Finite Difference Solution of the Korteweg \& de Vries (KdV) Equation

PHYS 210 Term Project Proposal
Matthew Choptuik

- Overview
- The $K d V$ equation is a nonlinear wave equation in one space variable and time which admits interesting "particle-like" solutions known as solitons
- The KdV solitons travel with velocities that are dependent on their amplitudes, and solitons with different amplitudes can undergo interactions (collisions) which, when done, leave each soliton unchanged
- Project Goals
- To write an MATLAB (octave) code which solves the $K d V$ equation numerically, using second-order finite difference techniques
- To establish correctness of the implementation of the code through convergence tests and comparison with known solutions
- To investigate a variety of initial conditions for the equation, including those describing single and multi-soliton solutions
- Mathematical Formulation (Equations of Motion)
- The KdV equation can be written in the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+12 u \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}=0 \tag{1}
\end{equation*}
$$

where $u \equiv u(t, x)$

- The equation will be solved as an initial boundary problem on the domain

$$
\begin{equation*}
-x_{\max } \leq x \leq x_{\max } \quad 0 \leq t \leq t_{\max } \tag{2}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(0, x)=u_{0}(x) \tag{3}
\end{equation*}
$$

where $u_{0}(x)$ is some specified function, and boundary conditions

$$
\begin{equation*}
u\left(t,-x_{\max }\right)=u\left(t, x_{\max }\right)=0 \tag{4}
\end{equation*}
$$

- Numerical Approach

- The KdV equation will be discretized using a second-order finite difference technique, wherein the continuum domain (t, x) will be replaced with a discrete grid (lattice) of points (t^{n}, x_{j}) such that

$$
\begin{align*}
x_{j} & =-x_{\max }+j h, \quad j=1,2, \cdots n_{x} \tag{5}\\
t^{n} & =n \lambda h, \quad n=0,1,2, \cdots n_{t} \tag{6}
\end{align*}
$$

- I will then approximate (discretize) the KdV equation as follows

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\lambda h}+\mu_{t}\left(D_{x} u_{j}^{n}\right)+12 \mu_{t}\left(u_{j}^{n}\right) \mu_{t}\left(D_{x} u_{j}^{n}\right)+\mu_{t}\left(D_{x x x} u_{j}^{n}\right)=0 \tag{7}
\end{equation*}
$$

where the operators μ_{t}, D_{x} and $D_{x x x}$ are defined by:

$$
\begin{align*}
\mu_{t}\left(u_{j}^{n}\right) & =\frac{1}{2}\left(u_{j}^{n+1}+u_{j}^{n}\right) \tag{8}\\
D_{x}\left(u_{j}^{n}\right) & =\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 h} \tag{9}\\
D_{x x x}\left(u_{j}^{n}\right) & =\frac{u_{j+2}^{n}-2 u_{j+1}^{n}+2 u_{j-1}^{n}-u_{j-2}^{n}}{h^{3}} \tag{10}
\end{align*}
$$

- Numerical Approach (continued)
- When supplemented with discrete versions of the boundary conditions, and assuming that the values of $u_{j}^{n}, j=0,2, \cdots n_{x}$ are known (for $n=0$, these will be determined from the initial conditions), the approximation to the KdV equation becomes a set or nonlinear algebraic equations in the unknowns $u_{j}^{n+1}, j=0,2, \cdots n_{x}$
- I will solve this system of equations using a multi-dimensional Newton-Raphson method
- Each iteration of the Newton method will require the solution of a banded linear system which will be solved using MATLAB (octave) functions that are based on LAPACK (Linear Algebra PACKage) routines
- When the Newton method has converged, I will have advanced the discrete solution in the time, and can then repeat the process for the desired number of time steps
- Visualization and Plotting Tools
- I will use xvs for interactive analysis and generation of mpeg animations, and MATLAB's plotting facilities for plots to be included in my report
- Testing \& Numerical Experiments
- Testing
- Convergence testing: Fix initial data, compute solutions using discretization scales $h, h / 2, h / 4, h / 8 \cdots$, and ensure that $O\left(h^{2}\right)$ convergence behaviour is obtained
- Check the numerical results against the known closed-form solutions for single solitons
- Numerical Experiments
- Investigate the interaction of two or more solitons with different amplitudes, and measure the expected "phase-shift" effect which results from the interaction (collision)
- Investigate evolution of generic types of initial data (such as Gaussian profiles) to see if solitons generically emerge
- Project Timeline

Dates	Activities
$10 / 15-10 / 26$	Do basic research, derive equations \& begin code design
$10 / 27-11 / 15$	Implement code
$11 / 16-11 / 19$	Test code
$11 / 20-11 / 26$	Run numerical experiments, analyze data, begin report
$11 / 27-11 / 29$	Finish report
$11 / 29$	Submit project! (absolute deadline is $12 / 02$)

- References
- R.K.Dodd et al, Solitons and Nonlinear Equations, Academic Press, London, (1982)
- http://bh0.phas.ubc.ca/~matt/Teaching/05Fall/PHYS410/Projects/kdv.pdf

QUESTIONS?

COMMENTS?

SUGGESTIONS?

THUNDEROUS APPLAUSE!!

