the mask is used for color-index data in gllndexMask(). The
default values of all the GLboolean masks are GL_TRUE, and the default values for the two
GLuint masksareall 1's.

Y ou can do plenty of tricks with color masking in color-index mode. For example, you can use each bit

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (7 of 31) [4/28/2000 9:46:55 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

in the index as a different layer and set up interactions between arbitrary layers with appropriate settings
of the color map. Y ou can create overlays and underlays, and do so-called color-map animations. (See
Chapter 14 for examples of using color masking.) Masking in RGBA mode is useful less often, but you

can use it for loading separate image files into the red, green, and blue bitplanes, for example.

Y ou've seen one use for disabling the depth buffer in " Three-Dimensiona Blending with the Depth
Buffer" in Chapter 6. Disabling the depth buffer for writing can also be useful if acommon background

is desired for a series of frames, and you want to add some features that may be obscured by parts of the
background. For example, suppose your background is aforest, and you would like to draw repeated
frames with the same trees, but with objects moving among them. After the trees are drawn with their
depths recorded in the depth buffer, then the image of the treesis saved, and the new items are drawn
with the depth buffer disabled for writing. Aslong as the new items don't overlap each other, the picture
Is correct. To draw the next frame, restore the image of the trees and continue. Y ou don't need to restore
the valuesin the depth buffer. Thistrick is most useful if the background is extremely complex - so
complex that it's much faster just to recopy the image into the color buffer than to recompute it from the
geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer to hold multiple stencils (one
per bit). Y ou might use this technique to perform capping as explained in "Stencil Test" or to implement

the Game of Life asdescribed in "Life in the Stencil Buffer" in Chapter 14.

Note: The mask specified by glStencilM ask() controls which stencil bitplanes are written. This mask
isn't related to the mask that's specified as the third parameter of glStencilFunc(), which specifies which
bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL performs several calculationsto rotate,
trandate, scale, determine the lighting, project the object(s) into perspective, figure out which pixelsin
the window are affected, and determine what colors those pixels should be drawn. Many of the earlier
chaptersin this book give some information about how to control these operations. After OpenGL
determines that an individual fragment should be generated and what its color should be, several
processing stages remain that control how and whether the fragment is drawn as a pixel into the
framebuffer. For example, if it's outside a rectangular region or if it's farther from the viewpoint than the
pixel that's already in the framebuffer, it isn't drawn. In another stage, the fragment's color is blended
with the color of the pixel already in the framebuffer.

This section describes both the compl ete set of tests that a fragment must pass before it goes into the
framebuffer and the possible final operations that can be performed on the fragment as it's written. The
tests and operations occur in the following order; if afragment is eliminated in an early test, none of the
later tests or operations take place.

1. Scissor test

2. Alphatest

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (8 of 31) [4/28/2000 9:46:55 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_28088_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_13348_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_13348_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22092_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_29369_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

3. Stencil test
4. Depth test
5. Blending
6. Dithering

7. Logical operation

Each of these tests and operationsis described in detail in the following sections.

Scissor Test

Y ou can define a rectangular portion of your window and restrict drawing to take place within it by using
the gl Scissor () command. If afragment lies inside the rectangle, it passes the scissor test.

void glScissor(GLint x, GLint y, GLsizel width, GLsizel height);

Sets the location and size of the scissor rectangle (also known as the scissor box). The parameters
define the lower-left corner (x, y), and the width and height of the rectangle. Pixelsthat lie inside
the rectangle pass the scissor test. Scissoring is enabled and disabled by passing

GL_SCISSOR TEST to glEnable() and glDisable(). By default, the rectangle matches the size of
the window and scissoring is disabled.

The scissor test isjust aversion of a stencil test using a rectangular region of the screen. It'sfairly easy to
create a blindingly fast hardware implementation of scissoring, while a given system might be much
slower at stenciling - perhaps because the stenciling is performed in software.

Advanced

An advanced use of scissoring is performing nonlinear projection. First divide the window into aregular
grid of subregions, specifying viewport and scissor parameters that limit rendering to oneregion at a
time. Then project the entire scene to each region using a different projection matrix.

To determine whether scissoring is enabled and to obtain the values that define the scissor rectangle, you
can use GL_SCISSOR_TEST with gllsEnabled() and GL_SCISSOR_BOX with glGetl ntegerv().

Alpha Test

In RGBA mode, the alphatest allows you to accept or reject afragment based on its alpha value. The
aphatest is enabled and disabled by passing GL_ALPHA _TEST to glEnable() and glDisable(). To
determine whether the alphatest is enabled, use GL_ALPHA_TEST with glI sEnabled().

If enabled, the test compares the incoming apha value with areference value. The fragment is accepted
or rejected depending on the result of the comparison. Both the reference value and the comparison
function are set with glAlphaFunc(). By default, the reference value is zero, the comparison function is
GL_ALWAYS, and the alphatest is disabled. To obtain the alpha comparison function or reference

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (9 of 31) [4/28/2000 9:46:55 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)
value, use GL_ALPHA_TEST _FUNC or GL_ALPHA_TEST REF with glGetl nteger v().
void glAlphaFunc(GLenum func, GLclampf ref);

Sets the reference value and comparison function for the alpha test. The reference valueref is
clamped to be between zero and one. The possible values for func and their meaning are listed in
Table 10-2.

Table 10-2 : glAlphaFunc() Parameter Values (continued)

Par ameter Meaning

GL_NEVER Never accept the fragment

GL_ALWAYS Always accept the fragment

GL_LESS Accept fragment if fragment alpha < reference apha
GL_LEQUAL Accept fragment if fragment alpha & le; reference alpha
GL_EQUAL Accept fragment if fragment alpha = reference apha
GL_GEQUAL Accept fragment if fragment alpha & ge; reference alpha

GL_GREATER Accept fragment if fragment alpha > reference alpha

GL_NOTEQUAL | Accept fragment if fragment alpha & ne; reference apha

One application for the alphatest is to implement a transparency algorithm. Render your entire scene
twice, the first time accepting only fragments with alpha values of one, and the second time accepting
fragments with alpha values that aren't equal to one. Turn the depth buffer on during both passes, but

disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps where you can see through certain parts of the
decals. Set the aphasin the decals to 0.0 where you want to see through, set them to 1.0 otherwise, set
the reference value to 0.5 (or anything between 0.0 and 1.0), and set the comparison function to
GL_GREATER. The decal has see-through parts, and the values in the depth buffer aren't affected. This
technique, called billboarding, is described in " Sample Uses of Blending" in Chapter 6.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (10 of 31) [4/28/2000 9:46:55 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22075_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_13257_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no stencil buffer, the stencil test
always passes.) Stenciling applies a test that compares a reference value with the value stored at a pixel
in the stencil buffer. Depending on the result of the test, the value in the stencil buffer is modified. You
can choose the particular comparison function used, the reference value, and the modification performed
with the glStencilFunc() and glStencilOp() commands.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);

Sets the comparison function (func), reference value (ref), and a mask (mask) for use with the
stencil test. The reference value is compared to the value in the stencil buffer using the comparison
function, but the comparison applies only to those bits where the corresponding bits of the mask
are 1. The function can be GL_NEVER, GL_ALWAYS GL_LESS GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. If it'sGL_LESS, for example, then the
fragment passesif ref is less than the value in the stencil buffer. If the stencil buffer contains s
bitplanes, the low-order s bits of mask are bitwise ANDed with the value in the stencil buffer and
with the reference value before the comparison is performed. The masked values are all

inter preted as nonnegative values. The stencil test is enabled and disabled by passing
GL_STENCIL_TEST to glEnable() and gIDisable(). By default, funcis GL_ALWAYS ref is 0,
mask isall 1's, and stenciling is disabled.

void gl StencilOp(GLenum fail, GLenum Zfail, GLenum zpass);

Soecifies how the data in the stencil buffer is modified when a fragment passes or fails the stencil
test. The three functionsfail, Zfail, and zpass can be GL_KEEP, GL_ZERO, GL_REPLACE,
GL_INCR, GL_DECR, or GL_INVERT. They correspond to keeping the current value, replacing it
with zero, replacing it with the reference value, incrementing it, decrementing it, and
bitwise-inverting it. The result of the increment and decrement functions is clamped to lie between
zero and the maximum unsigned integer value (2s-1 if the stencil buffer holds s bits). The fail
function is applied if the fragment fails the stencil test; if it passes, then zfail is applied if the depth
test fails and zpass if the depth test passes, or if no depth test is performed. (See "Depth Test.") By

default, all three stencil operationsare GL_KEEP.

Stencil Queries

Y ou can obtain the values for all six stencil-related parameters by using the query function
glGetlntegerv() and one of the values shown in Table 10-3. Y ou can aso determine whether the stencil

test is enabled by passing GL_STENCIL_TEST to gll sEnabled().
Table 10-3 : Query Values for the Stencil Test (continued)

Query Value Meaning
GL_STENCIL_FUNC Stencil function
GL_STENCIL_REF Stencil reference value

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (11 of 31) [4/28/2000 9:46:55 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22337_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22271_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

GL_STENCIL_VALUE_MASK Stencil mask

GL_STENCIL_FAIL Stencil fail action

GL_STENCIL_PASS DEPTH_FAIL | Stencil passand depth buffer fail action

GL_STENCIL_PASS DEPTH_PASS | Stencil pass and depth buffer pass action

Stencil Examples

Probably the most typical use of the stencil test isto mask out an irregularly shaped region of the screen
to prevent drawing from occurring within it (as in the windshield example in "Buffers and Their Uses").

To do this, fill the stencil mask with zeros, and then draw the desired shape in the stencil buffer with 1's.
Y ou can't draw geometry directly into the stencil buffer, but you can achieve the same result by drawing
into the color buffer and choosing a suitable value for the zpass function (such as GL_REPLACE). (You
can use glDrawPixels() to draw pixel data directly into the stencil buffer.) Whenever drawing occurs, a
valueis also written into the stencil buffer (in this case, the reference value). To prevent the
stencil-buffer drawing from affecting the contents of the color buffer, set the color mask to zero (or
GL_FALSE). You might also want to disable writing into the depth buffer.

After you've defined the stencil area, set the reference value to one, and the comparison function such
that the fragment passesif the reference value is equal to the stencil-plane value. During drawing, don't
modify the contents of the stencil planes.

Example 10-1 demonstrates how to use the stencil test in thisway. Two tori are drawn, with a
diamond-shaped cutout in the center of the scene. Within the diamond-shaped stencil mask, a sphereis
drawn. In this example, drawing into the stencil buffer takes place only when the window is redrawn, so
the color buffer is cleared after the stencil mask has been created.

Example 10-1 : Using the Stencil Test: stencil.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>

#def i ne YELLOANAT 1
#def i ne BLUEMAT 2

void init (void)

{
G.float yellow diffuse[] ={ 0.7, 0.7, 0.0, 1.0 };

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (12 of 31) [4/28/2000 9:46:55 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_21257_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_22302_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

G.fl oat yellow specular[] ={ 1.0, 1.0, 1.0, 1.0 };

G.float blue diffuse[] ={ 0.1, 0.1, 0.7, 1.0 };
G.fl oat blue specular[] ={ 0.1, 1.0, 1.0, 1.0 };

G.fl oat position_one[] ={ 1.0, 1.0, 1.0, 0.0 };

gl NewLi st (YELLOWAT, G._COWPI LE);

gl Materi al fv(G._FRONT, G._DI FFUSE, yellow diffuse);
gl Material fv(G._FRONT, G. SPECULAR, yellow specular);
gl Material f (G._FRONT, G._SHI NI NESS, 64.0);

gl EndLi st () ;

gl NewLi st (BLUEMAT, G._COWPI LE) ;

gl Materi al fv(G._FRONT, G._DI FFUSE, bl ue_diffuse);
gl Materi al fv(G._FRONT, G. SPECULAR, bl ue specul ar);
gl Material f (G._FRONT, G._SHI NI NESS, 45.0);

gl EndLi st () ;

gl Lightfv(G._LI GHTO, G._POSI TI ON, position_one);

gl Enabl e(GL_LI GHTO) ;
gl Enabl e(GL_LI GHTI NG) ;
gl Enabl e(G._DEPTH_TEST) ;

gl G ear St enci | (0x0) ;
gl Enabl e(GL_STENCI L_TEST) ;

}

/* Draw a sphere in a di anond-shaped section in the
* mddle of a windowwth 2 tori.
*/
voi d di spl ay(voi d)
{
gl dear(E_CO.OR BUFFER BIT | G._DEPTH BUFFER BIT);

/* draw bl ue sphere where the stencil is 1 */
gl Stenci | Func (G._EQUAL, Ox1, Ox1);
gl Stencil O (G._KEEP, G._KEEP, G._KEEP);
gl Cal I Li st (BLUENAT);
gl ut Sol i dSphere (0.5, 15, 15);

[* draw the tori where the stencil is not 1 */
gl Stenci | Func (GL._NOTEQUAL, Ox1, O0x1);
gl PushMatri x();
gl Rotatef (45.0, 0.0, 0.0, 1.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (13 of 31) [4/28/2000 9:46:55 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

gl Rotatef (45.0, 0.0, 1.0, 0.0);
gl Cal I Li st (YELLOWAT) ;
gl ut Sol i dTorus (0.275, 0.85, 15, 15);
gl PushMatri x();
gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut Sol i dTorus (0.275, 0.85, 15, 15);
gl PopMatri x();
gl PopMatri x();
}

/* \Whenever the wi ndow is reshaped, redefine the
* coordinate systemand redraw the stencil area.
*/

voi d reshape(int w, int h)

{
gl Viewport (0, O, (CLsizei) w, (CLsizei) h);

/* create a dianond shaped stencil area */
gl Matri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
if (w <= h)
gluOrtho2D(-3.0, 3.0, -3.0*(G.float)h/(Gfloat)w,
3.0*(G.float)h/ (Gfloat)w;
el se
gluOrtho2D(-3. 0*(A.fl oat)w (G fl oat)h,
3.0*(G.float)w (G.float)h, -3.0, 3.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl A ear (G._STENCI L_BUFFER BI T) ;
gl Stenci | Func (G._ALWAYS, O0x1, Ox1);
gl Stencil O (G._REPLACE, G._REPLACE, G._REPLACE);
gl Begi n(G._QUADS) ;
gl Vertex2f (-1.0, 0.0);
gl Vertex2f (0.0, 1.0);
gl Vertex2f (1.0, 0.0);
gl Vertex2f (0.0, -1.0);
gl End() ;

gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gl uPerspective(45.0, (G.float) w (G float) h, 3.0, 7.0);
gl Mat ri xMode(G._MODELVI EW ;

gl Loadl dentity();

gl Transl atef (0.0, 0.0, -5.0);

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (14 of 31) [4/28/2000 9:46:55 PM]

OpenGL Programming Guide (Addison-Wesley Publishing Company)

/* Main Loop

I nt

{

}

* Be certain to request stencil bits.

mai n(int argc, char** argv)

glutlnit(&rgc, argv);
glutlnitD splayMde (GLUT_SINGLE | GLUT_RGB

| GLUT_DEPTH | GLUT STENCIL):

gl utlni t WndowSi ze (400, 400);

gl utl ni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[O0]);

init ();

gl ut ReshapeFunc(reshape);

gl ut D spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

The following examplesiillustrate other uses of the stencil test. (See Chapter 14 for additional ideas.)

« Capping - Suppose you're drawing a closed convex object (or several of them, aslong as they don't

Intersect or enclose each other) made up of several polygons, and you have a clipping plane that
may or may not slice off apiece of it. Suppose that if the plane does intersect the object, you want
to cap the object with some constant-colored surface, rather than seeing the inside of it. To do this,
clear the stencil buffer to zeros, and begin drawing with stenciling enabled and the stencil
comparison function set to always accept fragments. Invert the value in the stencil planes each
time afragment is accepted. After all the objects are drawn, regions of the screen where no
capping is required have zeros in the stencil planes, and regions requiring capping are nonzero.
Reset the stencil function so that it draws only where the stencil value is nonzero, and draw alarge
polygon of the capping color across the entire screen.

Overlapping translucent polygons - Suppose you have atranslucent surface that's made up of
polygons that overlap slightly. If you ssimply use alpha blending, portions of the underlying objects
are covered by more than one transparent surface, which doesn't look right. Use the stencil planes
to make sure that each fragment is covered by at most one portion of the transparent surface. Do
this by clearing the stencil planesto zeros, drawing only when the stencil planeis zero, and
incrementing the value in the stencil plane when you draw.

Stippling - Suppose you want to draw an image with a stipple pattern. (See "Displaying Points,
Lines, and Polygons' in Chapter 2 for more information about stippling.) Y ou can do this by

writing the stipple pattern into the stencil buffer, and then drawing conditionally on the contents of
the stencil buffer. After the original stipple pattern is drawn, the stencil buffer isn't altered while
drawing the image, so the object gets stippled by the pattern in the stencil planes.

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaw...Generic__BookTextView/21145;cs=fullhtml;pt=17383 (15 of 31) [4/28/2000 9:46:55 PM]

http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%15_28088_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%14_3708_START_RESTART_N%25#X
http://heron.cc.ukans.edu/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/@ebt-link;cs=fullhtml;pt=21145?target=%25N%14_3708_START_RESTART_N%25#X

OpenGL Programming Guide (Addison-Wesley Publishing Company)

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance between the viewpoint and the
object occupying that pixel. Then if the specified depth test passes, the incoming depth value replaces the
one already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new candidate color for that pixel
appears, it's drawn only if the corresponding object is closer than the previous object. In thisway, after
the entire scene has been rendered, only objects that aren't obscured by other items remain. Initially, the
clearing value for the depth buffer is avalue that's as far from the viewpoint as possible, so the depth of
any object is nearer than that value. If thisis how you want to use the depth buffer, you smply have to
enableit by passing GL_DEPTH_TEST to glEnable() and remember to clear the depth buffer before you
redraw each frame. (See "Clearing Buffers.") Y ou can also choose a different comparison function for

the depth test with giDepthFunc().
void glDepthFunc(GLenum func);

Sets the comparison function for the depth test. The value for func must be GL_NEVER,
GL_ALWAYS GL_LESS GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or
GL_NOTEQUAL. Anincoming fragment passes the depth test if its z value has the specified
relation to the value alrea