
PHYS 210: Introduction to Computational Physics Fall 2013 Homework 3
Version 2, October 30, 2013

Due date (revised): Thursday, November 14, 11:59 PM
PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please make careful note of the following information and instructions, which continue on page 2:

1. The following assignment requires you to implement several Matlab functions and scripts, all of which will be
coded in text files (.m files). As usual, these files must be (1) named precisely as specified, and (2) located in
the correct subdirectories. An inventory of requisite files is included at the end of each problem description.
Should you create other .m files within the subdirectories for test purposes etc. it is fine to leave them there.

2. The three problems comprising the assignment vary significantly in terms of the time and effort you can expect
to spend on their solution; please take this into consideration in your overall allocation of time for completion
of the problem set.

With luck, you will find Prob. 1 straightforward. Two of the functions that you are to code in this case
are Matlab versions of Maple procedures that your wrote for the second assignment (albeit the coding of
proc even odd requires some “manual” error checking that some of you may find slightly tricky). Although
you may want to program these functions “from scratch”, the problem can also be viewed as an exercise in
translation of code from one language to another.

Prob. 2 should also be straightforward and can be solved with just a few lines of Matlab.

Prob. 3, on the other hand, is where I expect most/all of you to expend the bulk of your time and effort. In
addition to the implementation of a core function, it requires that you write three distinct scripts which use
that function to carry out computational “experiments”, and to perform simple analyses of the results. In this
sense it is quite different and more “realistic” than the type of programming you have done in this course thus
far, especially in the assignments.

This component of the homework has been designed in part to help you gain a level of proficiency in Matlab

programming that will be necessary for the successful completion of your term projects. Thus, especially if you
are new to programming, the earlier you get to work on it, the better off you will be in terms of completing
your project expeditiously.

3. Crucial!! Statement terminators: Again, recall that you can enable/disable output from Matlab state-
ments by omitting/including the semi-colon statement terminators. Enabling output can be very useful in
code development and debugging. However, with the single exception of the display of the fit coefficients in
Problem 3.2.4, all of the statements in the final versions of all functions and scripts that you write for this
homework must be terminated with semi-colons so that execution of the code produces no output to the com-
mand window. Lest there be confusion about this point, the appearance of plotting windows, and the creation
of JPEG files do not count as output in this respect; i.e. if the problem requires that a function/script makes
a plot (which will be displayed in a plotting window), or that it saves a JPEG version of a plot, then it must

do so.

This is an extremely important point, and failure to adhere to this aspect of the instructions may lead to a

significant penalty.

4. Comments in code: No comments are required for the functions in Problem 1. For the other two problems,
the functions and scripts do not have to be extensively commented. Brief comments at the beginning of each
.m file describing the purpose of the code defined therein, including, for the case of functions, the purpose of
the input and output arguments, will suffice.

5. Error checking: The only function that must perform checks for validity of input arguments is prod even odd

(Problem 1.3).

6. Where to start Matlab: As usual, you must create a separate subdirectory for each problem in which you
will then create one or more .m files that contain the definitions of functions and scripts. When you are working
on a particular question, be sure to start Matlab from within that problem’s subdirectory so that Matlab can
find the .m files for the problem.

7. Plot titles/axis labels/legends: Several of the questions involve the generation of plots with specified titles,
axis labels and/or legends. The required annotations are given in typewriter font and are enclosed in quotes,
e.g. “This is a plot title”. Do not include the quotes in the annotations.

1



8. Example functions/scripts: The problem descriptions make reference to various .m files located in ∼phys210/matlab/
that provide usage examples for Matlab functions which you will use in completing the problem set. Provided
that you have copied the course default setup.m file to your directory ∼/Documents/MATLAB, you should be
able to view the contents of any of the .m files and use the scripts/functions that they define from within any
Matlab session. For example,

>> type errorreturn

should display

function rval = errorreturn(a, b)

% errorreturn returns the sum of its two inargs, providing that the first

% is strictly positive, otherwise it prints an error message and

% exits using the return statement.

% Assign a "default" value to the output argument to ensure that it

% IS defined before the function returns.

rval = NaN;

if a <= 0

% Print the error message and return

% See lab notes, ’help fprintf’ and/or online info for ’fprintf’

% for additional details on fprintf usage

fprintf(’myreturn: First argument must be > 0’);

return;

end

rval = a + b;

end

while executing

>> errorreturn(-2,3)

should produce the output.

myreturn: First argument must be > 0

ans =

NaN

Should this not work for you, refer to the instructions given in Section 4.3 of the Matlab Programming Lab
Notes, which are available via the Syllabus section of the course home page, or directly at

http://laplace.phas.ubc.ca/210/Labs/matlab-pgm-lab.txt

9. Working on a non-lab computer: First, this assumes that your system configuration supports X11 (e.g.
you have a Mac, or are running Windows with Xming installed), so that you can use gedit to create/edit .m

files, and so that you will be able to do at least simple plotting with Matlab.

If you haven’t yet configured your personal machines so that X11 applications are supported, you are again
encouraged to do so, not least since this will also allow you to work on your term projects outside the lab.

You can ssh into hyper and run the command-line version of Matlab via

% matlab -nodesktop -nosplash

or, if you have completed the appropriate lab exercise, by simply typing mat. You can try to use GUI version
of Matlab remotely, but will probably find the performance sluggish.

However, and again assuming that X11 is working on your machine(s), the simple plots that you need to make
should display without difficulty.

10. As always, should any aspect of the assignment be unclear to you, if you feel that you have been struggling
with something for an inordinate amount of time, etc., please seek help!

2



Problem 1: Make the subdirectory ∼hw3/a1. Within that subdirectory create .m files that contain definitions of
Matlab functions with headers and functionalities as specified. As noted previously, the function definitions do not
need to include comments.

1. Header: function val = fcn5(x)

Functionality: fcn5 returns a value defined as follows

0 for x ≤ −1
2 − 4

(

−x − 1
2

)

for −1 < x ≤ − 1
2

−4x for − 1
2

< x ≤ 0
4x for 0 < x ≤ 1

2

2 − 4
(

x − 1
2

)

for 1
2

< x ≤ 1
0 for x > 1

2. Header: function plot5(xmin, xmax, nx)

Functionality: plot5 uses the Matlab plot function to generate a single graph that plots both fcn5 and
-fcn5—where fcn5 is the procedure defined above—on the domain xmin ≤ x ≤ xmax, and where the functions
are evaluated at nx equally spaced values of x. fcn5 is to be graphed with a red line, -fcn5 with a green line.
When the function is invoked, the plot should appear in the usual Matlab plotting window that has a title
Figure 1. Give the plot a title “Plot of fcn5 and -fcn5”, x and y axes labels “x” and “y”, respectively, and
a legend with entries “fcn5(x)” and “-fcn5(x)”

Hints:

(a) See ∼phys210/matlab/tplot.m for a script that illustrates some basic plotting techniques/operations.
In addition, ∼phys210/matlab/plotex.m, which we examined in the lab, contains further examples and,
of course, you can find many more details and examples via the help command and searches for online
material.

(b) In the labs we have seen how we can easily generate a vector of equally spaced values in Matlab. However,
since fcn5 is not a builtin in function, consider using a loop to make a vector (or vectors) of the “y values”
that the function is to plot.

3. Header: function val = prod even odd(m, n)

Functionality: Given two integers, m and n, with n > m, prod even odd returns a value given by

(

n
∑

i=m

i | i is even

)(

n
∑

i=m

i | i is odd

)

For example
prod even odd(3, 12) = (4 + 6 + 8 + 10 + 12) (3 + 5 + 7 + 9 + 11) = 1400

Your implementation of prod even odd must make the following checks to ensure that the input arguments
are valid:

(a) Check that m and n are integers satisfying n > m; if not, the function is to print the error message

prod_even_odd: Input arguments m and n must be integers satisfying n > m.

and return NaN (not a number).

(b) Check that m and n are scalars (single values). If not, the function is to print the error message

prod_even_odd: Input arguments m and n must be scalars.

and return NaN.

Implement these error checks separately and in the order listed above.

Hints:

(a) ∼phys210/matlab/errorreturn.m defines a function errorreturn that illustrates the use of fprintf
and return to issue an error message and immediately exit from a function.

3



(b) You may find the Matlab lookfor command useful for locating one or more functions that will be helpful
with the argument checking, but note that isinteger does not work the way that one might naively
expect:

>> isinteger(100)

ans = 0

Test your functions thoroughly, being sure to use invalid as well as valid input arguments when testing prod even odd.
We will evaluate your implementations using our own input.

File inventory for this question:

1. fcn5.m

2. plot5.m

3. prod even odd.m

4



Problem 2: Consider a collection of n particles, with position vectors rk defined by

rk = [xk, yk, zk] , k = 1, 2, . . . , n (1)

The distance between any two particles, labelled by l and m, with position vectors rl and rm, respectively, is then
given by

dlm =

√

(xl − xm)
2

+ (yl − ym)
2

+ (zl − zm)
2

(2)

(Note that both l and m can take on any value in the range 1, 2 . . . , n).

Create the subdirectory hw3/a2. Within that subdirectory create the file dpart.m that implements a Matlab function
dpart as follows:

Header: function d = dpart(r)

Functionality: The input argument, r, can be assumed to be an n × 3 array with elements given by

r(k,1) = xk

r(k,2) = yk

r(k,3) = zk

The function is to return an n × n array with elements

d(l, m), l, m = 1, 2, ..., n

whose values are defined by (2). Note that the number of particles is implicitly given by the size of the input array.
Your function does not have to perform any error checking of the input argument.

Test your implementation using input of your own design. We will grade your work using our own test input.

Hints:

1. Recall that the size command returns the dimensions of an array.

2. There is a demonstration function, mytranspose, defined in ∼phys210/matlab/mytranspose.m, that you may
find useful in solving this problem.

File inventory for this question:

1. dpart.m

5



Problem 3: Two Dimensional Random Walks

3.1) Description of the model

This problem is concerned with random walks of a particle on a two-dimensional square lattice. The lattice is the
collection of points on the xy plane having coordinates (x, y) = (i, j), where i and j are both integers. The possible
positions of the particle are restricted to the set of lattice locations.

The walk unfolds in discrete time steps that will be labelled by another integer, k, where k ranges over the values
k = 0, 1, 2, . . . nsteps, and where nsteps is the number of steps in the walk. We will also refer to nsteps as the length of
the walk. We denote the particle coordinates at step k by (xk, yk): again, both xk and yk are integer-valued.

At the initial time, k = 0, the particle is situated at the origin; i.e. (x0, y0) = (0, 0). At each step of the walk,
the particle moves randomly to one of the four lattice sites closest to its current position. Specifically, for k =
0, 1, 2, . . . , nsteps − 1, the four possible movements of the particle are

(xk, yk) → (xk+1, yk+1) = (xk + 1, yk)

(xk, yk) → (xk+1, yk+1) = (xk − 1, yk)

(xk, yk) → (xk+1, yk+1) = (xk, yk + 1)

(xk, yk) → (xk+1, yk+1) = (xk, yk − 1)

and there is equal probability that any of the four possibilities occurs.

Here is an illustration of a random walk with nsteps = 11. The squares are the lattice sites, and the arrows, labelled
with the step number k = 1, 2, . . . , 11, show the trajectory of the particle. Notice that in the last step the particle
“doubles back” on itself.

(0,0)

9

5

6
7

4

8

2

13

10

11

(0,2)

(0,−3)

(−2,0) (3,0)

The sequence of nsteps + 1 = 12 coordinate-pairs for this walk is

(0, 0) → (0, 1) → (−1, 1) → (−1, 0) → (0, 0) → (0,−1) → (1,−1) → (1,−2) → (2,−2) → (2,−1) → (1,−1) → (2,−1)

It is important to note that the total number of coordinate-pairs defining a walk is always nsteps + 1, since the origin
of the walk is included.

Given the above definition of a random walk, we can pose various questions concerning the nature of the discrete
dynamics. For example, we can ask: on average, how far will a randomly-walking particle be from its starting
location after a certain number of steps? It is crucial to pose this and other queries in terms of an average over many

6



walks since, as you might expect, and as you will see explicitly as you work on this problem, when we we examine
the details of the particle trajectories from walk to walk, we invariably see large variations (fluctuations).

We thus will consider ensembles (collections) of a number of walks, denoted nwalks, each of length nsteps. Although
the computer experiments you are to implement will be done with specific values of nwalks and nsteps, it is important
to note that these quantities constitute key control parameters for the model. That is, were we to investigate the
model in more detail than will be done here, we would want to do so in the context of a set of calculations in which
both nwalks and nsteps were varied.

As just mentioned, one of the things that we can attempt to determine is the particle’s average displacement from
its starting position, and, for this particular flavour of random walk, it is actually more revealing to measure the
square of that displacement. We will therefore compute d2

k
, defined by

d2
k
≡ xk

2 + yk
2 for k = 0, 1, 2, . . . nsteps (1)

and, for a collection of walks, the ensemble average of that quantity, denoted 〈d2〉k:

〈d2〉k ≡
1

nwalks

nwalks
∑

M=1

d2
k
(M) for k = 0, 1, 2, . . . nsteps (2)

In this last definition, the notation d2
k
(M), where M labels a specific walk within the ensemble, is meant to emphasize

that the specific values of d2
k

will vary from walk to walk, i.e. will be a function of M .

Finally, before proceeding to the description of the Matlab code that you are to write, and the calculations you
are to perform, we note that all of xk, yk, d2

k
and 〈d2〉k are naturally represented in Matlab as vectors of length

nsteps + 1. In your programming you should take advantage of this observation, and, as much as possible, Matlab’s
vector/array-manipulation capabilities (i.e. try to keep the number of for loops in your code to a minimum).

Bear in mind, however, that vectors/arrays in Matlab always have a first index (address) 1, not 0. This means that
the step label k we have been using cannot be directly mapped onto an array index, but this should not cause you
undue difficulty. If you are confused by this point, ask for help!!

3.2) Matlab implementation and computational experiments

First, create the subdirectory hw3/a3. The problem involves the coding of one Matlab function that simulates an
individual walk, and three Matlab scripts that use that function to carry out specific experiments. The text files
that define these functions and scripts must all be located within hw3/a3.

Please read carefully through the entire description that follows before starting to design and write code: in particular,

pay close attention to the hints that are given. This will minimize frustration and wasted time. Should anything not

be clear to you, ask me for clarification.

3.2.1) randwalk.m

Create the file randwalk.m that implements a Matlab function with the following header and functionality:

1. Header: function [x y dsq norig] = randwalk(nsteps)

2. Functionality: The single input argument, nsteps, is the length of the walk. The four output arguments are
defined as follows:

(a) x: Row vector of length nsteps + 1 containing the x coordinates of the walk.

(b) y: Row vector of length nsteps + 1 containing the y coordinates of the walk.

(c) dsq: Row vector of length nsteps + 1 containing the squared displacements, d2
k
, of the walk.

(d) norig: The number of times that the particle returns to the origin (0, 0) during the walk. Do not count
the initial time as one of these visits.

Hint: You may find the Matlab function randi, discussed briefly in the October 17 lab, useful in your implementation.

3.2.2) srandwalk1.m

Create a Matlab script file, srandwalk1.m that

7



1. Uses randwalk to generate three distinct random walks with nsteps = 1000.

2. Uses the plot command to make a single figure (plot/graph) showing the three walks and using red, green
and blue lines, respectively (specifically, plot yk versus xk for the walks). Give the plot a title “Three random

walks”, and label the x and y axes “x” and “y”, respectively.

3. Uses the print command to save the figure as a JPEG image in the file walks.jpg

3.2.3) srandwalk2.m

Create a Matlab script file, srandwalk2.m that

1. Uses randwalk.m to compute 〈d2〉k with nwalks = 1000 and nsteps = 10000.

2. Uses the Matlab function polyfit to perform a linear fit to 〈d2〉k; i.e. uses polyfit to determine coefficients
a and b such that

ak + b

minimizes the least-square residuals of the fit.

The script must output the values of a and b, i.e. the fit coefficients must be assigned to Matlab variables a

and b, and those values must then be displayed by using the statements

a

b

This is the single exception to the “end every statement with a semicolon” dictum enunciated in the instructions.

3. Makes a single figure in which 〈d2〉k (red line) and ak + b (green line) are plotted versus k. Provide a legend
for the figure with entries “<displacement squared>” and “linear fit”, and label the x-axis “step” (no
title or y-axis label).

4. Saves the figure as a JPEG image in the file dsqmean.jpg

Record the values of a and b that are computed in a README file. On the basis of the value of a, as well as the figure
created by the script, what can you conjecture about the behaviour of 〈d2〉k as a function of k? In other words, how
does the expectation value of the square of the displacement appear to vary with time? Answer in README.

Hint: You can use Matlab’s help facility and/or online material to learn about polyfit. There is also a sample
script ∼phys210/matlab/tpolyfit.m that provides an illustrative example of its usage.

3.2.4) srandwalk3.m

Create a Matlab script file, srandwalk3.m that

1. Uses randwalk.m to generate nwalks = 10000 walks, each of length nsteps = 1000.

2. Determines the maximum number of times among those walks that the particle returns to the origin. I will
call this value maxnorig.

3. Uses the Matlab hist command to make a histogram with maxnorig + 1 bins that shows the number of
walks with norig origin returns as a function of norig. Give the histogram a title “Histogram of number

of origin returns for nwalks=10000, nsteps=1000”, and label the x and y axes “Number of origin

returns” and “Count”, respectively.

4. Saves the histogram as a JPEG image in the file norig.jpg

Hints:

1. Use Matlab help or the web to learn about hist

2. There is a sample script ∼phys210/matlab/thist.m that demonstrates usage of hist.

3. Important: I have purposefully not told you precisely how you are to collect the data to be histogrammed.
This you should try to figure out on your own.

8



3.2.5) Final hints and remarks

When implementing and testing any of the four functions/scripts, but especially for srandwalk1.m and srandwalk2.m,
use values of nsteps and nwalks sufficiently small that you can quickly develop and debug your code, and experiment
with it. Only when you are satisfied that your coding is correct should you run with the required values of nwalks

and nsteps.

Additionally, for the values of nwalks and nsteps specified above you can expect srandwalk2 and srandwalk3 to each
take on the order of a minute to complete. If either nwalks or nsteps is reduced by a factor of 10, say, the execution
time should also go down by a factor of about 10. You can use this information to gauge whether your algorithm
appears to be consuming excessive amounts of computer time, which, in turn, may signal one or more flaws in your
coding.

3.2.6) File inventory for this problem:

1. randwalk.m

2. srandwalk1.m

3. srandwalk2.m

4. srandwalk3.m

5. walks.jpg

6. dsqmean.jpg

7. norig.jpg

8. README (contains answers for 3.2.3)

9


